
Knowledge Graph enhanced
Aspect-Based Sentiment Analysis
Incorporating External Knowledge

Autumn TEO1, Zhaoxia WANG1∗, Haibo PEN2∗, Budhitama SUBAGDJA1, Seng-Beng HO3, Boon Kiat QUEK3∗
School of Computing and Information Systems, Singapore Management University, Singapore, Singapore1

School of Electrical and Information Engineering, Tianjin University, Tianjin, China2

Social and Cognitive Computing Department, Institute of High Performance Computing (IHPC),

Agency for Science, Technology and Research (A*STAR), Singapore, Singapore3

autumn.teo.2018@scis.smu.edu.sg, {zxwang, budhitamas}@smu.edu.sg, penhaibo@tju.edu.cn, {hosb, quekbk}@ihpc.a-star.edu.sg

Abstract—Aspect-Based Sentiment Analysis (ABSA) is a type
of sentiment analysis that could identify and extract various
aspects or features from text and determining the sentiment
associated with each aspect. ABSA has significant real-world
applications, such as providing deeper insights about specific
strengths and weaknesses of each aspect contained within text
data. Despite notable advancements, ABSA still has room for
improvement in completeness, accuracy, and performance ef-
ficacy. To tackle these challenges, this research introduces an
approach to ABSA that leverages knowledge graphs to improve
completeness, accuracy, and performance efficacy. Our key nov-
elty is in being able to incorporate enhancements across multiple
stages, including utilising knowledge graphs together with dataset
processing, and architectural modelling. Additionally, we offer a
complementary overview and analysis of various deep learning
heuristics and optimization strategies that could further enhance
ABSA performance. Our validation results demonstrate the
effectiveness of the proposed knowledge graph enhanced ABSA
method across multiple benchmark datasets, with notable boosts
to model performance. Importantly, in being model-agnostic,
our dataset processing approach could potentially enhance the
performance of other ABSA methods in the future.

Index Terms—Sentiment Analysis, Knowledge Graph, Aspect
Based Sentiment Analysis, Deep Learning, External Knowledge

I. INTRODUCTION

Sentiment analysis aims to classify people’s opinions, senti-

ments, emotions and attitudes towards certain entities such as

services, products or topics [1], [2]. Aspect Based (or level)

Sentiment Analysis (ABSA) takes this to a finer-grained level,

where the sentiment polarity of every target entity (or aspect)

present is determined. Here, polarity refers to the valence of

the sentiment, and this could either be positive, neutral, or

negative, while aspect would refer to the particular attribute,

category, feature, or topic that is being referenced [3], [4].

For example, in the sentence “the screen is very clear, but the
battery life is too short”, the entity “screen” has a positive

sentiment, whereas “battery life” is associated with a negative

sentiment.

∗Corresponding Author

Recent approaches to ABSA, such as those incorporating

Deep Neural Networks (DNN), have started to take context
into account [5]. Among DNNs, Long Short-Term Memory

(LSTM) networks have shown efficacy in uncovering the

semantic relationship(s) between the target and its surrounding

contextual information [6]. LSTMs could be further improved

by incorporating attentional mechanisms to better capture

important contextual information pertaining to a specific as-

pect [6]. To augment ABSA models further, recent attempts

that incorporated external knowledge have started to outper-

form current state-of-the-art models [7]–[9]. However, these

attempts either require substantial workarounds to integrate

external knowledge, thus sacrificing generalizability, or the

Knowledge Graph (KG) may be augmented inefficiently [3].

For example, in Zhao and Yu’s approach [8], when the KG is

queried to generate relevant triples for each input, the same

triple could be produced multiple times, as the same topic

could be present throughout the dataset, leading to inefficiency

in KG augmentation. There are other approaches that utilize

Bi-LSTM, which increases the complexity and training time.

In this paper, we present an LSTM-based model that could

achieve greater accuracy but without sacrificing efficiency

in the incorporation of KGs and external knowledge. Addi-

tionally, we demonstrate how performance could be further

enhanced through various optimization techniques. Key con-

tributions of this research includes:

• An enhanced ABSA method that leverages a KG and

external knowledge. This method incorporates enhance-

ments across various stages, encompassing the utilization

of KGs, dataset processing, and architectural modelling,

ultimately contributing to the advancement of ABSA.

