
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2011

An efficient adaptive vortex particle method for real-time smoke An efficient adaptive vortex particle method for real-time smoke

simulation simulation

Shengfeng HE
Singapore Management University, shengfenghe@smu.edu.sg

Hon-Cheng WONG

Un-Hong WONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
HE, Shengfeng; WONG, Hon-Cheng; and WONG, Un-Hong. An efficient adaptive vortex particle method for
real-time smoke simulation. (2011). Proceedings of the 12th International Conference on Computer-Aided
Design and Computer Graphics, Jinan, China, 2011 September 15-17. 317-324.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8421

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

An Efficient Adaptive Vortex Particle Method for Real-Time Smoke Simulation

Shengfeng He1, *Hon-Cheng Wong1,2, Un-Hong Wong2

1. Faculty of Information Technology
2. Space Science Institute

Macau University of Science and Technology
Macao, China

Email: shengfeng he@yahoo.com, *hcwong@ieee.org, uhwong@must.edu.mo
*Corresponding author

Abstract

Smoke simulation is one of the interesting topics in com-
puter animation and it usually involves turbulence genera-
tion. Efficient generation of realistic turbulent flows becomes
one of the challenges in smoke simulation. Vortex particle
method, which is a hybrid method that combines grid-based
and particle-based approaches, is often used for generating
turbulent details. However, it may cause irrational artifacts
due to its initial condition and vorticity forcing approach
used. In this paper, a new vorticity forcing approach based
on the spatial adaptive vorticity confinement is proposed to
address this problem. In this approach, the spatial adaptive
vorticity confinement force varies with helicity, leading to
the fact that the grid-based simulation driven by the vortex
particle is now based on the velocity field. Furthermore, we
introduce an adaptive vortex particle approach to improve
the computational efficiency of the simulation by making
the influencing region adapt with the velocity and elim-
inating those particles with zero velocity in the vorticity
forcing method. A parallel smoke simulator integrating our
approaches has been implemented using GPUs with CUDA.
Experimental results demonstrate that our proposed methods
are efficient and effective for real-time smoke simulation.

1. Introduction

Modeling and rendering of natural scenes are still
challenging tasks in computer graphics. Fluid simulation is
widely applied not only in academy, but also in the field
of entertainment and film industry. As the requirement of
realistic visual natural effects is increasing, achieving more
realistic visual effects of fluid simulation is a target that
researchers always struggle for. Large-scale components
of motion are well captured in low-resolution simulation,
however, increasing the grid size to capture small scale
details will cause a scalability problem. Many methods have
been proposed to address this problem over the past few
years. Some of them [1], [2], [3] recovered these details
by adding noise. But these models introduced a certain
extent of computational complexity and could not achieve

Figure 1. A set of sequential figures showing the smoke
rising around a sphere. The simulation was done on a
256× 256× 256 grid up-sampled from a 128× 128× 128
coarse grid using 8192 particles based on the tech-
niques proposed in this paper. Ray-marching was used
in this simulation.

highly turbulent effects. In this paper, we are focusing on
achieving real-time smoke effects with significant turbulent
flows.

Vortex particle method [4] is a class of Lagrangian
numerical methods for the simulation of incompressible
fluid flows where the vorticity is an integral component. It
is a hybrid method that overcomes the shortcoming of grid-
based and particle-based methods, however, reconstructing
the velocity field from particles is a tough work in this
method. Selle et al. [5] presented a simple approach that
orients to computer graphics and achieved highly turbulent

2011 12th International Conference on Computer-Aided Design and Computer Graphics

978-0-7695-4497-7/11 $26.00 © 2011 IEEE

DOI 10.1109/CAD/Graphics.2011.69

317

effects. In order to avoid computing the velocity from
the particle vorticity, this method uses the grid-based
velocity field as the velocity of particles. Furthermore,
a simple and fast vorticity forcing approach — vorticity
confinement is used. Vorticity confinement [6] was proposed
to recover small rolling details. However, it is not stable
and may cause artifacts as the confinement coefficient is
increased [5]. Suffering from the initial condition and the
vorticity confinement itself, the regions with zero velocity
become chaotic due to the fact that the vorticity force only
depends on the particle vorticity. In addition, the large
particle vorticity also causes artifacts analogous to the
vorticity confinement.

