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Abstract

We tackle the data scarcity challenge in few-shot point
cloud recognition of 3D objects by using a joint prediction
from a conventional 3D model and a well-trained 2D model.
Surprisingly, such an ensemble, though seems trivial, has
hardly been shown effective in recent 2D-3D models. We
find out the crux is the less effective training for the “joint
hard samples”, which have high confidence prediction on
different wrong labels, implying that the 2D and 3D models
do not collaborate well. To this end, our proposed invariant
training strategy, called INVJOINT, does not only empha-
size the training more on the hard samples, but also seeks
the invariance between the conflicting 2D and 3D ambigu-
ous predictions. INVJOINT can learn more collaborative
2D and 3D representations for better ensemble. Extensive
experiments on 3D shape classification with widely adopted
ModelNet10/40, ScanObjectNN and Toys4K, and shape re-
trieval with ShapeNet-Core validate the superiority of our
INVJOINT. Codes will be publicly Available 1.

1. Introduction

As the point cloud representation of a 3D object is
sparse, irregularly distributed, and unstructured, a deep
recognition model requires much more training data than
the 2D counterpart [15, 19]. Not surprisingly, this makes
few-shot learning even more challenging, such as rec-
ognizing a few newly-collected objects in AR/VR dis-
play [20, 49] and robotic navigation [1]. Thanks to the re-
cent progress of large-scale pre-trained multi-modal foun-
dation models [39, 25, 33], the field of 2D few-shot or zero-
shot recognition has experienced significant improvements.
Therefore, as shown in Figure 1(a), a straightforward solu-

1https://github.com/yxymessi/InvJoint

Figure 1. Comparisons of our framework with existing 2D-3D
methods, which can be categorized into (a) Directly projecting
point cloud into multi-view images as inputs, and then fine-tuning
the 2D models with a frozen backbone. (b) Indirectly leveraging
the 2D pretrained knowledge as a constraint or supervision, trans-
ferring them via knowledge distillation or contrastive learning, and
then only using the optimized 3D pathway for prediction. (c) In
contrast, our INVJOINT, based on ensemble paradigm, makes the
best of the 2D and 3D worlds by joint prediction in inference.

tion for 3D few-shot recognition is to project a point cloud
into a set of multi-view 2D images [10], through rendering
and polishing [54], and then directly fed the images into a
well-trained 2D model [67].

Although effective, the projected images are inevitably
subject to incomplete geometric information and rendering
artifacts. To this end, as shown in Figure 1(b), another pop-
ular solution attempts to take the advantage of both 2D and
3D by transferring the 2D backbone to the 3D counterpart
via knowledge distillation [63], and then use the 3D path-
way for final recognition. So far, you may ask: as the data in
few-shot learning is already scarce, during inference time,
why do we still have to choose one domain or the other?
Isn’t it common sense to combine them for better predic-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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INVJOINT 

Figure 2. (a) 3D and 2D models are confused by different classes, thus a simple late fusion cannot turn the joint confusion matrix more
diagonal. (b) Qualitative examples of joint hard samples with their logits distribution.

tion? In fact, perhaps for the same reason, the commu-
nity avoids answering the question—our experiments (Sec-
tion 4) show that a naive ensemble, no matter with early
or late fusion, is far from being effective as it only brings
marginal improvement.

To find out the crux, let’s think about in what cases, the
ensemble can correct the individually wrong predictions by
joint prediction, e.g., if the ground-truth is “Bench” and
neither 2D nor 3D considers “Bench” as the highest con-
fidence, however, their joint prediction peaks at “Bench”.
The cases are: 1) the ground-truth confidence of the two
models cannot be too low, and 2) that of the other classes
cannot be too high. In one word, 2D and 3D are collabora-
tive. However, as shown by the class confusion matrices of
training samples in Figure 2(a), since 2D and 3D are con-
fused by different classes, their ensemble can never turn the
matrix into a more diagonal one. This implies that their
joint prediction in inference may be still wrong.

Therefore, the key is to make the joint confusion matrix
more diagonal than each one. To this end, we focus on the
joint hard samples, which have high confidence predic-
tion on different wrong labels respectively. See Figure 2(b)
for some qualitative examples, exhibiting a stark difference
in logits distribution among modalities. However, simply
re-training them like the conventional hard negative min-
ing [47, 43] is less effective because the joint training is
easily biased towards the “shortcut” hard samples in one
domain. For example, if the 3D model has a larger training
loss than 2D, probably due to a larger sample variance [70],
which is particularly often in few-shot learning, the joint
training will only take care of 3D, leaving 2D still or even
more confused. In Section 5, we provide a perspective
on joint hard samples from the view of probability theory,
while the Venn Diagram perspective in Appendix.

