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Hercules: Boosting the Performance of
Privacy-preserving Federated Learning
Guowen Xu, Xingshuo Han, Shengmin Xu, Tianwei Zhang, Hongwei Li, Xinyi Huang,

Robert H. Deng, Fellow, IEEE

Abstract—In this paper, we address the problem of privacy-preserving federated neural network training with N users. We present
Hercules, an efficient and high-precision training framework that can tolerate collusion of up to N − 1 users. Hercules follows the
POSEIDON framework proposed by Sav et al. (NDSS’21), but makes a qualitative leap in performance with the following contributions:
(i) we design a novel parallel homomorphic computation method for matrix operations, which enables fast Single Instruction and Multiple
Data (SIMD) operations over ciphertexts. For the multiplication of two h× h dimensional matrices, our method reduces the computation
complexity from O(h3) to O(h). This greatly improves the training efficiency of the neural network since the ciphertext computation
is dominated by the convolution operations; (ii) we present an efficient approximation on the sign function based on the composite
polynomial approximation. It is used to approximate non-polynomial functions (i.e., ReLU and max), with the optimal asymptotic complexity.
Extensive experiments on various benchmark datasets (BCW, ESR, CREDIT, MNIST, SVHN, CIFAR-10 and CIFAR-100) show that
compared with POSEIDON, Hercules obtains up to 4% increase in model accuracy, and up to 60× reduction in the computation and
communication cost.

Keywords—Privacy Protection, Federated Learning, Polynomial Approximation.

F

1 INTRODUCTION

As a promising neural network training mechanism,
Federated Learning (FL) has been highly sought af-
ter with some attractive features including amortized
overhead and mitigation of privacy threats. However,
the conventional FL setup has some inherent privacy
issues [1], [2]. Consider a scenario where a company
(referred to as the cloud server) pays multiple users and
requires them to train a target neural network model
collaboratively. Although each user is only required to
upload the intermediate data (e.g., gradients) instead
of the original training data to the server during the
training process, a large amount of sensitive information
can still be leaked implicitly from these intermediate val-
ues. Previous works have demonstrated many powerful
attacks to achieve this, such as attribute inference attacks
and gradient reconstruction attacks [3], [4], [5]. On the
other hand, the target model is locally distributed to
each user according to the FL protocol, which ignores
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the model privacy and may be impractical in real-world
scenarios. Actually, to protect the model privacy, the
server must keep users ignorant of the details of the
model parameters throughout the training process.

1.1 Related Works
Extensive works have been proposed to mitigate the
above privacy threats. In general, existing privacy-
preserving deep learning solutions mainly rely on the
following two lines of technologies: Differential Privacy
(DP) [6], [7] and crypto-based multiparty secure computing
(MPC) [8], [9], [10], [11], [12]. Each one has merits
and demerits depending on the scenario to which it is
applied.
Differential Privacy. DP is usually applied in the train-
ing phase [6], [7]. To ensure the indistinguishability be-
tween individual samples while maintaining high train-
ing accuracy, each user is required to add noise to
the gradient or local parameters that meets the preset
privacy budget. Abadi et al. [6] propose the first differ-
entially private stochastic gradient descent (SGD) algo-
rithm. They carefully implement gradient clipping, hy-
perparameter tuning, and moment accountant to obtain a
tight estimate of overall privacy loss, both asymptotically
and empirically. Yu et al. [7] design a new DP-SGD,
which employs a new primitive called zero concentrated
differential privacy (zCDP) for privacy accounting, to
achieve a rigorous estimation of the privacy loss. In
recent years, many variants of the above works have
been designed and applied to specific scenarios [13], [14],
[15], [16]. Most of them follow the principle that the
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minimum accumulated noise is added to the gradient
or local parameters while meeting the preset privacy
budget.

DP is cost-effective because each user is only required
to add noise that obeys a specific distribution during
training. However, it is forced to make a trade-off be-
tween training accuracy and privacy, i.e., a strong pri-
vacy protection level can be reached at the cost of certain
model accuracy drop [17], [18]. This goes against the
motivation of this paper, as our goal is to design a highly
secure FL training framework without compromising the
model accuracy.
Crypto-based multiparty secure computing. The imple-
mentation of this strategy mainly relies on two gen-
eral techniques, secret sharing [19] and homomorphic
encryption (HE) [11]. MPC enables the calculation of
arbitrary functions collaboratively by multiple parties
without revealing the secret input of each party. To sup-
port privacy-preserving neural network training, most
existing works [8], [9], [10], [19], [20] rely on splitting
the training task into two or more servers, who are
usually assumed to be non-colluding. Then, state-of-the-
art secret sharing methods, including arithmetic shar-
ing [19], boolean sharing [8], and Yao’s garbled circuit
[21] are carefully integrated to efficiently implement
various mathematical operations under the ciphertext.
Mohassel et al. [20] propose SecureML, the first privacy-
preserving machine learning framework for generalized
linear model regression and neural network training.
It lands on the setting of two non-colluding servers,
where users securely outsource local data to them. Then,
several types of secret sharing methods are mixed and
used to complete complex ciphertext operations. Other
works, e.g., ABY3 [8], QUOTIENT [9], BLAZE [22], Tri-
dent [23], are also exclusively based on the MPC protocol
between multiple non-colluding servers (or a minority
of malicious servers) to achieve fast model training and
prediction.

It is cost-effective to outsource the training task among
multiple users to several non-colluding servers, avoid-
ing the high communication overhead across large-scale
users. However, it may be impractical in real scenarios
where the setting of multiple servers is not available.
Especially in FL scenarios, users are more inclined to
keep their datasets locally rather than uploading data
to untrusted servers. To alleviate this problem, several
works [2], [11], [12], [24] propose to use multi-party
homomorphic encryption (a.k.a. threshold homomorphic
encryption, as a variant of the standard HE), as the un-
derlying technology to support direct interactions among
multiple data owners for distributed learning. For exam-
ple, Zheng et al. [11] present Helen, a secure distributed
learning approach for linear models, where the threshold
Paillier scheme [25] is used to protect users’ local data.
Froelicher et al. [24] reduce the computation overhead
of Helen by using the packed plaintext encoding with
the SIMD technology [2]. Sav et al. propose POSEI-
DON [12], the first distributed training framework with

multi-party homomorphic encryption. It relies on the
multiparty version of the CKKS (MCKKS) cryptosystem
[26] to encrypt users’ local data. Compared with the
standard CKKS, the secret key of MCKKS is securely
shared with multiple entities. As a result, each entity
still performs the function evaluation under the same
public key. However, the decryption of the result requires
the participation of all entities. Besides, non-polynomial
functions are approximated as polynomial functions to
be efficiently executed by CKKS.

1.2 Technical Challenges

In this paper, we follow the specifications of POSEIDON
to design our FL training framework, because such a
technical architecture enables the users’ data to be kept
locally without incurring additional servers. However,
there are still several critical issues that have not been
solved well. (1) Computation overhead is the main obsta-
cle hindering the development of HE. It usually requires
more computing resources to perform the same machine
learning tasks compared to outsourcing-based solutions
[8], [9], [10]. Although there are some optimization meth-
ods such as parameter quantization and model compres-
sion [9], [27], they inevitably degrade the model accuracy.
Recently, Zhang et al. [28] design GALA, which employs
a novel coding technique for matrix-vector multiplica-
tion. In this way, multiple plaintexts are packed into one
ciphertext to perform efficient homomorphic SIMD oper-
ations without reducing the calculation accuracy. How-
ever, GALA is specifically designed for the MPC protocol
that uses a mixture of HE and garbled circuits, and
its effectiveness is highly dependent on the assistance
of the inherent secret sharing strategy. Therefore, it is
necessary to design a computation optimization method
that is completely suitable for HE, without sacrificing
the calculation accuracy. (2) There is a lack of satis-
factory approximation mechanisms for non-polynomial
functions in HE. HE basically supports homomorphic
addition and multiplication. For non-polynomial func-
tions, especially ReLU, one of the most popular activation
functions in hidden layers, we need to approximate them
to polynomials for ciphertext evaluation. The common
polynomial approximation method, such as the minimax
method, aims to find the approximate polynomial with
the smallest degree on the objective function under the
condition of a given error bound. However, the com-
putation complexity of evaluating these polynomials is
enormous, making it quite inefficient to obtain the fitting
function with high-precision [29], [30]. Recently, Lu et
al. [31] propose PEGASUS, which can efficiently switch
back and forth between a packed CKKS ciphertext and
FHEW ciphertext [32] without decryption, allowing us to
evaluate both polynomial and non-polynomial functions
on encrypted data. However, its performance is still far
from practical.
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1.3 Our Contributions

As discussed above, the HE-based FL is more in line with
the needs of most real-world applications, compared
to other methods. However, it suffers from computing
bottlenecks and poor compatibility with non-polynomial
functions. To mitigate these limitations, we present Her-
cules, an efficient, privacy-preserving and high-precision
framework for FL. Hercules follows the tone of the state-
of-the-art work POSEIDON [12], but makes a qualitative
leap in performance. Specifically, we first devise a new
method for parallel homomorphic computation of ma-
trix, which supports fast homomorphic SIMD operations,
including addition, multiplication, and transposition.
Then, instead of fitting the replacement function of ReLU
for training in POSEIDON, we design an efficient method
based on the composite polynomial approximation. In
short, the contributions of Hercules are summarized as
follows:
• We design a new method to execute matrix opera-

tions in parallel, which can pack multiple plaintexts
into a ciphertext to achieve fast homomorphic SIMD
operations (Section 3). Our key insight is to mini-
mize the number of plaintext slots that need to be
rotated in matrix multiplication through customized
permutations. Compared with existing works [12],
[33], our solution reduces the computation complexity
from O(h3) to O(h) for the multiplication of any two
h×h matrices. It greatly improves the neural network
training efficiency since the ciphertext computation
is dominated by the convolution operations. We de-
scribe the detail of efficiently executing matrix trans-
position on packed ciphertexts, and packing multiple
matrices into one ciphertext, yielding better-amortized
performance.

• We present an efficient approximation on the sign
function based on the composite polynomial approxi-
mation, with optimal asymptotic complexity (Section
4). The core of our solution is to carefully construct
a polynomial g with a constant degree, and then
make the composite polynomial g ◦ g ◦ g ◦ · · · ◦ g
infinitely close to the sign function, as the number
of g increases. In this way, our new algorithm only
requires Θ(log(1/δ))+Θ(log σ) computation complex-
ity to obtain an approximate sign function result of
m ∈ [−1,−δ] ∪ [δ, 1] within 2−σ error. For example,
for an encrypted 20-bit integer m, we can obtain the
result of the sign function within 2−20 error with an
amortized running time of 20.05 milliseconds, which
is 33× faster than the state-of-the-art work [34].

• We show that Hercules provides semantic security in
the FL scenario consisting of N users and a parameter
server, and tolerates collusion among up to N − 1
passive users (Section 5). This is mainly inherited from
the property of the MCKKS.

• We conduct extensive experiments on various bench-
mark datasets (BCW, ESR, CREDIT, MNIST, SVHN,
CIFAR-10 and CIFAR-100) to demonstrate the superi-

ority of Hercules in terms of classification accuracy,
and overhead of computation and communication
(Section 6). Specifically, compared with POSEIDON,
we obtain up to 4% increase in model accuracy, and
up to 60× reduction in the computation and commu-
nication cost.

Roadmap: In Section 2, we review some basic concepts
used in this paper, and introduce the scenarios and
threat models. In Sections 3 to 5, we give the details
of Hercules. Performance evaluation is presented in 6.
Section 7 concludes the paper.

2 PRELIMINARIES
2.1 Neural Network Training
A neural network usually consists of an input layer, one
or more hidden layers, and an output layer, where hid-
den layers include convolutional layers, pooling layers,
activation function layers, and fully connected layers.
The connections between neurons in adjacent layers are
parameterized by ω (i.e., model parameters), and each
neuron is associated with an element-wise activation
function ϕ (such as sigmoid, ReLU, and softmax). Given
the training sample set (x, y) ∈ D, training a neural
network of L layers is generally divided into two phases:
feedforward and backpropagation. Specifically, at the k-
th iteration, the weights between layers j and j + 1
are denoted as a matrix ωkj ; matrix Mj represents the
activation of neurons in the j-th layer. Then the input x
is sequentially propagated to each layer with operations
of linear transformation (i.e, Ekj = ωkj ×Mk

j−1) and non-
linear transformation (i.e., Mk

j = ϕ(Ekj )) to obtain the
final classification result ȳ = Mk

L . With the loss function
L which is usually set as L=||y − ȳ||2, the mini-batch
based Stochastic Gradient Descent (SGD) algorithm [12]
is exploited to optimize the parameter ω. The parameter
update rule is ωk+1

j = ωkj −
η
B 5 ωkj , where η and B

indicate the learning rate and the random batch size of
input samples, and 5ωkj = ∂L

∂ωkj
. Since the transposition

of matrices/vectors is involved in the backpropagation,
we use V T to represent the transposition of variable V .
The feedforward and backpropagation steps are performed
iteratively until the neural network meets the given
convergence constraint. The detailed implementation is
shown in Algorithm 1.

