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Abstract—Android is the most popular operating system for
mobile devices nowadays. Permissions are a very important part
of Android security architecture. Apps frequently need the users’
permission, but many of them only ask for it once—when the
user uses the app for the first time—and then they keep and
abuse the given permissions. Longing to enhance Android per-
mission security and users’ private data protection is the driving
factor behind our approach to explore fine-grained context-
sensitive permission usage analysis and thereby identify misuses
in Android apps. In this work, we propose an approach for
classifying the fine-grained permission uses for each functionality
of Android apps that a user interacts with. Our approach,
named DROIDGEM, relies on mainly three technical components
to provide an in-context classification for permission (mis)uses
by Android apps for each functionality triggered by users:
(1) static inter-procedural control-flow graphs and call graphs
representing each functionality in an app that may be triggered
by users’ or systems’ events through UI-linked event handlers,
(2) graph embedding techniques converting graph structures into
numerical encoding, and (3) supervised machine learning models
classifying (mis)uses of permissions based on the embedding. We
have implemented a prototype of DROIDGEM and evaluated it on
89 diverse apps. The results show that DROIDGEM can accurately
classify whether permission used by the functionality of an app
triggered by a UI-linked event handler is a misuse in relation to
manually verified decisions, with up to 95% precision and recall.
We believe that such a permission classification mechanism can be
helpful in providing fine-grained permission notices in a context
related to app users’ actions, and improving their awareness of
(mis)uses of permissions and private data in Android apps.

Index Terms—Privacy protection, Permission control, Android
apps, Control flow graphs, Graph embedding, Classification.

I. INTRODUCTION

Smartphones and other mobile devices are being used exten-
sively in daily life. Among various operating systems, Android
is the most popular operating system today with 68.79% of
market share in April 2023 [1]. Due to its popularity, apps
for everyday chores are available for the Android platform.
Concerns related to user privacy are also growing along with
the adoption of Android as some apps use users’ data without
their knowledge for advertising or other detrimental purposes.

Android platform uses a permission control mechanism to
enforce restrictions on the operations of apps. In this way,
Android security architecture ensures that no application can
impact other applications, operating systems, or users (which
includes users’ private data) without suitable permissions.
While an app is running, it has to request permissions from
users to access sensitive data or services controlled by the
permissions on the device. However, there are various kinds
of deficiencies associated with the current permission control
mechanism in Android. For example, the request for permis-
sion is often done only once when the app tries to access the
private data for the first time; once the user grants permission,
the app retains the permission and may continue to use or
abuse it for different purposes without informing the user.
Further, many apps do not explain clearly the actual purposes
of their permission requests; most users are not aware of the
effects of granting such permissions and they blindly grant the
permissions most of the time. These flaws in the permission
control mechanism easily result in violations of the right to
know for users and place an undue burden on their cognitive
abilities without giving users enough notice to raise their
awareness (Hong 2017) [2], causing misuse of users’ private
data even by benign apps. The reputation of app developers is
also not a reliable means to trust the apps either. For example,
Facebook (Constine 2019, Shealy 2019) [3], [4] and Google
(Whittaker et al. 2019) [5] were found to collect user data
without users’ knowledge.

Despite the fact that benign apps typically implement a
Notice-and-Choice mechanism for users when requesting per-
missions [6], the notices and choices given to users are often
too coarse-grained for the entire app instead of individual
functionality, untimely when the user uses the app for the first
time instead of when the user uses a specific functionality of
the app that really needs the permission and private data for
the functionality, and out-of-context where only vague sum-
maries are given instead of clear explanation of the purposes
of using the private data for the functionality. Along with
other limitations, these limitations of Notice-and-Choice have



Fig. 1. Main Idea of Approach

prompted improvements and alternate mechanisms to have
more expressive, detailed, machine-readable, automated, and
customizable privacy notices and choices [7].

This paper proposes a new approach for classifying permis-
sion uses and abuses in Android apps associated with each
functionality that a user interacts with. The classifications can
help users decide whether or not to grant an Android app
permission by demonstrating how that permission is required
for a feature that the user uses.

As an illustration, Figure 1 shows the main idea of our
approach. On the left side of the figure, the MainActivity
represents a screen of an app. Different UI elements shown
on the screen are linked by various event handlers (e.g.,
onClick() functions) to different functionalities in differ-
ent activities (indicated by the ovals on the right side of
the figure). For example, when a user taps on the camera
icon on the screen, the takePicture() function of the
CameraActivity can be invoked through the event han-
dler. Since the camera is a system resource in Android, the
CAMERA permission will be needed by this function, and the
use of the permission can be detected in the underlying code
triggered by the onClick and takePicture functions.
Also, by capturing all of the code executed from the UI
event handlers to the functions triggered until their returns
in a certain form, we expect that we can classify whether the
CAMERA permission is indeed needed by the functionality
related to the UI event and functionality, based on certain
domain knowledge about common uses of the permissions and
machine learning models. In the case of the onClick for the
camera icon, our classification indicates that it is benign for
the code to use the CAMERA permission for taking photos in
responding to the event handler for the camera icon, consistent
with the actual permission used in the code. Similarly, when
a user taps on one of the contacts in the list, the onClick
event handler for the list and the associated getDetails()
function in the ContactDetails Activity will be triggered.
The underlying code for the functions will show that the
code needs to use the READ CONTACTS permission, and

our classification also indicates the use is benign for the UI
event and functionality for getting the details of a contact.
On the other hand, if the underlying code executed for
one of the triggered functions shows that the code uses the
ACCESS FINE LOCATION permission but our classification
indicates that the permission may not be needed for that UI
event and the functionality of the event does not need to read
the user’s location, thereby the actual permission used in the
code would be classified as misuse. Thus, our approach can
help in achieving per-functionality permission classification in
accordance with each user action. The classification results can
also highlight different permissions used inappropriately in the
app code and the permission(s) required for the functionality
associated with the user action.