In this paper, we propose an efficient adaptive vortex
particle method that can be able to fix the problem in the
original method and improve the performance. We explore
our recently proposed spatial adaptive vorticity confine-
ment [7], which varies the confinement strength with helicity
to overcome the limitation of the vorticity confinement.
We apply this method to the vortex particle method as
the vorticity forcing. By integrating the spatial adaptive
vorticity confinement, the infection of the vortex forcing
is more rational. On the other hand, we also present an
adaptive approach to handle particles efficiently. Since our
vorticity forcing method eliminates the effect of the particles
with zero velocity, making the kernel radius adapt with
the particle velocity by following a hyperbolic function.
Thus we greatly reduce the computational complexity of the
traverse of the grid around particles. In addition, we have
implemented the proposed methods using GPUs with CUDA
to further accelerate the simulation. Finally, we procedurally
synthesize the high resolution turbulence flows from the
coarse simulation as what Yoon et al. [8] did. In summary,
our approach has the following characteristics:

• A new vorticity forcing method that integrates the
spatial adaptive vorticity confinement into the vortex
particle method, which can overcome the problem of
the original method and achieve more realistic smoke.

• An efficient adaptive approach is proposed to handle
vortex particles. We adapt the particle influencing re-
gion with the velocity by a hyperbolic function and
greatly reduce the computational complexity by ignor-
ing the particles that are not contributed to the vorticity
forcing.

• Highly turbulent effects like explosions can be gener-
ated easily with our model.

• Simulation and rendering are both performed on GPUs
with CUDA, most of our algorithms are GPU-oriented.
Turbulence effects can be simulated at interactive rates.

The rest of the paper is organized as follows: A brief
overview of related work is presented in Section 2. The
basic grid-based method is detailed in Section 3. Efficient

adaptive vortex particle method is explained in Section 4.
GPU implementation is presented in Section 5. Experimental
results are given in Section 6. We conclude our work and
give our future work in Section 7.

2. Related Work

Fluid simulation for computer graphics has been a
major interesting area in the past few years. A recent
book by Bridson [9] provides a relatively comprehensive
review. We only review some recent studies here. Grid-
based techniques [6], [10], [11] were proposed to provide
interesting visual results, however, their developments are
prohibited by the computational power available. On the
other hand, procedural synthesis techniques [1], [2], [3]
were developed to add details to these simulations with
noise.

In addition, techniques for generating a higher resolution
result from a lower resolution simulation are getting
popular. Nielsen et al. [12] developed a method by using
a low-resolution input simulation to guide the higher-
resolution one where details are added. Yoon et al. [8]
utilized the vortex particle method [5] to generate the
vorticity field, which are then procedurally synthesized
with the flow fields obtained from the incompressible
Navier-Stokes solver to improve sub-grid visual details.
Lentine et al. [13] presented a speedup technique for
simulating detailed fluids by generating a divergence-free
velocity field on a coarse grid. Zhao et al. [14] proposed a
scheme utilizing random forcing in turbulence integration
to enhance an existing fluid simulation with controllable
turbulence. Chen et al. [15] developed a new Lagrangian
primitive to incorporate turbulent flow details. In our recent
work [7] a spatial adaptive vorticity confinement based
on the helicity to achieve the visual pleasing effects of
highly turbulent flows is proposed. The work presented
in this paper is the application of the proposed spatial
adaptive vorticity confinement to the vortex particle method.

Our focus in this paper is to achieve highly turbulent
flows while keeping the performance that is suitable for
real-time applications such as games. In this paper, we
will utility the spatial adaptive vorticity confinement we
proposed recently [7] to develop a new approach focusing
on germinating highly turbulent flows in real time.