2.2 Multiparty Version of CKKS
Hercules relies on the multiparty version of Cheon-Kim-
Kim-Song (MCKKS) [12] fully homomorphic encryption
to protect users’ data as well as the model’s parameter
privacy. Compared with the standard CKKS, the secret
key of MCKKS is securely shared with all entities. As
a result, each entity still performs ciphertext evaluation
under the same public key, while the decryption of

1. ϕ′(·) and � indicate partial derivative and element-wise product.
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Algorithm 1 Mini-batch based SGD algorithm
Input: ωk1 , ωk2 , · · · , ωkL .
Output: ωk+1

1 , ωk+1
2 , · · · , ωk+1

L .
1: for t = 1 to B do
2: M0 = X[t] B feedforward
3: for j = 1 to L do
4: Ekj = ωkj ×Mk

j−1

5: Mk
j = ϕ(Ekj )

6: end for
7: LkL = ||y[t]−Mk

L ||2 B backpropagation
8: LkL = ϕ′(EkL )� LkL 1

9: 5ωkL+ = (Mk
L−1)T × LkL

10: for j = L− 1 to 1 do
11: Lkj = Lkj+1 × (ωkj+1)T

12: Lkj = ϕ′(Ekj )� Lkj
13: 5ωkj+ = (Mk

j−1)T × Lkj
14: end for
15: end for
16: for j = 1 to L do
17: ωk+1

j = ωkj − η
B 5 ωkj

18: end for

the result requires the participation of all entities. As
shown in [12], MCKKS has several attractive properties:
(i) it is naturally suitable for floating-point arithmetic
circuits, which facilitates the implementation of machine
learning; (ii) it flexibly supports collaborative computing
among multiple users without revealing the respective
share of the secret key; (iii) it supports the function of
key-switch, making it possible to convert a ciphertext
encrypted under a public key into a ciphertext under
another public key without decryption. Such a property
facilitates the decryption of ciphertexts collaboratively.
We provide a short description of MCKKS and list all the
functions required by Hercules in Figure 1. Informally,
given a cyclotomic polynomial ring with a dimension
of N , the plaintext and ciphertext space of MCKKS is
defined as RQL = ZQL [X]/(XN + 1), where QL =

∏L
0 qi,

and each qi is a unique prime. QL is the ciphertext
module under the initial level L. In CKKS, a plaintext
vector with up to N/2 values can be encoded into a
ciphertext. As shown in Figure 1, given a plaintext m ∈
RQL (or a plaintext vector m = (m1, · · · ,mn) ∈ RnQL ,
with n ≤ N/2) with its encoded (packed) plaintext m̂, the
corresponding ciphertext is denoted as [c]pk = (c1, c2) ∈
R2
QL

. Besides, we use symbols Lcpk , ∆cpk , L, ∆ to indicate
the current level of [c]pk, the current scale of c, the
initial level, and the initial scale of a fresh ciphertext,
respectively. All functions named starting with D (except
for Dcd(·)) in Figure 1 need to be executed cooperatively
by all the users, while the rest operations can be executed
locally by each user with the public key. For more details
about MCKKS, please refer to literature [1], [12], [24].

2.3 Threat Model and Privacy Requirements
We consider a FL scenario composed of a parameter
server and N users for training a neural network model

1) SecKeyGen(1λ): Given a security parameter λ,
output a secret key ski for each user i ∈ [N ], where
[N ] is the shorthand {1, 2, · · ·N} and

∑i=N
i=1 ski =

sk.
2) DKeyGen({ski}): Given the set of secret keys
{ski}, i ∈ [N ], output the collective public key pk.

3) Ecd(·): Given a plaintext m (or a plaintext vector m
whose dimension does not exceed N/2), output the
encoded (packed) plaintext m̂ ∈ RQL , with scale ∆.

4) Dcd(m̂): Given an encoded (packed) plaintext m̂ ∈
RQLm with scale ∆m, output the decoding of m (or
the plaintext vector m).

5) Enc(pk, m̂): Given the collective public key pk, and
an encoded (packed) plaintext m̂ ∈ RQL , output the
ciphertext [c]pk ∈ R

2
QL with scale ∆.

6) DDec([c]pk, {ski}): Given a ciphertext [c]pk ∈ R
2
QLc

with scale ∆cpk , and the set of secret keys {ski},
i ∈ [1, N ], output the plaintext p ∈ RQLc with scale
∆cpk .

7) Add([c]pk, [c
′]pk): Given two ciphertexts [c]pk and

[c′]pk encrypted with the same public key pk, out-
put [c + c′]pk with level min(Lcpk ,Lc′

pk
) and scale

max(∆cpk ,∆c′
pk

).
8) Sub([c]pk, [c

′]pk): Given two ciphertexts [c]pk and
[c′]pk, output [c − c′]pk with level min(Lcpk ,Lc′

pk
)

and scale max(∆cpk ,∆c′
pk

).
9) Mulpt([c]pk, m̂): Given a ciphertext [c]pk and an

encoded (packed) plaintext m̂, output [cm]pk with
level min(Lcpk ,Lc′

pk
) and scale ∆cpk ×∆m.

10) Mulct([c]pk, [c
′]pk): Given two ciphertexts [c]pk and

[c′]pk, output [cc′]pk with level min(Lcpk ,Lc′
pk

) and
scale ∆cpk ×∆c′

pk
.

11) Rot([c]pk, k): Given a ciphertexts [c]pk, homomor-
phically rotate [c]pk to the right (k > 0) or to the left
(k < 0) by k times.

12) RS([c]pk): Given a ciphertexts [c]pk, output [c]pk
with scale ∆c/q∆c and level Lc − 1.

13) DKeySwitch([c]pk, pk
′, {ski}): Given a ciphertexts

[c]pk, another public key pk′, and the set of secret
keys {ski}, i ∈ [N ], output [c]pk′ .

14) DBootstrap([c]pk,Lcpk ,∆cpk , {ski}): Given a ci-
phertexts [c]pk with level Lcpk and scale ∆cpk , and
the set of secret keys {ski}, i ∈ [N ], output [c]pk
with initial L and scale ∆.

Fig. 1: Cryptographic operations of MCKKS

collaboratively. Specifically, the server (also the model
owner) first initializes the target model M and broad-
casts the encrypted model [M]pk = Enc(pk,M) (i.e.,
encrypting all the model parameters) to all the users2.
Then, each user Pi with a dataset {x, y} ∈ Di trains [M]pk
locally using the mini-batch SGD algorithm and then

2. Note that the server knows nothing about the secret key sk
corresponding to pk. sk is securely shared with N users and can only
be restored with the participation of all the users.
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sends the encrypted local gradients to the server. After
receiving the gradients from all the users, the server ho-
momorphically aggregates them and broadcasts back the
global model parameters. All the participants perform
the above process iteratively until the model converges.
Since the final trained model is encrypted with the public
key pk, for the accessibility of the server to the plaintext
model, we rely on the function DKeySwitch (Figure 1),
which enables the conversion of [M]pk under the public
key pk into [M]pk′ under the server’s public key pk′

without decryption (refer to Section 5 for more details).
As a result, the server obtains the plaintext model by
decrypting [M]pk′ with its secret key.

In Hercules, we consider a passive-adversary model
with collusion of up to N−1 users3. Concretely, the server
and each user abide by the agreement and perform
the training procedure honestly. However, there are two
ways of colluding in Hercules by sharing their own
inputs, outputs and observations during the training
process for different purposes: (i) collusion among up to
N − 1 users to derive the training data of other users or
the model parameters of the server; (ii) collusion among
the server and no more than N − 1 users to infer the
training data of other users. Given such a threat model, in
the training phase, the privacy requirements of Hercules
are defined as below:
• Data privacy: No participant (including the server)

should learn more information about the input data
(e.g., local datasets, intermediate values, local gradi-
ents) of other honest users, except for the information
that can be inferred from its own inputs and outputs.

• Model privacy: No user should learn more informa-
tion about the parameters of the model, except for
information that can be inferred from its own inputs
and outputs.

In Section 5, we will provide (sketch) proofs of these
privacy requirements with the real/ideal simulation for-
malism [35].

3 PARALLELIZED MATRIX HOMOMORPHIC
OPERATIONS

Hercules essentially exploits MCCK as the underlying
architecture to implement privacy-preserving federated
neural network training. Since the vast majority of the
computation of a neural network consists of convolutions
(equivalent to matrix operation), Hercules is required
to handle this type of operation homomorphically very
frequently. In this section, we describe our optimization
method to perform homomorphic matrix operations in a
parallelized manner, thereby substantially improving the
computation performance of HE.

3. See Appendix A for more discussion about malicious adversary
model.

3.1 Overview
At a high level, operations between two matrices, includ-
ing multiplication and transposition, can be decomposed
into a series of combinations of linear transformations.
To handle homomorphic matrix operations in an SIMD
manner, a straightforward way is to directly perform the
relevant linear operations under the packed ciphertext
(Section 3.2). However, it is computationally intensive
and requires O(h3) computation complexity for the mul-
tiplication of two h×h-dimensional matrices (Section 3.3).
Existing state-of-the-art methods [33] propose to trans-
form the multiplication of two h×h-dimensional matrices
into inner products between multiple vectors. It can
reduce the complexity from O(h3) to O(h2), however,
yielding h ciphertexts to represent a matrix (Section 3.6).
Compared to existing efforts, our method only needs
O(h) complexity and derives one ciphertext. Our key
insight is to first formalize the linear transformations
corresponding to matrix operations, and then tweak
them to minimize redundant operations in the execution
process. In the following we present the technical details
of our method. To facilitate understanding, Figure 2 also
provides an intuitive example, where the detailed steps
of the multiplication of two 3 × 3-dimensional matrices
are described for comprehensibility.

3.2 Preliminary Knowledge
We first introduce some useful symbols and concepts.
Specifically, all the vectors in this section refer to row
vectors, and are represented in bold (e.g., a). As shown
in Figure 1, given a plaintext vector m = (m1, · · · ,mn) ∈
RnQL , with n ≤ N/2, CKKS enables to encode the
plaintext vector m into an encoded plaintext m̂ ∈ RQL ,
where each mi, i ∈ [n] has a unique position called a
plaintext slot in the encoded m̂. Then, m̂ is encrypted as a
ciphertext [c]pk. Hence, performing arithmetic operations
(including addition and multiplication) on [c]pk is equiv-
alent to doing the same operation on every plaintext slot
at once.

The ciphertext packing technology is capable of pack-
ing multiple plaintexts into one ciphertext and realizing
the homomorphic SIMD operation, thereby effectively
reducing the space and time complexity of encryp-
tion/calculation of a single ciphertext. However, it is
incapable of handling the arithmetic circuits when some
inputs are in different plaintext slots. To combat that,
CKKS provides a rotation function Rot([c]pk, k). Given a
ciphertext [c]pk of a plaintext vector m = (m1, · · · ,mn) ∈
RnQL , Rot([c]pk, k) transforms [c]pk into an encryption
of R(m, k) := (mk, · · · ,mn−1,m0, · · · ,mk−1). k can be
either positive or negative and we have a rotation by
R(m, k) = R(m, n− k).

Based on the above explanation, we adopt a method
proposed by Shai et al. [36], which supports arbitrary
linear transformations for encrypted vectors. Specifically,
an arbitrary linear transformation T : Rn → Rn on the
plaintext vector can be expressed as T : m → U · m
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using some matrix U ∈ Rn×n. This process can be
implemented in ciphertext by the rotation function Rot
and constant multiplication operation Mulpt. Concretely,
for 0 ≤ k < n, a k-th diagonal vector U is defined as uk =
(U0,k, U1,k+1, · · · , Un−k−1,n−1, Un−k,0, · · · , Un−1,k−1) ∈
Rn. Consequently, we have

U ·m =
∑

0≤k<n

uk �R(m, k). (1)

Hence, given the matrix U , and a ciphertext [c]pk of the
vector m, Algorithm 2 shows the details of computing
encrypted U ·m. We observe that Algorithm 2 requires
n additions, constant multiplications and rotations. Be-
cause the rotation operation is much more intensive than
the other two operations, the computation complexity of
Algorithm 2 is usually regarded as asymptotically O(n)
rotations.

Algorithm 2 Homomorphic linear transformation
procedure HE-LinTrans ([c]pk, U)

1: [c′]pk ←Mulpt([c]pk,u0)
2: for k = 1 to n− 1 do
3: [c′]pk ← Add([c′]pk,Mulpt(Rot([c]pk, k),uk))
4: end for
5: return [c′]pk

In the following, we first describe how to express
the multiplication between two matrices by permutation.
Then, we introduce an encoding method that converts
a matrix into a vector. Based on this, we describe the
details of matrix multiplication on packed ciphertexts.

3.3 Permutation for Matrix Multiplication

Given a (h×h)-dimensional matrix A = (Ai,j)0≤i,j<h, we
describe four permutation operations (µ, ζ, φ, π) on it. For
simplicity, we use Z∩[0, h) to denote the representative of
Zh, [i]h indicates the reduction of an integer i modulo h
into that interval. Below all indexes are integers modulo
h.

We first define four permutation operations as below.
µ(A)i,j = Ai,i+j ; ζ(A)i,j = Ai+j,j ;
φ(A)i,j = Ai,j+1; π(A)i,j = Ai+1,j .