By consolidating the idea of making use of joint hard
examples for improving few-shot point cloud recognition,
we propose an invariant training strategy. As illustrated in
Figure 3, if a sample ground-truth is “Bench” and 2D pre-
diction is confused between “Bench” and “Chair”, while the
3D counterpart is uncertain about “Bench” and “Airplane”,
the pursuit of invariance will remove the variant “Chair”
and “Airplane’, and eventually keep the common “Bench”
in each model. Specifically, we implement the strategy as
INVJOINT, which has two steps to learn more collabora-
tive 2D and 3D representations (Section 3.2). Step 1: it
selects those joint hard samples by firstly fitting a Gaussian
Mixture Model of sample-wise loss, and then picking them
according to the fused logit distribution. Step 2: A joint
learning module focusing on the selected joint hard samples
effectively capture the collaborative representation across
domains through an invariant feature selector. After the IN-
VJOINT training strategy, a simple late-fusion technique can
be directly deployed for joint prediction in inference (Sec-
tion 3.4). Figure 2(a) shows that the joint confusion matrix
of training data is significantly improved after INVJOINT.

We conduct extensive few-shot experiments on several
synthetic [58, 44, 4] and real-world [51] point cloud 3D
classification datasets. INVJOINT gains substantial im-
provements over existing SOTAs. Specifically, on Model-
Net40, it achieves an absolute improvements of 6.02% on
average and 15.89% on 1-shot setting compared with Point-
CLIP [67]. In addition, the ablation studies demonstrate the
component-wise contributions of INVJOINT. In summary,
we make three-fold contributions:

• We propose INVJOINT that aims to make the best of
the 2D and 3D worlds. To the best of our knowledge,
it is the first work that makes 2D-3D ensemble work in
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point cloud 3D few-shot recognition.

• We attribute the ineffective 2D-3D ensemble to the
“joint hard samples”. INVJOINT exploits their 2D-3D
conflicts to remove the ambiguous predictions.

• INVJOINT is a plug-and-play training module whose
potential could be further unleashed with the evolving
backbone networks.

2. Related Work
Point cloud is the prevailing representation of 3D world.

The community has proposed various deep neural networks
for point clouds, including convolution-based [61, 24, 27,
7], graph-based [53, 69, 28], MLP-based [36, 37, 34, 38],
and the recently introduced Transformer-based [68, 66, 11].
Despite the fast progress, the performance of these models
is limited due to the lack of a properly pre-trained backbone
for effective feature representation. To this end, three main
directions are explored: 1) intra-modality unsupervised rep-
resentation learning, 2) project-and-play by 2D networks, 3)
2D-to-3D knowledge transfer.

Point Cloud Unsupervised Feature Learning: The early
work PointContrast [59] establishes the correspondence be-
tween points from different camera views and performs
point-to-point contrastive learning in the pre-training stage.
Besides contrastive learning, data reconstruction is also ex-
plored. OcCo [52] learns point cloud representation by de-
veloping an autoencoder to reconstruct the scene from oc-
cluded inputs. However, they generalize poorly to down-
stream tasks due to the relatively small pre-training datasets.

Project-and-Play by 2D Networks: The most straightfor-
ward way to make use of 2D networks for 3D point cloud
understanding is to transfer point clouds into 2D images. Pi-
oneered by MVCNN [45] that uses multi-view images ren-
dered from pre-defined camera poses and produces global
shape signature by performing cross-view max-pooling, the
follow-up works are mainly devoted to more sophisticated
view aggregation techniques [13]. However, the 2D pro-
jection inevitably loses 3D structure and thus leads to sub-
optimal 3D recognition.

2D-to-3D Knowledge Transfer: It transfers knowledge
from a well-pretrained 2D image network to improve the
quality of 3D representation via cross-modality learning.
Given point clouds and images captured in the same scene,
PPKT [30] first projects 3D points into images to establish
the correspondence, and then performs cross-modality con-
trastive learning in a pixel-to-point manner. CrossPoint [2]
proposes a self-supervised joint learning framework that
boosts feature learning of point clouds by enforcing both
intra- and inter-modality correspondences. The most re-
lated work to ours is PointCLIP [67], which exploits an
off-the-shelf image visual encoder pretrained by CLIP [39]

2D Decision Boundry

3D Domain

Airplane ChairBench

(Invariance to 3D & 2D)

2D Domain
Invariant Feature

Our Feature Selector3D Decision Boundry

Figure 3. Illustration of the invariant training idea. Given the pre-
dictions of a “Bench” sample in both domains, the invariance se-
lector removes the conflict confusion ( “Chair” and “Airplane”)
and keeps the common “Bench”.

to address the problem of few-shot point cloud classifica-
tion. Different from PointCLIP which directly fine-tunes
2D models for inference, our proposed INVJOINT signifi-
cantly improves 2D-3D joint prediction by invariant train-
ing on joint hard samples.

