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Abstract

In this report, we present our champion solution for
Ego4D Natural Language Queries (NLQ) Challenge in
CVPR 2023. Essentially, to accurately ground in a video,
an effective egocentric feature extractor and a powerful
grounding model are required. Motivated by this, we
leverage a two-stage pre-training strategy to train ego-
centric feature extractors and the grounding model on
video narrations, and further fine-tune the model on anno-
tated data. In addition, we introduce a novel grounding
model GroundNLQ, which employs a multi-modal multi-
scale grounding module for effective video and text fu-
sion and various temporal intervals, especially for long
videos. On the blind test set, GroundNLQ achieves 25.67
and 18.18 for R1@IoU=0.3 and R1@IoU=0.5, respec-
tively, and surpasses all other teams by a noticeable mar-
gin. Our code will be released at https://github.
com/houzhijian/GroundNLQ.

1. Introduction
The Ego4D [1] NLQ challenge aims to localize a tem-

poral window within a long-form first-person video corre-
sponding to a natural language (NL) question. Existing ap-
proaches (summarized in Table 1) primarily explore two
research directions: 1) pre-training a representative ego-
centric feature extractor using the Ego4D video-narration
dataset [2, 3], or 2) deploying a powerful grounding model
that processes the interaction between video and text fea-
tures to predict the relevant temporal interval [4, 5, 6].

To develop a discriminative egocentric video representa-
tion, EgoVLP [2] and InternVideo [3] have been pre-trained
on the Ego4D video-narration dataset, thus becoming go-to
egocentric feature extractors. Recently, NaQ [7] proposes

* This work was done during the first author’s internship in MSR Asia.

an effective data augmentation strategy to mitigate the data
scarcity problem for egocentric video grounding, achieving
substantial performance gains. Inspired by this, we em-
ploy a two-stage pre-training pipeline that includes both the
feature extractor and model pre-training, followed by fine-
tuning the grounding model on annotation data.

The long video input presents another challenge for this
task. Existing models [8] are primarily designed to handle
shorter videos. To address long videos, related works at-
tempted to adapt literature models by sparse sampling [1, 4]
or window-slicing [6]. However, these approaches lead
to information loss or insufficient global contextual encod-
ing. To input the complete video at once, the model of the
Badger team [5] re-purposes ActionFormer [9] for video
grounding, which integrates local self-attention to extract a
feature pyramid from an input video. However, they adopt
a late-stage multi-modal fusion network, which results in
ineffective multi-modal interaction. Motivated by this, we
introduce GroundNLQ, which incorporates well-designed
multi-modal multi-scale modules. Our module integrates
the textual query and long video deeply in the early stage
and constructs the text-aware video feature pyramid to cap-
ture temporal intervals of various lengths.

Through the two-stage pre-training pipeline for both
the egocentric video feature and the grounding model,
our single model GroundNLQ and final ensemble submis-
sion surpasses all other teams by a noticeable margin re-
garding every evaluation metric (in Table 2). Notably,
we also achieve a sizeable performance boost compared
with the winner approach of the ECCV22 workshop (i.e.,
10.06% +81%−−−→18.18% on R1@0.5 in Table 1).)

2. Methodology

As depicted in Figure 1, we implement a two-stage pre-
training process using Ego4D narrations, followed by fine-
tuning the model on the annotated dataset. Additionally, we
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Table 1: Comparison among our approach and previous challenge approaches. Results are reported on the blind test split on
the Recall@1 metric.