We can see that φ and π are actually shifts of the columns
and rows of the matrix, respectively. Given two (h× h)-
dimensional square matrices A and B, the multiplication
of A and B can be parsed as

A ·B =

h−1∑
k=0

(φk ◦ µ(A))� (πk ◦ ζ(B)). (2)

The correctness of Eq.(2) is shown as follows by calcu-
lating the components of the matrix index (i, j).

h−1∑
k=0

(φk ◦ µ(A))i,j · (πk ◦ ζ(B))i,j =

h−1∑
k=0

µ(A)i,j+k · ζ(B)i+k,j

=

h−1∑
k=0

Ai,i+j+k ·Bi+j+k,j

=

h−1∑
k=0

Ai,k ·Bk,j = (A ·B)i,j .

(3)

Note that while a single µ(A)i,j+k · ζ(B)i+k,j =
Ai,i+j+k ·Bi+j+k,j is not equal to Ai,k ·Bk,j , it is easy to
deduce that

∑h−1
k=0 Ai,i+j+k ·Bi+j+k,j =

∑h−1
k=0 Ai,k ·Bk,j =

(A · B)i,j . To be precise, given i and j,
∑h−1
k=0 Ai,i+j+k ·

Bi+j+k,j =
∑h−1+i+j
t=(i+j) Ai,t ·Bt,j , where we set t = i+j+k.

Then, we have
∑h−1+i+j
t=(i+j) Ai,t · Bt,j =

∑h−1
t=0 Ai,t · Bt,j

since all the indexes are considered as integers modulo
h. Therefore,

∑h−1
t=0 Ai,t ·Bt,j =

∑h−1
k=0 Ai,k ·Bk,j .

We observe that Eq.(2) consists of permutation and
multiplication of element components between matrix
entries. Intuitively, we can evaluate it using the oper-
ations (shown in Algorithm 2) provided by CKKS for
packed ciphertexts. However, since the matrix represen-
tation U usually has n = h2 nonzero diagonal vectors, if
we directly use Algorithm 2 to evaluate A 7→ φk ◦ µ(A)
and B 7→ πk ◦ ζ(B) for 1 ≤ k < h, each of them requires
rotations with the complexity of O(h2). As a result, the
total complexity is O(h3). To alleviate this, we design a
new method to substantively improve its efficiency.

3.4 Matrix Encoding
We introduce an encoding method that converts a matrix
into a vector. Given a vector a = (ak)0≤k<n, where n =
h2, the encoding map ι : Rn → Rh×h is shown as below.

ι : a 7→ A = (ah·i+j)0≤i,j<h. (4)

This encoding method makes the vector a essentially
an ordered concatenation of the rows of the matrix
A. As a result, ι(·) is isomorphic of addition, which
means that matrix addition operations are equivalent to
the same operations between the corresponding original
vectors. Therefore, the matrix addition can be calculated
homomorphically in the SIMD environment. The con-
stant multiplication operations can also be performed
homomorphically. In this paper, we use ι(·) to identify
two spaces Rn and Rh×h. For example, we say that a
ciphertext is the encryption of A if a = ι−1(A).

3.5 Tweaks of Permutation
From the definition of matrix encoding, permutation on
an (h×h)-dimensional matrix can be regarded as a linear
transformation T : Rn → Rn, where n = h2. In general,
its matrix representation U ∈ {0, 1}n×n ⊂ Rn×n has
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n nonzero diagonal vectors. Therefore, as presented in
Sections 3.2 and 3.3, if we directly use Algorithm 2
to evaluate A 7→ φk ◦ µ(A) and B 7→ πk ◦ ζ(B) for
1 ≤ k < h, each of them requires rotations with the
complexity of O(h2). The total complexity will be O(h3).
To alleviate this, based on Eq.(2) and our matrix encoding
map, we provide a tweak method for matrix permutation
to reduce the complexity from O(h3) to O(h). Specifically,
for four permutation operations (µ, ζ, φ, and π) on the
matrix, we use Uµ, Uζ , V and P to indicate the ma-
trix representations corresponding to these permutations,
respectively. Uµ, Uζ for permutations µ and ζ can be
parsed as below (readers can refer to the example in
Figure 2 for ease of understanding).

Uµh·i+j,t =

{
1 if t = h · i+ [i+ j]h;

0 otherwise;
(5)

Uζh·i+j,t =

{
1 if t = h · [i+ j]h + j,

0 otherwise;
(6)

where 0 ≤ i, j < h and 0 ≤ t < h2. Similarly, for 1 ≤ k <
h, the matrix representations of φk and πk (i.e., V k and
P k) can be denoted as below.

V kh·i+j,t =

{
1 if t = h · i+ [j + k]h;

0 otherwise;
(7)

P kh·i+j,t =

{
1 if t = h · [i+ k]h + j;

0 otherwise;
(8)

where 0 ≤ i, j < h and 0 ≤ t < h2. Reviewing Eq.(1), we
use the diagonal decomposition of matrix representation
to perform multiplication with encrypted vectors. Hence,
we can count the number of nonzero diagonal vectors
in Uµ, Uζ , V , and P to evaluate the complexity. For
simplicity, we use ut to represent the t-th diagonal vector
of a matrix U , and identify uh2−t with u−t. For matrix
Uµ, we can observe that it has exactly (2h− 1) nonzero
diagonal vectors, denoted by uµk for k ∈ Z∩(−h, h). There
are h nonzero diagonal vectors in Uζ , because each t-
th diagonal vector in Uζ is nonzero if and only if t is
divisible by the integer h. For each matrix V k, 1 ≤ k < h,
it has only two nonzero diagonal vectors vk and vk−h.
Similarly, for each matrix P k, it has only one nonzero
diagonal vector ph·k. Therefore, we only need rotation
operations of O(h) complexity to perform permutation
µ and ζ, and O(1) complexity for both φk and πk where
1 ≤ k < h.

3.6 Homomorphic Matrix Multiplication
Given two ciphertexts [A]pk and [B]pk that are the
encryption forms of two (h × h)-dimensional matrix
matrices A and B, respectively, we now describe how to
efficiently evaluate homomorphic matrix multiplication
between them.

Step 1-1: We perform a linear transformation on the
ciphertext [A]pk under the guidance of permutation Uµ

(Step 1-1 in Figure 2). As described above, Uµ has exactly
(2h − 1) nonzero diagonal vectors, denoted by uµk for

k ∈ Z ∩ (−h, h). Then such a linear transformation can
be denoted as

Uµ · a =
∑

−h<k<h

(uµk �R(a, k)), (9)

where a = ι−1(A) ∈ Rn is the vector representation of
A. If k ≥ 0, the k-th diagonal vector can be computed as

uµk [t] =

{
1 if 0 ≤ t− h · k < (h− k);

0 otherwise,
(10)

where uµk [t] represents the t-th component of uµk . Simi-
larly, if k < 0, uµk is computed as

uµk [t] =

{
1 if − k ≤ t− (h+ k) · h < h;

0 otherwise,
(11)

As a result, Eq.(9) can be securely computed as∑
−h<k<h

Mulpt(Rot([A]pk, k),uµk), (12)

where we get the ciphertext of Uµ · a, denoted as
[A(0)]pk. We observe that the computation cost is about
2h rotations, constant multiplications and additions.

Step 1-2: This step is to perform the linear transfor-
mation on the ciphertext [B]pk under the guidance of
permutation Uζ (Step 1-2 in Figure 2). Since Uζ has h
nonzero diagonal vectors, this process can be denoted
as

Uζ · b =
∑

0≤k<h

(uζh·k �R(b, h · k)), (13)

where b = ι−1(B) ∈ Rn, uζh·k is the (h · k)-th diagonal
vector of the matrix Uζ . We observe that for any 0 ≤
k < h, uζh·k is a non-zero vector because its (k + h · i)-th
element is non-zero for 0 ≤ i < h, and zero for all other
entries. Therefore, Eq.(13) can be securely computed as∑

0≤k<h

Mulpt(Rot([B]pk, h · k),uζh·k), (14)

where we get the ciphertext of Uζ · b, denoted as
[B(0)]pk. We observe that the computation cost is about
h rotations, constant multiplications and additions.

Step 2: This step is used to securely perform column
and row shifting operations on µ(A) and ζ(B) respec-
tively (Step 2 in Figure 2). Specifically, for each column
shifting matrix V k, 1 ≤ k < h, it has only two nonzero
diagonal vectors vk and vk−h, which are computed as

vk[t] =

{
1 if 0 ≤ [t]h < (h− k);

0 otherwise,
(15)

vk−h[t] =

{
1 if (h− k) ≤ [t]h < h;

0 otherwise.
(16)

By adding two ciphertexts Mulpt(Rot([A(0)]pk, k),vk)
and Mulpt(Rot([A(0)]pk, k−h),vk−h), we can obtain the
ciphertext [A(k)]pk of the matrix φk ◦ µ(A). Similarly, for
each row shifting matrix P k, it has only one nonzero
diagonal vector ph·k. Then the encryption of πk ◦ ζ(B)
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Setup: Given two ciphertexts [A]pk and [B]pk that are the encryption forms of two (3 × 3)-dimensional matrix
matrices A and B (shown below), respectively, we now describe how to efficiently evaluate their homomorphic

matrix multiplication. A =

a0 a1 a2

a3 a4 a5

a6 a7 a8

 ; B =

b0 b1 b2
b3 b4 b5
b6 b7 b8

, where the vector representations of A and B are

a = [a0, a1, a2, a3, a4, a5, a6, a7, a8] and b = [b0, b1, b2, b3, b4, b5, b6, b7, b8], respectively.
Step 1-1: From A and B, we first compute Uµ, Uζ , V = {V 1, V 2} and P = {P 1, P 2} based on Eqn.(5)-(8) as follows.

Uµ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


;Uζ =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0


;V 1 =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0



V 2 =



0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


;P 1 =



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


;P 2 =



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0



We securely compute Uµ · a. Based on Eqn.(9), we have Uµ · a = [a0, a1, a2, a4, a5, a3, a8, a6, a7]
ι(a)
=

[
a0 a1 a2
a4 a5 a3
a8 a6 a7

]
,

where Uµ has exactly (2 × 3 − 1) = 5 nonzero diagonal vectors (based on Eqn.(10) and (11)) , denoted by uµk
for k ∈ Z ∩ (−3, 3). Specifically, uµ−2 = [0, 0, 0, 0, 0, 1, 0, 0, 0], uµ−1 = [0, 0, 0, 0, 0, 0, 0, 1, 1], uµ0 = [1, 1, 1, 0, 0, 0, 0, 0, 0],
uµ1 = [0, 0, 0, 1, 1, 0, 0, 0, 0], and uµ2 = [0, 0, 0, 0, 0, 0, 1, 0, 0]. Then, we can get the ciphertext of Uµ · a, denoted by
[A(0)]pk, based on Eqn.(12).

Step 1-2: We securely compute Uζ ·b. Based on Eqn.(13), we have Uζ · b = [b0, b4, b8, b3, b7, b2, b6, b1, b5]
ι(b)
=

[
b0 b4 b8
b3 b7 b2
b6 b1 b5

]
,

where Uζ has exactly h = 3 nonzero diagonal vectors, denoted by uζ3·k, for 0 ≤ k < 3. Specifically,
uζ0 = [1, 0, 0, 1, 0, 0, 1, 0, 0], uζ3 = [0, 1, 0, 0, 1, 0, 0, 1, 0], uζ6 = [0, 0, 1, 0, 0, 1, 0, 0, 1]. Then, we can get the ciphertext of
Uζ · b, denoted by [B(0)]pk, based on Eqn.(14).
Step 2: This step is used to securely perform column and row shifting operations on µ(A) and ζ(B) respectively.
Specifically, for each column shifting matrix V k, 1 ≤ k < 3, it has two nonzero diagonal vectors vk and
vk−h (based on Eqn.(15) and (16)). Hence, the nonzero diagonal vectors in V 1 are v1 = [1, 1, 0, 1, 1, 0, 1, 1, 0]
and v−2 = [0, 0, 1, 0, 0, 1, 0, 0, 1], and the nonzero diagonal vectors in V 2 are v2 = [1, 0, 0, 1, 0, 0, 1, 0, 0] and
v−1 = [0, 1, 1, 0, 1, 1, 0, 1, 1]. Similarly, for each row shifting matrix P k, it has only one nonzero diagonal vector
p3·k. Then the nonzero diagonal vector in P 1 is p3 = [1, 1, 1, 1, 1, 1, 1, 1, 1] and the nonzero diagonal vector in P 2

are p6 = [1, 1, 1, 1, 1, 1, 1, 1, 1]. Based on this, we can obtain the ciphertexts [A(1)]pk, [A(2)]pk, [B(1)]pk, and [B(2)]pk of
the matrix φ1 ◦ µ(A), φ2 ◦ µ(A), π1 ◦ ζ(B), and π2 ◦ ζ(B), respectively, where

φ1 ◦ µ(A) =

a1 a2 a0

a5 a3 a4

a6 a7 a8

 ;φ2 ◦ µ(A) =

a2 a0 a1

a3 a4 a5

a7 a8 a6

 ;π1 ◦ ζ(B) =

b3 b7 b2
b6 b1 b5
b0 b4 b8

 ;π2 ◦ ζ(B) =

b6 b1 b5
b0 b4 b8
b3 b7 b2


Step 3: For 0 ≤ k < 3, we compute the element-wise multiplication between [A(k)]pk and [B(k)]pk. Then, [AB]pk is
obtained as below.

a0 a1 a2

a3 a4 a5

a6 a7 a8

 ·
b0 b1 b2
b3 b4 b5
b6 b7 b8

 =

a0 a1 a2

a4 a5 a3

a8 a6 a7

�
b0 b4 b8
b3 b7 b2
b6 b1 b5

 +

a1 a2 a0

a5 a3 a4

a6 a7 a8

�
b3 b7 b2
b6 b1 b5
b0 b4 b8

 +

a2 a0 a1

a3 a4 a5

a7 a8 a6

�
b6 b1 b5
b0 b4 b8
b3 b7 b2



Fig. 2: Homomorphic multiplication of two 3× 3-dimensional matrices
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can be computed as [B(k)]pk ← Rot([B(0)]pk, h · k). The
computation cost of this process is about 3h rotations, 2h
constant multiplications and d additions.