This paper realizes our approach based on mainly three
technical components. First, we need a representation of each
functionality in an app that a user can interact with. An-
droid apps consist of graphical user interface (GUI) resources
and bytecodes. There are event handlers (e.g., onClick()
functions) attached to UI elements and can be triggered
by various kinds of events from users and/or the Android
systems to perform certain functionality. This behaviour can be
represented with inter-procedural control-flow graphs (ICFGs)
and call graphs using static program analysis (Section III-B).
Second, we need to process the graph representations of app
functionalities in a way that can be easily used to classify
its behaviours and permission (mis)uses. We adopt graph
embedding techniques for this purpose, converting the various
code graphs to unified numerical vectors (Section III-C),
which can then be used to train various machine-learning
models. Third, we must identify whether each functionality
a user interacts with is using permission in a benign or
malicious manner. We construct a set of training data based
on a combination of automated and manual analysis (Section
III-D) and adapt supervised machine learning models (Section
III-E) to classify the permission (mis)uses based on the graph
embedding representing each functionality.

Our approach demonstrates that it is feasible to identify the
permission needs of a piece of code, linked to Android event
handlers and user actions. It builds the basis for strengthening
the broader idea that inconsistencies between app user inter-
faces and underlying code can be used to detect permission
misuses and privacy violations. Our key technical contributions
in this paper include:

• A static analysis-based technique for Android apps to
construct inter-procedural control flow graphs (ICFGs)
with call relations that can be used to represent the
functionality of event handlers.

• A graph embedding technique for ICFGs to encode
various code graph structures.

• A curated set of training data containing benign and
malicious permission uses, and trained machine learning
models based on the graph embedding that is able to
differentiate malicious and benign permission uses with
high accuracy.

Our evaluation of a prototype implementation of our ap-



proach, named DROIDGEM, using 89 real-world apps, shows
promising results. DROIDGEM identifies malicious and benign
uses of permissions with respect to the functionality triggered
by a UI-linked event handler with a high F1-score of 95%. We
believe that precise permission (mis)uses classification in the
context of user actions, can enhance privacy protection and
raise knowledge of the (mis)uses of permissions and personal
data in Android apps.

In the rest of the paper, Section II surveys related work and
discusses the uniqueness of our approach. Section III explains
our approach. Section IV presents empirical evaluation and
results. Section V concludes with future work.

II. RELATED WORK

A. Understanding and Managing Privacy

Numerous studies are proposed to provide users with the
knowledge and skills needed to understand and control their
privacy more effectively. In order to make privacy and secu-
rity control easier for users, the CHIMPS (Computer-Human
Interaction: Mobility Privacy Security) lab at CMU advocates
for an ecosystem of privacy that transfers responsibility from
end-users to other entities [2]. The objectives of data sent
from a user’s device through network traffic are determined
by MobiPurpose, a tool developed by Jin et al. [8]. Chitkara
et al [9] demonstrated that per-app authorization is too coarse-
grained and that various intentions of private data access in
an app may be deduced. Our work is motivated by the similar
idea that more fine-grained context-aware permission/privacy
management mechanisms are needed, although our approach
to realizing the idea is very different.

B. Detection of Abnormal Uses of APIs, Permissions, and
Private Data

Many studies have aimed to detect misuse of Android APIs,
permissions, and private data using various techniques. A func-
tional programming model called PrivacyStreams is introduced
by Li et al. [10] for enabling developers to access private data
and make it simpler to determine how data is actually used.
CHABADA by Gorla et al. [11] uses the app descriptions
to determine whether the apps’ uses of sensitive APIs are
unusual. MUDFLOW by Avdiienko et al. [12] analyses data
flow to create classification models that distinguish between
normal and improper uses of private data. BOXMATE by
Jamrozik et al. [13] infers sandbox rules to limit personal
data uses that take place in real runs but go unnoticed during
testing. ”GUI mining” is utilized by Avdiienko et al. [14]
and Hotzkow [15] to group comparable GUI elements across
apps and find outliers that call various APIs in the code.
VetDroid by Zhang et al. [16] uses dynamic analysis to identify
permission (mis)uses in apps for malware detection. Fu et al.
[17] create classifiers that distinguish between genuine and
erroneous authorization uses using app code and foreground
user interfaces. 32 different types of context information, such
as time, location, and app name, are employed in SmarPer by
Olejnik et al. [18] to create classification models. Different
from our approach, those studies have not taken fine-grained

permission legitimacy for each functionality associated with
an event handler linked to user actions into account.

C. User Perception versus App Behaviour

Many studies also utilize the (in)consistencies between
users’ perceptions of app behaviours and the actual app be-
haviours for detecting abnormal behaviour and/or permission
misuses in the apps. Permission Event Graphs are used by
Chen et al. in Pegasus [19] to describe policies on the in-
teractions between user actions and permissions. The policies
are then enforced using static analysis, model checking, and
runtime monitoring for malware detection. App functionalities
are employed in DroidJust by Chen and Zhu [20] to support
whether a data transmission is a leak or not. AppIntent by Yang
et al. [21] leverages GUI change event sequences to determine
whether a data transmission is what the user intended. A
similar issue is addressed in FlowIntent by Fu et al. [22]
but with more automated data flow information. To prevent
transferring sensitive on-screen data off the device, Appstract
by Fernandes et al. [23] infers semantic annotations for UI
elements on-device. AppContext by Yang et al. [24] employs
circumstances and events surrounding private data usage to
distinguish between malicious and benign uses. Both Whyper
by Pandita et al. [25] and AutoCog by Qu et al. [26] examine
whether an app’s descriptions match the uses for which it has
been granted authorization. By including more data, such as
the app’s privacy policy and bytecode, TAPVerifier by Yu et al.
[27] expands the consistency verification. Using code features
and methods from natural language processing, AutoPPG by
Yu et al. [28], developed by the same research team, infers
the privacy policies of apps. AsDroid by Huang et al. [29]
uses mismatches between user interfaces and underlying code
properties to detect stealthy behaviours in code. Wijesekera
et al. [30] employ context for classification models that is
probably accessible to the user and customize the models; they
may be the first to automatically infer privacy decisions on a
case-by-case basis at runtime without direct user involvement.
Nguyen et al. [31] assess user perception about Android app
behaviour based on GUI features to identify access to sensitive
resources. In order to do static analysis and identify violations
of the use of sensitive information, Zhang et al. [32] developed
a language for formalizing GUI regulations and presented an
abstraction called event-driven layout forest. A study of user
behaviour regarding the granting and denying of Android app
permissions is undertaken by Cao et al. [33]. Our approach
differs from those studies in that we utilize graph embedding
techniques to encode app behaviours represented by inter-
procedural control-flow graphs and build embedding-based
classification models for permission (mis)uses.