• A comprehensive overview of various deep learning

heuristics and optmization strategies, such as Optimizer,

Learning Rate Scheduler, Weight Initializer, and Non-

Linear Activation Function, which we employ, to push

the overall ABSA task performance.
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• A demonstration of the model’s effectiveness, through

evaluation on the Restaurant14 and Laptop14 datasets.

Our model performs competitively against recent state-of-

the-art models, which underscores the practical efficacy

and advancements that could be made possible by the

proposed approach.

II. RELATED WORK

A. Sentiment Analysis

Sentiment analysis, also known as opinion mining, is a

burgeoning field within natural language processing (NLP) that

focuses on deciphering and understanding human sentiments

or emotions expressed in textual data [4], [10]. In an era

dominated by digital communication, sentiment analysis plays

a pivotal role in gauging the subjective tone, attitude, and

feelings embedded in vast amounts of textual content. Its

applications span across diverse domains, ranging from social

media platforms, where users openly share their opinions,

to customer reviews of products and services, and even in

the analysis of news articles [11]–[13]. The primary goal of

sentiment analysis is to automatically determine whether a

piece of text expresses a positive, negative, or neutral sen-

timent, offering valuable insights for businesses, researchers,

and policymakers seeking to comprehend public opinion and

sentiment trends [14].

In recent years, sentiment analysis has become increasingly

popular for social data analysis [15]. Different AI techniques

have been leveraged to improve both accuracy and inter-

pretability of sentiment analysis algorithms, including sym-

bolic AI [16], [17], subsymbolic AI [18], [19], and neurosym-

bolic AI [20], [21]. Besides traditional algorithms that focus on

English text [22], multilingual [23] and multimodal sentiment

analysis [24] have recently attracted increasing attention. Typ-

ical applications of sentiment analysis include social network

analysis [25], [26], finance [27], and healthcare [28].

The methodologies employed in sentiment analysis have

evolved over time, from early rule-based approaches to more

sophisticated machine learning and deep learning models [29].

Traditional methods often relied on predefined rules or sen-

timent lexicons, while contemporary techniques harness the

power of neural networks to capture intricate patterns and

context in language [14], [30]. As sentiment analysis continues

to grow in importance, researchers are exploring innovative

ways to address challenges such as multilingual sentiment

analysis [23], and aspect-based sentiment analysis [4], [5],

[31], [32].

Aspect-based sentiment analysis (ABSA) is an advanced

form of sentiment analysis that goes beyond the traditional

classification of text into positive, negative, or neutral senti-

ments [4], [32]. Instead, ABSA aims to identify and analyze

the sentiment associated with specific aspects or components

within a piece of text. This fine-grained approach allows

for a more nuanced understanding of opinions, especially in

scenarios where multiple aspects or features are discussed [4],

[5], [31], [32]. Various DNN-based methodologies have been

employed to tackle ABSA tasks.

B. Aspect Based Sentiment Analysis

DNN-based models have been the focus of recent ABSA

research with most models being either Convolutional Neural

Networks (CNNs)-based [33]–[36], LSTM-based [37]–[41]

models or a hybrid of both [42], [43]. The main motivating

factor for using CNNs is its ability to extract local information

from the data and synthesize the relationships among the

features [44]. Another advantage of CNN is its non-linearity,

enabling it to fit the data better than linear models and it also

avoids the need for custom fixed language rules [34]. Toh

and Su [35] achieved state of the art results using CNN on

SemEval-2016 by combining a deep CNN model with a RNN

model. Xu et al. [36] achieved a competitive result on the Yelp

datasets by incorporating CNN with a non-linear Conditional

Random Field (CRF) model to extract the aspect before using

another CNN to predict the sentiment. However, CNN-based

models often neglect important sequential information as they

typically average the values of the aspect embeddings to obtain

aspect information. Xu et al. [36] overcame this issue by using

a CNN based module to improve target-specific representation.

Another issue with CNN is the increase in complexity in

proportion to the size of the dataset and the increase in the

number of convolution layers can lead to a vanishing gradient

problem [45]. Lastly, CNNs are also highly reliant on the

initial parameters in order to avoid a local minima, requiring

a considerable amount of work in initialization according to

the problem at hand [46].