Step 3: For 0 ≤ k < h, we now compute the element-
wise multiplication of [A(k)]pk and [B(k)]pk (Step 3 in
Figure 2). Then, the ciphertext [AB]pk of the product of
A and B is finally obtained. The computation cost of this
process is h homomorphic multiplications and additions.
In summary, the entire process of performing homomor-
phic matrix multiplication is described in Algorithm 3.

Algorithm 3 Homomorphic matrix multiplication
procedure HE-MatMult ([A]pk, [B]pk)

1: [A(0)]pk ← HE-LinTrans ([A]pk, U
µ)

2: [B(0)]pk ← HE-LinTrans ([B]pk, U
ζ)

3: for k = 1 to h− 1 do
4: [A(k)]pk ← HE-LinTrans ([A(0)]pk, V

k)
5: [B(k)]pk ← HE-LinTrans ([B(0)]pk, P

k)
6: end for
7: [AB]pk ←Mulct([A

(0)]pk, [B
(0)]pk)

8: for k = 1 to h− 1 do
9: [AB]pk ← Add([AB]pk,Mulct([A

(k)]pk, [B
(k)]pk))

10: end for
11: return [AB]pk

Remark 3.1: In general, the above homomorphic ma-
trix multiplication requires a total of 5h additions, 5h
constant multiplications and 6h rotations. We can further
reduce the computation complexity by using the baby-
step/giant-step algorithm [37], [38] (See Appendix B for
technical details). This algorithm can be exploited to
reduce the complexity of Steps 1-1 and 1-2. As a result,
Table I summarizes the computation complexity required
for each step in Algorithm 3.

TABLE I: Complexity of algorithm 3

Step Add mulpt Rot mulct

1-1 2h 2h 3
√
h -

1-2 h h 2
√
h -

2 2h h 3h -
3 h - − h

Total 6h 4h 3h+ 5
√
h h

Remark 3.2: As described before, the multiplication of
A and B is parsed as A·B =

∑h−1
k=0(φk◦µ(A))�(πk◦ζ(B)).

A simple way to calculate the product is to directly
use Algorithm 2: we can evaluate A 7→ φk ◦ µ(A) and
B 7→ πk ◦ ζ(B) for 1 ≤ k < h. However, each of them
requires O(h2) homomorphic rotation operations, which
results in a total complexity of O(h3) [39]. Halevi et
al. [33] introduce a matrix encoding method based on
diagonal decomposition. This method maps each diag-
onal vector into a separate ciphertext by arranging the
matrix diagonally. As a result, it requires h ciphertexts
to represent a matrix, and each ciphertext is required
to perform matrix-vector multiplication with the com-

plexity of O(h) rotations, resulting in a total computation
complexity of O(h2). Compared with these schemes, our
strategy only needs a total computation complexity of
O(h) rotations to complete the homomorphic multiplica-
tion for two (h× h)-dimensional matrices. We note that
POSEIDON [12] also proposes an “alternating packing
(AP) approach” to achieve matrix multiplication with a
complexity approximated as maxi∈[L](ωi × log(h × ωi)),
where ωi denotes the number of weights between layers
i and i+1. However, the implementation of this method
requires to generate a large number of copies of each ele-
ment in the matrix (depending on the number of neurons
in the neural network layer where the matrix is located),
resulting in poor parallel computing performance (see
Section 6 for more experimental comparison).

Remark 3.3: We also give the methods of how to
perform matrix transposition, rectangular matrix multi-
plication (i.e., calculating general matrix forms such as
Rt×h ×Rh×h → Rt×h or Rh×h ×Rh×t → Rh×t) and par-
allel matrix operations (using the idleness of the plaintext
slots) under packed ciphertext. They follow the similar
idea of the above homomorphic matrix multiplication.
Readers can refer to Appendix C, D and E for more
technical details.

4 APPROXIMATION FOR SIGN FUNCTION
In this section, we describe how to efficiently estimate
the sign function, and then use the estimated function
to approximate the formulas commonly used in neural
network training, including ReLU and max functions.

4.1 Notations
We first introduce some useful symbols. Specifically, all
logarithms are base 2 unless otherwise stated. Z and R
represent the integer and real number fields, respectively.
For a finite set M , we use U(M) to represent the uniform
distribution on M . Given a function g defined in the real
number field R, and a compact set I ⊂ R, we say that the
infinity norm of g on the set I is defined as ||g||∞,I :=
maxm∈I |g(m)|, where |g(m)| means the absolute value
of g(m). we use g(k) := g ◦ g ◦ g ◦ · · · ◦ g to indicate the
k-times composition of g. Besides, the sign function is
defined as below.

sgn(m) =


1 if m > 0;

0 if m = 0;

−1 if m < 0.

Note that sgn(m) is a discontinuous function at the zero
point, so the closeness of g(m) and sgn(m) should be
carefully considered in the interval near the zero point.
That is, we do not consider the small interval (−δ, δ) near
the zero point when measuring the difference between
g(m) and sgn(m). We will prove that for some kd > 0,
the infinity norm of g(k)d (m)− sgn(m) is small than 2−σ

over [−1,−δ] ∪ [δ, 1] if k > kd, where the definition of
gd(m) will be explained later.
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Given σ > 0 and 0 < δ < 1, we define a function
g
(k)
d (m) that is (σ, δ)-close to sgn(m) on [−1, 1] if it satis-

fies

||g(k)
d (m)− sgn(m)||∞,[−1,−δ]∪[δ,1] ≤ 2−σ. (17)

Similar to the previous work [34], we assume that the
input is limited to a bounded interval [0, 1], since for any
m ∈ [a1, a2], where a2 > a1, we can scale it down to [0, 1]
by mapping m 7→ (m−a1)/(a2−a1). Hence, for simplicity,
the domain of sgn(m) we consider in this part is [−1, 1].

4.2 Composite Polynomial Approximation
As mentioned before, we use a composite function to
approximate the sign function. This is advantageous,
because a composite polynomial function G, namely
G = g ◦ g · · · ◦ g, can be calculated with the complexity
of O(log(deg(G))), while the computation complexity of
calculating any polynomial G is at least Θ(

√
deg(G)) [40],

where deg(G) indicates the degree of G. To achieve this,
our goal is to find such a k that g(k) is close enough to
sgn(x) in the interval [−1,−δ] ∪ [δ, 1].

Our construction of such a function g comes from the
following key observations: for any m0 ∈ [−1, 1], let mi

be the i-th composite value of g(i)(m0). Then, we can
easily estimate the behavior of mi through the graph of
g. Based on this, we ensure that as i increases, mi should
be close to 1 when m0 ∈ (0, 1], and close to −1 when
m0 ∈ [−1, 0). Besides, we formally identify three proper-
ties of g as follow. First, g should be an odd function so as
to be consistent with the sign function. Second, g(1) = 1
and g(−1) = −1. This setting makes g(k)(m) point-wise
converge to sgn(m), whose value is ±1 for all x 6= 0. In
other words, for some m ∈ [−1, 1], g(k)(m) converges to
a value y when increasing with the value of k, which
means g(y) = g(limk→∞ g(k)(m)) = limk→∞ g(k)(m) = y.
Last, to accelerate the convergence of g(k) to the sign
function, a satisfactory g should be more concave in the
interval [0, 1] and more convex in the interval [−1, 0].
Moreover, the derivative g′ of g should have multiple
roots at 1 and −1 so as to increase the convexity. These
properties are summarized as follows:
Core Properties of g:
Prop. I g(−m) = −g(m) (Origin Symmetry)
Prop. II g(1) = 1, g(−1) = −1 (Convergence to ±1)
Prop. III g′(m) = p(1−m)d(1 +m)d for some p > 0

(Fast convergence)
Given a fixed d ≥ 1, a polynomial g of degree (2d+ 1)

that satisfies the above three properties can be uniquely
determined. We denote this polynomial as gd, where the
constant p is indicated as pd. Then, based on Prop. I
and III, we have gd(m) = pd

∫m
0

(1 − t2)ddt, where the
constant pd is also determined by Prop. II. To solve
this integral formula gd(m), a common method is to
transform the (1 − t2) part of the integral formula with
Trigonometric Substitutions, a typical technique which
can convert formula

∫
(1 − t2)ddt to

∫
(cos t)3ddt. As a

result, given the following identity∫ m

0

cosn tdt =
1

n
cosn−1 m · sinm+

n− 1

n

∫ m

0

cosn−2 tdt.

which holds for any n ≥ 1, we have

gd(m) =

i=d∑
i=0

1

4i
·
(

2i
i

)
·m(1−m2)i.

Therefore, we can compute gn as follows
• g1(m) = − 1

2m
3 + 3

2m.
• g2(m) = 3

8m
5 − 10

8 m
3 + 15

8 m.
• g3(m) = − 5

16m
7 + 21

16m
5 − 35

16m
3 + 35

16m.
• g4(m) = 35

128m
9 − 180

128m
7 + 378

128m
5 − 420

128m
3 + 315

128m.

Since
(

2i
i

)
= 2 ·

(
2i− 1
i− 1

)
is divisible by 2 for i ≥ 1,

each coefficient of gd can be represented as n/22d−1 for
n ∈ Z, which can be inferred by simply using Binomial
Theorem for the coefficients in gd(m).
Size of constant pd: The constant pd is crucial for g(k)d
to converge to the sign function. Informally, since the
coefficient term of m is exactly pd, we can regard gd(m) as
gd(m) ' pd ·m for small m. Further we have 1− gd(m) '
1 − pd ·m ' (1 −m)pd . For simplicity, we can obtain pd
as follows:

i=d∑
i=0

1

4i
·
(

2i
i

)
,

which can be simplified with Lemma 4.1.

Lemma 4.1. It holds that pd =
∑i=d
i=0

1
4i ·

(
2i
i

)
=

2d+1
4d

(
2d
d

)
.

Proof: Please refer to Appendix F.

4.3 Analysis on the Convergence of g(k)d

We now analyze the convergence of g
(k)
d to the sign

function as k increases. To be precise, we provide a lower
bound on k, under which g

(k)
d is (σ, δ)-close to the sign

function. To accomplish this, we first give two lower
bounds about 1− gd(m) as shown below.

Lemma 4.2. It holds that 0 ≤ 1 − gd(m) ≤ (1 −m)pd for
m ∈ [0, 1].

Lemma 4.3. It holds that 0 ≤ 1− gd(m) ≤ 2d · (1−m)d+1

for m ∈ [0, 1], where the value of m is close to 1.

Proof: Please refer to Appendix G and H.

Theorem 4.4. If k ≥ 1
log pd

· log(1/δ)+ 1
log(d+1) · log(σ−1)+

O(1), then g
(k)
d (m) is an (σ, δ)-close polynomial to sgn(x)

over [−1, 1].

Proof: Here we only consider the case where the
input of g(k)d is non-negative, since g(k)d is an odd func-
tion. We use Lemma 4.2 and Lemma 4.3 to analyze
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the lower bound of k when g
(k)
d converges to (σ, δ)-close

polynomial to sgn(x). Note that when the value of m is
close to 0, Lemma 4.2 is tighter than Lemma 4.3 but
vice verse when the value of x is close to 1. To obtain
a tight lower bound on k, we decompose the proof into
the following two steps, each of which applies Lemma
4.2 and 4.3, separately.

Step 1. We consider the case m ∈ [δ, 1] instead of
[−1,−δ] ∪ [δ, 1], since g

(k)
d is an odd function. Let kδ =

d 1
log(pd)

· log(log( 1
γ )/δ)e for some constant 0 < γ < 1.

Then, with Lemma 4.2, we have the following inequality
for m ∈ [δ, 1].

1− gkδd (m) ≤ (1−m)p
kδ
d ≤ (1− δ)log( 1

γ
/δ)

< (
1

e
)
log( 1

γ
)
< γ,

where e indicates the Euler’s constant.
Step 2. Let kσ = d 1

log(d+1) · log((σ − 1/ log( 1
2γ )))e. With

Lemma 4.3, we have the following inequality for m ∈
[δ, 1].

2 · (1− g(kδ+kσ)
d (m)) ≤ (2 · (1− gkδd (m)))(d+1)kσ

≤ (2γ)(d+1)kσ ≤ (2γ)
σ−1/ log( 1

2γ
)

= 2−σ+1.

Therefore, 1−g(k)d (m) ≤ 2−σ for m ∈ [δ, 1], if k ≥ kδ+kσ .