D. Deep Learning-Based Vulnerability/Malware Detection

Deep Learning based techniques are also used in Android
app analysis and malware detection. Malviya and Gupta
apply LSTM on Android apps opcodes to detect malicious
behaviour of Android apps [34]. De-LADY by Sihag et al.
[35] is an obfuscation-resilient approach which analyses the



TABLE I
SUMMARY OF RELATED WORKS

Research Area Granularity Analysis
Method

Data Used

Understanding and Managing
Privacy [2], [8], [9]

Appwise Dynamic Network traffic, Contextual information

Detection of Abnormal Uses of
APIs, Permissions, and Private
Data [10], [11], [12], [13], [14],
[16], [17], [18]

Appwise Static besides
Jamrozik et al.
[13] and Zhang
et al. [16]

App descriptions, Data flow, GUI mining, App code,
UI and context information

User Perception versus App
Behaviour [19], [20], [21], [23],
[24], [25], [27], [28], [29], [29],
[30], [31], [32], [33]

Appwise except Wijesekera et al.
[30] which is functionality wise

Static except
Yang et al. [21]

Permission event graph, App functionalities, GUI
change event sequence, Semantic annotations for UI
elements, Event surrounding private data usage, GUI
features and App’s description, privacy policies, and
bytecodes

Deep Learning-Based
Vulnerability/Malware Detection
[34], [35], [36], [37]

Appwise Static except
Sihag et al. [35]

Dynamic analysis logs, API calls, permissions

Permission
Classification/Prediction [38], [39],
[40], [41], [42]

Appwise Static except
Shaozhang et al.
[40]

Apps level of protection and threat, collaborative
filtering, text mining, Categories, permissions and
textual description of app, users’ privacy decisions

logs generated by dynamic analysis of the Android app and
extracts behavioural patterns for training deep learning models.
Elayan and Mustafa [36] use a specialized Recurrent Neural
Network (RNN) model named Gated Recurrent Unit (GRU)
for detecting malware using API calls and Permissions.

Our approach uses graph embedding for permission classifi-
cation. Similar deep graph learning techniques have been used
for vulnerability detection, malware detection, code classifica-
tion, third-party code detection, and other tasks [43]. For ex-
ample, Kim et al. [37] and DeepFlow [44] use various kinds of
representations of Android apps and deep learning techniques
to detect malware. VulDeePecker [45] and BGNN4VD [46]
use combinations of syntax structures and control-/data-flow
graphs to represent programs and employ various deep neural
network models to learn vulnerability patterns for C/C++
programs. However, as far as we know, no study has been
done for fine-grained Android permission classification per
functionality using inter-procedural control-flow graphs.

E. Permission Classification/Prediction
Ashawa and Morris [38] categorize malware permission

requests using the level of protection and threat in An-
droid apps. Bao et al. [39] propose an Android permission
recommendation system with two different strategies, i.e.,
collaborative filtering and text mining. Shaozhang et al. [40]
propose a machine learning-based dynamic permission man-
agement system for Android apps using a dynamic permission
management database. Approach by Deguang and Hongxia
[41] makes use of a structural feature learning framework to
pinpoint the connections between app categories, permissions,
and textual descriptions and forecasts permissions. Mendes et
al. [42] propose an automated and tailored method to predict
user preferences for permission requests after analyzing users’
privacy decisions and the situation.

To the best of our knowledge, except for some approaches
based on dynamic analysis [30], all existing classification and
permission studies consider an app as a whole and have not
considered individual functionality associated with an event
handler linked to a user action.

F. Differences from Related Work

After the review of related works as summarised in Table I,
we note the following common shortcomings in those studies:

• Except for a small number of studies (like [30]), other
works on app-level or library/package-level are not fine-
grained or flexible enough for different contexts and app
usages;

• Relationship between app functionality and its permission
uses is often considered in the context of the same
app or the apps of the same categories; similarities and
differences in the relations across different apps have not
been utilized for classification and legitimacy decisions.

Our approach aims to overcome these shortcomings via:
• More fine-grained detection of permission misuses in

the context of each functionality linked to user actions,
instead of whole application-level malware detection.

• More effective encoding of app behaviours and permis-
sion use that automatically and holistically considers sim-
ilarities and differences across various apps to facilitate
accurate legitimacy decision-making.

Our approach is more fine-grained, which means that we can
identify specific malicious behaviours that other approaches
might not be able to detect. Because of this, our approach
identified some misuse of permissions even in apps with good
reputations as shown in our evaluation (Section IV), which
would not be detected as malware by other approaches.

III. SOLUTION DESIGN AND IMPLEMENTATION

This section first presents the overall idea and design of our
approach in III-A, and then describes more details for various
components in our approach in III-B—III-E.

A. The Proposed Approach

As introduced in Section I, our approach aims to improve
the mechanism for supporting automated permission classifi-
cation and privacy protection for users. In particular, we aim
to make the identification of permission misuses in Android
apps more fine-grained in the context of event handlers related
to user actions.