3. INVJOINT

INVJOINT is an invariant training strategy that selects
and then trains 2D-3D joint hard samples for few-shot point
cloud recognition by using 2D-3D joint prediction. The
overview of INVJOINT is illustrated in Figure 4. Given
3D point clouds, we first perform image rendering to pro-
duce a set of 3D-projected multi-view images as the corre-
sponding 2D input. Then, the point clouds and multi-view
images are respectively fed into the 3D and 2D branches
for modality-specific feature encoding (Section 3.1). Next,
we select joint hard samples and feed them into the invari-
ant learning module for better collaborative 2D-3D features
(Section 3.2). At the inference stage, we introduce a simple
fusion strategy for joint prediction (Section 3.4).

3.1. Multi-modality Feature Encoding

Point Cloud Feature Encoder: In our 3D branch, we ex-
tract the geometric features from point clouds input with the
widely adopted DGCNN [53]. Then a trainable projection
layer is applied for feature dimension alignment with the
2D feature introduced later. We denote the encoder and its
trainable parameters as E3D, and its output feature as x3.

Image Feature Encoder: Since 3D-2D input pairs are
not always available, to improve the applicability of our
method, we adopt the differentiable rendering technique to
generate photo-realistic images for the 2D views. Specifi-
cally, an alpha compositing renderer [57] is deployed with
trainable parameters of cameras for optimized recognition.
After obtaining the rendered multi-view images, we feed
them into the frozen CLIP [39] visual encoder (i.e., the
pre-trained ViT-B model) with an additional trainable linear
adapter [9] to narrow the gap between the rendered images
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Figure 4. (a) The training pipeline of INVJOINT. E3D, E2D (including the renderer), and G are trainable parameters. (b) The zoom-in
diagram of Invariant Learning. Note that Linv only trains G. (c) The inference pipeline, where denotes the Softmax layer.

and the original CLIP images. We denote the image encoder
as E2D and its output feature as x2.

3.2. Invariant Joint Training

As we discussed in Section 1, due to the feature gap be-
tween x2 and x3, there are joint hard samples preventing the
model from learning collaborative 2D-3D features. As il-
lustrated in Figure 4(b), our invariant joint training contains
the following two steps, performing in an iterative pattern:
Step 1: Joint Hard Sample Selection. We first conduct
Hard Example Mining (HEM) in each modality, then com-
bining them subject to a joint prediction threshold.

In a certain modality, one is considered as hard sample if
its training loss is larger [16, 26] than a pre-defined thresh-
old since deep networks tend to learn from easy to hard [43].
In particular, we adopt a two-component Gaussian Mixture
Model (GMM) [62] P (g | LCE) to normalize the per-
sample cross-entropy (CE) loss distribution for each modal-
ity respectively: Di∈{2,3} = {xi | P (g | LCE(xi)) < pi}
, where g is the Gaussian component with smaller mean,
pi is a probability threshold. Subsequently, the joint hard
samples are chosen based on two criteria: 2

• (1) The joint prediction has high confidence on wrong
labels, i.e., the sum of 2D and 3D logits in most likely
non-ground-truth class is large : D = {(x2,x3 ∈
D2∪3) | maxi ̸=gt f

i
2(x2)+f i

3(x3) > r1}, where f i(x)
denotes the logits output of the i-th class.

• (2) The discrepancy between 2D and 3D logits is ap-
parent, i.e., the top-5 categories ranks from 2D and 3D
logits show inconsistency: D = {(x2,x3 ∈ D2∪3) |
||topk(f2(x2), 5)) ∩ topk(f3(x3), 5)|| < r2}, where

2In order to iteratively capture the joint hard samples and avoid over-
fitting the training set: The parameter threshold r1, r2 is dynamically de-
termined by an overall controlled ratio of observed distribution.

topk(f(x), 5)) signifies the set of top-5 category in-
dices based on output logit confidence.

Step 2: Cross-modal Invariance Learning. The goal of
this step is to acquire a non-conflicting feature space by rec-
onciling the 2D-3D features of samples in D. Meanwhile,
we also don’t want the purist of invariance—seeking com-
mon features—to negatively affect the complementary na-
ture of the 2D-3D representation. Therefore, we devise a
gate function G which works as a soft mask that applies
element-wise multiplication to select the non-conflicting
features for each modality, e.g., G(x2) for 2D and G(x3)
for 3D, and the following invariance training only tunes G
while freezing the feature extractors E3D and E2D.