3. Grid-Based Simulation

In this section, we briefly review the basic incompressible
Navier-Stokes equations first. Then the spatial adaptive
vorticity confinement [7] will be reviewed along with the
original vorticity confinement.

318

3.1. Incompressible Navier-Stokes Equations

The behavior of incompressible fluid is described by the
Navier-Stokes (N-S) equations:

ut + (u · ∇)u +
1

ρ
∇p = µ∇2u + f (1)

∇ · u = 0 (2)

where u denotes the velocity and p is the pressure, ρ is
the mass density, and f represents the external forces such
as gravity or vorticity confinement. The numerical methods
for solving the incompressible N-S equations can be found
in [9].

3.2. Spatial Adaptive Vorticity Confinement

Vorticity confinement was introduced to computer graph-
ics by Fedkiw et al. [6]. This method re-injects the lost
energy dissipation back to the flow. At the same time, a large
coefficient would cause artifacts and instabilities. Spatial
adaptive vorticity confinement [7] has been introduced by
us recently to address this problem. The vorticity ωωω can be
obtained by computing the curl of velocity field u:

ωωω = ∇× u (3)

The gradient of |ωωω| is normalized to obtain the normalized
vorticity location vector N:

N =
∇|ωωω|
|∇|ωωω||

(4)

Vorticity confinement force is computed as follows [6]:

fconf = ϵh(N ×ωωω) (5)

where ϵ is the coefficient that controls the strength of the
confinement by the user, and h is the mesh size.

In [7] we modified the original formulation where the
strength of the confinement varies with respect to the helic-
ity. Helicity is defined as u · ωωω. The confinement force can
be obtained by factoring |ωωω| out from Equation (5) and re-
placing ϵ with ϵ|u|, then it is converted to be dimensionless:

f conf = ϵhh|u ·ωωω|(N × ωωω

|ωωω|
) (6)

where ϵh is a true dimensionless parameter.

4. Efficient Adaptive Vortex Particle Method

Vortex particle method is a hybrid method that combines
grid-based and particle-based methods to overcome the
drawbacks in both methods. They are a class of Lagrangian
numerical methods for the simulation of incompressible fluid
flows where the vorticity is an integral component. The N-S

Figure 2. A comparison of using the spatial adaptive
vorticity confinement (Left) and the vorticity confinement
in [6] (Right) as the vorticity forcing method. We clamp
the vorticity magnitude to a high range for both cases.

equations can be put into a vorticity form by taking the curl
of Equation (1) to obtain:

ωωωt + (u · ∇)ωωω − (ωωω · ∇)u = µ∇2ωωω +∇× f (7)

where (u ·∇)ωωω is the vorticity advecction term and (ωωω ·∇)u
is the vortex stretching term. One of the outstanding ad-
vantages of this method is that it suffers no numerical
dissipation of vorticity. However, in order to solve this
equation, we need to reconstruct the velocity field from
the particle vorticity to obtain the vorticity field, this is a
rather complex process. Selle et al. [5] created a simple
method to avoid this step entirely. They used the velocity
field determined by the grid simulation instead of the particle
vorticity. We implemented and improved their method in this
paper. Each vortex particle has both a vector position and a
vector strength associated with it. A kernel (Gaussian kernel)
is used to define the influencing strength of the velocity field
where the grid is around particles by the vorticity force. We
ignore the µ∇2ωωω and ∇×f terms the same as Selle et al. [5]
did. After initializing the vorticity and location of vortex
particles, the algorithm in a time step can be summarized as
follows:

1: Advect particles
2: Compute the vortex stretching term (ωωω · ∇)u
3: Influence the velocity field where the grid is around

particles by the vorticity force
Particles are advected according to:

xp(t+△t) = xp(t) +△tup (8)

where up can be obtained by interpolating the background
velocity with the particle position. The vorticity is stretched
by:

ωωω +=△t(ωωωx
∂u
∂x

+ωωωy
∂u
∂y

+ωωωz
∂u
∂z

) (9)

319

since this term is unstable, the vorticity magnitude could be
exponentially increased, thus we clamped the magnitude of
the vorticity.

