
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

3-2023 

Wearables for in-situ monitoring of cognitive states: Challenges Wearables for in-situ monitoring of cognitive states: Challenges 

and opportunities and opportunities 

Meeralakshmi RADHAKRISHNAN 
Singapore Management University, radhakrism@smu.edu.sg 

Thivya KANDAPPU 
Singapore Management University, thivyak@smu.edu.sg 

Manoj GULATI 
Singapore Management University, manojg@smu.edu.sg 

Archan MISRA 
Singapore Management University, archanm@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Graphics and Human Computer Interfaces Commons 

Citation Citation 
RADHAKRISHNAN, Meeralakshmi; KANDAPPU, Thivya; GULATI, Manoj; and MISRA, Archan. Wearables for 
in-situ monitoring of cognitive states: Challenges and opportunities. (2023). Proceedings of the 2023 IEEE 
International Conference on Pervasive Computing and Communications Workshops and other Affiliated 
Events (PerCom Workshops), Atlanta, GA, March 13-17. 671-676. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8386 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg
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Abstract—We propose using wrist and ear-based sensing, via
multiple novel and complementary modalities, to unobtrusively
infer activity-aware, complex cognitive and affective states (such
as confusion, boredom, and recall failure) of individuals. While
state-of-the-art wearable devices are predominantly used (a)
independently, with limited coordination among multiple devices,
and (b) to capture macro-level physical activity and physiological
state, we seek to expand the ambit of unobtrusive wearable sens-
ing to capture the cognitive states while performing commonplace
physical activities. Such states typically manifest via fine-grained,
almost unobservable, microscopic head, face, and eye movements.
We identify some of these fine-grained physical markers that
serve as proxies for cognitive/affective states and show that
earable-mounted pressure, EMG, and ultrasonic sensing hold
promise for capturing such markers.

Index Terms—Earables, Multi-device sensing, Cognitive states,
Acoustic sensing, Electromyography, Pressure

I. INTRODUCTION

The recent proliferation of wearable devices, with conve-
nient form factors, presents unique opportunities for personal
health monitoring. Smart wearables, such as wristbands and
earable devices, can help capture a variety of kinetic human
activity (e.g., [13], [20]) and physiological context (e.g., [21]).
State-of-the-art sensing techniques typically utilize a single
device at a time to distinguish an array of daily physical
activities. In this paper, we explore the possibility of expanding
the ambit of consumer wearable devices to unobtrusively
capture various facets of human cognitive functioning, such as
attention, boredom, and confusion, while engaged in regular
daily lifestyle activities. If possible, the ability to utilize
multiple wearables to collectively sense different modalities
of human signals and biomarkers can spawn a wide range
of novel and pervasive applications, such as (a) pervasive
monitoring of an elderly individual’s rate of cognitive decline
while performing tasks such as cooking or cleaning, and (b)
in-situ, real-time sensing of loss of learning efficacy during
an online class. For example, as illustrated in Figure 1, an
exemplar online application called MetaTutor can use smart
watches to detect an array of hand gesture activities (such
as scrolling, browsing and typing), which in turn opportunis-
tically trigger earables to detect negative affect states (such
as boredom and cognitive confusion) of students in real-time
during an online learning session. Such detection can then be

*This work was done while the author was affiliated with Singapore
Management University.

Figure 1: MetaTutor: An exemplar application

used to subsequently provide suitable corrective intervention
(e.g., reminders, modified content).

Several prior works in the literature (e.g., [17], [22], [10])
have established the use of different sensors on wrist-worn
devices, such as smartwatches, for accurate recognition of vari-
ous hand gestures. As such in this work, we principally explore
the use of multiple often-novel, earable-embedded sensing
modalities, including electromyography (EMG), accelerome-
ter, ultrasound, and barometric pressure to capture subliminal
head, facial, and eye movement cues that serve as micro-
markers of cognitive state. We report on early experimental
studies, that reveal successes and failures in the use of these
sensing modalities, as well as identify additional practical
challenges in the use of such sensors for real-world, continual
sensing. Overall, we make the following key contributions:

• We propose a multi-device, “wristable+ earable" sensing
paradigm, that combines sensing of gestural actions with
sensing of subliminal head, face, and eye movements to
infer cognitive states of individuals during daily activities.
Besides offering complementary capabilities, their orches-
tration helps reduce the sensing energy overhead on the
more battery-constrained earable device.