Inspired by invariant risk minimization (IRM) [3], we
consider the point cloud feature x3 and the image features
x2 as two environments, and propose the modality-wise
IRM. Due to IRM essentially regularizes the model to be
equally optimal across environments, i.e., modalities, we
can learn a unified gate function G to select non-conflicting
features for each modality by:

min
G

∑
xe∈{x2,x3}

Re(xe, y;G)

s.t. G ∈ argmin
G

Re(xe, y;G),∀xe ∈ {x2,x3},
(1)

where Re(xe, y;G) is the empirical risk under e, G denotes
a learnable mask layer multiplied on xe.

Particularly, we implement Re(·) as our modality-wise
IRM by supervised InfoNCE loss [23]:

Le(ze, θ) = − log
exp

(
zT
e z

+
e · θ

)
exp

(
zT
e z

+
e · θ

)
+

∑
z−
e
exp

(
zT
e z

−
e · θ

) ,
(2)

where ze = G(xe), which is a element-wise product. To
ensure the sufficient labeled samples for positive discrim-
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ination, we follow the common practice to utilize regular
spatial transformations, e.g., rotation, scaling and jittering
as the augmented point cloud in x3; we consider the differ-
ent rendering views as the augmented images in x2. There-
fore, the augmented xe in the same class are taken as posi-
tive z+

e , while the representation of other classes as negative
z−
e in both modalities respectively. In this way, G is opti-

mized through the proposed modality-wise IRM loss:

Linv =
∑

xe∈{x2,x3}

Le (G(xe), θ) + λ ∥∇θ=1Le (G(xe), θ)∥22 ,

(3)
where λ is a trade-off hyper-parameter; θ is a dummy

classifier to calculate the gradient penalty across modality,
which encourages G to select the non-conflicting features.

3.3. Overall Loss

During the training stage, we formulate the overall train-
ing objective as:

min
G,E2D,E3D

LCE(E2D, E3D) + Linv(G) + Lalign(E2D, E3D),

(4)
where LCE is the standard cross-entropy loss, Linv is the
modality-wise IRM loss to optimize gate function G, and
Lalign is defined as follow 3:
Cross-modality Alignment Loss. After the gate function
G filters the non-conflicting features, the multi-modality en-
coders E3D, E2D are eventually regularized in collaborative
feature space by the cross-modality NT-Xent loss [5] with-
out memory bank for further alignment:

Lalign = − log
exp

(
zTz+ · τ

)
exp (zTz+ · τ) +

∑
z− exp (zTz− · τ) , (5)

where we use z = G(x2) and z+ = G(x3) for brevity; τ
is a temperature parameter. The objective is to maximize
the cosine similarity of G(x2) and G(x3), which are the
3D/2D non-conflicting feature of the same sample, while
minimizing the similarity with all the others in the feature
space for modality alignment.

3.4. Joint Inference

We devise a simple multi-modality knowledge fusion
strategy for joint prediction in inference. In Figure 4(c),
the 3D branch E3D takes point clouds as input to predict
classification logits f3(x3), and the 2D branch E2D takes
multi-view images as input to produce a visual feature em-
bedding x2 for each of them. To make the best of our 2D
branch that initialized with the CLIP model, we follow pre-
text tasks of CLIP pretraining to use the cosine similarity of
image-text pairs for logits computation. Specifically, we get

3Note that each loss optimizes different set of parameters — the fea-
ture encoder E2D and E3D is frozen when IRM penalty updates; the gate
function G is only optimized by the modality-wise IRM loss.

the textual embedding xtext by placing category names into
a pre-defined text template, e.g., “rendered point cloud of a
big [CLASS]” and feeding the filled template to the textual
encoder of CLIP model. The image-text similarity for the
i-th rendered image is computed as x⊤

text ·x
i
2

∥xtext ∥∥xi
2∥

. Once we

obtain the cosine similarity of each rendered image, we av-
erage them to get the classification logits f2(x2) from 2D
branches. After that, the fused prediction is computed as

fens = Softmax(f2(x2)/φ) · Softmax(f3(x3)), (6)

where Softmax is leveraged to normalize the weight; φ is
served as a temperature modulator to calibrate the sharpness
of 2D logits distribution. Through such simple logits fusion,
Pens can effectively fuse the prior multi-modal knowledge
and ameliorate few-shot point cloud classification.

