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Robust Test Selection for Deep Neural Networks
Weifeng Sun, Meng Yan, Zhongxin Liu, David Lo

Abstract—Deep Neural Networks (DNNs) have been widely used in various domains, such as computer vision and software engineering.
Although many DNNs have been deployed to assist various tasks in the real world, similar to traditional software, they also suffer from
defects that may lead to severe outcomes. DNN testing is one of the most widely used methods to ensure the quality of DNNs. Such
method needs rich test inputs with oracle information (expected output) to reveal the incorrect behaviors of a DNN model. However,
manually labeling all the collected test inputs is a labor-intensive task, which delays the quality assurance process. Test selection tackles
this problem by carefully selecting a small, more suspicious set of test inputs to label, enabling the failure detection of a DNN model with
reduced effort. Researchers have proposed different test selection methods, including neuron-coverage-based and uncertainty-based
methods, where the uncertainty-based method is arguably the most popular technique. Unfortunately, existing uncertainty-based selection
methods meet the performance bottleneck due to one or several limitations: 1) they ignore noisy data in real scenarios; 2) they wrongly
exclude many failure-revealing test inputs but rather include many successful test inputs (referring to those test inputs that are correctly
predicted by the model); 3) they ignore the diversity of the selected test set. In this paper, we propose RTS, a Robust Test Selection
method for deep neural networks to overcome the limitations mentioned above. First, RTS divides all unlabeled candidate test inputs into
noise set, successful set, and suspicious set and assigns different selection prioritization to divided sets, which effectively alleviates the
impact of noise and improves the ability to identify suspect test inputs. Subsequently, RTS leverages a probability-tier-matrix-based test
metric for prioritizing the test inputs in each divided set (i.e., suspicious, successful, and noise set). As a result, RTS can select more
suspicious test inputs within a limited selection size. We evaluate RTS by comparing it with 14 baseline methods under 5 widely-used
DNN models and 6 widely-used datasets. The experimental results demonstrate that RTS can significantly outperform all test selection
methods in failure detection capability and the test suites selected by RTS have the best model optimization capability. For example, when

selecting 2.5% test input, RTS achieves an improvement of 9.37%-176.75% over baseline methods in terms of failure detection.

Index Terms—Deep learning testing, deep neural networks, test selection.

1 INTRODUCTION

EEP Neural Networks (DNNs) are increasingly applied
D to solving many complex problems in various applica-
tions, such as code-related tasks (e.g., code summarization [1]
and code search [2]), face recognition [3], and autonomous ve-
hicles [4]. Similar to traditional software, DNNs also contain
defects that can lead to severe outcomes, e.g., autonomous
vehicle accidents [5]. Therefore, guaranteeing the quality of
DNNSs becomes imperative and critical.

In the initial engineering phase, data scientists typically
acquire a substantial dataset from the target distribution.
They label the data, divide it into training, validation, and
test sets, and evaluate the DNN's performance on the test
set (referred to as the original test set hereafter). However,
relying solely on this original test set is insufficient to ensure
the quality of the DNN. During training, the model may
mistakenly learn repetitive data patterns [6]. To address this
issue, frequent and high-quality DNN testing is necessary
to identify any mislearned attributes before deployment.
DNN testing entails generating or gathering additional test
data and labeling them. Unfortunately, collecting labeled
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test inputs is often expensive and time-consuming, because:
1) The manual labeling process requires a lot of human
resources and time costs [7]. 2) In specific applications,
such as protein structure prediction [8], the labeling process
requires people to have domain-specific knowledge. 3) The
test set is large, but failure-revealing test inputs that can trigger
the system’s potential errors usually account for only a
few [9]-[11].

To relieve this problem, fest selection (for short, TS) has
emerged to reduce labeling effort. Test selection is designed
to address two common problems: 1) selecting data that
can be used to estimate model performance and represent
the entire set; 2) selecting data that are more likely to be
incorrectly classified by the model and then retraining a
better model with the selected data. This paper focuses on
the second problem. Given a DNN under test and a large
set of unlabelled test inputs (denoted as candidate set), TS
utilizes specific information, such as internal state or output
result of the model, to select some test inputs so that those
test inputs that are likely to expose failures in a DNN can
be labeled earlier. As the selected test set is usually small-
scale and detects failures in the model, it can significantly
reduce the labeling overhead and improve the efficiency of
DNN testing. Subsequently, testers can label selected inputs
and use them to retrain the model, thereby optimizing the
model’s performance. A satisfactory TS method needs to
satisfy the following two conditions: 1) The selected inputs
can detect many and diverse failures of the DNN model; 2)
The selected inputs can improve/optimize the performance
of the DNN model as much as possible. However, how
to select representative and diverse inputs is still an open



question.

To date, researchers have proposed different test selection
methods, including neuron-coverage-based and uncertainty-
based methods [12]-[15]. Inspired by the success of using
code coverage to facilitate traditional software testing, testing
criteria based on neuron coverage [9], [10], [16], such as neuron
activation coverage [9] and neuron boundary coverage [10],
have been proposed to verify the adequacy of testing.
However, there are plenty of discussions on their failure
detection performance and usage scenarios [12], [17], because:
1) collecting neuron activation states could be very expensive,
especially for complex DNNSs; 2) achieving the maximum
coverage for most of existing neuron coverage criteria is
a trivial task. For example, Feng et al. [12] point out that
only using about 1% of tests in a test set could achieve the
maximum coverage for top-k neuron coverage criterion [10].

Additionally, uncertainty-based TS methods, such as
DeepGini [12] and ATS [15], select test inputs by estimating
the uncertainty of the DNN on the reported classification
probability. Lower uncertainty means that the model has high
confidence for the prediction results. The uncertainty-based
TS method is arguably the most popular technique adopted
by test selection [12], [15], [18] and have been demonstrated
to be more effective than neuron-coverage-based ones [12],
[18] in detecting failures. Despite that, they also have limited
application scenarios. For example, when the training data
are contaminated or transfer learning is used for training, the
performance of DeepGini largely degrades [19]. We review
the state-of-the-art uncertainty-based TS methods and find
their effectiveness bottlenecks are due to one or several of
the following issues:

(1) Ignoring noisy data in real-world scenarios. Failure-
revealing test inputs are the test inputs that are valid and can
trigger the model’s wrong behavior. To evaluate the effectiveness
of TS method, existing works select test inputs under a
constructed candidate set that contains the original test
inputs and their variants generated using data mutation
operations [20]. However, in real-world scenarios, the can-
didate test inputs, such as document data sets [21], Web
data [22], [23], and image data [24] usually contain some
invalid data, i.e., noise [25]. For example, if the task is to
classify handwritten digits, printed digits can be considered
as noise [26]. Noise is “irrelevant or meaningless data” [25]
and can significantly hinder testing analysis and waste the
manual inspection effort of testers. Unfortunately, existing
TS methods are noise-sensitive and do not explicitly handle
it, resulting in fewer failure-revealing test inputs being
identified.