The main technical objective of our approach is to classify
and predict the permission(s) necessary for each function
triggered by a user in an Android app (e.g., via simply
launching the app or tapping a widget on the graphical
user interface of the app). Then, the differences between the
predicted permission use and the actual permission use by the
app can be used to warn the users about potential misuse.

In brief, our approach integrates static analysis of app
bytecode associated with event handlers of user interface and
Android system events with machine learning techniques to
infer patterns of permission (mis)uses across a variety of apps.
It is put into practice in four components.

• App’s static analysis is the first component. It creates
inter-procedural control flow graphs (ICFGs) that are
connected to event handlers (e.g., triggered by a user
action via the app user interface or a system event that
may not be visible to the user).

• Embedding of the inter-procedural graphs is the second
component. It creates vectors from the graphs that are
utilized in classifying and predicting permissions.

• Utilizing user impressions of app functionality and per-
missions is the third component (UI events and handlers).
These perceptions are shaped by user studies conducted
on actual apps and assist the supervised classifier in
predicting permissions.

• A supervised learning classifier is the fourth component.
This classifier predicts permissions needed by the app
functionality represented as the ICFG embeddings, given
the previous three components, and identifies permission
misuses by utilizing different but related perspectives on
the app’s functionality and permission needs.

Figure 2 shows an overview of our approach. The approach
has two phases. The first phase is the training of a supervised
classifier and the second phase is to apply this trained classifier
for predicting permissions. In our approach, the bytecode of
an Android app initially undergoes static code analysis, as
illustrated in the figure. There are two steps to performing
static analysis. To begin, FlowDroid [47] based on the Soot
framework [48] is used to create a call graph combined with
a control flow graph to produce directional graphs (digraphs).
In the second step, we analyse digraphs and assign labels in
the form of permissions using the customized Androwarn [49]
tool. The baseline labels that the customized Androwarn auto-
matically generates are expanded and validated manually. The
inter-procedural control flow graphs produced by FlowDroid
are used in this manual verification. In order to generate the
embedding vectors, we conduct whole graph embedding on the
inter-procedural control-flow graphs of Android apps that we
obtained from FlowDroid. The supervised learning classifier is
now fed the confirmed labels obtained after manual verification
and the embedding vectors produced by graph embedding for
evaluation and building a model for predicting permissions.

In the application phase, an Android app goes through
static analysis with Soot which generates inter-procedural
control flow graphs for various event handlers in the app.
Embedding vectors are then generated from the graphs using

graph embedding. These vectors are then fed to the trained
classifier model to predict permission. More information about
these actions is provided in the following subsections.

B. Static Program Analysis

Static code analysis is a technique for looking over codes
before a program is run. A widely used tool for static analysis
of Android apps is the Soot framework [48]. To load Android
apps and produce call graphs along with control flow graphs,
Soot and tools built from it, such as FlowDroid [47] and Gator
[50], are used in the first step of static analysis. These graphs
serve as the fundamental building blocks for graph embedding.
Figure 3 displays an example of a call graph along with
a control flow graph generated from an app. The nodes in
the graph contain the instructions from the app’s code in the
format of Soot’s Jimple intermediate representation.

We first build digraphs from call graphs utilizing the Class
Hierarchy Analysis (CHA) and Soot Pointer Analysis Re-
search Kit (SPARK) techniques. We extract features from
discovered GUIs, API signatures, digraphs, and permissions
used in the app by integrating the call graph findings from both
SPARK and CHA algorithms. Android lifecycle methods (such
as onCreate, onStart) and event methods (such as onClick,
onItemClick) are graphed, with API signatures in digraph
nodes and used Android permissions (obtained from jellybean
and axplorer mappings that map API calls to the permissions
used [51]) maintained in digraph names. We improve the
digraphs by creating a control flow graph for the method
body and assigning labels to the digraph edges. The graph
representation is enhanced by combining control flow graphs
and edge labels with the call graphs to incorporate more
information (as illustrated in Figure 3). The output of the first
step of static analysis is a set of inter-procedural control flow
graphs (ICFGs), one for each event handler. The graphs are
stored as directional graphs (digraphs) in the DOT file format
[52] and are fed to the next step for graph embedding.

We use another tool Androwarn [49] in the static analysis
component. Androwarn is a malicious behaviour detection
tool for Android apps. It statically analyses the Android
app’s Dalvik bytecode for potentially malicious behaviour. We
customized the Androwarn to work on digraphs for generating
automated labels in the form of permissions, for the purpose
of generating training data in our work (see more details in
Section III-D1 and III-E).

C. Graph Embedding

This component of our approach is responsible to identify
permission (mis)use patterns in inter-procedural control-flow
graphs (ICFGs) relevant to machine learning techniques. A
graph is made up of a number of nodes (vertices) and a
number of edges connecting these nodes. Nodes in graphs
are not randomly scattered and independent because they
are invariably connected through edges, forming potentially
complex patterns. Traditional machine learning techniques are
not easily able to handle computational issues on graphs. There
are two strategies to apply machine learning to graphs. One



Fig. 2. Our Approach based on Static Analysis, Graph Embedding, User Study and Labelling and Supervised Classification

Fig. 3. Example Call Graph combined with Control Flow Graph

strategy is to create a brand-new classification mechanism for
graphs. This new classification mechanism is known as col-
lective classification [53]. Collective classification considers
mapping for a node’s neighbourhood and the mapping between
its attributes and label. The other strategy is to flatten a graph
by building a set of features to identify each node. In this
case, traditional classification techniques can be applied after
the graphs are flattened, therefore it has become more and
more well-established [54].