For textual data, it is advisable to utilize Recurrent Neural

Networks (RNNs) instead. However, RNNs have a fatal flaw

in which they are susceptible to the vanishing or exploding

gradient problem where the backpropagated gradient tends

towards zero and infinity respectively. For this reason, LSTMs

are often used instead as it is able to mitigate this issue through

its input, forget and output gates [46], [47]. Furthermore,

LSTM-based models are able to use sequential information

to capture long range semantic dependencies. For example,

Li et al. [40] proposed LSTM model utilizes the positional

dependencies of sentiment and aspect words. Tang et al’s

Target-Dependent LSTM (TD-LSTM) and Target-Connection

LSTM (TC-LSTM) models extended upon the LSTM model

by considering the target as a feature [48]. Wang et al.’s

Attention-based LSTM (ATAE-LSTM) extends on TD-LSTM

by utilizing an attention mechanism to utilize the relationships

between aspects and polarity [49]. Ma et al. [39] proposed

Interactive Attention Network (IAN) applied two attention

networks to identify key words of the target and its full context.

Chen et al. [38] introduced a recurrent attention network

that employs a recurrent attention structure to capture aspect-

specific sentence representation. Sun et al. [37] proposed a

solution employing a dependency tree, Bi-LSTM and Graph

Convolutional Network (GCN) to propagate contextual and

dependency information between various aspects and opinions.

Li et al. [41] used two LSTMs to capture history-aware-

aspect representation before using an attention mechanism to

transform it into sequential-aspect representations.
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C. Knowledge Graph Providing External Knowledge

A KG contains information about various real-world en-

tities, providing a rich source of external information for the

model learning process [50]. Despite this, much of the existing

research predominantly focuses on mining context-word-to-

aspect-word dependencies within the sentence itself, largely

neglecting the integration of text-related external knowledge,

such as data on related words and symbolic knowledge [51].

The utilization of external knowledge has proven beneficial

in enhancing semantic representation, leading to improved

performance in sentiment analysis systems.

A KG is often denoted as a collection of triples (h, r, t),
consisting of a head entity, h ∈ E, a tail entity, t ∈ E, and a
relation, r ∈ R. Here E denotes {e1, e2, . . . , en} and it is a set

of entities, R denotes {r1, r2, . . . , rn} which represents a set of

binary relations. An example of a triple is ”(AlfredHitchcock,

DirectorOf, Psycho)” where AlfredHitchock is the head entity

and Psycho is the tail entity respectively while DirectorOf

represents the relation [52]. DBpedia [53], YAGO [54], and

Freebase [55] are examples of important KGs that query,

store and represent relational real-world semantic data. Recent

research has incorporated KGs to tackle a wide variety of

tasks which includes information extraction [56], question

answering [57] and semantic parsing [58].

However, the inherent nature of the triples poses a challenge

when it comes to manipulating it for use in downstream

tasks. This has given rise to KG embeddings as a means of

addressing this issue. KG embeddings preserve its structure

while simplifying the manipulation by embedding the entities

and its relations within a vector space [52]. There are multiple

KG embedding techniques which can be categorized into two

different groups: semantic matching and translational distance

models. As the name suggests, semantic matching models

perform semantic matching of entities and relations to their

vector space representation. RESCAL assigns every entity to

a vector to capture its semantic meaning while representing

each relation as a matrix before using a bilinear function to

determine the plausibility of a fact [59].

ANALOGY extends on RESCAL by optimizing the analog-

ical properties of the representations of the embedded relations

and entities [60]. DistMult simplifies RESCAL [61], which de-

creases its usability as it is only able to handle symmetrical re-

lationships, making it unsuitable for general KGs. Holographic

Embedding (HolE) [62] combines the strength of RESCAL

and DistMult through the use of circular correlation operation.

Similarly, ComplEx extends on DistMult by utilizing complex-

valued embeddings, enabling it to better model asymmetric

relations [63].

The translational distance models utilize distance-based

function to determine the plausibility of a fact. An example

of a translational distance is TransE [64], which represents

relations as translations in the embedding space. For a given

triple (h, r, t), the h and t entities will be connected by a

vector r, i.e., h+ r ≈ t.