(2) Omission of failure-revealing test inputs and inclu-
sion of successful test inputs. Generally, the uncertainty-
based TS method selects test inputs near the decision bound-
ary of the DNN model by estimating their classification
uncertainty. Nevertheless, such selection has two limitations:
1) selecting some successful test inputs (referring to those test
inputs that are correctly predicted by the model) near the
decision boundary; 2) failing to select some failure-revealing
test inputs far from the decision boundary.

(3) Ignoring the diversity of the selected test set.
In software testing, testers always seek failure behavior
diversity so that test cases can trigger different types of
failures for a program under given test resources. We also
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expect that TS should reveal as diverse failures of the DNN
model as possible for better testing analysis. However, many
existing TS methods only focus on the percentage of the
selected failure-revealing test inputs, ignoring their diversity.

To alleviate the above problems, we explore an alternative
TS method to boost the testing of DNN models. First, to
address issue 1, considering noisy data in real scenarios,
an intuitive idea is to explicitly identify and filter out noisy
data before test selection. Based on this idea, we employ a
retrieval technique to search the k most similar training data
for each test input. Those test inputs which are not similar to
their retrieved neighbors will be regarded as noisy data. Next,
we find that issue 2 happens because uncertainty-based TS
methods only consider the uncertainty of the test inputs and
ignore the relationship between them, i.e., the class labels to
which similar instances belong. A well-trained DNN model
needs to classify the test inputs and their similar instances
to the same class. For this reason, we retrieve each test
input’s similar instances and utilize majority voting [27] to
estimate the label of test input based on retrieved instances.
We effectively distinguish suspicious and successful test
inputs by checking the consistency between the estimated
and predicted labels. Through the above-mentioned process,
we have divided the candidate set into noise, successful, and
suspicious sets. To alleviate issue 3, it would be better to
select the test inputs that differ from each other to achieve
test set diversity. The faults of model often propagate to its
observable output, thereby affecting user decision-making.
Intuitively, the complexity and richness of the test output
can increase the likelihood of fault propagation, making
the test criteria more effective. Inspired by this, a novel
test metric measuring the difference between test inputs in
output probabilities is applied to each divided set to guide
test selection. Given that the output vector is continuous, we
introduce the concept of probability tier matrix that transforms
the continuous prediction probability of test input into a
discrete sequence of level indexes of probability tier matrix.
Further, we propose a fitness metric to measure the difference
between a test input and a set of selected test inputs. Based
on these approaches, we propose a Robust Test Selection
(RTS) method for deep neural networks. RTS can select a
subset of test inputs without class labels, revealing more and
diverse failures in the DNN model and reducing the labeling
effort for the optimization process.

We conduct extensive experiments with five well-
designed DNN models and six widely-used datasets to
evaluate the effectiveness of RTS and compare it with 14
baseline methods. We consider different pollution scenarios
in realistic unfiltered datasets and simulate them in our
experiments. The experimental results demonstrate that RTS
significantly outperforms all baseline methods in failure
detection. Further, we prove that the test inputs selected
by RTS are more effective in enhancing the performance of
the DNN model than other TS methods, such as neuron-
coverage-based methods and the state-of-the-art methods
DeepGini and ATS.

The contributions of this paper could be summarized as
follows:

e Approach. We propose a robust test selection technol-
ogy for DNN testing, namely RTS. Considering noisy



data in real scenarios, we propose a retrieval-based
filtering algorithm to filter noisy data, which enhances
the robustness of RTS in complex testing scenarios.
Besides, given existing uncertainty-based TS methods
are difficult to handle successful test inputs near the
decision boundary and failure-revealing test inputs
far from the decision boundary, we further utilize
the majority voting mechanism to identify suspicious
test inputs based on class labels of similar instances
of test inputs, thereby improving the effectiveness
of RTS. Finally, we introduce the probability tier
matrix and propose a novel test metric quantifying the
difference of test inputs. RTS can help the testers and
programmers automatically select the test inputs that
are likely to expose errors from massive unfiltered
and unlabeled data, making it more efficient and
economical to test a DNN model.

e Study. We conduct an extensive experiment to in-
vestigate the performance of RTS with 14 baseline
methods, including neuron-coverage-based test se-
lection methods and the state-of-the-art DeepGini
and ATS, etc. The results show that RTS significantly
outperforms other test selection methods. For exam-
ple, when selecting 2.5% test input, RTS achieves an
improvement of 9.37%-176.75% over other baseline
methods in terms of failure detection. Additionally,
the test inputs selected by RTS can efficiently enhance
the performance of the DNN model.

o Package. We have released the source code of our
test selection method and the experimental datasets
online' to support results verification and follow-up
research comparison.

The rest of this paper is organized as follows. In Section 2,
we introduce some background knowledge of this work.
In Section 3, we conduct some experiments, whose results
motivate us to propose RTS. In Section 4, we present a
detailed description of our algorithm RTS. In Section 5, we
present our experimental settings, including studied datasets
and models, candidate test input construction, baseline
methods, research questions, and so on. Section 6 reports
experimental results and discoveries. Section 7 discusses
various aspects related to the performance of RTS. These
include its effectiveness in identifying noise, its performance
in noiseless candidate sets, the setting of parameters, its
performance in adversarial examples, as well as its advan-
tages and limitations. Sections 8 and 9 describe threats to
validity and related works, respectively. Section 10 presents
the conclusion of our paper and discuss future work.

2 BACKGROUND

This section introduces the preliminary knowledge of DNN,
DNN testing, and existing TS methods, including neuron-
coverage-based and uncertainty-based metrics.