• We investigate various combinations of {sensing modality,
in/near-ear placement}, such as EMG, accelerometer, baro-
metric pressure, and ultrasound, placed in/around the ear,
to determine their ability to capture the minute physical
markers that are correlated with human cognitive and affec-
tive states. Through experimental studies, we confirm that
common sensing techniques (such as inertial sensing) fail to
recognize various core biomarkers e.g., pupil movements).
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Figure 2: Multi-Device, Multi-Modal Sensing Paradigm

• We demonstrate that even minute contractions of the facial
muscles, generated by subtle facial actions such as moving
eye gaze, cause deformations in the ear canal shape. Such
deformations generate discernible patterns in both (a) the
inside-ear air pressure sensed by an in-ear differential baro-
metric sensor and (b) the frequency response generated by
an active in-ear ultrasonic transmitter.

• We demonstrate, using an initial 3-subject study, that even an
unobtrusively and remotely placed EMG sensor (electrodes
affixed in front and behind the ear) can indirectly capture 6
different typical facial movements with 80+% classification
accuracy. Our EMG results differ from past work [9], where
the electrodes are placed obtrusively (attached to different
muscle sites on the face) to directly measure muscle activity.
In addition, we identify the challenge of “muscle hyperpolar-
ization" [14], which emerges when activities are performed
continuously and naturally and which has been neglected in
the design of past activity detectors.

II. OVERALL MULTI-DEVICE PARADIGM

We first outline our vision of combining wrist-based and ear-
able sensing to capture an individual’s cognitive states during
various daily activities. Figure 2 illustrates such a combined
sensing paradigm. Inertial sensors (e.g., accelerometer and
gyroscope) on the wrist-worn device first help detect micro-
activities and gestures, such as performing housekeeping activ-
ities [12] or typing in a password/PIN on a mobile App [23].
Triggered by the detection of such activities, different earable-
mounted sensors can then help capture microscopic facial
or eye movements (such as eye gaze while searching for a
household item or frowning while trying to recall a PIN),
which can help reveal cognitive challenges associated with
such activities.

We believe that this form of multi-device, longitudinal
multi-modal monitoring provides a couple of benefits for a
new paradigm of cognition and emotion monitoring:
• Using gestural activities as a trigger to dynamically acti-

vate earable sensing will help conserve the scarce battery
resources of such earable devices. It is worth noting that
the battery capacity on a representative eSense1 earable is
40 mAh–i.e, ∼ 1

10

th that of a typical smartwatch.
• Using a combination of earable and wrist-worn sensing

helps provide a greater understanding of a user’s activity

1eSense–http://www.esense.io/

and environmental context, and thereby improves inference
accuracy. For example, the act of frowning may occur due
to the challenge of recalling a password, as well as while
watching an unfavorable political event on TV. To reliably
identify the likely failures of short-term memory and recall,
it is important to be able to distinguish between these two
contexts.
As wrist-worn activity sensing is relatively well understood,

in the rest of the paper we primarily focus on evaluating the
feasibility of using earable-based cognitive sensing.

III. PRELIMINARY EXPLORATION: ACCELEROMETER,
PRESSURE AND ULTRASOUND SENSING

Our hypothesis is that the wearable device’s placement,
close to the brain, head, eyes and face, will enable its embed-
ded sensors (such as an accelerometer) to capture various low-
level physical movements associated with different cognitive
and affective states. In addition, we hypothesize that eardrum
movements, generated when the eyes move [8] and arising
from the anatomical connection between the extraocular mus-
cles and the inner ear, generate in-ear deformations that can
possibly be captured via pressure changes or ultrasound scans.

A. Preliminary Analysis: Accelerometer

Recent work has demonstrated that earable-based ac-
celerometers can sense and detect more-visible human motion,
such as walking/running [13], head tilt and turning [7], [19])
and jaw movements during eating [5]). However, the ability of
one or more inertial sensors to detect subliminal physical cues
such as eye blinks and gaze movements is largely unknown.
Accordingly, we equip a human subject with a commercially
available and widely adopted eSense device (embedded with
a 6-axis IMU). Figure 3 depicts the accelerometer readings
(from left ear) generated while the subject performs three
actions: (a) nodding head, (b) left to right pupil movements
when watching a video of a ball moving horizontally, and (c)
reading aloud. We can observe that while the accelerometer
accurately detects macro movements like nodding head, it
fails to detect micro-facial movements, such as gaze and
jaw movements (reading). Accordingly, alternative, uncommon
sensing modalities will be needed to detect the weaker physical
signals associated with cognitive and affective states.