4.1. Vorticity Forcing

A vortex particle is an influencing element, each individ-
ual element exerts its own influence throughout the flow
field. Selle et al. [5] used the vorticity confinement to
influence the flow field. Suffering from the initial condition
(an initial vorticity magnitude is non-zero) and the vorticity
confinement itself, the regions with zero velocity become
chaotic due to the fact that the vorticity force only depends
on the particle vorticity, and large particle vorticity may
destroy the simulation analogous to the vorticity confine-
ment. In order to address this problem, we integrate the
spatial adaptive vorticity confinement [7] into the vorticity
forcing method instead of the vorticity confinement to order
to improve the visual effects of the simulation. A kernel
function is used to decrease the confinement force strength
with respect to the distance from the particle center. We use
a clamped Gaussian kernel similar to the one used by Selle
et al. [5]:

ξp(x − xp) =

e−|x−xp|2/2r2

(r3(2π)3/2)
0 ≤ |x − xp| ≤ r

0 otherwise

(10)

where r is the kernel radius. The vorticity within particle
regions is defined as ω̃ωωp = ξp(x−xp)ωωωp. The direction from
the particle center is Np(x) = (xp−x)/|xp−x|. By applying
the spatial adaptive vorticity confinement, the influencing
function can be obtained:

Fp = ϵp|u · ω̃ωωp|(Np ×
ω̃ωωp

|ω̃ωωp|
) (11)

where ϵp is defined as |ωωωp|, it is the magnitude of the particle
vorticity.

4.2. Efficient Adaptive Handling of Particles

The kernel radius determines how many grid cells are
influenced by the vortex particles. The larger radius and
more particles will greatly increase the computational cost,
especially on GPUs. Suffering from GPU architecture and
compilation rules, “for” loops with logic computation within
a thread is not GPU friendly. Parallel computing is the
strength of GPUs, reducing sequential computational com-
plexity within a thread is the main point to improve the
performance on GPUs. Hence we present an efficient adap-
tive method to handle particles. In our implementation, each
particle is assigned to one thread, each thread has to traverse
a three-dimensional (3D) cube. The size of a 3D cube
depends on the kernel radius.

Figure 3. The smoke “rabbit” stays in the air without any
velocity applied. The spatial adaptive vorticity confine-
ment was used on the left case, and the original method
was used on the right case.

Figure 4. A comparison of using our efficient adaptive
particle handling (Left) and without using it (Right). Each
activated particle brings the density to show its state.
Buoyancy force was ignored in this simulation.

In order to decrease the number of traversals, we adapt
the influencing range with velocity by a hyperbolic tangent
function. Since a hyperbolic tangent function tanh(x) tends
to 1 as x approaches infinity, and tanh(x) equals to 0 when
x is 0. By applying this function, the radius will be zero
when the magnitude of velocity is zero, the influencing range
of particle will be reduced with respect to the magnitude
of velocity. Because the particle outside the smoke will be
ignored and the kernel radius is adaptive, this approach will
greatly reduce the computational cost, saving a significant
amount of computation. Furthermore, the particle with low
velocity decreases the influencing radius so that the smoke
with low velocity will be more gathered. The influencing
radius can be obtained by:

r = rmax tanh(σ|up|) = rmax
eσ|up| − e−σ|up|

eσ|up| + e−σ|up|
(12)

where rmax is the maximum of influencing range, coefficient

320

σ determines the changing rate of the influencing range.

Figure 5. Smoke rising around a sphere shows the
difference of using our efficient adaptive particle han-
dling (Left) and without using it (Right). This example is
a 128× 128× 128 simulation with a 64× 64× 64 coarse
grid.