2.1

A Deep Neural Network (DNN) consists of multiple layers,
including an input layer, one or more hidden layers, and

The Architecture of Deep Neural Network

1. https:/ / github.com/swf1996120/RTS
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an output layer. Each layer is made up by a series of
neurons (computation unit) and neurons between adjacent
layers are linked with weighted edges. Each neuron accepts
the output value of the previous layer and the weights of
the incoming edges and applies an activation function for
nonlinear projection. The computed result is passed to the
next layer through the outgoing edges. Considering a DNN
model with L hidden layers and input data z, the output
result y is computed as follows:

y=7() =1 [0 (a® (A (o (a® (8 @)))))]

M
where a(¥) refers to the hidden-layer activation functions that
often have the same form at each level, and each preactivation
function h(¥) is typically a linear projection with weights W (?)
and bias b(*).

RO (z) = WOz 4 @ )

Suppose we have a m-class classifier that can classify
objects into M categories. Given an input x, the DNN adjusts
its internal weights to output result y = f(x) such that y
approximates the x’s ground truth (represented by one-hot
vector). Then, y is further normalized to (y1,y2,---,Ym)
through the softmax function [28], where Zf\il y; = 1and
each element y; is the corresponding probability value that
2 belongs to the class i. Thus the output domain Y needs to
satisfy:

Y = {yly € R, |ly|lr = 1 AVi,y(i) > 0} 3)

The final output vector processed by softmax function is
denoted as:

DNN(z) =y €Y 4)

From now on, we denote the final output vector produced by
the softmax function as prediction probability or classification
probability.

Given a test input x, the DNN model classifies it into
the i-th class (denoted by prediction/classification class), iff i-th
element of y is the largest element, i.e., i = argmax;(y;). If
max(y;) is closer to 1, we consider that the model has higher
confidence for the classification result of x.

2.2 Deep Learning Testing and Test Selection

DNN testing [9], [10], [29]-[33] is crucial for ensuring the
robustness of DNNs before online deployment. Robustness,
in essence, implies that a slight change in the input should
not cause a significant change in the output of a well-
trained DNN model [34], which forms the foundation of
RTS. Therefore, DNN testing usually generates or collects
test inputs that exhibit slight variations from the training
data but still adhere to the underlying target distribution.
These inputs are then used to assess the model’s robustness.
It is important to recognize that when a well-tested DNN
model is deployed in a real application, its effectiveness
may degrade over time. This decline in performance is not
attributed to inherent faults within the model itself, but
rather arises from the continuous influx of new data and
the consequential significant drifts between the original data
distribution and the distribution of unseen data, which is
commonly referred to as the domain generalization problem.
In such cases, developers may need to select a subset of
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data from the unseen data distribution to enhance the
model’s performance under the new domain. However, it is
essential to differentiate this objective from the focus of the
present paper, as domain generalization primarily focuses
on enhancing the model’s adaptability and generalization
capabilities to effectively handle new, previously unseen
domains. Conversely, DNN testing focuses on identifying
and uncovering erroneous attributes that the model may
have learned from historical data prior to deployment. It
aims to ensure that the model’s predictions are reliable and
free from potential pitfalls or biases induced by the training
data.

The workflow of DNN testing is depicted in Figure 1,
illustrating the key steps involved. Initially, a prototype
model is generated based on historical data. Developers then
either sample test inputs from the collected data or generate
inputs based on specific requirements [35]. These inputs
form the candidate test set. Due to the vast input space, test
selection techniques can be employed to identify data that
are more likely to be misclassified by the model from the
candidate test set. Next, developers label selected data, run a
built model against them, and check the predictive accuracy.
Any identified failures are labeled with different severity
levels and assigned to respective developers for further
analysis and resolution. Throughout the debugging and
repairing process, the selected test inputs can be integrated
into the training data to improve the model’s correctness
through retraining.

In the domain of machine learning, active learning is a
well-established iterative methodology for refining a DNN
over progressive stages. Each iteration involves the selection
and labeling of a strategically chosen dataset to enhance
the previously derived DNN. Test selection, including our
proposed method, can be positioned within the active
learning paradigm, functioning as a specialized adaptation.
Both test selection and active learning aim to optimize DNN
performance while curtailing labeling overheads. However,
their goals may be slightly different. Active learning aims
to select a small amount of data to train a DNN that
achieves performance comparable to using the entire dataset.
Conversely, test selection focuses on detecting failures in the
model under test as soon as possible and fixing or improving
the performance of a pre-trained DNN by retraining it with
a limited amount of data. Central to both approaches is the

objective to reduce the volume of labeled data.

2.3 Neuron-Coverage-Based TS Method

Neuron-coverage-based TS methods [9], [10] utilize structural
neuron coverage to guide the selection process. During
each iteration, such methods adopt a greedy algorithm
to select the following test inputs based on the feedback
from the previously selected set. Specifically, the test input
to be selected needs to cover the maximum number of
uncovered areas in terms of the given coverage criteria. In
this section, we briefly describe several structural neuron
coverage criteria.

Neuron Activation Coverage (NAC) is first proposed
by Pei et al. [9] to discover the test inputs that trigger the
DL systems to produce differential behaviors. A neuron can
be considered activated, i.e., covered, when its output after
passing an activation function exceeds a threshold (denoted
by k). Intuitively, the more neurons are activated, the more
states of DNN are explored. Thus, the rate of NAC(k) can
be defined:

NAC(k) = |Activated Neurons|

| Total Neurons| ©)

k-Multisection Neuron Coverage (KMNC(k)) is proposed
based on the NAC. Ma et al. further assume that instead of
treating a neuron as having only two states (activated and
inactivated), the output of a neuron is regarded as a range of
values [10]. Specifically, assume that the output of a neuron
under the training set is located in the interval [low, high],
and the interval is equally divided into & segments. The
KMNC(k) attempts to make the neuron cover each segment.

Neuron Boundary Coverage (NBC) [10] emphasizes
the coverage of test inputs across corner regions. Unlike
KMNC(k), NBC considers (—oo, low] and [high, c0) regions.

Strong Neuron Activation Coverage (SNAC) [10] only
considers upper boundary (i.e [high, 00)). Thus, we compute
SNAC through the ratio of the neurons covering the upper
bound to all the neurons.

Top-k Neuron Coverage (I'KNC(k)) [10] counts the &k
most active neurons in each layer. Unlike NAC, a neuron can
be considered activated if and only if, when running the test
input on the DNN, the output of the neuron is greater than or
equal to the k-th highest value in the neuron’s layer. Finally,



the TKNC(k) is defined as the ratio of the total number of
each layer’s top-k neurons to the total number of neurons.