B. Preliminary Analysis: Pressure Sensor

An innovative aspect of our work is the exploration of
the physical phenomena called ear canal deformation: our
conjecture is that relaxing/contracting facial muscles cause the
ear canal to expand/shrink, changing its shape and volume,
and indirectly modifying the internal air pressure when the
acoustic meatus is sealed.

We start our investigation by measuring the changes in the
barometric pressure of the ear canal while exerting various
facial muscles. In particular, we attach a differential pressure
sensor (Honeywell micro-pressure sensor2 with a measurement

2Honeywell sensor– https://tinyurl.com/honeywellmicropressuresensor
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Figure 3: Accelerometer readings: different facial actions

Figure 4: Pressure sensor setup

(a) Gaze Movement (b) Head Movement

Figure 5: Recorded pressure signals while (a) moving gaze,
and (b) head up-down-left-right

range of 60 mbar-2.5 bar, or 6-250 kPa) on the tip of a standard
foam-based earplug (preferred due to its convenient form
factor and lightweight nature). As depicted in Figure 4, the
outer end of the earplug was sealed with hot glue to secure the
pressure sensor. Figure 5 plots the pressure variations recorded
by our setup (after discounting the inhale-exhale process
and pulsing effect) while the human subject performed the
following activities: (a) gaze movement, and (b) turn head (up-
down-left-right). We can observe that even subtle facial cues
such as moving gaze up/down and left/right cause observable
pressure variations inside the ear canal, arising from geometric
changes of the ear canal (expansion or compression of the ear
canal wall). However, identifying the muscle groups that cause
such physical deformation using a pressure sensor is not trivial.
For example, the contracting/relaxing of two distinct facial
muscle groups (such as Zygomaticus Major and Frontalis) may
generate non-distinguishable pressure signatures, presenting a
challenge to reliable activity classification.

C. Preliminary Analysis: Ultrasound Sensing

Literature suggests a multi-modal interaction between visual
and auditory systems occurs at the eardrum, causing it to move
during eye movements [8]. Such deformations may thus result
in changes in the frequency response (phase and amplitude)
of the reflected signal of a sound that is injected into the ear
canal. While continual injection of audible sound will simply
be unacceptable to a human, ultrasound signals are largely
imperceptible and may offer a means of such active audio
sensing. As a preliminary exploration, we utilized the eSense
earbud to transmit an effectively inaudible ultrasound signal
(with a frequency range of 18-20 KHz and chirp duration of 1
microsecond) into the ear canal and recorded the microphone
response while the subjects performed varying actions such
as ’close eyes’, ‘blink eyes’, ‘shake head’, ’reading’. Figure 6
plots the histogram of the frequency responses for these dis-
tinct eye movements. We see that each movement is associated
with a distinct frequency response pattern, thereby suggesting
that inaudible acoustic sensing may help capture such subtle
eye and facial movements.

IV. EMG SENSING

In this section, we shall focus on the biosignals captured by
EMG electrodes that are placed near the ear (i.e., not on the
target muscle that fires the electric potential) and perform a
more detailed evaluation of their capabilities of sensing various
minuscule facial muscle movements and actions.

A. Experiment Setup and Data Collection

To study the feasibility of our proposed vision, we con-
ducted preliminary studies exploring the use of ear-based EMG
(Shimmer EMG sensor3), with a sampling rate of 512 Hz, to
capture muscle activities for different facial movements. More
specifically, we attach one EMG channel per ear – the positive
and negative electrodes of the EMG channel are attached
respectively to the front and back of the same ear (depicted in
Figure 7). The reference electrode is attached to a site farther
away from the two ears (i.e., at the back of the neck).

Through multiple iterations, we find that our current place-
ment of EMG electrodes provide the right balance between
the ability to accurately capture subtle facial movements and
enable continuous and unobtrusive monitoring. In contrast, a

3Shimmer sensor–https://shimmersensing.com/
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Figure 6: Histogram of frequency responses for different actions (Ultrasound sensing)

Figure 7: EMG electrode setup

commonly adopted behind-the-ear setup (similar to the one
in [5]) fails to capture certain subtle actions such as pupil
movements. Our setup is less obtrusive and more suitable for
continual EMG monitoring.