Team name Video Feature Text Feature Grounding model Long Video Processing Model Pre-train IoU=0.3 IoU=0.5

EgoVLP [2] EgoVLP EgoVLP VSLNet Sparse Sampling 10.46 6.24
ReLER [4] SlowFast+Omnivore+CLIP CLIP ReLER Sparse Sampling 12.89 8.14
CONE [6] EgoVLP EgoVLP/CLIP CONE Window Slicing 15.26 9.24
Badgers@UW. [5] SlowFast+Omnivore+EgoVLP CLIP ActionFormer+AdaAttN full 15.71 9.57
InternVideo [3] EgoVLP+InternVideo EgoVLP VSLNet Sparse Sampling 16.46 10.06
NaQ++ [7] EgoVLP+InternVideo CLIP ReLER Sparse Sampling ✓ 21.70 13.46

GroundNLQ EgoVLP+InternVideo CLIP GroundNLQ full ✓ 25.67 18.18

(3) Grounding Model Finetuning

GroundNLQ
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Figure 1: Left (a) depicts the overall training pipeline (§ 2.3). Right (b) shows our grounding model GroundNLQ (§ 2.2).

design a novel grounding model, GroundNLQ. This section
elaborates on the specifics of both the features (§ 2.1) and
the grounding model (§ 2.2), as well as the implementation
details of the training pipeline (§ 2.3).

2.1. Text and Video Representations

For video features, we employ video feature extractors
that have been pre-trained on Ego4D narrations, namely,
InternVideo [3] and EgoVLP [2]. We concatenate these
features along the channel dimension to formulate the final
video feature, mirroring the approach used in [3]. Specif-
ically, we extract each video feature for a short snippet
(approximately 0.53s) and feed the long video input se-
quence into our grounding model. In contrast, models such
as VSLNet [1, 8] and ReLER [4] employ sparse sampling
for video features to generate a fixed-length frame sequence
(e.g., 128 features in VSLNet). For textual features, we use
the CLIP [10] text encoder to extract the textual token fea-
ture sequence of the natural language (NL) query.

Additionally, we conduct feature projection to map the
video and text features into the same embedding space. Spe-
cially, we use 2 layers of the 1D Convolution network to
project video features, and 2 layers of the linear network to
project text features, respectively. Each layer is also stacked
with layer normalization and ReLU activation. After the

projection, we add the sin-cos position embedding as in [11]
into the projected video features to embed temporal-aware
position information.

2.2. GroundNLQ Model

Multi-modal Transformer Encoder. For the text en-
coder, we stack 4 vanilla transformer encoder blocks to
learn the contextual token features. Each text trans-
former encoder block incorporates the multi-head self-
attention (MHA) layer and feed-forward network (FFN).

Regarding the video encoder, we use another stack of
four transformer encoder blocks to learn text-aware video
features. Each video transformer encoder block consists of
a local MHA layer, a cross-modal attention layer, and an
FFN. We leverage window-based local self-attention to de-
crease the high computational burden of long video mod-
eling, as demonstrated in previous studies [9, 12]. This
approach efficiently handles long sequence inputs while
significantly reducing computation costs and maintaining
comparable performance. Additionally, we integrate cross-
modal attention to infuse text information into the video
features, enabling the early-stage fusion of text and video
features. This contrasts with the models by the Badgers
team [5], which employ late-stage fusion following uni-
modal feature encoding. This early-stage fusion is critical,



Table 2: Performance comparison of the top three teams on the public leaderboard. For our submission, we report the
performances of both validation and blind test splits.

Team-name
Validation Test Private

R1 @0.3 R1 @0.5 R5 @0.3 R5 @0.5 R1 @0.3 R1 @0.5 R5 @0.3 R5 @0.5

ego-env - - - - 23.28 14.36 27.25 17.58

asl nlq - - - - 24.13 15.46 34.37 23.18

GroundNLQ* 26.63 18.04 52.46 40.00 24.02 16.91 40.23 28.67
GroundNLQ 26.98 18.83 53.56 40.00 24.50 17.31 40.46 29.17
Ensemble 27.20 18.91 54.42 39.98 25.67 18.18 42.05 29.80

given the inherent challenge of aligning video content with
textual queries; it ensures comprehensive learning and fu-
sion of multi-modal information.