2.4 Uncertainty-Based TS Method

Uncertainty-based TS methods select test inputs for clas-
sification models by measuring the DNN’s confidence in
its classification results for each test input [19]. Here we
introduce two state-of-the-art approaches: DeepGini and
ATS.

DeepGini [12] exploits the gini coefficient for measuring
the purity of test inputs (i.e., the likelihood of correct classi-
fication). Given a test input = and its prediction probability
Yy = (Y1,Y2y s Y1) (Zf\il yi = 1), DeepGini selects the
most uncertain (minimum purity) data based on the output
probabilities by:

(6)

M
argmax (1 - Z (yl)2>
zeX i1

ATS [15] introduces the concept of fault pattern based
on unlabeled test input’s uncertainty and fault direction. A
set of intervals are utilized to describe the fault pattern of a
test input (more details refer to [15]). Further, ATS proposes
a fitness metric to evaluate the pattern difference between
test input x and the selected set S. During the selection, ATS
first divides the candidate set into m subsets according to
the prediction categories of test inputs. Then, ATS selects test
inputs with maximum fitness value in each subset. When all
test inputs in the candidate set have the same fitness scores,
the test input with high uncertainty would be selected.

3 MOTIVATION

Weiss and Tonella [18] have conducted a replicability study to
show that compared with other elaborate TS methods such
as neuron-coverage-based, uncertainly-based TS methods
work surprisingly well for DNN model testing. Despite these
favorable results, existing uncertainty-based TS methods suf-
fer from one or more limitations, including 1) Ignoring noisy
data in real-world scenarios, 2) Omitting failure-revealing
test inputs and including successful ones, 3) Ignoring the
diversity of selected test set. This section describes these
limitations and the motivation of our approach in detail.

3.1 Motivation for Considering noisy data in Real-World
Scenarios

Previous TS works only consider the candidate sets that
contain original test input and their variants generated using
data mutation operations. However, in practical scenarios,
when collecting data, humans may make mistakes, so noise
is usually inevitable in the collected data [24]. To understand
the impact of noise on state-of-the-art uncertainty-based TS
methods, we conduct a preliminary study.

Data Collection. We train two models, LeNet-5&MNIST
and VGG-16&SVHN, using different datasets. To investigate
the impact of noise on the TS methods, we construct two can-
didate sets: one without noise, containing failure-revealing
and successful test inputs, and one with noise, which adds
an additional 20% of noisy data. Specifically, we randomly
select 5,000 successful test inputs from each original test

TABLE 1
The average failure detection rate (%) for DeepGini and ATS on test set
with noise vs. test set without noise.

DNN The Number of Selected Test Inputs

Dataset| Method | Test set =5 ——os—050—000 | P-Value
eenGim WIROUE NOTSe[T00.007%99.407% 99,477 99.20% 98 50% |~ -
LeNet-5/°¢°P with noise | 6.00% 19.20% 29.60% 36.20% 52.70%P < 0-05
MNIST [~ [Without noise| 99.60% 99.40% 99.07%98.80% 97 80%| =
with noise |47.60% 54.00% 58.80% 61.00% 66.50%|P < 9
DeenGin WiHOUE NOTSe] 99.207% 98,607 98.007% 98.00% 95.65% | -
VGG-16{P¢P with noise |53.60% 56.00% 58.40% 60.90% 66.65%P < 0-05
SVHIN [ ppg [Without noise| 98.40% 98 20%97.47%97.40% 95.30%|
with noise |65.20% 66.60% 68.53% 68.80% 68.25%|P < O

set. Next, we generate image variants using seven data
mutation operators, including zoom, shift, brightness, ro-
tation, shearing, blur, and contrast ratio. From these variants,
we randomly select 5,000 samples that are misclassified by
the tested model. In line with prior work [15], four data
pollution methods are utilized to generate noisy data. Such
methods involve adding irrelevant data (e.g., incorporating
Fashion-MNIST data [36] into the MNIST dataset [37]),
generating meaningless synthetic data (randomly assigning
pixel values based on the image size), introducing repeated
data (randomly selecting and adding existing data to the
dataset), and creating crashed data (setting a portion of the
image’s pixel values to zero). We analyze the performance
of the TS methods on these candidate sets, enabling us to
quantify the impact of noise on their effectiveness.

Test Selection Metrics. To answer the above-mentioned
questions, we adopt two uncertainly-based selection ap-
proaches: DeepGini [12] and ATS [15].

We investigate the impact of noise by applying DeepGini
and ATS to candidate sets with and without noise, respec-
tively. We collect n test inputs, selected by TS methods, and
obtain their corresponding failure detection performance
using Equation 10, where n = {250, 500, 750, 1000, 2000}
From Table 1, we can observe that when the candidate set
contains noise, the performance of the uncertainty-based TS
method drops dramatically, regardless of the datasets and
DNN models. For example, in LeNet-5&MNIST, DeepGini
and ATS exhibit performance gaps of 94.00% and 52.00%,
respectively. We utilize the Wilcoxon signed-rank test [38]
to verify whether there are statistically significant perfor-
mance differences for TS methods on the candidate sets.
Statistical analysis shows that such performance difference
is significant, with a p-value of less than 0.05, regardless
of the number of test inputs selected. Building upon our
preliminary findings, our proposed approach aims to detect
and eliminate noisy test inputs prior to the selection process.

3.2 Motivation for Considering More Than Test Input
Uncertainty

Figure 2 visualizes the classification results obtained by a
two-class classifier on unlabeled test inputs. The left region
represents inputs predicted as the number 7, while the
right region represents inputs predicted as the number 1.
Intuitively, test inputs closer to the decision boundary are
more likely to be misclassified. Consequently, numerous
uncertainty indicators [12], [15], [16] have been proposed
to identify test inputs near the boundary. However, near-
boundary test inputs are not necessarily failure-revealing test
inputs. In Figure 2, some test inputs lie near the decision
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boundary, but the DNN model successfully classifies them.
What is worse, due to limited model capacity or insufficient
training data, DNN models may produce high confidence
for failure-revealing test inputs that are far away from the
decision boundary (as shown in Figure 2). Yet, existing
uncertainty-based TS methods are difficult to select these
test inputs.