Graph embedding belongs to the second strategy. It converts
graphs to numerical vectors in high-dimension spaces while
maintaining their attributes [55], so-called embedding vectors.
In order to detect desired properties of the graphs, machine
learning models are trained using these graph embedding
vectors. In this work, we perform graph embedding on inter-
procedural control flow graphs of Android apps obtained from
static analysis with Soot. We use NetworkX [56] library
for loading graphs in the DOT format and GL2Vec [57] in
the karateclub machine learning library [58] for obtaining
embedding vectors from inter-procedural control flow graph.
NetworkX is a network analysis package and it provides
an implementation of different graph algorithms and graph

data structures including digraph which is being analysed
in this work. GL2Vec provides a whole graph embedding
implementation of the creation of a line graph of each
graph and Weisfeiler-Lehman tree features for nodes with
degree centrality. It is an improved version of Graph2Vec
[59]. Since it is able to handle edge labels and structural
information, we selected it for our implementation. We used
the default implementation of GL2Vec with the follow-
ing parameters: wl iterations=2, dimensions=128, workers=4,
down sampling=0.0001, epochs=1000, learning rate=0.025,
min count=5, seed=42.

D. User Study and Graph Labeling

Our approach uses supervised machine learning techniques
to differentiate the code graph patterns of benign permission
uses from those of malicious uses for identifying permission
(mis)uses. To train such machine learning classifiers, we
need to provide sample data together with known benign
or malicious behaviours, i.e., inter-procedural control-flow
graphs associated with event handlers that either contain no
permission uses or contain known benign or malicious uses
in the context of our paper. In our context, the labels for the
training data have two types:

• Label 1 for an ICFG containing malicious misuses of
permissions;

• Label 0 for an ICFG that either does not use permissions
or uses permission benignly in relation to the function-
ality related to the event handlers of the user interfaces
that may be visible to users.

We performed graph labelling in two steps, first by customized
Androwarn during static analysis and malicious behaviour
detection, and then manually verified by ourselves. The next
two subsections describe both steps in more detail.

1) Automated Labeling: Due to a huge number of inter-
procedural control-flow graphs (ICFGs), we customized
Androwarn [49] to help scale down the manual effort needed
to label the graphs. We manually discovered a collection of



Fig. 4. An example output of a malicious graph (Label 1) by Androwarn

definitions of potential malicious behaviours in Androwarn’s
source codes. Malicious behaviour as detected by Androwarn
is indicated by specific uses of Android SDK classes and API
method names (such as TelephonyManager and getDeviceId)
by keyword matching only. Because the use of these classes
and API methods require permissions related to the potential
private information leakage, Androwarn would identify all
such uses without considering whether the permission uses
are necessary for the app’s functionality. The categories de-
tected by Androwarn are as follows: (1) Telephony Identifiers
Leakage (2) Device Settings Harvesting (3) Location Lookup
(4) Connection Interfaces Exfiltration (5) Telephony Services
Abuse (6) Audio Video Eavesdropping (7) Suspicious Connec-
tion Establishment (8) Pim Data Leakage (9) Code Execution.

In its default implementation, Androwarn searches for such
classes and API keywords in the whole app package to
detect if an app as a whole may be malicious. We modified
Androwarn’s source codes so that it may detect the uses of
such classes and APIs at the graph level to generate the
baseline graph labels. Because of this change, Androwarn
instead of searching the whole app package, searches at the
granularity of ICFGs, using the same class and API keywords.

An ICFG is assigned a Label 0 when there is no malicious
behaviour detected or a Label 1 when there are malicious
behaviours found based on our customized Androwarn search.
Figure 4 shows an example output of Label 1 for an ICFG. The
figure shows that the functionality associated with the graph
contains potential misuse by 8 APIs that need permissions.

We also included training data from known malicious
Android apps. We could presume that all code functionali-
ties and permission use in malware were erroneous, but we
nevertheless think some fine-grained code in malware may
perform benign functionality in order to disguise itself, and
treating all ICFGs from malware as malicious may hurt the
accuracy of the training data, the training data, especially
for those with Label 0s. Thus, when we ran our customized
Androwarn on individual ICFGs of malware, we only took the
ones with reported malicious behaviours, and labelled them

with 1 for training data, but removed those cases without
reported malicious behaviours (i.e., do not use them either for
Label 0 or 1 training data) to avoid introducing noises into the
training data. To further improve the labels for the code graphs
and enhance the quality of the subsequent machine learning
models, we further make use of manual analysis of the graphs
which is explained in the next subsection.

2) Manual Labeling: Labels obtained from our customized
Androwarn, especially the Label 1s for non-malware apps, are
then verified manually in this step. This whole process takes
place with the help of inter-procedural control flow graphs
obtained from FlowDroid in DOT format. In order to explore
the extent of malicious behaviours reported by customized
Androwarn, the ICFGs related to these behaviours are searched
to discover nodes consisting of malicious behaviours. All
nodes and edges with data and/or control dependencies are
then consolidated to create subgraphs. Visualization of the sub-
graphs is then further generated to facilitate manual analysis
of the functionality of the ICFGs.

Following the principle of user awareness for privacy pro-
tection, we believe that there should be some user interface
elements in the app to notify the user if permission involving
private data is used in its code; if there are no such UI elements
for the user, which means the app code for the ICFG uses the
(granted) permission without informing the user, it should be
considered as potentially malicious. Thus, during the manual
analysis of ICFGs, we also look for the presence of classes
and/or event methods that suggest a user interface (UI). Further
analysis (e.g., running the app, reading its XML layout files)
may be required if the existing knowledge contradicts the
results of static analysis of Androwarn or if the analysis does
not provide a full picture of the UI.

For example, Figure 5 depicts part of a sample
graph, extracted from an ICFG for an app. At the
very bottom, the node showcases the API method
getDeviceId() that uses privacy-sensitive permission
READ_PRIVILEGED_PHONE_STATE. Following the edges
and nodes in the ICFG leading to the permission, the method
setAnimationListener() together with the class
Animation suggests that there is a UI present. The purpose
of the interface can also be further inferred to be a splash
advertisement when we continue to follow the control flow.
With this information, it can be understood that the UI is for
displaying ads and does not accurately reflect the permission
of the user and is thus labelled as 1 (malicious) in this regard.