4. Experiments

4.1. Implementation Details

Image Rendering. We exploited a differentiable point
cloud / mesh renderer (i.e., the alpha compositing / blending
renderer [57]). It uses learnable parameters r = {ρ, θ, ϕ}
to indicate the camera’s pose and position, where ρ is the
distance to the rendered object, θ is the azimuth, and ϕ is
the elevation. Other than the parameter r, the light point-
ing is fixed towards the object center and the background is
set as pure color. We further resized the rendered images to
224 × 224, and colored them by the values of their normal
vectors or kept them white if normal is not available.
Network Architectures. We adopted ViT-B/16 [8] and tex-
tual transformers pretrained with CLIP [39] as our 2D visual
encoder and textual encoder, respectively. Their parame-
ters were frozen throughout our training stage. Following
the practice in [67], we set the handcraft language expres-
sion template as “ 3D rendered photo of a [CLASS]” for
textual encoding. As for 3D backbones, for fair compari-
son with other methods, we exploited the widely-adopted
DGCNN [53] point cloud feature encoder as E3D.
Training Setup. INVJOINT was end-to-end optimized at
the training stage. For each point cloud input, we sampled
1,024 points via Farthest Point Sampling [35], and applied
standard data augmentations, including rotation, scaling, jit-
tering, and color auto-contrast. For rendered images, we
only applied center-crop as the data augmentation, since the
background is purely white. INVJOINT was trained for 50
epochs with a batch size of 32. We adopted SGD as the
optimizer [31], and set the weight decay to 10−4 and the
learning rate to 0.01. Cosine annealing [32] was employed
as the learning rate scheduler. All of our experiments were
conducted on a single NVIDIA Tesla A100 GPU.
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Figure 5. Few-shot performance comparisons between INVJOINT and other methods, including the state-of-the-art PointCLIP-E ( denotes
PointCLIP with simple late fusion), on ModelNet10, ScanObjectNN and Toys4K. Our INVJOINT shows consistent superiority to other
models under 1, 2, 4, 8, and 16-shot settings.

4.2. Few-shot Object Classification

Dataset and Settings. We compared our INVJOINT with
other state-of-the-art models on four datasets: Model-
Net10 [58], ModelNet40 [58], ScanObjectNN [51] and
Toys4K [44]. ModelNet40 is a synthetic CAD dataset,
containing 12,331 objects from 40 categories, where the
point clouds are obtained by sampling the 3D CAD models.
ModelNet10 is the core indoor subset of ModelNet40, con-
taining approximately 5k different shapes of 10 categories.
ScanObjectNN is a more challenging real-world dataset,
composed of 2,902 objects selected from ScanNet [6] and
SceneNN [18], where the point cloud shapes are categorized
into 15 classes. Toys4K [44] is a recently collected dataset
specially designed for low-shot learning with 4,179 objects
across 105 categories.

We followed the settings in [67] to conduct few-shot
classification experiments: for K-shot settings, we ran-
domly sampled K point clouds from each category in the
training dataset. Our point cloud encoder E3D, as well as the
other point-based methods in few-shot settings were all pre-
trained on ShapeNet [4], which originally consists of more
than 50,000 CAD models from 55 categories.

Performance Comparison. Table 1 reports the few-shot
classification performance on ModelNet40 dataset. Sev-
eral state-of-the art methods, including image-based, point-
based and multi-modality-based ones, are compared. Note
that post-search in PointCLIP [67] is not leveraged for a
fair comparison. Our INVJOINT achieves inspiring perfor-
mance, outperforming all other methods by a large margin.
Remarkably, INVJOINT achieves an absolute improvements
of 6.02 % on average against PointCLIP [67]. The superi-
ority of our method becomes more obvious when it comes
to harder conditions with fewer samples. For example, in
1-shot settings, INVJOINT outperforms PointCLIP [67] and

Table 1. Few-shot performance on ModelNet40 with several
2D/3D state-of-the-art methods. PointCLIP-E denotes the ensem-
ble of PointCLIP and DGCNN.

Category Method 1-shot 2-shot 4-shot 8-shot 16-shot

2D PointCLIP [67] 52.96 66.73 74.47 80.96 85.45
SimpleView [10] 26.42 35.14 58.53 69.20 78.55

3D
OcCo [52] 46.92 54.08 60.15 72.98 75.08
cTree [42] 15.13 24.98 27.90 34.12 50.59
Jigsaw [40] 11.24 20.98 25.76 31.89 46.85

Joint
Crosspoint [2] 48.24 59.95 64.25 75.75 79.70

Shape-FEAT [44] 37.78 49.92 54.10 61.98 70.75
PointCLIP-E 53.70 67.14 76.32 80.82 85.90

Ours INVJOINT 68.85 72.94 78.95 83.61 88.97

Crosspoint [2] by 15.89 % and 20.61 % respectively. Be-
sides, we can observe from Table 1 that simply ensem-
bling PointCLIP [67] and DGCNN [53] couldn’t provide
enough enhancement, which demonstrates that the conven-
tional ensemble strategy cannot work well without tackling
the “joint hard samples”.

Figure 5 depicts the results in the other three datasets.
Not surprisingly, INVJOINT consistently outperforms other
methods across datasets and in most settings, further
demonstrating the robustness of our method. Particularly,
in the recently collected benchmark Toys4K with the largest
number of object categories, INVJOINT shows an over-
whelming performance, i.e., 93.52 % accuracy with 16-
shots, while most 3D models achieve really low perfor-
mance due to their poor generalization ability.