Multi-scale Transformer Encoder. We apply a stack of
6 multi-scale transformer encoder blocks to learn the text-
aware video feature pyramid from the text-aware video fea-
tures. Each block within the multi-scale transformer en-
coder consists of an MHA layer, a max-pooling layer, and
an FFN. We use a max-pooling operator with a stride of
2 to downsample the features, facilitating the capture of
longer intervals. The feature pyramid output is a combined
result of all 6 layers’ outputs with the inputs. This pro-
duces 7 text-aware video feature sequence levels of varying
lengths for moment prediction. Contrary to the approach
in ReLER [4], which slices the video input sequence into
different numbers of clip segments using varying window
lengths, our multi-scale mechanism does not employ split-
ting and is more akin to the feature pyramid network [13].

Prediction Head and Loss Function. Lastly, we imple-
ment two layers of a 1D Convolution network for the classi-
fication and regression heads, respectively, following a sim-
ilar approach as [5, 9]. The classification head outputs a
probability score for each interval feature of the pyramid,
while the regression head outputs the boundary distances
from the current interval. The model has dual learning ob-
jectives: background/foreground classification and bound-
ary regression. The loss function is a sum of the binary
classification loss and IoU regression losses.

2.3. Implementation Details

Egocentric Video Feature Extractor Pre-training.
EgoVLP [2] undergoes pre-training with 3.8M paired
egocentric video clips and corresponding narrations (i.e.,
EgoClip [2]) via a CLIP-like contrastive loss. Despite
a significantly smaller amount of dataset than the 400M
image-text pairs in CLIP or 136M video clip-text pairs
in Howto100M, EgoVLP demonstrates the necessity of
egocentric data pre-training for egocentric video tasks.

Additionally, InternVideo [3] translates textual narrations
into corresponding verb and noun class labels for each
EgoClip video clip, utilizing the VideoMAE [14] backbone
to train the 1-of-K classification for separate verb and
action labels. The result is three video features pre-trained
on Ego4D narrations: EgoVLP, InternVideo-Verb, and
InternVideo-Noun. We concatenate these features along the
channel dimension for the grounding model’s video input.

Grounding Model Pre-training. NaQ [7] presents a data
augmentation strategy that converts standard Ego4D video-
text narrations into training data for the grounding model.
We adhere to NaQ’s data collection steps, assembling all
training videos for episode memory benchmarks and col-
lating corresponding <video, narration, moment> tuples.
Ground-truth temporal boundaries are initialized using the
EgoClip boundary and refined via the temporal response jit-
tering strategy [7]. We then use this pre-training data to
train our model with our training loss function. The train-
ing utilizes 4 V100 GPUs with a batch size of 4 per GPU,
lasting approximately 4 days. The total and warmup epochs
are 10 and 4, respectively, with a maximum learning rate of
2e-4. The best-performing model epoch is chosen based on
inference on the validation split in zero-shot mode.

Grounding Model Fine-tuning. The fine-tuning stage
involves initializing the prediction head from scratch due to
moment boundary discrepancies between pre-training and
training data. We initially train our model on the train split,
determine the optimal epoch number, and report results on
the validation split. For leaderboard submission, we train on
the combined train+val splits and apply the model with the
optimal epoch number to the private test split. This stage
uses 2 V100 GPUs with a batch size of 2 per GPU, taking
about 8 hours. The total and warmup epochs are 10 and 4,
respectively, with a maximum learning rate of 1e-4.

Model Ensemble We also explore a model variant called
GroundNLQ⋆, wherein the primary modification is the inte-
gration of the cross-modal layer with the multi-scale trans-



former encoder. This new multi-scale block comprises
the MHA layer, the max-pooling layer, the cross-modal
layer, and the FFN. For leaderboard submission, we ul-
timately ensemble the predictions from two models (i.e.,
GroundNLQ and GroundNLQ⋆).

3. Experiment
3.1. Data Analysis

Table 3: Statistics showing the number of videos and textual
narrations/queries in different splits. PT is short for Pre-
Train.