For another example, the part of a graph shown in
Figure 6 has its map view evidently needing the method
getActiveNetworkInfo() requiring the permission
ACCESS_NETWORK_STATE, which provides details of the
device’s current network, in order to connect to the internet.
More crucially, it is quite common for an average user to
understand that permission is needed to connect to the internet
when looking at the app’s interface. So, we label this case as 0
(benign) even though Androwarn suggests it may be malicious.

For each ICFG labelled as 1 by our customized Androwarn,
we thus manually analyze all the permission uses in the ICFG



Fig. 5. Digraph depicting Malicious Behaviour

individually on whether they are reflected through the UI, and
update the graph’s label to 0 if all of the permissions are
determined to be benign. Section IV-A gives more details on
the apps that we have curated labels.

E. Supervised Learning Classifier
With our curated benign/malicious labels for inter-

procedural control-flow graphs and their embeddings as input,
we can now train machine learning classifiers to recognize
permission (mis)uses using the embedding vectors as features
for classification. We note that an ensemble classification
using multiple classifiers usually produces better results than
a typical classification model using a single classifier. We use
sklearn library [60] for Ensemble Graph Classification. To
balance the shortcomings of individual classifiers and enhance
the quality of predictions, we developed a VotingClassifier
based on majority voting from the following seven widely
used machine learning classifiers: k-Nearest Neighbors, Sup-
port Vector Machine, Decision Tree, Random Forest, Ad-
aBoost, Gradient Boosting and eXtreme Gradient Boosting.
The trained classifier model can then be applied to any new
given app to make predictions about its permission (mis)uses.
We used default parameters for the classifiers from the library.
The details of their parameters can be found in our GitHub
repo.

IV. EVALUATION

In this work, we explored fine-grained context-sensitive per-
mission usage analysis and thereby identify misuses. For this,
we specifically addressed the following research questions:

• RQ1: How effective is the approach in identifying the
(mis)use of permissions and users’ private data?

• RQ2: What are the reasons behind the (mis)use of
permissions and users’ private data?

TABLE II
GRAPH LABELING RESULTS

Apps #Apps Auto 0 Auto 1 Manual 0 Manual 1 Total
SG Smart
Nation
Apps

19 544 166 625 85 710

Androzoo
Apps 30 737 277 889 125 1014

DeepIntent
Malicious
Apps

16 - 289 - 289 289

More
Malicious
Apps

24 - 135 - 135 135

Total 89 1281 867 1514 634 2148

• RQ3: What are factors which can affect the performance
of the approach?

This section explains the evaluation process for our work
and answers the research questions. Details of the evaluation,
the dataset used, evaluation metrics, and results of graph
labelling and supervised classification are described here.

A. Dataset

We selected apps from different sources and varieties to
have a diverse set for our experiments. Our evaluation dataset
consists of 89 apps. 49 apps of them are benign and 40 apps
are malicious. 19 benign apps are Singapore smart nation apps
[61] with a good reputation, and 30 apps are from Androzoo
dataset [62]. We selected Singapore smart nation apps due
to our familiarity with the apps as these apps are used quite
frequently in Singapore and due to which manual labelling
became easier. We selected the apps from the Androzoo
dataset by checking the functionality of the apps so that they
may be different from the SG smart nation apps. Out of 40
malicious apps, 16 are obtained from DeepIntent [63] and 24
are collected from various other resources. These apps are also
selected with the aim of making a dataset of diverse apps.
We first selected apps from DeepIntent and then collected
apps from other sources by checking their similarity with
DeepIntent apps. A list of all apps used in this work is
available at https://github.com/ervikas/DroidGem.

These apps first go through our graph labelling process
(Section III-D). Table II shows the results of graph labelling.
Auto 0 and Auto 1 represent the labelling done by our
customized Androwarn, and Manual 0 and Manual 1 represent
manual labelling. From the 19 SG smart nation apps 544
benign and 166 malicious graph labels are given in automated
labelling, while 625 benign and 85 malicious graph labels are
given after manual labelling. Similarly from Androzoo apps
737 benign and 277 malicious labels are given in automated
labelling, while 889 benign and 125 malicious labels are given
after manual labelling. From DeepIntent malicious apps 289
malicious labels are given. Similarly, in the case of other
malicious apps 135 malicious labels are given. We got a total
of 2148 labelled graphs for training and testing. As noted in
Section III-D1 and Section III-D2, we do not use Auto 0 labels
from malicious apps to avoid introducing noises into Label 0
training data, and we assume all Auto 1 labels from malicious
apps are indeed malicious to reduce manual labelling efforts.

https://github.com/ervikas/DroidGem
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The dataset of the graphs and their labels are then split on
the commonly used 80/20 ratio for later machine learning,
with 80% for training and 20% for testing.

B. Performance Metrics

The performance of a machine learning classifier is often
evaluated in terms of precision, recall, and F1 score. In this
work, a graph is deemed legitimate if no malicious behaviour
is observed (with a label of 0) and illegitimate if any malicious
behaviour is discovered (with a label of 1). The performance
metrics are explained in the following sections.

1) Precision: Precision measures the correct predictions
made out of total true positive predictions. The formula for
precision is: Precision = TruePositives

TruePositives+FalsePositives .
We calculate our performance metrics in two different cases

based on whether Label 0 or Label 1 is considered positive.
First, we calculate the metrics considering benign as positive.
Second, malicious is considered positive for the calculation.

2) Recall: Recall measures the correctly predicted pos-
itive cases, over all the positive cases. It is also called
Sensitivity. The formula for the recall is: Recall =

TruePositives
TruePositives+FalseNegatives .

3) F1 Score: F1-Score combines both precision and recall.
It is the harmonic mean of precision and recall. The formula
used to calculate F1-score is: F1Score = 2∗ Precision∗Recall

Precision+Recall .