However, TransE is only effective in dealing with 1-to-

1 relations. TransH [65] overcomes this deficiency by al-

lowing entities who are involved in multiple relations to

have distinct representations. TransR [66] and TransD [67]

further expand on the translational distance model by adopt-

ing relation-specific spaces rather than hyperplanes. However,

TransM [68], TransF [69] and TransA [70] employ different

methodologies as they relax the translational requirement

(h+ r ≈ t).

III. KNOWLEDGE GRAPH ENHANCED ABSA

This section presents the proposed method: KG enhanced

aspect-based sentiment analysis. As shown in Fig. 1, the pro-

posed model, inspired by KGAN [9], contains three sections:

Context, Knowledge and Syntax sections to encode semantic

features from multiple viewpoints. The knowledge section in-

troduces external knowledge into the semantic features through

the use of an external KG. The contextual and syntactic sec-

tions extract features from the word embedding representation

of the dataset to establish the relevance relationship between

the entity and the sentiment. Lastly, the output of each section

is combined together to provide a complete depiction.

A. Context Section

The research done by Ding et al. [71] and Yang et al. [72]

suggests that modelling contextual information can improve

performance. Thus, we can employ pretrained word embed-

ding models to numerically represent the vocabulary of the

data. In our model, we utilized GloVe [73] and Bidirectional

Encoder Representations from Transformers (BERT) [32] to

perform word embedding and the initialization of the embed-

ding matrix.

Word embedding embeds each word, wi, within a vector

space E ∈ R(|V |×dw) where |V | refers to the dataset vocabu-

lary and dw refers to the word embedding dimension. Similar

to Tang, Qin and Liu [74], we further encoded the relative

position feature to take advantage of the positional information

of aspect, entity and context words. As shown in Fig. 1, we

leveraged two LSTMs to learn the relationship between the

aspect and entity in each individual sentence. Additionally,

two attention mechanisms were used to identify aspect-specific

contextual information. The first attention mechanism learns

any long-range dependencies of the contextual information

while the second attention mechanism learns the weight of

each aspect before aggregating the different weights to obtain

the contextual representation of each aspect Rc.

B. Syntax Section

To leverage syntactic information, we utilized the same

LSTM and pretrained word embedding that was used in

the context section to obtain the hidden state vectors. This

reduces the model complexity and training time. We used the

hidden state vectors as input for a 2-layer GCN to capture the

important syntactic information.
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Fig. 1. Architecture overview of proposed method

We used Spacy1 to construct the syntactic dependency tree

and obtain the adjacency matrix of each word. Similar to

the results produced by Kipf and Welling [75] and Yao et

al. [76], we found that a 2-layer GCN was optimal as it

outperformed a single layer GCN but the additional increase

of layers did not increase the performance. Furthermore, we

employed a graph-based attention mechanism to learn syntax-

aware representations of each aspect by masking the non-

aspect words with zeroes. We then used a dot-product attention

mechanism to syntactically capture the relationships of the

aspects and respective opinions.

C. Knowledge Section

For our external knowledge base, we utilized WordNet [77].

WordNet is a lexical database containing over 166,000 pairs

of word forms and sense pairs as well as the semantic

relations between word senses such as synonymy, antonymy,

hyponymy, meronymy, troponymy and entailment [77]. This

enables the model to understand the meaning of uncommon

words by using more common and understandable words. For

example, “parathas” is a flatbread which can be classified

under the “food” or “bread” aspects, reducing the difficulty

1https://spacy.io

of comprehending the sentence. Rather than directly using the

graph structure of the knowledge base, which was done by

Zhou et al. [7], we instead used semantic matching approaches,

such as ANALOGY [9], [60] and DistMult [9], [62], to model

the semantic relations into knowledge graph embeddings. To

reduce noise, we concatenated the embeddings with hidden

state vectors. An attention mechanism is also leveraged to cap-

ture relevant semantic features as knowledge representations

for the various aspects.

D. Fusion

From the Context, Knowledge, and Syntax sections, we ob-

tain the respective representations Rc, Rk, Rs. To fully utilize

the representations, we first concatenate the representations in

a pairwise manner, i.e., Rc +Rs;Rc +Rk;Rk +Rs to obtain

sentiment features Rcs, Rck, Rks respectively. We then feed

these features into a three-by-three convolution layer to obtain

the predicted sentiment which is ultimately used in the loss

function to train and optimize the model. This 2-step fusion

process improves the integration of external knowledge with

contextual and syntactic knowledge, thus achieving greater

performance.