The above-mentioned cases are because uncertainty-
based TS methods only consider the test inputs” uncertainty
and ignore the relationship between them. For example,
as shown in Figure 2, the failure-revealing test input tc,
despite exhibiting high classification confidence, should be
identified as suspicious, since similar instances resembling
tc are classified as the number 1. This inspires us to leverage
the class label information derived from similar instances to
identify suspicious test inputs. To achieve this, we design
a new identification method to distinguish suspicious and
successful test inputs, which contains the following steps:
1) employing a retrieval technique to search for similar
instances of each test input (elaborated in Section 4.4.1);
and 2) utilizing a voting mechanism to determine the degree
of suspiciousness of the test input (outlined in Section 4.4.2).

3.3 Motivation for Considering the Diversity of Test Set

A diverse test set can effectively expose various types of
faults in the model under test. Conversely, if the test set
used for retraining lacks diversity, it can result in biased
training results and reduce the model’s accuracy. Although
some uncertainty-based TS methods have demonstrated
success in selecting failure-revealing test inputs (as shown in
Table 1), such methods often overlook the importance of test
set diversity. Diversity, particularly input diversity, for test
sets has been extensively studied in different forms [39],
[40], but in this paper, we emphasize the use of test
outputs as a means of achieving diversity. Essentially, the
diversity of output probabilities provides insight into how
the model responds to different test inputs. When the model
shows similar output probabilities across a range of test
inputs, it suggests a perceived similarity among those inputs.
In contrast, divergent output probabilities underscore the
model’s differential responses to diverse inputs, highlighting
their distinctions within the feature space. To illustrate, let’s
consider a candidate test set X = {1, 22, 23, 24} (refer to the
Table 2 for the corresponding prediction probabilities) and a
selection size of n = 2. DeepGini, according to Equation 6,
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would select {1, z2}. However, we prefer to select {z1,z3}
or {x2, z3}. The rationale behind this preference lies in the
similarity of output probabilities between x, and 3. In fact,
they both exhibit the same failure behavior, where the ground
truth is 3 while the predicted class is 1. On the other hand,
x3 demonstrates different output probabilities compared to
x1 and x9, highlighting a distinct failure scenario where the
ground truth is 1 and the predicted class is 2.

TABLE 2
An example of Motivation 3

Candidate Output of DeepGini  Prediction Ground
Test Set DNN Score Label Truth
1 (0.55,0.29,0.16) 0.5878 1 3
T2 (0.56,0.31,0.13) 0.5734 1 3
3 (0.18,0.59,0.23) 0.5666 2 1
T4 (0.02,0.88,0.10) 0.2152 2 2

In the studies of Alshahwan and Harman [41], [42], we
identify evidence supporting the correlation between test
output diversity and failure detection. They posit that faults
frequently manifest in its observable output, subsequently
influencing user decisions. They highlight that the complexity
and richness of the output increase the likelihood of faults
being exposed. Similarly, Menendez et al. [43] find that
enhancing test output diversity augments test set diversity,
thereby refining system testing. Drawing from these insights,
we propose a novel criterion, based on the uniqueness of
the model’s output to complement existing test criteria. We
expect that raising the diversity of the output could lead to
test inputs that are more effective at exposing faults. During
each iteration, RTS selects the test inputs that are different
from each other in output probability while combining the
uncertainty of test inputs.

4 APPROACH
4.1 Testing Scenario

This paper specifically focuses on computer vision classi-
fication tasks, considering that DNNs achieve impressive
performance in processing images. In line with previous
research on DNN test selection [9]-[12], [15], our study
primarily centers around images that possess a clear and
unambiguous single class label. It is important to note that
our research is confined to the aforementioned scope, and
we do not address classification scenarios where images
may have multiple or ambiguous labels. By defining this
research scope, we ensure that our proposed methodologies,
experiments, and findings are applicable and relevant within
the context of computer vision classification tasks, specifically
involving images characterized by well-defined and singular
classification labels.

4.2 Overview

We propose an approach called RTS that automates the
selection of test inputs for DNN models from unfiltered
data without labels, thereby significantly reducing the cost
of manual review and labeling. The workflow of RTS
is illustrated in Figure 3. Overall, RTS consists of three
components: 1) Component 1: dividing noise and non-noise
test sets; 2) Component 2: dividing success and non-success
test sets; 3) Component 3: prioritizing test inputs of each
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Fig. 3. Overview of RTS. Overall, RTS contains three components: 1) Component 1: dividing noise and non-noise test sets; 2) Component 2:
dividing success and non-success test sets; 3) Component 3: prioritizing test inputs of each divided sets for selection. Component 1 employs a
retrieval technique to search the k£ most similar training data for each test input. Those test inputs which are not similar to their retrieved neighbors
will be regarded as noisy data. Component 2 effectively distinguishes suspicious and successful test inputs by checking the consistency between
the estimated labels (generated by majority voting) and predicted labels. Component 3 proposes a novel probability-tier-matrix-based test metric
measuring the difference between test inputs in output probabilities to guide test selection in each divided set.

divided sets for selection. Specifically, RTS uses a retrieval
technique, structural similarity index (SSIM), and voting
mechanism to partition the candidate set (denoted as CS)
into noise set (denoted as NS), successful set (in which
the successful test inputs located, denoted as SCS), and
suspicious set (denoted as SPS), which will be presented
in Section 4.3 and Section 4.4. The divided test sets need to
satisfy the following properties: (1) CS = SPS U SCS U NS;
(2)SPS N SCS=0 N SCSNNS=0 A SPS N NS = (.RTS
assigns different selection prioritization to different subsets,
i.e., Ordersps > Orderscs > Orderys. This allows RTS to be
adaptable to various test selection size. Furthermore, RTS
applies a novel probability-tier-matrix-based test metric that
quantifies the differences among test inputs within each
subset, as explained in Section 4.5. More details about the
test case selection process of RTS can be found in Section 4.6.

(@)

(b)

Fig. 4. An example on the comparison of SSIM values for different
categories of MNIST data.

4.3 Divide Noise and Non-noise Test Sets

Intuitively, compared with valid test inputs, noise data would
display more significant differences from the characteristics
of the training data. Inspired by this intuition, we retrieve
each test input’s top-k nearest neighbors among the training
set and filter out those test inputs which are not similar to
their retrieved neighbors.