Comparisons with existing works. We compare the
computation complexity of our method with existing
approximation methods for the sign function, including
the traditional Minmax based polynomial approximation
method [41] and the latest work [34]. The results are
shown in Table II. Paterson et al. [40] have proven that
when the input is within the interval [−1, 1], the mini-
mum degree of a (σ, δ)-polynomial function to approxi-
mate a sign function is Θ(σ/δ). This means at least mul-
tiplications with the complexity of Θ(log(1/δ))+Θ(log σ)
are required to complete the approximation of the sign
function. Hence, our method achieves an optimality in
asymptotic computation complexity. Other works, like
[34] as one of the most advanced solutions for approx-
imating the sign function, only achieve quasi-optimal
computation complexity (see TABLE VI in APPENDIX I
for more experimental comparisons).

TABLE II: Complexity of Each Approximation Method

Parameter MinMax Approx. [41] [34] Ours
log( 1

δ
) = Θ(1) Θ(

√
σ) Θ(log2 σ) Θ(log σ)

log( 1
δ

) = Θ(σ) Θ(
√
σ · 2

σ
2 ) Θ(σ · log σ) Θ(σ)

log( 1
δ

) = 2σ Θ(
√
σ · 22σ−1

) Θ(σ · 2σ) Θ(2σ)

4.4 Application to Max and Relu Functions
Given two variables a and b, the max function can be
expressed as max(a, b) = a+b

2 + |a−b|
2 . The ReLu function

f(x) = max(0, x) can be considered as a special case of

the max function. Specifically, since |m| = m · sgn(m),
as long as we give the approximate polynomial about
|m|, we can directly get the approximate max function.
Therefore, max(a, b) can be evaluated by computing
a+b
2 + a−b

2 · g
(k)
d (a − b). The detailed algorithm is shown

in Algorithm 4. We also provide the convergence rate to
approximate the absolute function |m| with m · g(k)d (m)
(See Theorem 4.5).

Algorithm 4 Approximation of the maximum function
procedure AppMax (a, b, d, k)

1: m← a− b, y ← a+b
2

2: for k = 1 to k = n− 1 do
3: m← gd(m)
4: end for
5: y ← y + a−b

2
·m

6: return y

Theorem 4.5. If k ≥ 1
log pd

· log(σ − 1), then the error of
m ·g(k)d (m) compared with |m| over [−1, 1] is bounded by 2σ .

Proof: This proof can be easily evolved from Theorem
4.4. We omit it for brevity.

5 IMPLEMENTATION OF HERCULES
We now describe the technical details of implementing
Hercules, which provides privacy-preserving federated
neural network training. In particular, model parameters
and users’ data are encrypted throughout the execution
process. To achieve this, Hercules exploits the MCKKS
as the underlying framework and relies on the packed
ciphertext technology to accelerate calculations. Besides,
approximation methods based on composite polynomi-
als are used to approximate ReLU and max functions,
which facilitate the compatibility of HE with complex
operations.

From a high-level view, the implementation of Her-
cules is composed of three phases: Prepare, Local
Training, and Aggregation. As shown in Algo-
rithm 5, we use [·]pk to denote the encrypted value
and ωkj,i to represent the weight matrix of the j-th layer
generated by Pi at the k-th iteration. The global weight
matrix is denoted as ωkj without index i. Similarly, the
local gradients computed by user Pi for each layer j at
the k-th iteration is denoted as 5ωkj,i.

1. Prepare: The cloud server C needs to agree with
all users on the training hyperparameters, including the
number L of layers in the model, the number hj of
neurons in each hidden layer j, j ∈ [L], the learning
rate η, the number H of global iterations, the num-
ber B of local batches, the activation function ϕ(·) and

4. X̂i and Ŷi can be vectors composed of a single training sample,
or a matrix composed of multiple samples. This depends on the size
of a single sample and the value of the degree N of the cyclotomic
polynomial ring.



12

Algorithm 5 High-level of federated neural network training
Input: {x, y} ∈ Di ⊆ D, for i ∈ {1, · · · , N}
Output: Encrypted ωH1 , ω

H
2 , · · · , ωHL

Prepare:
1: The cloud server C and every user Pi agree on the parameters

L, h1, · · · , hL, η, ϕ(·), H and B. The cloud server C generates its
secret key and public key {sk′, pk′} ← SecKeyGen(1λ).

2: Each user Pi generates ski ← SecKeyGen(1λ).
3: All users collectively generate pk ← DKeyGen({ski}).
4: Each user encodes its input as X̂i, Ŷi. 4

5: The cloud server C initializes [ω0
1 ]pk, [ω

0
2 ]pk, · · · , [ω0

L ]pk . Then, C
broadcasts them to all users.
Local Training:

6: for k = 0 to k = H − 1 do
7: Each user Pi computes [5ωk

1,i]pk, · · · , [5ω
k
L,i]pk and sends

them to the cloud server.
Aggregation:

8: for j = 1 to j = L do
9: C computes [5ωk

j ]pk = [
∑N
i=15ωk

j,i]pk .
10: C computes [ωk+1

j ]pk = [ωk
j −

η
B×N5ω

k
j ]pk and broadcasts

them to all users.
11: end for
12: end for

its approximation. Then, C generates its own key pair
{sk′, pk′}, and each user Pi generates ski for i ∈ [N ].
Besides, all users collectively generate pk. Finally, C
initializes [ω0

1 ]pk, [ω
0
2 ]pk, · · · , [ω0

L]pk, and broadcasts them
to all users.

2. Local Training: Each user Pi executes the mini-
batch based SGD algorithm locally and obtains the en-
crypted local gradients [5ωk

1,i]pk, · · · , [5ωk
L,i]pk, where Pi

is required to execute the forward and backward passes
for B times to compute and aggregate the local gradients.
Then, Pi sends these local gradients to the cloud server
C.

3. Aggregation: After receiving all the local gradients
from users, C updates the global model parameters by
computing the averaged aggregated gradients. In our
system, training is stopped once the number of iterations
reaches H . Therefore, after the last iteration, all users
need to perform an additional ciphertext conversion
operation, i.e., the DKeySwitch function (shown in
Figure 1), which enables to convert model M encrypted
under the public key pk into [M]pk′ under the cloud
server’s public key pk′ without decryption, so that C can
access the final model parameters.

Figure 5 in Appendix J presents the details of Hercules
implementation, which essentially executes Algorithm 1
under the ciphertext. This helps readers understand how
the functions in MCKKS as well as our new matrix
parallel multiplication technology are used in FL.
Security of Hercules: We demonstrate that Hercules
realizes the data and model privacy protection defined
in Section 2.3, even under the collusion of up to N − 1
users. This is inherited from the property of MCKKS
[1]. We give the following Theorem 5.1 and provide the
security proof (sketch). The core of our proof is that
for any adversary, when only the input and output of
passive malicious users in Hercules are provided, there

exists a simulator with Probabilistic Polynomial Time
computation ability, which can simulate the view of the
adversary and make the adversary unable to distinguish
the real view from the simulated one.

Theorem 5.1. Hercules realizes the privacy protection of data
and model parameters during the FL process, as long as its
underlying MCKKS cryptosystem is secure.

Proof: Hercules inherits the security attributes of
the MCKKS cryptosystem proposed by Mouchet et al.
[1]. Compared with the standard CKKS, the multi-
party version constructs additional distributed cryp-
tographic functions including DKeyGen(·), DDec(·),
DKeySwitch(·) and DBootstrap(·). All of them have
been proven secure against a passive-adversary model
with up to N−1 colluding parties, under the assumption
of the underlying NP hard problem (i.e., RLWE problem
[42] ). Here we give a sketch of the proof with the simula-
tion paradigm of the real/ideal world. Let us assume that
a real-world simulator S simulates a computationally
bounded adversary composed of N − 1 users colluding
with each other. Therefore, S can access all the inputs and
outputs of these N − 1 users. As mentioned earlier, the
MCKKS guarantees the indistinguishability of plaintext
under chosen plaintext attacks (i.e., CPA-Secure) even if
collusion of N−1 users. This stems from the fact that the
secret key used for encryption must be recovered with
the participation of all users. Therefore, S can simulate
the data sent by honest users by replacing the original
plaintext with random messages. Then these random
messages are encrypted and sent to the corresponding
adversary. Due to the security of CKKS, the simulated
view is indistinguishable from the real view to the
adversary. Analogously, the same argument proves that
Hercules protects the privacy of the training model,
because all model parameters are encrypted with CKKS,
and the intermediate and final weights are always in
ciphertext during the training process.

6 PERFORMANCE EVALUATION
We experimentally evaluate the performance of Hercules
in terms of classification accuracy, computation commu-
nication and storage overhead. We compare Hercules
with POSEIDON [12], which is consistent with our sce-
nario and is also bulit on MCCKS.

6.1 Experimental Configurations
We implement the multi-party cryptography operations
on the Lattigo lattice-based library [43], which provides
an optimized version of the MCKKS cryptosystem. All
the experiments are performed on 10 Linux servers, each
of which is equipped with Intel Xeon E5-2699v3 CPUs,
36 threads on 18 cores and 189 GB RAM. We make
use of Onet [44] and build a distributed system where
the parties communicate over TCP with secure channels
(TLS). We instantiate Hercules with the number of users
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as N = 10 and N = 50, respectively. For parameter
settings, the dimension of the cyclotomic polynomial ring
in CKKS is set as N = 213 for the datasets with the
dimension of input h < 32 or 32 × 32 images, and 214

for those with inputs h > 32. The number of initial
levels L = 6. We exploit g4(m) described in Section 4.2
as the basic of compound polynomial to approximate
the ReLU and max functions, where we require σ = 20,
δ = 2−20. For other continuous activation functions, such
as sigmoid, we use the traditional MinMax strategy to
approximate it, since it has been proven that a small
degree polynomial can fit a non-polynomial continuous
function well within a small bounded error.

Consistent with POSEIDON [12], we choose 7 public
datasets (i.e., BCW [45], MNIST [46], ESR [47], CREDIT
[48], SVHN [49], CIFAR-10, and CIFAR-100 [50]) in our
experiments, and design 5 different neural network ar-
chitectures trained on the corresponding datasets (See
Appendices K and L for more details of the datasets
and models used in our experiments. Note that we train
two models, CIFAR-10-N1 and CIFAR-10-N2, over the
CIFAR-10 dataset for comparison).

6.2 Model Accuracy
We first discuss the model accuracy on different datasets
when the number of users is 10 and 50 respectively. We
choose the following three baselines for comparison. (1)
Distributed: distributed training in plaintext, which is
in the plaintext form corresponding to Hercules. The
datasets are evenly distributed to all users to perform
FL in a plaintext environment. (2) Local: local training
in plaintext, i.e., each user only trains the model on the
local dataset. (3) POSEIDON [12]. We reproduce the exact
algorithm designed in [12].

All the baselines are trained on the same network
architecture and learning hyperparameters. The learning
rate is adaptive to different schemes to obtain the best
training accuracy5.

As shown in Tables III and IV, we can obtain the
following two observations. (1) Compared with local
training, FL improves the accuracy of model training,
especially with the participation of large-scale users.
This is drawn from the comparison between the second
and fourth columns of Table IV. The reason is obvious:
the participation of large-scale users has enriched the
volume of training samples, and a more accurate model
can be derived from such a fertile composite dataset.
(2) Compared with distributed training, Hercules has
negligible loss in accuracy (less than 0.3%) and is obvi-
ously better than POSEIDON (1% to 4% improvement).
In POSEIDON, the non-continuous activation function
(i.e, ReLU) is converted into a low-degree polynomial
using a traditional approximation method based on the
least square method. This is computationally efficient

5. For example, approximating the activation function at a small
interval usually requires a small learning rate to avoid divergence.

but inevitably brings a non-negligible precision loss.
However, given a small error bound, our approximation
based on the composite polynomial can approximate
non-continuous functions with high-degree polynomi-
als, but only requires the computation complexity of
O(log(degG)), where degG is the degree of the composite
polynomial. Therefore, the accuracy loss caused by the
conversion of the activation function is very slight in
Hercules.

Note that the model accuracy can be further improved
by increasing the number of iterations, but we use
the same number of iterations for the convenience of
comparison. To achieve the expected training accuracy,
model training over CIFAR-100 usually requires a special
network architecture (such as ResNet) and layers (batch
normalization) due to the diversity of its labels. For
the training simplicity, we choose a relatively simple
network architecture, which is also the main reason for
the relatively low training accuracy under CIFAR-10 and
CIFAR-100. We leave the model training of more complex
architectures and tasks as future work (See Appendix M).