4.3. Turbulence Details Synthesis

To achieve a high resolution fluid simulation, up-sampling
from a coarse simulation with procedurally synthesized
turbulent details is an effective approach. This kind of
techniques solve the N-S equations only on a coarse grid,
avoiding the huge computational time by achieving a high
resolution grid through up-sampling, leading to great per-
formance improvement. Since the vortex particle method is
independent from grid resolution, thus this method suits to
generate high resolution turbulent details and no additional
computation is needed. Our up-sampling method is similar
to that of Yoon et al. [8]. But the difference is that the high
resolution turbulence is synthesized from a coarse simulation
using our efficient adaptive vortex particle method, the
particle stretch, and the advection by a coarse velocity field.
In order to retrieve more details during the up-sampling
process, we use the cubic B-spline interpolation [16] instead
of the trilinear interpolation. The flow chart of our proposed
approaches to simulate and visualize smoke is illustrated in
Figure 6.

5. GPU Implementation

Taking the advantages of parallel computing with CUDA,
manifest performance improvement can be obtained. Our
simulator is optimized for GPU implementation so that both
grid-based and particle-based simulations can be processed
in parallel. For grid-based simulation, an example thread
assignment of using 32×32×32 grid is shown in Figure 7.
In this example, 16 × 16 × 1 threads are assigned for a
block. Each thread processes 16 grids along the z axis.
Since the resource of the register within a block is limited,
assigning too many threads within a block will reduce the

Figure 6. The flow chart of our proposed approaches.
u and U are the velocity field in a coarse grid and a high
resolution grid, respectively. Uvoritcity is the vorticity
field.

Figure 7. An example thread assignment using a
32 × 32 × 32 grid in the grid-based simulation. The red
line and black line separate the block and the thread,
respectively. Within a block, 16 × 16 × 1 threads are
assigned. Each thread processes 16 grids along the z
axis.

performance. In our experience, having 256 threads within
a block is a quite well solution for our program. Since
interpolation is commonly used in fluid simulation and
using texture memory is a handy way, we use 3D texture
memory to store the data, then interpolation can be done
directly by positioning the input. During the procedural
synthesis process, we do not need to allocate texture
memory for high resolution velocity fields thanks to the
coarse velocity field. Thus we save lots of computational
cost since updating the large size texture memory will
significantly reduce the performance. For particle-based
simulation, we process each particle using a thread, so each
particle can be easily corresponded by a thread. Particles are

321

controlled by three parameters: the vorticity, the location,
and the influencing radius. Particles are seeded with a
random position, a direction, and a vorticity magnitude. A
periodic boundary condition for particles flow is used.

In addition to the solver, a volume renderer has also been
implemented using GPU with CUDA. CUDA allows users
to cooperate with the graphics APIs through binding the
vertex buffer objects (VBOs) and the pixel buffer objects
(PBOs). The results from the volume renderer can be directly
rendered on the screen through PBOs, thus avoiding the
transfer of the date back to CPU across the PCI-express
bus.

6. Experimental Results

All results were performed on a PC with Intel Core i7
CPU, 6GB RAM, and NVIDIA GeForce GTX 480 graphics
card. Solver and renderer were implemented with CUDA
working on GPUs entirely. MacCormack method [17] was
used as the advection approach, Jacobi iteration [18] for
solving poisson equation. For balancing the visual effects
and the performance, ray-marching [19] was used in our
implementation.

Figure 1 shows a sequence of figures capturing the
smoke rising around a sphere. This simulation was done on
a 256×256×256 grid up-sampled using a 128×128×128
coarse velocity field at 8.2 frames per second (fps). It
demonstrates that our model can generate realistic turbulent
smoke effects. Figure 8 also shows a sequence of figures
capturing the rising of the smoke “University badge”
simulated with the same grid size.

A comparison between our vorticity forcing method and
the original method are shown in Figures 2 and 3. Figure 2
demonstrates our vorticity forcing method did not cause
artifacts but the vorticity confinement did while the vorticity
magnitude was clamped in a high range. Figure 2 shows the
smoke in zero velocity regions. Using the original method,
the smoke became chaotic due to the fact that the vorticity
force only depends on the vorticity. The figure on the left
shows our forcing method with helicity considered did not
affect the smoke within zero velocity regions.