Algorithm 1 shows a pseudocode description of Compo-
nent 1. In the initialization stage (Lines 1 to 3), S is used to
store training data randomly selected from the training set
under each class, V.S is used to store identified noisy data,
and T'op; is used to store each test input and its top-k nearest
neighbors. Overall, the algorithm can be divided into two
parts: top-k nearest neighbor retrieval (Line 4-10) and noise filter
(Line 11-14).

4.3.1

Similarity Metric. We select the structural similarity index [44]
(SSIM) as the similarity metric since SSIM can provide
acceptable visual agreement and computational overhead.
Given two images = and 2, SSIM compares x; and x5 from
three aspects: contrast, localized luminance, and structural
similarity, and obtain a scalar score (a value ranging from
[0,1]) to quantify the perceptual difference of z1 and x2. The
higher the value of SSIM, the more similar z; and z, are.
Figure 4 presents an example of the comparison of SSIM
values for different classes of MNIST data. Figure 4(a) and
Figure 4(b) show different content but share the same label,
i.e., the number 8. Figure 4(c) belongs to the number 3. The

Top-k Nearest Neighbor Retrieval



Algorithm 1: Component 1 Pseudocode

Input: Candidate set C'S
Original training set T'S
The number of nearest neighbors k
The number of randomly selected samples n
Threshold A
Output: Noise set NS

8

to be mapped to the same or similar hash codes. Hence, we
retain [ elements using p-hash and the rest of the dissimilar
instances are filtered out, where [ should be greater than
k, and | = 0.3 x |T'Sy| in this paper. While p-hash incurs
low time overhead, it does not provide a comprehensive
assessment of image quality. To ensure accurate nearest

The mapping table storing top-k SSIM nearest neighbors T'opneighbor retrieval, we use SSIM to select the k elements

: S < EmptySet ()
NS < EmptySet ()
Tops <+ EmptyMap ()
TS;(i=1,..,m) < Cluster(T'S)
: foreach T'S; do
S; + RandomSample(7'S;,n)
S < Append(S, S;)
end for
: foreach z € C'S do
kNNS + SearchSsimNeighbors (z, k,T'S, S)

ORI A R

[y

// More details in Section 4.3.1

11: ave < AverageSSIM(kNNS)
12:  if ave < X then

13: NS < Append(N S, x)
14:  endif

15:  Tops[z] = ENNS

16: end for

17: Return NS, Tops

SSIM value between Figure 4(a) and Figure 4(b) is 0.4164,
while it is 0.0464 between Figure 4(a) and Figure 4(c).

Retrieval Procedure. One natural way to obtain top-
k SSIM nearest neighbors is to compare each test input
against all training data and keep the %k elements with
the highest SSIM values. However, such a way requires
large computational overheads, especially when the training
set is large. To reduce the computational overheads, it is
necessary to reduce the number of training data that need to
be processed. One way to do this is to sacrifice the accuracy
of the nearest neighbor retrieval by adopting an approximate
nearest neighbor retrieval. Therefore, for each test input x in
the candidate set CS, RTS follows a three-step process.

Step 1. Divide Training Set: Initially, we partition the
original training set into m subsets based on the ground
truth (i.e.,, class labels). These subsets are denoted as
{TS51,TSs,...,TS,,} (refer to Line 4 in Algorithm 1).

Step 2. Determine the Most Similar Subset: Subse-
quently, we determine the subset, denoted as 7'Sj, from
the constructed subsets in Step 1 that exhibits the highest
similarity to x. To accomplish this, for each subset T'S;
(where 1 < ¢ < m), we randomly sample n test inputs
to construct a sampling set (5;) representing the 7'S;. By
performing this step, we generate a series of sampling sets
S = {51,852, ..., S} (Lines 5-8 in Algorithm 1). The criterion
for selecting 1'S, is that the corresponding sampling set S},
must satisfy the following condition for all ¢ € {1,2,...,m}:

1

|Shl

> SSIM(x,t) > ! )

IM
t > 15 > SSIM(x,t)
€Sy

tesS;

Above process allows us to focus on computing the similarity
specifically between x and 1'S},, rather than considering the
entire original training set. By narrowing down the scope, we
can effectively streamline the computational requirements.
Step 3. Determine Top-k SSIM Nearest Neighbors: We
utilize perceptual hashing [45] (for short p-hash) to speed
up nearest neighbor retrieval. P-hash algorithm generates a
fingerprint for each image, allowing visually similar images

among ! elements (Lines 9-10 in Algorithm 1).

Note that in our approach, the p-hash algorithm is initially
employed to filter images possessing similar local structures.
This is subsequently followed by the application of the
SSIM algorithm to the filtered images to derive a more
comprehensive global similarity measure. Although the p-
hash algorithm predominantly underscores local information,
it maintains the capacity to retain images exhibiting notable
global similarity. This principle is intuitively sensible since,
in real-world applications, a collective of similar local struc-
tures often suggests a pervasive similarity. The preliminary
utilization of p-hash to diminish the candidate image set
considerably lowers the number of image pairs necessi-
tating global matching, thereby bolstering computational
efficiency. Crucially, this minimization in computational de-
mand marginally impacts the capability to identify matches
in global information, as corroborated in Table 7.

4.3.2 Noise Filter

For each test input x € CS, RTS computes the average
SSIM value based on retried k nearest neighbors (Line 11 in
Algorithm 1). If the average value is less than the threshold
v, x is put into NS (Lines 12-13 in Algorithm 1).

The above scheme necessitates the use of a threshold
v to decide the noisy data. A naive approach may be
to choose a global threshold. Nevertheless, the semantic
similarity of images varies distinctly between classification
tasks, rendering a “global threshold” less applicable. There-
fore, we have designed an adaptive way of determining
7. Specifically, we randomly sample 10% of data from the
training set. Then, following the above process, we retrieve
each data’s top-k SSIM nearest neighbors, compute the
average SSIM values and obtain the minimum element (i.e.,
SSIMy,irn) from all average SSIM values. Since there may
be labeling errors in the training corpus [46], [47], we finally
set vy = SSIMin + SSI My, where SST My, = 0.05 in this

paper.