6.3 Computation Overhead
We further discuss the performance of Hercules in terms
of computation overhead. As shown in Tables III and
IV, when the number of users is 10, the training time
of Hercules over BCW, ESR and CREDIT is less than
3 minutes, and the training time over MNIST is also
less than 30 minutes. For N = 50, to train specific
model architectures over SVHN, CIFAR-10-N1, CIFAR-
10-N2 and CIFAR-100, the total cost of Hercules is
8.78 hours, 40.73 hours, 33.3 hours and 126.52 hours,
respectively. We also give the running time of one global
iteration (One-GI), which can be used to estimate the
time required to train these architectures under a larger
number of global iterations. Obviously, for the same
model architecture and number of iterations, the execu-
tion time of Hercules is far less than that of POSEIDON.
This stems from the fast SIMD operation under our new
matrix multiplication coding method (See Appendix N
for the comparison of the microbenchmark costs of
Hercules and POSEIDON under various functionalities).
Specifically, POSEIDON designs AP to achieve fast SIMD
calculations. AP combines row-based and column-based
packing, which means that the rows or columns of the
matrix are vectorized and packed into a ciphertext. For
the multiplication of two (h × h)-dimensional matrices,
the complexity of the homomorphic rotation operations
required by AP is maxi∈[L](ωi × log(h × ωi)), where ωi
denotes the number of weights between layers i and
i + 1. For example, given h = 64, maxi∈[L] ωi = 64, AP
roughly needs 768 homomorphic rotation operations to
realize the multiplication calculation of two (64 × 64)-
dimensional matrices. For Hercules, as shown in Table I,
the complexity required for the matrix multiplication
is only 3 × 64 + 5

√
64 = 232, which is roughly one

third of the overhead required by POSEIDON. Moreover,
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TABLE III: Model accuracy and training Cost with N = 10 users

Dataset
Accuracy Training time (s) Communication cost (GB)

Distributed Local POSEIDON Hercules POSEIDON Hercules POSEIDON HerculesOne-GI Total One-GI Total
BCW 97.8% 93.9% 96.1% 97.7% 0.40 39.92 0.11 11.09 0.59 0.59
ESR 93.6% 90.1% 90.2% 93.3% 0.92 553.44 0.29 172.95 562.51 3.52

CREDIT 81.6% 79.6% 80.2% 81.4% 0.33 163.07 0.13 62.73 7.32 2.93
MNIST 92.1% 87.8% 88.7% 91.8% 44.67 4467.25 1.54 1540.43 703.13 17.58

TABLE IV: Model accuracy and training cost with N = 50 users

Dataset
Accuracy Training time (hrs) Communication cost (GB)

Distributed Local POSEIDON Hercules POSEIDON Hercules POSEIDON HerculesOne-GI Total One-GI Total
SVHN 68.4% 35.1% 67.5% 68.2% 0.0013 24.15 0.0005 8.78 12656.25 474.61

CIFAR-10-N1 54.6% 26.8% 51.8% 54.3% 0.005 126.26 0.0016 40.73 61523.44 2050.78
CIFAR-10-N2 63.6% 28.0% 60.1% 63.1% 0.0059 98.32 0.002 33.33 59062.5 1968.75

CIFAR-100 43.6% 8.2% 40.1% 43.4% 0.0069 363.11 0.0024 126.52 246796.88 8226.56

Note that Hercules and POSEIDON produce a relatively high total communication overhead compared to Table III, which stems from
the use of a larger number of global iterations over the above datasets (See Appendix L for hyperparameter settings).

by comparing the complexity, we can infer that the
homomorphic multiplication of the matrices in Hercules
is only linearly related to the dimension of the matrix,
and is independent of the number of neurons in each
layer of the model. On the contrary, the complexity
of AP increases linearly with maxi∈[L] ωi. This implies
that Hercules is more suitable for complex network
architectures than POSEIDON.

We further analyze the scalability of Hercules and PO-
SEIDON in terms of the number of users N , the number
of samples |D|, and the number of dimensions h for one
sample. Here we use a two-layer architecture with 64
neurons in each layer. The local batch size for each user
is 10. Figure 3 shows the experimental results, where we
record the execution time of one training epoch, i.e., all
the data of each user are processed once. Specifically,
Figure 3(a) shows the execution time as the number
of users grows, where we fix the number of samples
held by each user as 200, and the dimension of each
sample as 64. We can observe that the execution time of
Hercules and POSEIDON shows a slight linear increase
with the increase of the number of users. This stems from
the fact that most of the operations performed by each
user are concentrated locally except for the distributed
bootstrapping procedure. Obviously, the percentage of
DBootstrap operations over the total operations under
ciphertext training is relatively small. We further fix the
total number of samples in the system as 2000, and
calculate the execution time of each user as the number
of users increases. As shown in Figure 3(b), this causes
a linear decrease in execution time since the increase in
user data reduces the sample volume held by each user.
Given the fixed number of users N = 10 and h = 64,
Figure 3(c) shows that the execution time of each user
increases linearly as |D| increases. It is obvious that the

increase in |D| implies an increase in the number of
samples in each user. Figure 3(d) also shows similar
results under different sample dimensions.

In general, Hercules and POSEIDON show similar
relationships in terms of computation cost under dif-
ferent hyper-parameters. However, we can observe that
the running time of Hercules is far less than that of
POSEIDON, due to the superiority of our new matrix
multiplication method.

6.4 Communication Overhead
Tables III and IV show the total communication overhead
required by Hercules and POSEIDON over different
datasets. We can observe that during the training process,
the ciphertext data that each user needs to exchange with
other parties in Hercules are much smaller than that of
POSEIDON. This also stems from the superiority of the
new matrix multiplication method we design. Specifi-
cally, In POSEIDON, AP is used for matrix multiplication
to achieve fast SIMD operations. However, as shown
in the fourth row of Protocol 3 in [12], this method
requires multiple copies and zero padding operations
for each row or column of the input matrix, depending
on the number of neurons in each hidden layer, the
absolute value of the difference between the row or
column dimension of the matrix and the number of
neurons in the corresponding hidden layer. In fact, AP
is an encoding method that trades redundancy in stor-
age for computation acceleration. On the contrary, our
method does not require additional element copy except
for a small amount of zero padding in the initial stage
to facilitate calculations. Therefore, Hercules obviously
exhibits smaller communication overhead. For example,
given the MNIST dataset, a 3-layer fully connected model
with 64 neurons per layer, the communication overhead
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(a) (b) (c) (d)

Fig. 3: Running time of one training epoch. (a) Increase the number of users N when the number of samples for
each user is |Di| = 200. (b) Increase the number of users N when the total sample size is |D| = 2000. (c) Increase the

total sample size |D| when N = 10. (d) Increase the sample dimension when N = 10 and |D| = 200×N .

(a) (b) (c) (d)

Fig. 4: Evaluation of communication overhead for one training epoch. (a) Increase the number of users N when
given |Di| = 200 for each user i. (b) Increase the number of users N when the total sample size |D| = 2000. (c)

Increase the total sample size |D| when given N = 10. (d) Increase the dimension of a single sample when given
N = 10 and |D| = 200×N .

of each user in POSEIDON is about 703(GB) to com-
plete 1000 global iterations, while Hercules only needs
17.58(GB) per user.

We also analyze the scalability of Hercules and POSEI-
DON in terms of the number of users N , the number of
samples |D|, and the sample dimension h. Here we use
a two-layer model architecture with 64 neurons in each
layer. The local batch size for each user is 10. Figure 4
shows the experimental results. Similar to the results
for computation cost comparison, we can observe that
Hercules exhibits better scalability compared to POSEI-
DON under different hyper-parameters. In addition, we
also show the storage overhead advantage of Hercules
compared to POSEIDON, and discuss the performance
of Hercules compared with other advanced MPC-based
solutions. More details can be found in Table IX and
Table VII in Appendix.

7 CONCLUSION
In this paper, we propose Hercules for privacy-
preserving FL. We design a novel matrix coding tech-
nique to accelerate the training performance under ci-
phertext. Then, we use a novel approximation strategy

to improve the compatibility of Hercules for processing
non-polynomial functions. Experiments on benchmark
datasets demonstrate the superiority of Hercules com-
pared with existing works. In the future, we will focus
on designing more efficient optimization strategies to
further reduce the computation overhead of Hercules,
to make it more suitable for practical applications.
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APPENDIX

APPENDIX A
SECURITY EXTENSIONS
A.1 Active Adversaries
In Hercules, we consider a passive-adversary model with
collusion of up to N − 1 users. However, our work can
also be extended to models in the presence of active
adversaries. This can be achieved through verifiable
computing techniques including zero-knowledge proofs
(ZKF) [51] and redundant computation [11]. An intuitive
idea is to use ZKF to ensure the format correctness of
the ciphertext sent by the adversary, and use redundant
calculations such as SPDZ [52] to verify the integrity of
each party’s calculation results. This would come at the
cost of an increase in the computation complexity, that
will be analyzed as future work.

A.2 Out-of-the-Scope Attacks
The goal of Hercules is to protect the privacy of users’
local data and model parameters. However, there are
still some attacks that can be launched from the pre-
diction results of the model, e.g., membership inference
[53], model inversion [54], or model stealing [55]. These
attacks can be mitigated by complementary countermea-
sures that are also easily integrated into Hercules. For
example, to defense the membership inference attack, on
can add a carefully crafted noise vector to a confidence
score vector to turn it into an adversarial example that
misleads the attacker’s classifier [56]. We can also limit
the number of prediction queries for the queriers, thereby
reducing the risk of adversaries launching model stealing
attacks [55]. We leave the combination of HE-based
methods with existing defenses against various types of
attacks as future works.

APPENDIX B
THE BABY-STEP/GIANT-STEP ALGORITHM
USED IN ALGORITHM 3
Given an integer k ∈ (−h, h), we can rewrite k =

√
h·i+j

where −
√
h < i <

√
h and 0 ≤ j <

√
h. Therefore, Eq.(9)

can be parsed as

Uµ · a =
∑

−
√
h<i<

√
h,0≤j<

√
h

(uµ√
h·i+j �R(a,

√
h · i+ j))

=
∑

−
√
h<i<

√
h

R(
∑

0≤j<
√
h

ai,j ,
√
h · i)

where ai,j = R(uµ√
h·i+j

,−
√
h · i) � R(a, j). Based on

this, we can first compute R(a, j) for 0 ≤ j <
√
h,

and then use them to compute the encryption of ai,j .
In general, Step 1-1 requires homomorphic operations
of 2h additions, 2h constant multiplications, and 3

√
h

rotations. Similarly, Step 1-2 can be completed by h
additions, h constant multiplications, and 2

√
h rotations.

The number of constant multiplications required in
Step 2 can also be reduced by exploiting two-input
multiplexers. We can observe that

Mulpt(Rot([A(0)]pk, k − h),vk−h)

= Rot(Mulpt([A
(0)]pk,R(vk−h, h− k)), k − h)

= Rot([A(0)]pk −Mulpt([A
(0)]pk,R(vk,−k)), k − h)

Then, we can first compute Mulpt([A
(0)]pk,R(vk,−k))

for each 1 ≤ k < h. Based on the fact that

Mulpt(Rot([A(0)]pk, k),vk) = Rot(Mulpt([A
(0)]pk,R(vk,−k)), k)

we can get the ciphertext [A(k)]pk with addition and
rotation operations.

APPENDIX C
MATRIX TRANSPOSITION ON PACKED CIPHER-
TEXTS
In this section, we introduce how to homomorphically
transpose a matrix under the packed ciphertext. Let
a = ι−1(A) ∈ Rn indicate the vector representation of
a matrix A, UT is defined as the matrix representation
of the transpose map A 7→ AT on Rh×h ∼= Rn. Then, for
0 ≤ i, j < h, each element in UT can be expressed as

UTh·i+j,k =

{
1 if k = h · j + i;

0 otherwise.

Hence, the k-th diagonal vector of UT is nonzero if and
only if k = (h−1) · i for some i ∈ Z∩ (−h, h). As a result,
UT has a total of (2h− 1) nonzero diagonal vectors as a
sparse matrix. Therefore, linear transformation for matrix
transpose can be expressed as

UT · a =
∑

−h<i<h

(t(h−1)·i �R(a, (h− 1) · i)) (18)

where we use t(h−1)·i to represent the nonzero diagonal
vector of UT . When i ≥ 0, the t-th component of the
vector t(h−1)·i is computed by

t(h−1)·i[t] =

{
1 if t− i = (h+ 1) · j, 0 ≤ j < h− i;
0 otherwise.

If i ≤ 0, we have

t(h−1)·i[t] =

{
1 if t+ i = (h+ 1) · j, 0 ≤ j < h+ i;

0 otherwise.

In general, the computation cost required for matrix
transposition is about 2h rotations, which can be fur-
ther reduced to 3

√
h by the previously described baby-

step/giant-step method.
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APPENDIX D
RECTANGULAR MATRIX MULTIPLICATION ON
PACKED CIPHERTEXTS
We extend the homomorphic multiplication between
square matrices to general rectangular matrices, such as
Rt×h × Rh×h → Rt×h or Rh×h × Rh×t → Rh×t. Without
loss of generality, we consider t < h. For a (h1 × h)-
dimensional matrix A1 and a (h2×h)-dimensional matrix
A2, we use (A1;A2) to represent the (h1 +h2)×h matrix
which is obtained by concatenating A1 and A2 in a
vertical direction. Similarly, (A1|A2) indicates the matrix
concatenated in a horizontal direction if matrices A1 and
A2 have the same number of rows.

A naive solution to perform multiplication between
rectangular matrices is to convert any matrix into a
square matrix through zero padding, and then use Algo-
rithm 3 to implement the multiplication between square
matrices homomorphically. This leads to a rotation with
a complexity of O(h). We provide an improved method
through insight into the property of matrix permutation.