4.3. Other Downstream Tasks

Besides few-shot object classification, we also deployed
INVJOINT in the following downstream tasks to show its
more collaborative 2D-3D features.
Dataset and Settings. We followed the settings in [13] to

14468



Table 2. Object classification results on ModelNet40 and
Modelnet40-C. “Corr Err” and “Clean Err” denote the error rate
on ModelNet40-C and ModelNet40, respectively.

Methods Augmentation Corr Err Clean Err

PCT [11] PointCutMix-K 16.5 6.9
PointCutMix-R 16.3 7.2

DGCNN [53] RSMix 18.1 7.1
PointCutMix-R 17.3 7.4

PointNet++ [37] PointCutMix-R 19.1 7.1
PointMixup 19.3 7.1

SimpleView [10] PointCutMix-R 19.7 7.9

RSCNN [17] PointCutMix-R 17.9 7.6

INVJOINT (DGCNN) RSMix 16.8 (1.3 ↓) 6.9 (0.2 ↓)

INVJOINT (PointNet++) PointCutMix-R 17.6 (1.5 ↓) 7.0 (0.1 ↓)

INVJOINT (PCT) PointCutMix-K 15.9 (0.6 ↓) 6.9 (0.3 ↓)

Table 3. 3D Shape Retrieval. We compare the performance (mAP)
of INVJOINT on ModelNet40 and ShapeNet Core55. INVJOINT

achieves the best retrieval performance among recent state-of-the-
art methods on both datasets.

Methods Data Type ModelNet40 ShapeNet Core

PVNet [65] Points 89.5 -
Densepoint [29] Points 88.5 -

RotNet [22] 20 Views - 77.2
MLVCNN [21] 24 Views 92.9
MVCNN [13] 12 Views 80.2 73.5
MVTN [13] 12 Views 92.2 82.9

ViewGCN [56] 20 Views - 78.4
VointNet [14] 12 Views - 83.3

INVJOINT 10 Views 93.7 84.1

provide the empirical results of 3D shape retrievals task
on ModelNet40 [58] and ShapeNet Core55 [41]. Fur-
thermore, we also experienced INVJOINT on ModelNet40
and ModelNet40-C for many-shot object classification.
ModelNet40-C [48] is a comprehensive dataset with 15 cor-
ruption types and 5 severity levels to benchmark the corrup-
tion robustness of 3D point cloud recognition. Note that in
all the three following downstream tasks, our point cloud
encoder E3D is trained from scratch for a fair comparison.
(i) Shape Retrieval. For retrieval task, following [13], we
leverage LFDA reduction [46] to project and fuse the en-
coded feature (w/o the last layer for 3D branch) as the sig-
nature to describe a shape. Table 3 presents the perfor-
mance comparison with some recently introduced image-
based and point-based methods in terms of mean average
precision (mAP) for the shape retrieval task. Note that some
methods in Table 3 are designed specifically for retrieval,
e.g., MLVCNN [21]. Surprisingly, INVJOINT improves
the retrieval performance by a large margin in ShapeNet
core with only 10 Views of rendered images. INVJOINT
also demonstrates state-of-the-art results (93.7 % mAP) on

Ensemble

2D

3D

Figure 6. The detailed failure cases caused by modality conflict.
For a test sample with ground truth category “39”, though 3D
branch gives correct answer, the joint prediction is wrong because
the 2D branch has high confidence on wrong category “16”.

ModelNet40.
(ii) Many-shot Object Classification. Although our pro-
posed INVJOINT is mainly designed under few-shot set-
tings, it can also achieve comparable performance with
state-of-the-art methods on sufficient data. As depicted in
Table 2, the performance of 3D baselines are significantly
improved with lower error rate by INVJOINT. Specifically,
with PCT as the encoder E3d in 3D branch, we followed
[48] to conduct PointCutMix-K as point cloud augmenta-
tion strategy, our INVJOINT achieve 6.9 % and 15.9 % error
rate on ModelNet40 / ModelNet40-C respectively.