794



IV. EXPERIMENT,RESULTS AND DISCUSSIONS

A. Dataset and Experiment Setting

Our experiments were conducted using Restaurant14 and

Laptop14 datasets obtained from the 2014 SemEval2014

ABSA Task 4 Subtask 2 challenge [78]. These two public

datasets are widely employed by many researchers to evaluate

sentiment analysis performance. Similar to Tang et al. [79],

we removed instances of data where conflict occurred. A

conflict occurs when an aspect term has both positive and

negative sentiments. For example, the sentence “I wouldn’t

mind going back some time, but not before trying others

nearby” contains both positive and negative polarities for

the same aspect. Unlike Zhong et al. [9], we modified the

processing of the dataset in different ways. Specifically, we

changed how the distance is calculated between each word

token and the sentiment by taking the shortest distance of

each term to the left-most or right-most polarity term. This

leverages on the idea that tokens closer to the aspect are

of greater importance and usefulness, utilizing the positional

information of the tokens in the sentence in the training of the

model.

B. Results

In order to demonstrate the effectiveness of the proposed

algorithm in this paper, the accuracy and F1 have been chosen

as performance evaluation indicators [80], [81], our results in

table I demonstrated the efficacy of our modifications in the

dataset processing and model architecture as these improve-

ments resulted in an improvement of 1.43%. As observed

in Table I, the modification in dataset processing led to an

increase in accuracy and we were able to further improve on

it through various improvements in the model’s architecture

such as using a different optimizer for gradient descent or

activation function.

TABLE I
PERFORMANCE OF THE PROPOSED MODEL VERSUS EXISTING METHODS

Datasets
Model Restaurant14 Laptop14

Accuracy F1 Accuracy F1
Sentic-LSTM [31] 79.43 70.32 70.88 67.19

MTKEN [82] 79.47 68.08 73.43 69.12

SK-GCN [7] 81.53 72.90 77.62 73.84

KGAN [9] 84.46 77.47 78.91 75.21

Our Model 85.09 76.03 80.34 75.36

C. Discussion

Incorporating external knowledge sources, such as KGs,

has been demonstrated as a feasible approach, as indicated

by the results in Table I. In our research, we explored

two distinct approaches to enhance the performance of the

proposed method: model architecture and dataset processing

improvements.

1) Model Architecture Improvement:

About model architecture improvement, the proposed model

incorporates critical components, including an Optimizer,

Learning Rate Scheduler, Weight Initializer, and Non-Linear

Activation Function, to augment the performance of the

ABSA task.

i) Optimizer

To improve the model architecture, we evaluated three

different gradient descent optimization algorithms: Adam [83],

AdamW [84] and Stochastic Gradient Descent (SGD) [85].

Similar to Loshchilov and Hutter [84], AdamW facilitated an

improvement in the model’s performance across both datasets

but SGD did not. AdamW corrects the incorrect weight decay

implemented in Adam, and this minor change in algorithm

could explain the improved performance observed. In our

experiments, we found that SGD performed the worst and

we believe that a possible reason for this could be the use

of attention mechanisms in our model as Zhang et al. [86]

demonstrated that SGD does not perform as well as Adam in

attention models.

ii) Learning Rate scheduler

Learning rate warmup is a common technique used to

improve the performance of DNN in various domains such

as computer vision [87] and natural language processing [88].

A learning rate warmup employs a smaller learning rate in

the initial stages of the model’s training. The intuition behind

using a smaller learning rate at the start of the training is to

overcome training instability as the model may observe and

learn strongly-featured observations during the initial training

which may cause it to skew towards these features. However,

by using a smaller learn rate, the learning effect is reduced,

enabling the model to learn the important features, improving

the model’s performance [87].

While prior research [89] suggests that a learning rate

warmup can enhance a model’s performance, our experiments,

including schedulers like Linear, Exponential, One Cycle [90],

and Stochastic Gradient Descent with Warm Restarts [91], did

not yield positive results. Despite various attempts, none of

these schedulers improved the model’s performance. Interest-

ingly, our findings align with Gotmare et al. [92], indicating

that the linear scheduler tends to produce the best results.