Figures 4 and 5 compare the effects of using and without
using our efficient adaptive particle handling method. In
Figure 4, each activated particle brings density showing
how our approach eliminates the particles that are useless.
Figure 5 illustrates that how our approach make the smoke
with low velocity be more gathered due to the influencing
range reduced.

Method Number of Influencing Time (fps)
Particles Raidus (Incl. Rendering)

With E.A.V.P. 8192 4 41.9
Without E.A.V.P. 8192 4 33.5

With E.A.V.P. 16384 4 36.4
Without E.A.V.P. 16384 4 25.8

With E.A.V.P. 8192 8 25.4
Without E.A.V.P. 8192 8 13.2

With E.A.V.P. 16384 8 16.5
Without E.A.V.P. 16384 8 6.7

Table 1. A performance comparison of using and
without using our efficient adaptive vortex particle
(E.A.V.P.) method. All results were simulated on a

128× 128× 128 grid up-sampled from a 64× 64× 64
coarse grid.

Table 1 shows that our efficient adaptive vorticity con-
finement can improve the performance between 8 to 12 fps
compared to the original method. When more particles and
larger radius are set, more than two times speedups were
achieved.

Our model can simulate turbulent smoke phenomena in
real-time. Table 2 provides the performance information
of the comparison of different turbulence models using
procedural synthesis. By taking the parallel advantage of
GPUs, our method is much faster than Yoon et al. [8]’s
model where a CPU was used. In our recent work [7] we
used the same graphics card as the one used in this paper
and our model proposed here can get the slightly better
performance.

7. Conclusion and Future Work

In this paper, we have proposed an efficient adaptive
approach for producing highly turbulent effects in real-time.
The spatial adaptive vorticity confinement is introduced
to the vortex particle method. More rational and stable
effects can be achieved by this method compared to the
use of the original vorticity confinement. Considering that
most of particles are useless during the simulation process,
removing them can greatly reduce the performance. As
a result, we have presented an efficient adaptive particle
handling method to adapt the influencing range with
respect to the velocity magnitude by a hyperbolic function,
then those particles with zero velocity will be eliminated
and the radius of low velocity particle will be reduced.
Experimental results show that our efficient approach can
greatly improve the performance compared to the original
vorticity confinement. In addition, our model is faster
compared to other procedural synthesis models [8], [7].

Multi-grid method is fast for solving the poisson equation.
In our future work, we will try to use multi-grid method in

322

Figure 8. A set of sequential figures showing the rising of the smoke “university badge”. The simulation was done
on a 256× 256× 256 grid up-sampled from a 128× 128× 128 coarse grid.

Turbulence Model GPU/CPU Coarse Resolution Target Resolution Time (fps)
(Include Rendering)

Our model GPU 64× 64× 64 128× 128× 128 41.9
He et al. [7] GPU 64× 64× 64 128× 128× 128 39.3
Our model GPU 128× 128× 128 256× 256× 256 8.2

He et al. [7] GPU 128× 128× 128 256× 256× 256 6.6
Yoon et al. [8] CPU 30× 90× 30 120× 360× 120 0.11

Table 2. A performance comparison of our model with other turbulence models. All of these models use procedural
synthesis. He et al. [7] and our model were run on a NVIDIA GTX480 GPU, while Yoon et al. [8]’s cases were

performed on an Intel Quad Core CPU.

our simulator to further improve the performance. Moreover,
obtaining more realistic and interesting details is also one of
our goals. For example, Ma et al. [20] proposed a motion
texture synthesis method to create interesting visual effects,
exploring this technique may lead to some interesting results.

Acknowledgment

This work is supported by the National High-
Technology Research and Development Program of China
(2010AA122205). Special thanks to anonymous reviewers
for their constructive comments on the paper.

References

[1] H. Schechter and R. Bridson. Evolving sub-grid turbu-
lence for smoke animation. pages 1–8. In Proceedings
of Eurographics/ACM SIGGRAPH Symposium on Computer
Animation 2008, 2008.

[2] T. Kim, N. Thürey, D. James, and M. Gross. Wavelet tur-
bulence for fluid simulation. ACM Transactions on Graphics
(SIGGRAPH Proc.), 27:Article 50, 2008.