1 Refined Rectangular Matrix Multiplication. Given a
t × h matrix A and an h × h matrix B with t divide h,
we introduce a new symbol Ct1:t2 , which is denoted the
(t2 − t1) × h submatrix of C formed by extracting from
t1-th row to the (t2 − 1)-th row of C. As a result, the
product of AB can be expressed as below.

A ·B =

h−1∑
k=0

(φk ◦ µ(A))�
(

(πk ◦ ζ(B))0:t

)
=
∑

0≤i<t

∑
0≤j<h/t

(φj·t+i ◦ µ(A))�
(

(πj·t+i ◦ ζ(B))0:t

)
(19)

Our key observation is the following lemma, which
provides us with ideas for designing fast rectangular
matrix multiplication.

Lemma D.1. Permutation φ and µ are commutative. For k >
0, we have φk ◦ µ = µ ◦ φk. Also, πk ◦ ζ = ζ ◦ πk for k > 0.

Based on Lemma D.1, we define an h×h-dimensional
matrix Ã, which contains h/t copies of A from the
vertical direction (i.e., Ã = (A; · · · ;A)). It means that

(φi ◦ µ(Ã))j·t:(j+1)·t = (φi ◦ µ(Ã)j·t:(j+1)·t)

= φi ◦ µ ◦ φj·t(A)

= φj·t+i ◦ µ(A)

(20)

Then, we can further compute

(πi ◦ ζ(B))j·t:(j+1)·t = (πj·t+i ◦ ζ(B))0:t (21)

As a result, the matrix product AB can be rewritten as
below.

A ·B =
∑

0≤j<h/t

 ∑
0≤i<t

(φi ◦ µ(Ã))� (πi ◦ ζ(B))


j·t:(j+1)·t

2 Homomorphic Rectangular Matrix Multiplication.
Given two ciphertexts [Ã]pk and [B]pk, we can first
compute µ(Ã) and ζ(B) utilizing the baay-step/giant-
step approach. Then,

∑
0≤i<t(φ

i ◦µ(Ã))� (πi ◦ ζ(B)) can
be securely computed in a similar way to Algorithm
3. Finally, we get the encryption of AB by performing
aggregation and rotations operations. The details are
shown in Algorithm V.

Algorithm 6 Homomorphic Rectangular Matrix Multiplica-
tion
Input: HE-RMatMult ([Ã]pk, [B]pk)

1: [A(0)]pk ← HE-LinTrans ([Ã]pk, U
µ)

2: [B(0)]pk ← HE-LinTrans ([A]pk, U
ζ)

3: for k = 1 to t− 1 do
4: [A(k)]pk ← HE-LinTrans ([A(0)]pk, V

k)
5: [B(k)]pk ← HE-LinTrans ([B(0)]pk, P

k)
6: end for
7: [ÃB]pk ←Mulct([A(0)]pk, [B

(0)]pk)
8: for k = 1 to t− 1 do
9: [ÃB]pk ← Add([ÃB]pk,Mulct([A(k)]pk, [B

(k)]pk))
10: end for
11: [AB]pk ← [ÃB]pk
12: for k = 0 to log(h/t)− 1 do
13: [AB]pk ← Add([AB]pk,Rot([AB]pk, t · h · 2k))
14: end for
15: return [AB]pk

TABLE V: Complexity of Algorithm 6

Step Add mulpt Rot mulct
1 3h 3h 5

√
h -

2 t 2t 3t -
3 t - - t
4 log(h/t) - log(h/t) -

Total 3h+ 2t 4h 3h+ 5
√
h t

Table V presents the total complexity of Algorithm 6.
We observe that compared with Algorithm 3, it reduces
the complexity of the rotation operations of steps 2 and
3 to O(t), although additional operation is required for
step 4. Moreover, the final result [AB]pk is a ciphertext
of a h× h-dimensional matrix containing (h/t) copies of
the expected matrix product AB in a vertical direction.
Hence, the resulting ciphertext remains the format as
a rectangular matrix, and it can be further performed
matrix calculations without additional overhead.

APPENDIX E
PARALLEL MATRIX COMPUTATION
The above matrix operations are all performed in the
message space Rn, where we assume that n = h2.
Actually, most HE schemes have a lot of plaintext slots
(up to thousands) compared to the dimension of the
matrix in deep learning, that is, usually n � h2. Hence,
most plaintext slots will be wasted if a ciphertext is
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TABLE VI: Comparisons with work [34]

σ Work [34] Ours
8 208 s (50.78 ms) 21 s (5.12 ms)
10 307 s (74.9 ms) 27 s (6.59 ms)
12 532 s (129.8 ms) 37 s (9.03 ms)
14 823 s (200.9 ms) 51 s (12.45 ms)
16 1392 s (339.8 ms) 70 s (17.08 ms)
18 1930 s (471.11 ms) 76 s (18.5 ms)
20 2740 s (668.9 ms) 84 s (20.05 ms)

only used to store a matrix. We provide a method of
encrypting multiple matrices into a ciphertext, so as to
realize parallel matrix calculation in a SIMD manner.
Specifically, we assume that n is divisible by h and let
β = n/h2. Then the encoding map described in above for
singe matrix will be modified as ιβ : Rn → (Rh×h)β . For
an input vector a = (at)0≤t<n, ιβ is defined as below.

ιβ : a 7→
(
Ak = (aβ(h·i+j)+k)

)
0≤k<β . (22)

The components of a with indexes congruent to k
modulo β are corresponding to the k-th matrix Ak. We
observe that for an integer 0 ≤ t < h2, the rotation
operation R(a, βt) represents the matrix-wise rotation
by β positions. This can be naturally extended to other
operations including scalar linear conversion and matrix
multiplication. For example, when a single ciphertext is
embedded in β (h×h)-dimensional matrices, we can im-
mediately perform matrix multiplication between β pairs
matrices by using the previously described algorithm
on two ciphertexts. This total computation complexity
is consistent with Algorithm 3, but results in a less
amortized computation complexity of O(h/β) for each
matrix.

APPENDIX F
PROOF OF LEMMA 4.1

Proof: We use induction to prove it. First, it is true

for n=1. Assume that pd = 2d+1
4d

(
2d
d

)
for some d ≤ 1,

Hence, we have

pd+1 = pd +
1

4d+1

(
2d+ 2
d+ 1

)
=

1

4d+1

(
2(2d+ 2)!

(d+ 1)!d!
+

(2d+ 2)!

(d+ 1)!(d+ 1)!

)
=

2d+ 3

4d+1

(
2d+ 2
d+ 1

)
Hence, the lemma is proved by induction.

APPENDIX G
PROOF OF LEMMA 4.2

Proof: Obviously, gd(m) ≤ gd(1) = 1 for m ∈ [0, 1].
We define G(m) = (1−m)pd − (1− gd(m)), and then we

prove that G(m) ≥ 0 for m ∈ [0, 1] by showing
1. G(0) = G(1) = 0.
2. there exists m0 ∈ (0, 1) s.t. G(m0) > 0.
3. there exists a unique y0 ∈ (0, 1) s.t. G′(y0) = 0.

We first explain that the above three conditions are
derived from G(m) ≥ 0. Specifically, if there is a point
m ∈ (0, 1) such that G(m1) < 0, then according to the
continuity of G, there is a root m2 of the function G
between m0 and m1. From the mean value theorem, it
is obvious that there exist y1 ∈ (0,m2) and y2 ∈ (x2, 1)
satisfying G′(y1) = G′(y2) = 0, which contradicts the
third condition. We begin to prove these three conditions.
The first one is trivial. For the second condition, we
observe that G(0) = 0, G′(0) = 0 and G′′(0) > 0. We
can infer that G′(m) > 0 for m ∈ (0, ε) for some ε > 0,
based on the continuity of G′′. Further, since G(0) = 0,
we have G(m) > 0 for m ∈ (0, ε) which implies the
second condition.

To prove uniqueness, let G′(m) = pd(1−m2)d− pd(1−
m)pd−1 = 0. Then we have (1 −m)d−pd+1 · (1 + m)d = 1
for m ∈ (0, 1). Logarithmically, it holds that

log(1 +m)

log(1−m)
= −d− pd + 1

d

Since log(1+m)
log(1−m) is a strictly increasing function, this is the

unique y0 ∈ (0, 1) that satisfies G′(y0) = 0.

APPENDIX H
PROOF OF LEMMA 4.3

Proof: Let y = 1−m, and define

H(y) =
pd · 2d

d+ 1
· yd+1 − (1− gd(1− y))

Then H(y)′ = pd · 2d · yd − g′d(1 − y) = pd · 2d · yd − pd ·
yd(2− y)d ≥ 0 for y ∈ [0, 1]. Based on H(0) = 0, it holds
that H(y) ≥ 0. Hence, for m ∈ [0, 1], we have

1− gd(m) ≤ pd · 2n

d+ 1
· (1−m)d+1 ≤ 2d · (1−m)d+1

APPENDIX I
EXPERIMENTAL COMPARISONS WITH WORK
[34]
TABLE VI shows the running times of work [34] and our
method for approximation of the sign function, where
δ is used to represent the error bound, i.e., 2−σ means
that the value error of the original function and the
approximated function is small than 2−σ , N = 214

and QL = 22250. We observe that the running time
of our method is much smaller than that of [34]. For
example, the amortized running time of [34] to obtain the
approximate result of sign function within 2−20 errors is
668.9 milliseconds (amortized running time), while the
running time of our method is only 20.05 milliseconds,
which is 33 times faster than [34].
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APPENDIX J
DETAILS IMPLEMENTATION OF HERCULES
Figure 5 presents the details of implementing Hercules,
which essentially executes Algorithm 1 under the ci-
phertext. Note that we assume that all matrices involved
in training have the same dimensions for simplicity. In
actual implementation, the user can adaptively select the
dimension so as to use Algorithm 3 or 6 to obtain the
ciphertext result. RS(·) is used to resulting ciphertext af-
ter each multiplication. This means that for the ciphertext
with an initial layer number of L, the maximum depth of
L ciphertext multiplication can be evaluated. In practical
applications, assuming QL/∆ = r, the ciphertext can
be rescaled after r multiplications instead of after each
multiplication. On the other hand, Figure 5 only requires
each user to perform the distributed bootstrapping func-
tion (i.e., DBootstrap) when calculating the activation
function, because this process usually requires more
circuit depth. Similarly, in practice, users can adaptively
execute DBootstrap as long as the depth of the circuit
is about to be exhausted.

APPENDIX K
DATASETS USED IN EXPERIMENTS
Consistent with POSEIDON [12], we choose the follow-
ing public datasets in our experiments.
a. The Breast Cancer Wisconsin dataset (BCW) [45],

which has a total of |D| = 699 samples, and the
dimension of each sample is h = 9, with ωL = 2, where
ωL represents the number of labels (also the number of
neurons in the last layer of the neural network (NN)).

b. MNIST dataset [46] with |D| = 70, 000, h = 28 × 28,
and ωL = 10.

c. The Epileptic seizure recognition (ESR) dataset [47]
with |D| = 11, 500, h = 179, and ωL = 2.

d. The default of credit card clients (CREDIT) [48] with
|D| = 30, 000, h = 23, and ωL = 2.

e. The street view house numbers (SVHN) dataset [49]
with colored images (3 channels), with |D| = 600, 000,
h = 3× 32× 32, and ωL = 10.

f. CIFAR-10 and CIFAR-100 with |D| = 60, 500, h = 3×
32× 32, ωL = 10, and ωL = 100, respectively.

We convert SVHN to gray-scale to reduce the number of
channels. In addition, we make the dimension of each
weight matrix to the nearest power of 2 by padding ze-
ros. As a result, we actually train the NN on the CREDIT,
ESR, and MNIST datasets with the feature dimensions
of 32, 256, 1024, respectively. Since SVHN is grayed out,
the dimension of its features already meets the power
of 2. On the other hand, we generate synthetic data to
evaluate the scalability of the system, where we record
the system performance under different features or the
number of samples. For simplicity, we uniformly and
randomly distribute all the above datasets to users. Note
that the distribution of data among different users may

affect the accuracy of the model, but this is orthogonal
to the focus of this paper. Since Hercules is designed
for general federated learning scenario, all existing pro-
cessing strategies for data distribution can be seamlessly
integrated into Hercules.

APPENDIX L
NEURAL NETWORK STRUCTURE
We use the following NN structures to train specific
datasets.
a. We train a 2-layer fully connected NN with BCW, ESR

and CREDIT data sets, where each layer contains 64
neurons. Similarly, the same structure was used to test
the cost of Hercules on the synthetic dataset.

b. We train a three-layer fully connected NN with 64
neurons in each layer for the MNIST and SVHN
datasets.

c. We train two models for CIFAR-10 dataset. Specif-
ically, (i) a CNN structure contains 2 convolutional
layers (CV), an average pooling layer, a max pooling
layer with kernel size of 2×2, and two fully connected
layer (FC) which contains 128 and 10 neurons, respec-
tively. We called this structure as CIFAR-10-N1. (ii) a
CNN structure contains 4 CV with kernel size of 3×4,
an average pooling layer and a max pooling layer
with kernel size of 2× 2, and 2 FC which contain 128
and 10 neurons, respectively. We called this structure
as CIFAR-10-N2.

d. For CIFAR-100, we train a CNN structure consisting
of 6 CV with kernel size of 3× 4, an average pooling
layer and a max pooling layer with kernel size of 2×2,
and 2 FC which contain 128 neurons for each layer.