Type Feature PT Model PT Train Validation Blind Test

Video 3.8M 5,130 1,271 415 333

Text 3.8M 899,219 13,849 4,552 4,005

Table 3 presents the dataset statistics for training the
model. For feature pre-training, Ego4D videos are seg-
mented into short clips to learn video representation. For
model training, we employ original long videos to train the
grounding model.

3.2. Result Analysis

Table 2 displays our primary leaderboard results. Our
best leaderboard submission originates from the ensembled
model. Significantly, our results outpace all other teams by
a substantial margin across all metrics, particularly the R5
metrics. Furthermore, our single model also exhibits robust
performance, thereby demonstrating the superior efficacy of
GroundNLQ and the staged training pipeline.

3.3. Ablation Analysis

Table 4: Ablations study for InternVideo video feature and
model pre-training stage. Results are reported on the vali-
dation split.

InternVideo R1@0.3 R1@0.5 R5@0.3 R5@0.5

✗ 21.81 14.28 45.56 32.54
✓ 26.98 18.83 53.56 40.00

(a) Effects of the InternVideo video feature.

Pre-train R1@0.3 R1@0.5 R5@0.3 R5@0.5

✗ 16.74 11.47 39.02 27.39
✓ 26.98 18.83 53.56 40.00

(b) Effects of the model pre-training stage.

Table 4 provides an ablation study on both features and
models. Table 4a underlines the importance of all features.
Using the EgoVLP feature alone, the R1@0.3 performance
declines from 26.98% to 21.81%. This noticeable gap leads

Example-A: Where is the hose pipe before I sprayed the air filter?

55.7s46.3 s
45.9s 48.4sGT

Score: 0.392 Rank 1st

✓
GroundNLQ

Example-B: How many white shoes are leaned on the wall?

312s 287s

291.8s 300.5sGT

Score:  0.132 Rank 7th ✓
Score: 0.217 Rank 1st306.3s 320.2s ×

GroundNLQ

×
47.6s45.3 s Score: 0.075 Rank 8th

… …

……

Figure 2: Two failure cases. We show the groundtruth seg-
ments and our prediction segments.

to diminished performance in further ensembles. Addition-
ally, we explore the fine-grained ranking in CONE [6]. We
employ the top5 prediction of the GroundNLQ model and
re-rank these predictions based on the matching score of the
EgoVLP model. This also results in a drop in R1@0.3 per-
formance from 26.98% to 20.52%, and the further ensemble
does not enhance performance. Table4b emphasizes the im-
portance of the pre-training stage. As found in NaQ [7], pre-
training the grounding model substantially enhances perfor-
mance.

3.4. Limitation Analysis

Figure 2 shows two failure examples contrasting the
groundtruth and predicted segments. In Example-A, the
error arises from the imprecise boundary. The first pre-
diction of GroundNLQ captures not only the ground truth
event (“I pick up the hose pipe”) but also subsequent events
(“I spray the air filter with the hose pipe and then put back
the hose pipe”). Consequently, the matched IoU with the
ground truth is below the 0.3 threshold, classifying the pre-
diction as false. In Example-B, the error results from an
inadequate understanding of the video content and textual
query’s nuances. The first prediction of GroundNLQ iden-
tifies the event where ”I enter the room, take off the shoes
and put the shoes in the shoebox near the wall”. While the
key objects (shoes and wall) are matched, the alignment ne-
glects detailed attributes of the shoes (their color is white,
and they lean against the wall).

4. Conclusion
We present our solution to the Ego4D natural language

queries challenge in CVPR 2023. Through our experiments,
we highlight the importance of the two-stage pre-training of
both the video feature extractor and the grounding model.
Regarding the model, we find the importance of early-stage
fusion between long video and textual query in the multi-
modal multi-scale module. Moreover, we also identify fur-
ther challenges of the imprecise boundary and fine-grained
attribute understanding issues for future work.
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