C. Results and Discussion

1) Permission Prediction Results: The results of the evalu-
ation provide an answer to the first research question (RQ1).
Table III and IV shows the performance of our supervised
classification model applied to the 20% test data after the
model is trained via a 10-fold cross-validation using the
manually verified labels. The confusion matrix in Table III
tells the numbers of graphs that our model makes correct or
wrong predictions: 307 Label-0 predictions and 102 Label-
1 predictions are correct, while 4 Label-0 and 17 Label-1
predictions are wrong. We then calculate precisions, recalls,
and F1 scores based on the confusion matrix according to the

TABLE III
CONFUSION MATRIX OF ENSEMBLE CLASSIFIER ON TEST DATA

Predicted
0 1

Actual 0 307 4
1 17 102

TABLE IV
ENSEMBLE CLASSIFICATION REPORT (USER MANUAL LABEL)

Precision Recall F1 Score
Label 0 (benign) 0.95 0.99 0.97

Label 1 (malicious) 0.96 0.86 0.91
Weighted Avg 0.95 0.95 0.95

formula in Section IV-B. As shown in Table IV, our ensemble
model resulted in a promising precision and recall of up to
96% and 86% respectively for detecting code graphs that may
contain malicious or user-imperceptible permission uses.

2) Permission Misuse Analysis: We did this analysis to find
an answer to the second research question (RQ2). As shown in
Tables II and III, DROIDGEM correctly identifies many ICFGs
in the benign apps that misuse permissions along with manual
verification. We look into these cases and manually categorize
the reasons why the apps (mis)use the permissions.

The majority of the DOT files identified as malicious are
found to have analytic and marketing aims. The developers’
desire to gather as much information from their users as
possible is perhaps one of the reasons. A large amount of
data aids developers to understand their users’ demograph-
ics, preferences, and usage habits. Another factor that could
contribute to developers using permissions needlessly is that
users may not comprehend the reasons for the permissions
being used and may have limited options if they want to
utilize the applications. Applications that generate revenue
from advertisements have a greater incentive to show ads
to the target audience that the advertiser has specified. The
applications we studied also frequently had more and more
opportunities for data analysis, which is a major motivation
for increased data collecting.



Some developers are also highly dependent on available
third-party libraries and tools. Regardless of the degree of
openness, developers sometimes have little control and/or
knowledge of the libraries’ usage of permissions. Furthermore,
much like the application’s users, developers may be requested
by the libraries and tools’ owners to use certain permissions in
order for integration. These libraries and tools are also often
developed with them being general purposes in mind, hence
unnecessary permissions may be included.

3) Prediction Error Analysis: This analysis is intended
to answer the third research question (RQ3). Our manual
labelling brings about human knowledge to ensure labels
can be properly justified for training better machine learning
classifiers. However, our prediction results show that there are
still wrong predictions for about 5% (21 out of 430) of test
code graphs from various apps used for testing.

Even if permissions are designated independently depending
on whether they utilize UI elements, the ICFGs would be
categorized as harmful as long as one permission is labelled
as such. As a result, the algorithm may identify additional
occurrences of the permissions as malicious as well, even
though the harmful label does not apply to each occurrence
of the permissions individually. One such instance is ICFG of
an Androzoo program that is flagged as dangerous, although
only 2 of the application’s 6 permissions are devoid of a UI
element. Then, it is shown that this specific ICFG was one of
the incorrect predictions.

Human-related factors may also have a significant role in
the production of false predictions. In addition to the apparent
human faults at work (wrong labels), the labels will also
be impacted by the labeller’s comprehension of the various
APKs, methods, classes, and libraries. Based on a compar-
ison between the ICFGs that have been wrongly labelled
by the algorithm and annotations after manual labelling, it
is suggested that prior knowledge of the applications may
change, which might result in different approaches to manually
labelling the DOT files. Similarly, the labeller might have a
better insight into certain applications, for example, SG Smart
Nation essential applications, leading to biases.

Another human-related reason would be that certain di-
graphs are found difficult to be generated and read because
of the encryption applied to apps before releasing them.
As a result, manual labelling may be more difficult and
produce outcomes with fewer justifications since it is more
difficult to establish an overview. This is particularly relevant
to Singapore Smart Nation applications because those apps
use more stringent encryption.

Lastly, the benefit of manual labelling may hinder a more
repeatable approach to labelling permissions. The ICFG-
generated sub-graphs provide information about a particular
questionable permissions’ intended use. Nearly all of the hand-
ful of Androzoo applications whose outcomes were wrongly
predicted have been found to be tied to analytics or advertising.
Despite having a UI element overall, excessive usage of rights
that are not particularly related to their intended function has
resulted in certain ICFGs being classified as harmful while

other ICFGs with comparable permissions that are believed to
serve other goals are not.

A possible future solution to these above-mentioned issues
is to augment DROIDGEM with dynamic analysis. Dynamic
analysis can create a real-time mapping between event han-
dlers and permissions usage which will help to verify the
generated/manually verified labels.

D. Threats to Validity

1) Threats to Construct Validity: A major threat is whether
the graph embedding of inter-procedural control-flow graphs
(ICFGs) is effective in capturing the functionality of an app.
Based on related work on using various code representations
and deep learning for malware detection and classification
(Section II-D) and our empirical evaluation, such techniques
can indeed capture much of the code functionality, although
it needs further research to investigate to what degree such
techniques capture code semantics.

2) Threats to External Validity: Major threats are sample
bias and evaluation bias. In our evaluation, we used a diverse
dataset from different sources to improve app variations and
scenarios. We also included benign apps that are not supposed
to contain permission misuses for evaluation. And we used
commonly used metrics such as precision, recall, and F1-score
for measuring the prediction performance. We also employed
10-fold cross-validation to reduce the effect of randomness.