[3] R. Narain, J. Sewall, M. Carlson, and M. C. Lin. Fast
animation of turbulence using energy transport and procedural
synthesis. ACM Transactions on Graphics (SIGGRAPH Asia
Proc.), 27:Article 166, 2008.

[4] M. N. Gamito, P. F. Lopes, and M. R. Gomes. Two
dimensional simulation of gaseous phenomena using vortex
particles. pages 3–15. In Proceedings of the 6th Eurographics
Workshop on Computer Animation and Simulation, 1995.

[5] A. Selle and R. Rasmussen, N.and Fedkiw. A vortex particle
method for smoke, water and explosions. ACM Transactions
on Graphics (SIGGRAPH Proc.), 24:910–914, 2005.

[6] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of
smoke. pages 15–22. In Proceedings of ACM SIGGRAPH
2001, 2001.

[7] S. He, H. C. Wong, W. M. Pang, and U. H. Wong. Real-
time smoke simulation with improved turbulence by spatial
adaptive vorticity confinement. Computer Animation and
Virtual Worlds (CASA2011 Special Issue), 22:107–114, 2011.

[8] J.-C. Yoon, H. R. Kam, J.-M. Hong, S. J. Kang, and C.-H.
Kim. Procedural synethesis using vortex particle method for
fluid simulation. Computer Graphics Forum (Pacific Graphics
Proc.), 28:1853–1859, 2009.

[9] R. Bridson. Fluid Simulation for Computer Graphics. A K
Peters, 2008.

[10] J. Stam. Stable fluids. pages 121–128. In Proceedings of
ACM SIGGRAPH 1999, 1999.

[11] N. Foster and D. Metaxas. Modeling the motion of a
hot, turbulent gas. pages 181–188. In Proceedings of ACM
SIGGRAPH 1997, 1997.

323

[12] N. B. Nielsen, B. B. Christensen, N. B. Zafar, D. Roble, and
K. Museth. Guiding of smoke animations through variational
coupling of simulations at different resolution. pages 217–
226. In Proceedings of Eurographics/ACM SIGGRAPH Sym-
posium on Computer Animation 2009, 2009.

[13] M. Lentine, W. Zheng, and R. Fedkiw. A novel algorithm for
incompressible flow using only a coarse grid projection. ACM
Transactions on Graphics (SIGGRAPH Proc.), 29:Article
114, 2010.

[14] Y. Zhao, Z. Yuan, and F. Chen. Enhancing fluid animation
with adaptive, controllable and intermittent turbulence. pages
75–84. In Proceedings of Eurographics/ACM SIGGRAPH
Symposium of Computer Animation 2010, 2010.

[15] F. Chen, Y. Zhao, and Z. Yuan. Langevin particle: A self-
adaptive lagrangian primitive for flow simulation enhance-
ment. Computer Graphics Forum (EUROGRAPHICS Proc.),
30:435–444, 2011.

[16] C. Sigg and M. Hadwiger. Fast third-order texture filtering.
pages 313–329. In GPU Gems 2, 2005.

[17] A. Selle, R. Fedkiw, B. Kim, L. Liu, and J. Rossignac.
An unconditionally stable maccormack method. Journal of
Scientific Computing, 35:350–371, 2008.

[18] K. Crane, S. Tariq, and I. Llamas. Real time simulation and
rendering of 3d fluids. pages 633–675. In GPU Gems 3, 2008.

[19] J. M. Cohen, S. Tariq, and S. Green. Interactive fluid-particle
simulation using translating eulerian grids. pages 15–22. In
Proceedings of ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games 2010, 2010.

[20] C. Ma, L. Wei, B. Guo, and K. Zhou. Motion field texture
synthesis. ACM Transactions on Graphics (SIGGRAPH Asia
Proc.), 28:Article 110, 2009.

324

	An efficient adaptive vortex particle method for real-time smoke simulation
	Citation

	tmp.1704771057.pdf.lJJ0I