4.4. Ablation Analysis

Q1: How does INVJOINT make the best of 2D and 3D
world? To better diagnose the effectiveness of INVJOINT,
we first illustrate the improvements of our joint inference,
comparing with each branch performance as well as the
simple late fusion in Figure 7(b). Then we give the de-
cent definition of Conflict Ratio Cerr to reflect the degree
of modality conflict: Given the set of test sample index as
T, we define the index of samples with correct 2D, 3D and
Joint predictions as T2D, T3D and TJoint. Cerr is given by
||(T2D\TJoint)∪(T3D\TJoint)||

||T || , which calculates the ratio of those
can be recognized by one modality but failed in joint pre-
diction . Under such definition, we further analyze the vari-
ation curve of Cerr at the training stage.
A1: Specifically in Figure 7(b), the proposed INVJOINT
outperforms the late fusion by 4.7 % on average in differ-
ent settings of ModelNet40, which concretely demonstrates
the superiority of multi-modality collaboration through IN-
VJOINT. It is clear from Figure 7(a) that our method grad-
ually mitigates the modality conflict while separate training
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Table 4. Performances with different visual encoders on Model-
Net40. RN50 /101 denotes ResNet-50 /101, and ViT-B/32 repre-
sents vision transformer with 32 × 32 / 16 × 16 patch embeddings.
Accuracy of 2D branch (left in each cell) and INVJOINT (right in
each cell) are reported.

Model 1-shot 2-shot 4-shot 8-shot 16-shot

RN50 59.18 | 66.05 64.12 | 68.90 68.23 | 76.41 71.10 | 81.25 77.23 | 85.93
RN101 60.19 | 66.42 66.98 | 70.31 70.45 | 78.90 72.74 | 82.60 78.16 | 87.10
ViT/16 63.62 | 68.85 67.23 | 72.94 72.35 | 78.95 75.68 | 82.85 81.20 | 88.97
ViT/32 61.29 | 67.34 66.08 | 69.70 70.14 | 77.62 73.14 | 81.90 80.12 | 88.32
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Figure 7. (a) The variation curve of the Conflict Ratio Cerr on 16-
shots ModelNet40, which degrades significantly with INVJOINT.
(b) Evaluations (Top-1 Accuracy) on ModelNet40 with different
few-shot settings. Joint inference with INVJOINT outperforms late
fusion baseline by a large margin.

of each branch and then ensembling remains high Conflict
Ratio Cerr. Figure 6 gives a detailed example for the fail-
ure of simple ensemble caused by modality conflict. From
these two aspects, we could give a conclusion: the higher
performance of INVJOINT indeed attributes to the removal
of conflict and ambiguous predictions.

Q2: What impact performance of INVJOINT considering
component-wise contributions? we removed each individ-
ual step of Invariant Joint Training and replaced the late fu-
sion strategy to examine the component-wise and loss-wise
contributions. The results are shown in Table 6.
A2: In a multi-step framework, we observed that the exclu-
sion of any component from INVJOINT resulted in a signif-
icant decrease in performance. Specifically, upon removal
of either step 1 or step 2, the Top-1 Accuracy exhibited an
average degradation of 4.06 % ↓ and 3.02 % ↓. Similarly
considering the loss functions, the Top-1 Accuracy will av-
eragely degrade by 5.45 % ↓ and 3.02 % ↓ respectively if
LCE is adopted alone (w/o Step1 & 2) and if Linv is not
adopted (w/o Step 2). Further hyper-parameter sensitivity
(e.g., λ in Eq (3)) analyses are included in Appendix.

Q3: How about the robustness of INVJOINT? As shown
in Table 4, we compared the effect of different prompts de-
signs for few-shot INVJOINT. Moreover, we also imple-

Table 5. Performances with different prompt designs on 16-shot
Toys4K. [CLASS] denotes the class token, and [Learnable Tokens]
denotes learnable prompts with fixed length.

Prompts E2D Joint

“a photo of a [CLASS].” 88.18 92.90
“a point cloud photo of a [CLASS].” 89.32 93.18

“point cloud of a big [CLASS].” 89.71 92.95
“3D CAD model of [CLASS].” 90.10 93.33

“3D rendered photo of [CLASS].” 89.14 93.52
“3D object of a big [CLASS].” 90.32 92.98

“[Learnable Tokens] + [CLASS]” 60.76 78.57

Table 6. Effectiveness for each component on few-shot ScanOb-
jectNN and ModelNet40. Performance of 2-shot (left in each cell)
and 16-shot (right in each cell) are reported.

Step1 Step2 Fusion Type ScanObjectNN ModelNet40

✗ ✗ f2d + f3d 39.13 | 51.90 65.67 | 79.46
✗ ✗ f2d × f3d 39.06 | 52.21 66.14 | 81.09

✗ ✓ f2d + f3d 41.90 | 52.93 66.54 | 81.42
✗ ✓ f2d × f3d 39.94 | 53.45 67.29 | 83.91

✓ ✗ f2d + f3d 41.60 | 52.78 66.15 | 84.71
✓ ✗ f2d × f3d 42.72 | 53.62 67.75 | 85.82

✓ ✓ f2d + f3d 44.16 | 56.19 71.42 | 87.61
✓ ✓ f2d × f3d 44.91 | 57.02 72.94 | 88.97

mented different CLIP visual backbones from ResNet [15]
to ViT [8], reporting the results of individual 2D branch as
well as the joint prediction of INVJOINT.
A3: From Table 4 and 5, we could find out that the perfor-
mance of 2D branch is directly impacted by the prompt and
backbone choices to some extent. However, with the co-
operative 3D-2D joint prediction, our proposed INVJOINT
shows its relatively strong robustness, e.g., reducing the
standard deviation from 10.87 % to 5.51 % among the dif-
ferent designs of prompts. More empirical analysis on dif-
ferent point cloud augmentation strategies as well as the
choices of 3D backbones is included in Appendix.