4.4 Divide Success and Non-Success Test Sets

Through Component 1, we obtain a filtered candidate set
CS’ containing successful test inputs, some failure-revealing
test inputs, and possibly residual noisy data. As discussed in
Section 3.2, we propose a new strategy to identify suspicious
test inputs using the class labels of similar instances of
test inputs. This brings two challenges: 1) determining the
similar instances for each test input, and 2) determining
the suspiciousness of a test input based on the class labels
of its similar instances. To address the first challenge, we
retrieve the similar instances of each test input from the
training set using two perspectives: original image features
and prediction probability. Regarding the second challenge,
we employ a voting mechanism to identify suspicious test
inputs based on the retrieved instances. In ensemble learning,



majority voting [27] is a straightforward weighting method
that selects the class with the highest vote count as the final
decision. Next, we provide details about how to separate the
SCS from the CS’.

4.4.1 Similar Instance Retrieval

First, for each test input =, we consider its similar instances
(i.e., voters in majority voting) based on two perspectives:
1) Type 1: k training data with maximum similarity to x
in terms of original image features; 2) Type 2: k training
data with maximum similarity to = in terms of prediction
probability. The rationale behind type 1 voters is that their
visual resemblance to = suggests that x should be assigned
the same class label as these voters. For type 2 voters, similar
prediction probability implies that the high-dimensional
feature vector (created by the DNN model) is similar. Thus,
x is likely to have the same ground truth as such vectors.
In Component 1, we have obtained each test input’s top-k
SSIM nearest neighbors according to original image features,
i.e., S = Tops[x]. As for the type 2 voters, RTS calculates the
cosine similarity between each test input and the training
data using prediction probabilities and obtains the top-k
cosine nearest neighbors, denoted as C. Ultimately, we
combine these two types of voters to create the set V = SUC.

4.4.2 Filtering Successful Test Inputs

Algorithm 2 provides a pseudocode description of Com-
ponent 2. In the initialization stage (Lines 1), SC'S stores
identified successful test inputs. RTS runs the DNN model on
the training data to obtain the prediction probabilities Y (Line
2). For each test input = € C'S’, RTS captures the prediction
probability y and collects its prediction label .£;, based on
y (Line 4-5). To construct the type 2 voters (represented as
(), RTS calculates the cosine similarity between y and Y
and merges C' with type 1 voters (Top,[z], generated by
Component 1) to form the set V' (Line 6-7). Based on the
V = {v1,va,...,v2}, RTS records each element’s ground
truth (class label) and computes the frequency of labels. By
employing majority voting, RTS selects the label with the
highest frequency as the estimated label £, for x (Line 8). If
Ly is equal to L, x is included in the set SCS.

Algorithm 2: Component 2 Pseudocode

Input: Filtered candidate set C'S’
Original training set T'S
The mapping table storing top-k nearest neighbors Tops
The number of nearest neighbors k&
Output: successful set SC'S
1: SCS < EmptySet ()
2: Y =Run(DNN,TS)
3: foreach z € C'S’ do
: y=Run(DNN,z)
Lp < argmax(y) // x's prediction label
C' <+ SearchCosNeighbors (z,k,Y,y)
// More details in Section 4.4.1
V = Tops[z] UC
Ly + Vote (V)
// Use the majority voting results as the
actual label
9: if L, == L), then

ARSI

® N

10: SCS <« Append(SCS, x)
11:  end if
12: end for

13: Return SC'S

9

4.5 Prioritize Test Inputs of Each Divided Sets for Selec-
tion

As described in Section 3.3, we propose a novel test metric to
guide the test selection by considering both the uncertainty
and diversity of test input. During selection, RTS first finds
the candidate inputs that have the maximum difference in
output probabilities, compared to the test inputs already
selected. Then, the test input with the largest uncertainty
would be selected from the candidate inputs. For quantifying
uncertainty, we adopt a measure introduced in prior re-
search [15], where the uncertainty of a test input x is defined
as uncertainty(z) = 1 — max(y;). The uncertainty measure
we employ is based on Maxp [48], an active learning method.
In Maxp, the instance with the least confident prediction is
chosen, determined by the maximum prediction probability.
Both the uncertainty formula we use and DeepGini can be
used to measure the model’s confidence in the classification
results. However, given that Maxp consistently demonstrates
similar or even better performance than DeepGini (as evi-
dent in Tables 5 and 6), we opt to define our uncertainty
calculation based on Maxp’s test selection criterion, rather
than directly adopting DeepGini’s uncertainty measure. In
the following sections, we will describe how we measure the
difference between test inputs.

4.5.1 Probability Tier Matrix Construction

First, we discretize the prediction probabilities based on
our proposed probability tier matrix. Discretizing the output
probabilities is beneficial for the following reasons: 1) DNN
models generate continuous output probabilities, implying
that even a slight variation in the test input can result in
different output probabilities. By discretizing the prediction
probabilities, we establish distinct tiers or intervals that
enable us to capture and differentiate meaningful differences
in the output probabilities. 2) As our goal is to select
test inputs with diverse output behaviors, comparing and
ranking continuous output probabilities directly becomes
challenging. By discretizing the prediction probabilities, we
can simplify the comparison process, allowing us to identify
and prioritize test inputs based on their respective probability
tiers.

Specifically, we record the prediction probability of each
test input and determine the distribution range for each class.
we partition the distribution range of each class into d parts,
based on a predefined number of divisions, thus constructing
an probability tier matrix: Matriz(P = {p1,p2,....Pm ), L =
{L1, L3, ...,Ly,}), where P represents the class label set
and L corresponds to the level set. Each class label p;
has d levels, ie., L, = {Indy,Inds, ..., Ind;} where Ind,
stores the probability range for the j-th level. Given an
output vector y, for i-th class label’s prediction probability
yi, we locate the corresponding level set L; and determine
the level index of y; within L;. Based on the constructed
probability tier matrix, we convert the continuous prediction
probabilities into a discrete sequence of level indexes. Note
that we assign the lowest level index to the prediction class
label.

Example 1. Here, we introduce a 4-label classification
example to illustrate the probability tier matrix construction
and how to transform the test inputs. As shown in Table 3,



10

TABLE 3
An example to illustrate probability tier matrix construction.