We changed the number of filters from 3 to 16 for
all CV layers. The number of global iterations used to
train the above models is 100; 500; 600; 1000; 18,000;
16,800; 25,000 and 54,000 for BCW, CREDIT, ESR, MNIST,
SVHN, CIFAR-10-N2, CIFAR-10-N1, and CIFAR-100, re-
spectively. The local batch size of each user is set to 10,
thus the global batch size is 100 for 10 users, and 500 for
50 users.

APPENDIX M
LEARNING EXTENSIONS
M.1 Asynchronous distributed learning with uneven
data distribution
In Hercules, we rely on all users online to complete
the global update of the gradient under the ciphertext.
However, Hercules also supports asynchronous neural
network learning, which can be realized by the server
only receiving data from users within a certain threshold
time. In this case, the training of the neural network
mainly benefits from the local data of users with good
network status. Noted that the smooth execution of
the distributed bootstrapping operation DBootstrap
requires the participation of all users. This operation
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Implementation of Hercules

• Prepare:
- This process is exactly the same as described in Algorithm 5.

For k = 0 to k = H − 1, C and all users perform the following operations in concert.
• Feedforward:

- Each user Pi computes X̂i, Ŷi by the function Ecd(·) and encrypts them as [Xi]pk and [Yi]pk.
For j = 1 to j = L, each user Pi performs following operations.
- Compute [Ek

j,i]pk =HE-MatMult ([ωk
j ]pk, [M

k
j−1,i]pk), where Ekj,i = ωkj ×Mk

j−1,i, RS([Ek
j,i]pk).

- Compute [Mk
j,i]pk, where Mk

j,i = ϕ(Ekj,i), RS([Mk
j,i]pk). ϕ(·) is approximated as a polynomial in advance.

- All users collaboratively compute DBootstrap([Mk
j,i]pk,L[Mk

j,i
]pk
,∆[Mk

j,i
]pk
, {ski}).

• Backpropagation:
- Each Pi computes [Lk

L,i
′
]pk = Sub([Yi]pk, [M

k
L,i]pk), [Lk

L,i]pk = Mulct([L
k
L,i]pk, [L

k
L,i]pk), where LkL = ||y[t] −

Mk
L ||2.

- Each Pi computes [Lk
L,i]pk with basic SIMD operations, where LkL = ϕ′(EkL )�LkL. Then, computes RS([Lk

L,i]pk).
- Each Pi computes [(Mk

L−1,i)
T

]pk = HE-LinTrans([Mk
L−1,i]pk, U

(L−1)), where U (L−1) is the permutation

representation matrix of (Mk
L−1,i)

T
.

- Each Pi computes [5ωk
L,i
′
]pk =HE-MatMult ([(Mk

L−1,i)
T

]pk, [L
k
L,i]pk). Then, computes RS([5ωk

L,i
′
]pk).

- Each Pi computes [5ωk
L,i]pk = Add([5ωk

L,i
′
]pk, [5ωk

L,i]pk), and RS([5ωk
L,i]pk), where 5ωkL,i = 5ωkL,i +

(Mk
L−1,i)

T × LkL,i.
For j = L− 1 to j = 1, each user Pi performs following operations.

- Compute [ωk
j+1,i)

T
]pk = HE-LinTrans([ωk

j+1,i)]pk, U
(L−1)), where U (j+1)) is the permutation representation

matrix of (ωkj+1,i)
T .

- Compute [Lk
j ]pk =HE-MatMult ([Lk

j+1]pk, [ω
k
j+1,i

T
]pk).Then, computes RS([Lk

j ]pk), where Lkj = Lkj+1 ×
(ωkj+1)T .

- Compute [Lk
j,i]pk with basic SIMD operations, where Lkj,i = ϕ′(Ekl,i)� Lkj,i. Then, computes RS([Lk

j,i]pk).
- Compute [5ωk

j,i
′
]pk =HE-MatMult ([(Mk

j−1,i)
T

]pk, [L
k
j,i]pk). Then, computes RS([5ωk

j,i
′
]pk).

- Compute [5ωk
j,i]pk = Add([5ωk

j,i
′
]pk, [5ωk

j,i]pk), and RS([5ωk
j,i]pk), where 5ωkj,i = 5ωkj,i+ (Mk

j−1,i)
T ×Lkj,i.

• Aggregation:
For j = 1 to j = L, the cloud server C performs following operations.
- Compute [5ωk

j ]pk = [
∑N
i=15ω

k
j,i]pk with the basic Add function.

- Compute [ωk+1
j

′
]pk = Mulpt([5ωk

j ]pk,
η
B×N ).

- Compute [ωk+1
j ]pk = Sub([ωk

j ]pk, [ω
k+1
j

′
]pk) and broadcasts them to all users, where ωk+1

j = ωkj − η
B×N 5ω

k
j .

Fig. 5: Detailed description of Hercules

instead of being done in a centralized manner usually re-
quires more computation and communication overhead.

In Hercules, we evenly distribute the data to each
user for the simplicity of the experiment. In fact, the
uneven distribution of users’ data and asynchronous
gradient descent will inevitably affect the accuracy of
the model. How to deal with these problems has been
extensively studied [59], [60], which are orthogonal to
this work. Note that our privacy protection method is
independent of the distribution of user data and the
way of gradient update. Hence, all existing works can
be seamlessly integrated into Hercules.

M.2 Training on Other Neural Networks
In this work, we focus on deploying Hercules on MLPs
and CNNs, and demonstrate the performance of our

packing scheme and function approximation method
under these NNs. For other structures, such as long
short-term memory (LSTM) [61], recurrent neural net-
work (RNN) [62] and residual neural network (ResNet)
[63], Hercules needs to modify the local gradient update
process according to their forward and backward pass
operations. For example, ResNet has skip connections to
skip certain layers, so after skipping a layer, the shape of
the encrypted ciphertext should be aligned according to
the weight matrix to be multiplied. This can be ensured
by using the rotation function of CKKS (rearrange the
slots of the ciphertext). We believe that these modifica-
tions are not significant. Although POSEIDON is tailored
for MLPs and CNNs, in essence, Hercules can be used
to quickly calculate any mathematical operation under
ciphertext, which constitutes the main body of other
neural network structures.
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TABLE VII: Comparison with existing MPC-based works

Index
Schemes ABY2.0 Trident SWIFT CRYPTFLOW XONN BLAZE ABY3 SecureML GALA Hercules[19] [23] [57] [21] [58] [22] [8] [20] [28]

MPC Setup 2PC 4PC 3/4PC 3PC 2PC 3PC 3PC 2PC 2PC N-party
Inference ! ! ! ! ! ! ! ! ! !*
Training ! ! ! % % % ! ! % !

Adversarial model 1 P 1 A/P 2 A/P 2 P 1P 1A 1 A/P 1P 1P N-1P
Collusion % % 2 % % % % % % N-1

Techniques GC, SS GC, SS SS GC, SS GC, SS GC, SS GC, SS GC, SS GC, HE HE
Linear operation ! ! ! ! ! ! ! ! ! !

Conv. operation ! ! ! ! ! % ! ! ! !

Pooling operation ! ! ! ! ! % ! ! ! !

2PC represents the secure multi-party computing protocol between the two parties, and the rest can be deduced by analogy. A/P means
active or passive adversary. !* indicates that Hercules also supports N-party distributed inference, because inference can be seen as a
sub-process of training.

TABLE VIII: Microbenchmarks of Hercules and
POSEIDON

Functionality Execution time (s) Comm. (MB)

Approx Sigmoid 0.017 — 0.017 –
Appro ReLu 0.01 — 0.09 –
Appro Softmax 0.07 — 0.07 –
Average-pooling 0.034—0.034 –
Max-pooling 5.73—1.91 23.5—6.9
DBootstrap 0.09 — 0.09 4.5 — 1.5
FC layer 0.097 — 0.0015 –
FC layer-backprop 0.14 — 0.002 –
CV layer 0.04 — 0.0006 –
CV layer-backprop 0.06 — 0.0009 –
DKeySwitch 0.06 — 0.06 22.14 — 22.14

APPENDIX N
MICROBENCHMARKS OF HERCULES AND PO-
SEIDON
We present the microbenchmark cost of Hercules and
POSEIDON in performing different functions. As shown
in Table VIII, the bold font represents the overhead of
Hercules. For experimental configurations, We consider
the number of users N = 10, the dimension of each
sample is h = 32, the number of neurons in each layer
is 64 or with kernel size 3 × 3, and the dimension of
cyclotomic polynomial ring used in CKKS is set N = 213.
All the costs represent the processing of 1 sample per
party.

We record the computation and communication costs
(in an amortized way) of calculating FC, CV, FC back-
propagation, CV backpropagation, and different acti-
vation functions in Hercules and POSEIDON. For the
activation functions sigmoid and sofmax, Hercules and
POSEIDON exhibit the same overhead because they both
use the same function approximation method. For ReLU,
since Hercules uses a 20 bit-precision composite polyno-
mial to fit the original function, while POSEIDON simply
uses a polynomial with a degree of 3 to approximate
the original ReLU (using the least squares method), it
makes the cost of Hercules larger than POSEIDON but

derives a higher approximation accuracy. Note that given
the same error bound, the time required to calculate
the polynomial generated by the least square method
under ciphertext is much longer than ours. For max
pooling, POSEIDON replaces it with Chebyshev function
interpolation, thereby obtaining a polynomial of degree
31 with a precision of 7 bits. Experimental results show
that our 7-bit precision composite polynomial is much
less expensive than POSEIDON. This is mainly due to the
characteristics of composite polynomials. As discussed
before, a composite function with degree of deg(G) can
be calculated with a complexity of O(log(deg(G))), while
the computation complexity of calculating any function
G is at least Θ(

√
deg(G)).

The operations in FC, CV and their backpropagation
are mainly composed of matrix multiplication. As shown
in Table VIII, Hercules is far superior to POSEIDON
in terms of calculating homomorphic matrix multiplica-
tion. Specifically, POSEIDON adopts AP to achieve fast
SIMD calculations. For the multiplication of two h × h-
dimensional matrices, the complexity of the homomor-
phic rotation operation required by AP is maxi∈[L](ωi ×
log(h × ωi)). For Hercules, as shown in Table I, the
complexity required for the matrix multiplication is only
3h+5

√
h. Moreover, AP requires multiple copies and zero

padding operations for each row or column of the input
matrix, (depending on the number of neurons in each
hidden layer, and the absolute value of the difference
between the row or column dimension of the matrix
and the corresponding hidden layer neuron. On the
contrary, our method does not require additional element
copying except for a small amount of zero padding in the
initial stage to facilitate calculations. Therefore, Hercules
obviously exhibits lower communication overhead.

APPENDIX O
STORAGE OVERHEAD
As shown in TABLE IX, we also count the storage
overhead required for training each scheme on different
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TABLE IX: Comparison of storage cost

Datasets Storage cost (GB)
Hercules POSEIDON

BCW 0.0012 0.095
ESR 0.184 11.778

CREDIT 0.061 3.948
MNIST 4.906 314.025
SVHN 54.9 3515.6

CIFAR-10 16.47 2109.37
CIFAR-100 16.47 2109.37

datasets, where the storage overhead is mainly domi-
nated by the size of the ciphertext that each user needs
to save locally. We observe that the storage overhead
required by Hercules on each dataset is much lower
than that of POSEIDON. Since POSEIDON designs a
alternating packing (AP) method to pack ciphertext in
the encryption process, this leads to multiple copies and
zero padding operations for each ciphertext, depending
on the number of neurons in each hidden layer. On the
contrary, our method does not require additional element
copying except for a small amount of zero padding in the
initial stage to facilitate calculations.

APPENDIX P
COMPARISON WITH OTHER PRIOR WORKS
Beyond the HE-based schemes, a wealth of MPC so-
lutions based on interaction between multiple servers
have been proposed to design privacy-preserving neu-
ral network training and prediction frameworks. These

solutions may be not practical in the real-world setting
without multiple servers. Nevertheless, we still make a
rough comparison between these works and Hercules
to demonstrate the merits and demerits of each scheme.
As shown in Table VII in the Appendix, MPC protocol
with multiple servers relies on splitting the training
task into two or more servers, where the servers are
usually assumed to be non-colluding. Then, the state-
of-the-art secret sharing methods, including arithmetic
sharing [19], boolean sharing [8], and Yao’s garbled cir-
cuit [21] are carefully integrated to efficiently implement
various mathematical operations under the ciphertext.
It is computationally cost-effective, avoiding the high
communication overhead among large-scale users. For
example, given the MNIST dataset, we roughly com-
pare the computational cost of Hercules, ABY3 [8], and
XONN [58] in training the same network architecture.
Here we use a three-layer architecture with 128 neu-
rons in each layer. The number of users in Hercules
is set to 3 and the global training epoch is set to 15.
Experimental results show that Hercules requires a total
of 24.3 hours to train such a model, while ABY3 and
XONN need 1.02 and 0.58 hours, respectively. We remind
that Hercules is operated in a different scenario (FL)
and threat model from those MPC-based schemes. It
supports more participants with collusion, and the cost
only grows linearly with the number of users. In contrast,
those MPC-based solutions require to outsource training
tasks among limited computing servers, which may be
impractical in some scenarios.
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