5. Discussion

Q1: Have any theoretical insights been provided on Joint
Hard Samples? We consider joint hard samples from a
probabilistic perspective based on Bayesian decomposition.
A1: Recent studies [64, 50] mainly attribute classification
failures to the contextual bias, which wrongly associate a
class label with the dominant contexts in the training sam-
ples of the class. In our work, the context can be encoded in
the 2D and 3D modality-specific features—thus we call it
modality bias. Denote the modality-invariant class features
zc and modality-specific features as zd. The classification
model p(y = c|x) that predicts the probability of an image
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Figure 8. The logit distribution of joint hard samples
with/without INVJOINT.

x belonging to the class y = c breaks down into:

p(y = c | zc, zd) = p(y = c | zc) ·

modality bias︷ ︸︸ ︷
p (zd | y = c, zc)

p (zd | zc)
, (7)

In a large-scale dataset where the independent and iden-
tical distribution (IID) assumption is satisfied, each modal-
ities could give robust classification regardless of the influ-
ence of modality bias. That is to say zd is independent of
y,i.e. p (zd | y = c, zc) approaching p(zd | zc), thus the at-
tribute bias could be considered as constant. However, it is
not always the case with data efficiency, where with differ-
ent distribution of zd among modalities, resulting in differ-
ent influence of modality bias.
Joint Hard Samples. From Eq. (7), the modality bias will
largely decrease the performance if ∃r ∈ {r2D, r3D} , r ̸=
c, p (zd | y = r, zc) > p (zd | y = c, zc), making the sam-
ple hard to identify in both modalities; the diverse distribu-
tion shift of zd between 2D and 3D, making them confused
on different sparks, denoted as r2D ̸= r3D, giving high-
confident prediction on different categories.

Additionally, It shows in Eq. (7) that the classification
made by different modalities is biased due to the different
sparks of modality bias p(zd|y=c,zc)

p(zd|zc) , which causes conflict-
ing predictions especially under insufficient data scenarios.
Intuitively, the crux to mitigating such bias is to directly
eliminate the impact of certain modality-specific zd distri-
butions. Therefore, we treat the 2D/3D branches as two dis-
tinct learning environments, ensuring diverse p(zd|y=c,zc)

p(zd|zc)
across environments. Then, IRM essentially regularizes the
invariant feature selector G to achieve equivalent optimality
across environments via the gradient penalty term in eq.(3).
As a result, the influence of modality bias is eliminated,
leading to the acquisition of a non-conflicting feature space
G(xe) for further cross-modality alignment. Fig. 8 illus-
trates that (1) joint hard samples differ in different spikes.
(2) INVJOINT removes the ambiguous predictions for a bet-
ter ensemble. Due to limited space, please refers to Ap-
pendix for further discussion.
Q2: Why Ensemble? One may ask why multi-modality

ensembling should be regarded as an interesting contribu-
tion, since ensembling itself is a well-studied approach [55,
12] that is often viewed as an “engineering stragety” for im-
proving leader board performance.
A2: We would like to justify: (1) We illustrate that ensem-
ble without conflict matters, and prior 3D-2D approaches
such as knowledge distillation [63], parameter inflation [60]
are not as effective as INVJOINT, especially under data de-
ficiency. (2) As far as we know, INVJOINT is the first 3D-
2D ensembling framework as a fusion method for few-shot
pointcloud recognition. What we propose is neither the
added 2D classifier (a necessary engineering implementa-
tion) nor the ensemble paradigm in Figure 1(c), but a joint
learning algorithm to improve the ineffective 2D-3D ensem-
ble. Though simple, it is remarkably useful and should be
considered as a strong baseline for future study.

6. Conclusion

We pointed out the crux to a better 2D-3D ensemble in
few-shot point cloud recognition is the effective training on
“joint hard samples”, which implies the conflict and am-
biguous predictions between modalities. To resolve such
modality conflict, we presented INVJOINT, a plug-and-play
training module for “joint hard samples”, which seeks the
invariance between modalities to learn more collaborative
3D and 2D representation. Extensive experiments on 3D
few-shot recognition and shape retrieval datasets verified
the effectiveness of our methods. In future, we will focus on
exploring the potential of INVJOINT for wider 3D applica-
tions, e.g., point cloud part segmentation, object detection.
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