3) Threats to Internal Validity: Our code implementation,
human labelling process, and static analysis tools used may
all contain limitations and errors. Internal validity is also at
risk from potential discrepancies and randomness throughout
various runs. Multiple authors of the paper went through our
code and dataset and performed multiple checks and achieved
stable prediction accuracy to reduce such threats.

E. Limitations and Possible Improvements

Our approach and the evaluation show that fine-grained
context-aware prediction of permission (mis)uses can be
achieved. On the other hand, we note that there are various
kinds of limitations in our current design, implementation, and
evaluation, which can be further improved.

1) On the Design of the Approach: According to some
studies in the literature, it may be possible to predict malicious
intentions of an Android app by just checking the dangerous
permissions used in the app (The Android system has a list
of dangerous permissions [64]); i.e., if an app uses more
dangerous permissions, it is more likely to exhibit malicious
behaviour. We ran an analysis to see how effective this alter-
nate notion is. First, we calculated the number of dangerous
permissions being used by the malicious and benign apps from
our dataset. We calculated the average and standard deviation
of the number of dangerous permissions used in the apps
(shown in Table V). As shown in the table, malicious apps
on average use about one more dangerous permissions than
benign apps. But the difference is not significant enough,
considering that their standard deviations are higher than



TABLE V
ANALYSIS OF DANGEROUS PERMISSIONS USED IN APPS

Number of Apps Average Standard Deviation
Benign 49 3.27 2.89
Malicious 40 4.36 2.35

two. This shows that using dangerous permissions alone as a
criterion for predicting the intentions of an app is insufficient.

DROIDGEM uses custom-built inter-procedural control-flow
graphs to represent the functionality and behaviour of UI-
linked event handlers, which may not be optimal. In the
literature, various kinds of code representations, such as pro-
gram dependency graphs [65], code property graphs [66],
permission event graph [19], etc., have been utilized to clas-
sify code functionality [66] and detect malware [65]. Such
graph representations can potentially be incorporated into
DROIDGEM to help identify functionality more accurately.
Also, GUI contexts, such as UI widget types, icon images,
layouts, transitions to next windows, etc. [17], [63], may also
be used to improve prediction accuracy.

DROIDGEM analyses only static details of an app without
using dynamic information. We intend to augment DROIDGEM
with information from dynamic analysis to overcome this
limitation. We also see the usage of unsupervised learning al-
gorithms for detecting abnormal permission uses, which would
lessen the requirement for manually labelled user perceptions.

2) On the Labelled Permission Usage Data for Training:
For malicious apps, we used automated analysis and assumed
all permission uses in malicious apps as illegitimate. Since
malicious apps are dangerous to the privacy and security of
users, they should not be run by normal users at all, even if
some parts of the malicious apps are harmless. Also, we try
to capture as many potential misuses as possible at the cost
of treating some harmless uses as illegitimate. We might use
malware detection methods in our approach for an app first,
and then if the program is benign would we use our fine-
grained permission detection. We can reduce false positives
in this way. Additionally, in the future, when we gather more
labelled data, we might be able to refine/retrain the models
using training data from benign apps solely.

3) On the Implementation: DROIDGEM uses Soot, Flow-
Droid and other tools built on it along with Androwarn for the
static analysis of Android apps. All these tools work on native
Android apps. These tools have very limited or no support
for non-native apps. This limits the usability of DROIDGEM
in analysing non-native apps. Lee and Wu [67] analyzed
cross-platform or HTML-based hybrid apps and suggested
directions for the analysis. We want to use their suggestions
and additional information, such as package structures, app
GUI layouts, and execution profiles, for more comprehensive
and versatile analyses in our future work.

The tools used in DROIDGEM have limited or no support for
obfuscated apps. This limits the performance of DROIDGEM.
The solution is to use de-obfuscation techniques and dynamic
analyses. It will not overcome the problem completely but the
effectiveness of DROIDGEM can be improved.

Another shortcoming of DROIDGEM is the lack of sufficient
labels. We intend to increase the size of the dataset to
overcome this limitation.

4) On the Evaluation and More Applicable Scenarios:
Although DROIDGEM performed well in evaluation, there is
the possibility of improvement as the size of the app dataset is
not large. So generalization of results may not be effective. Our
intention is to increase the number of apps for experiments.

Our approach is a static analysis-based approach which
is suitable for offline analysis of Android apps. It may be
used by an app store to check whether an app complies with
more rigorous privacy-awareness policies before publishing an
app. It may also be used by a user to check an app before
using it. It might be utilized as a preliminary step before
performing a deeper analysis of an app; further investigation
can validate the labels that our approach generates, which may
be a sign of malicious behaviour. It will reduce the amount of
time required to conduct an in-depth analysis of the app. Our
methodology can assist application stores in establishing rules
for the handling of personal data and determining whether
the features of an app available there comply with those
requirements, and help to improve privacy awareness among
both app developers and users.

V. CONCLUSION AND FUTURE WORK

This paper presents an approach for fine-grained Android
app permission classification using graph embedding. Graph
embedding is performed on the inter-procedural control-flow
graphs representing functionalities of an app that may be
triggered by users’ or systems’ events. Feature vectors ob-
tained from graph embedding are evaluated with supervised
ensemble classifiers to identify the permission (mis)uses.
We have implemented our approach as a prototype, named
DROIDGEM, and evaluated it on 89 apps, out of which 49
apps are benign and 40 apps are malicious. The results are
promising since, compared to manually validated permission
uses, our approach can classify whether permissions utilized
by an app’s functionalities are legitimate with up to 95%
precision and recall.

We are aware of a number of limitations in our approach,
but we are certain that these can be overcome with better app
UI and code analysis and learning techniques in further work.
By testing on larger, more recent releases of Android app sets,
we are committed to enhancing DROIDGEM and its results.

We have published data and source code of our implemen-
tation and evaluation at https://github.com/ervikas/DroidGem.
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