We hypothesize a possible reason why the introduction of a

learning rate warmup reduced the model’s performance could

be due to the fact the dataset is not highly differentiated, and

that features observed in the initial training were salient to

the model’s learning process, thus, the reduced initial learning

rate actually harmed rather than helped the model’s learning

process.

iii) Weight Initializer

Glorot and Bengio [93] have shown that random initializa-

tion of weights of the hidden layers of DNN often result in

poor performance and thus they proposed a new initialization
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method, known as Glorot or Xavier initialization, which ini-

tializes the weight based on the number of inputs (fan-in) and

outputs (fan-out) to a layer to improve model performance.

However, Kaiming et al. [94] proposed a new initialization

technique that is better suited for DNN containing asymmetric,

non-linear activation functions, such as Rectified Linear Unit

(ReLU).

Our experiments showed that Xavier initialization slightly

outperformed Kaiming initialization in terms of accuracy,

however, Kaiming initialization was able to achieve a higher

F1 score. Interestingly, using Leaky ReLU as the non-linearity

function, we were able to achieve a slightly better performance

as compared to ReLU. We believe that this could possibly

abe ttributed to the ReLU units dying during training. The

dying ReLU problem [95] can occur during the initialization

of the neurons whereby poor initialization leads to some

neurons arriving at large negative values from which they are

unable to recover. This causes the ReLU units to only output

0 for any input, affecting backpropagation and ultimately,

the model’s performance. Leaky ReLU attempts to address

this problem by implementing a non-zero gradient to enable

the neuron to recover, thus avoiding the dying ReLU problem.

iv) Non-Linear Activation Function

As Leaky ReLU seemed to perform better than ReLU, we

hypothesized that the model suffers from a dying ReLU

problem, thus, we implemented Parametric Rectified Linear

Unit (PReLU) instead of ReLU as the activation function.

Similar to leaky ReLU, PReLU does not assign a zero value

for negative inputs but unlike leaky ReLU, which uses a

predefined value, α, to multiple the negative values, PReLU

treats α as a learnable parameter which is learnt during the

model’s training. Our results showed that by using PReLU

instead of ReLU, we were able to further improve on the

model’s performance, strengthening the hypothesis that the

model suffers from a dying ReLU problem.

2) Dataset Processing Improvement:
Regarding the processing of the dataset, we improved on the

distance calculation between the various word tokens and the

sentiment word as well as the weight applied to each word

token. This change in distance calculation affects the weight

applied to each token which ultimately influences the model’s

performance and our results showed that this improvement

in data processing did improve the performance. The weight

assigned to each token should be thought of as a type of

hyperparameter as our experiments showed that changing the

weight only may not necessarily improve the performance. On

its own, the data processing step may not necessarily improve

the model’s performance but when this change is implemented

alongside the change in model architecture, specifically the use

of PReLU as the non-linear activation function, we achieved an

improvement in accuracy and/or F1 over Zhong et al. [9]. By

using AdamW, we can further improve the accuracy but suffer

a slight decrease in F1 score for the Laptop14 dataset. Our ex-

periments have demonstrated this change in dataset processing

yielded an increase in performance across both datasets. As

dataset processing is model agnostic, any current or future

work that implements our modified dataset processing step

can potentially gain an increase in performance. As the dataset

processing used by Zhong et al. [9] was itself borrowed from

Tang et al. [79], we believe that any future works extending

from either author may achieve even better performance if the

aforementioned change in dataset processing is implemented.

V. CONCLUSION

In this paper, we extended upon the work of existing ABSA

to produce a new, less computationally complex model that has

the capability to achieve a higher accuracy and F1 score. By

leveraging knowledge graphs to enrich ABSA, the proposed

method achieved a greater performance on both Laptop14 and

Restaurant14 datasets.

This research demonstrates that changes to the dataset

processing and model architecture can potentially improve

the performance of models for ABSA tasks. Looking ahead,

this work opens new avenues for research and development

in sentiment analysis. As sentiment analysis continues to

evolve, the insights gained here lay the groundwork for

further investigations, pushing the boundaries of our ability

to extract valuable sentiment insights from textual data in

various domains. Future work can explore the integration of

more extensive external knowledge sources and innovative

techniques to further refine ABSA models, enhancing their

effectiveness and applicability in real-world scenarios.
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