We obtained data from 3 subjects who performed six unique
actions such as turning head to left and right, tilting head
to left and right, opening and closing mouth, nodding head,
pupil movements to the left and right, and blinking eyes.
For each experiment, the subjects were seated and instructed
to minimise their motions – the experiment consists of two
phases: during the (a) activity phase, the subjects were asked to
perform facial actions while their eyes are closed (to minimise
crosstalk) except for the pupil movement and blinking eyes
tasks, and the (b) resting phase (for 10-15 seconds; eyes were
closed for all the activities) was introduced both before and
after the activity phase to minimise motion-related artifacts.
For the pupil movement task, the subject was asked to watch
a video of a ball repeatedly and horizontally moving from left
to right. We collected multiple samples of each action and
each of the experiments lasted for about 30-80 seconds. To
collect the ground truth, we recorded videos.

B. EMG Data Analyses and Insights

Figure 8 plots the EMG signal variations – we can see that
each facial action generates an observable trend in the EMG
readings. Interestingly, for certain actions like tilting head, we
observe an inverted trend in the signals across the right and left
ear, indicating the opposing muscle contraction and extension
of the ear muscles.

Our studies reveal additional challenges to overcome. In our
analysis, we find evidence of the phenomena called “hyper
polarization” [14] (depicted in Figure 9), whereby a muscle
does not instantaneously revert to its resting state but exhibits

hysteresis. The impact of such hysteresis is further illustrated
in Figure 10(a) when the facial actions (i.e., gaze movement)
were repeated continuously – we observe, for example, that
the peak EMG signal amplitude varies considerably across
successive identical left-to-right pupil movements (each move-
ment separated by green dashed lines in the image). This
implies that unlike other state-of-the-art activity classifiers
(e.g., inertial sensor-based), real-world EMG-based activity
classifiers cannot be stateless but must incorporate the tem-
poral separation between consecutive micro-activities.

Key Takeaway: The biosignals generated by eye or facial
muscle movements are significantly weaker, and often have
significant temporal dependencies. The impact of hyperpolar-
ization poses a serious limitation on the usage of EMG to
monitor facial muscle movements as it requires a significantly
longer “resting period” between any two subsequent activities,
while, in reality, various muscle movements can co-occur
(such as smiling while blinking eyes).

To correct the effect of hyperpolarization, we propose a
simple linear detrending of the signal. We fit a linear regression
model on the signal, obtain the trend (as shown by the orange
line in the example Figure 10(a)) and subtract it from the
signal. Figure 10(b) shows the detrended signal.

C. EMG-based Facial Action Classification

The pre-processed EMG signal from Shimmer sensor (i.e.,
analog-to-digital converted) is first mean corrected and then
rectified. It is then passed through a low pass filter with a cut-
off frequency of 2 Hz and an order of 4. We then extract
time and frequency domain features (as listed in Table I)
on the processed EMG signal. In addition to the standard
features for both temporal and frequency domains, we compute
‘Willison amplitude’ (a widely adopted feature for EMG-
based pattern recognition) – the number of times the EMG
amplitude exceeds a predefined threshold (here the threshold
= 3 ∗mean(EMG) + SD(EMG), where SD is the standard
deviation).

We use a supervised J48 Decision Tree classifier trained on
the features extracted to classify the various facial movements.
In addition to the data corresponding to the 6 actions, we also
include data from ‘no action’ as a NULL class in the classifier.
As our dataset is imbalanced, we use a cost-sensitive classifier
such that there is a higher penalization if all classes except
‘no action’ are misclassified. Using 10-fold cross-validation,
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Figure 8: EMG variations for different facial actions. The dotted lines indicate the temporal labels of individual events.

Figure 9: Effect of Hyperpolarization while tilting
head to the left and right

Figure 10: EMG signal variations captured from behind the right
ear during left to right pupil movements

Table I: Features extracted on EMG Signal

Time Domain Frequency Domain
Variance Frequency Ratio
Root Mean Square Mean Power
Integral Total Power
Mean Absolute Value Mean Frequency
Zero Crossing Median Frequency
Willison Amplitude Peak Frequency

we achieved promising results with an overall classification
accuracy of 80.02% (average precision and recall of 0.80 and
0.816, respectively).

V. CHALLENGES AND FUTURE DIRECTIONS

Our initial investigations and experimentation have helped
identify the following open challenges that must be addressed.
Automatic EMG segmentation: While our initial results
demonstrate how EMG hyperpolarization may be addressed,
they are based on manual segmentation of each activity
instance, based on ground truth video. Prior approaches for
simple threshold-based segmentation of EMG signals are,
however, inadequate for our scenarios and will need to be
refined to tackle the significant amplitude variations that result
from both (a) hyperpolarization during consecutive actions,
and (b) simultaneous execution of multiple actions (e.g., eye
roll and yawning).

Physical Earable Design with Multi-Modal Sensors: Our
results suggest that multiple sensing modes, positioned both
inside and around the ear, will be needed to discern the
multitude of head, facial and eye based markers of different
cognitive activity. For example, both pressure sensors and
ultrasonic transmitter/receivers may be needed inside the ear
canal, while EMG sensors need to be placed behind and on top
of the earlobe. The earable device will thus need a form factor
that permits such diverse sensor placement and is lightweight
enough to ensure human comfort.
Translating Biomarker Sequences into Cognitive States:
Our investigations have hitherto focused purely on the ability
to identify each individual biomarker instance. Most cognitive
states, however, manifest themselves over longer periods of
time (e.g., 10s of secs–mins), and involve the expression of a
reasonably long, dynamic sequence of such biomarkers. While
additional studies are needed to reliably map such biomarker
sequences to the underlying cognitive state, the longer period
may, however, permit the state estimation to be less sensitive
to errors in individual biomarkers.
Ensuring Wrist-Earable Coordination: The wrist-based ac-
tivity detection triggers need to be timed to ensure adequate
observability of relevant physical micro-markers of cognition.
In general, the longer the observation period, the higher
the activity recognition accuracy. Because cognitive micro-
markers can be fleeting and not necessarily exactly synced
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with physical gestures, the system design must balance the
desire for high precision (to avoid triggering the earable
sensors needlessly) with the need for low latency (to avoid
missing relevant head/eye/face micro-movement signals).

VI. RELATED WORK

Earable Sensing: Earables have recently received heightened
interest for supporting unobtrusive, longitudinal monitoring
applications. Due to their close proximity to key body parts,
such as the brain, eyes, and facial muscles, earables can
consequently not only capture human physiological signals,
such as body temperature [16], blood pressure [6] and brain
activity [18], but also support monitoring of human activi-
ties [13], eating and drinking activities [4], [5], recognize
emotions [3] and facial expressions (such as speech utterances
and head/tongue movements [1], [2]).
Human Cognitive and Affective State Monitoring: In
tandem with earables, head-worn wearables such as “smart
glasses” (representing a wide variety of eye-mounted wearable
devices, equipped with sensors such as LIDAR, RGB and IR
cameras) have begun to re-emerge, driven by the increased
interest in augmented and virtual reality applications. State-
of-the-art research has recently shown how IR [15] or ul-
trasonic [11] sensing by such smart glasses can detect eye
movements (including blinks) and pupillometry, with such
physical context being then used to infer emotional state,
albeit in controlled, laboratory settings where such movements
are performed discretely rather than continuously. Capturing
cognitive and affective states (such as attentiveness and confu-
sion), however, remains a largely unexplored and challenging
problem, as such states are typically associated with multiple,
almost-subliminal physical actions and physiological changes
(such as furrowing one’s eyebrows or exhibiting a “blank”
stare together with perhaps a shallower breathing rate).

VII. CONCLUDING REMARKS

In this work, we have proposed a vision of combining
wrist-worn sensing with sensors embedded in ear-worn devices
as a novel mechanism to capture various {head, face, eye}
movements that serve as proxies of complex cognitive and
affective states. To be specific, we have focused on three
sensing modalities, namely, ear pressure, ultrasound, and EMG
– our early experimental results reveal: (a) in-ear pressure and
ultrasound sensing can detect activity-specific shape variations
of the ear canal, and (b) an EMG sensor placed near the ear
can classify 6 different facial movements with 80+% accuracy.
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