Test Set Prediction Probabilities Transformed Level Index
1 2 3 4 Test Set 1 2 3 4
T 0.50 0.20 0.20 0.10 T 1 1 2 1
T2 0.12 0.30 0.45 0.13 T2 1 1 1 1
T3 0.08 0.16 0.06 0.70 3 1 1 1 1
T4 0.23 0.60 0.05 0.12 T4 2 1 1 1
T5 0.50 0.23 0.18 0.09 Ts5 1 1 2 1
Distributi . Tndy: [0.08,0.22)[Indy: [0.16,0.31)[Ind;: [0.05,0.18)|Ind;: [0.02, 0.22)
istribution| Tier : : : :
Range [0 08,0-50][[0.16,0.60][[0.05,0.43]|[0.09,0.70) | g et |7nda: [0-22,0.36) Inda: [0.31,0.46) Inda: [0.18,0.31) nds: [0.22,0.42)
Inds: [0.36,0.50]|Inds: [0.46, 0.60]| Inds: [0.31,0.45]|Inds: [0.42,0.70]

Suppose that a test set T = {xy, X,, X3} and a DNN model under test with 3 categories.

Test Set Category

m

X1

Uncert
ainty

0.24
0.23
04

X2

RN w]|e
Pl N
R R
SN IS I N

X3

Consider RTS, UncoverCombinations = {1: {3, 2, 1}, 2: {1}, 3: {2, 1}, 4: {2, 1}}.
Step 1: ¢ (x1) = {1: {3}, 2: {1}, 3: {1}, 4: {1}}, Fitness (x1, S) =| ¢ (x1) | = 4
@ (x2) = {1: {2}, 2: {1}, 3: {2}, 4: {1}}, Fitness (X, S) =| ¢ (x2) | =4
¢ (x3) = {1: {1}, 2: {1}, 3: {1}, 4: {2}}, Fitness (x5, S) =| ¢ (x3) | = 4
X3 is selected as the next test input for S, i.e., S = < X3 >, since x; has maximum uncertainty
under same fitness function values.
Step 2: Update UncoverCombinations = {1: {3, 2}, 3: {2}, 4: {1}}.
@ (x1) = {1: {3}, 2: {1}, 3: {1}, 4: {13}, Fitness (x1.5) =| ¢ (x) \ ¢ (§) | = 2
¢ (%) ={1: {2}, 2: {1}, 3: {2}, 4: {13}, Fitness (x2,5) =| ¢ () \ ¢ (5) | =3
X, is selected as the next test input for S, i.e., S= <Xz, X>.

Fig. 5. An illustrative example of selecting tests based on probability tier
matrix

for a test set consisting of five test inputs {1, x2, 3, T4, 25},
we collect each class’s probability distribution range
L = {]0.08,0.50],[0.16, 0.60] , [0.05,0.45] , [0.09, 0.70] } re-
spectively. Assuming the number of divisions is 3, for
each class’s probability range, such as [0.08,0.50] of la-
bel 1, we compute division length | = 2592008 — 14
and construct the corresponding level set L1 = {Ind;
[0.08,0.08 + 0.14), Indy : [0.08 + 0.14,0.08 + 0.28), Inds :
[0.08+0.28,0.50]}. The above-mentioned process is repeated
for each class, and we finally obtain the probability tier
matrix shown in Tier Matrix row. For test input z;, the
prediction probability for class label 3 is 0.2. We locate
the level Indsy: [0.18,0.31) in which 0.2 falls based on the
level set Ly = {Ind;y: [0.05,0.18), Indy: [0.18,0.31), Inds:
[0.31,0.45]}, thus converting the prediction probability 0.2
to the discrete level index 2. Since the prediction label of x;
is class label 1, we directly set the level index of class label
1 to the lowest level. The last four columns of Table 3 give
the transformed level index corresponding to the five test
inputs.

4.5.2 Select Tests Based on Probability Tier Matrix

With the help of the probability tier matrix, each test input
2 can be represented by a discrete sequence of level indexes.
Based on this, we adopt an additional greedy algorithm to
select the test input most different from the selected set S.

Specifically, each test input can cover some class-level
combinations. In Example 1, the level index sequence of z; is
(1,1,2,1). Thus, the class-level combinations covered by 1 are
(1), (1), (2), and (1). To more clearly describe our method, we
define a function () that obtains the class-level combination
covered by z. Further, we define the function ¢(T) that

Algorithm 3: Component 3 Pseudocode

Input: Test sets to be sorted T'
The number of test inputs to be selected SN
Output: Selected test input set S
1: Combinations < EmptyMap ()
2: UncoverCombinations < o(T")
3: tempCombinations < UncoverCombinations
4: foreach i (1 < < |T|) do
5. Combinations[i] < o(T[i])
// Calculate each test input’s class-level
combinations.
6: end for
7: flag «+ false
8: while true do
9 if flag then
0 UncoverCombinations < tempCombinations
// Restart the process.
11:  endif
12:  MaxCombination < EmptySet ()
13:  MaxFitness < 0
// Maximum Fitness function value.
14:  foreachi (1 < < |T|) do
15: fitness <— |UncoverCombinations N Combinations[i] |
// Calculate each test input’s fitness
function value.

16: if fitness > MaxFitness then

17: MaxFitness < fitness

18: MaxCombination < EmptySet ()

19: MaxCombination < Append(MaxCombination, T'[i])
20: end if

21: if fitness == MaxFitness then

22: MaxCombination < Append(MaxCombination, T'[i])
23: end if

24:  end for

25:  if MaxFitness == 0 then

26: flag = true

27:  else

28: flag = false

29:  endif

30:  k + MaxUncertainty(MaxCombination)
// Choose the index of test input that have
maximum uncertainty

31: S+ S = (Tk>

32:  if |S| == SN then

33: return S

34: end if

35: UncoverCombinations < UncoverCombinations \ Combinations[k]

36: end while

37: return S

returns the set of all class-level combinations covered by all test
inputsin T, i.e.

o(T) = | o) @®)

zeT

We define a fitness metric to quantify the difference of
each test input x against the selected set S, denoted as
Fitness(z, ), i.e.

Fitness(z, S) = [p(x) \ 9(S)| ©)



Algorithm 4: RTS Pseudocode

Input: candidate set C'S. Original training set T'S.
The number of nearest neighbors k.
The number of of randomly selected samples n = 50.
Noise threshold A.
The number of test inputs to be selected SN.
Output: selected set S
1: NS, Tops + FilterNoise (C'S,T'S,k,n,\)
// Refer to Component 1
2: NonNoise < {CS\ NS}
3: SCS « FilterSuccess (NonNoise, T'S, Tops, k)
// Refer to Component 2
4: SPS + {NonNoise \ SCS}
5: S < EmptySet ()
6: SeletSize <— SN
7
8

: OrderSet + {SPS,SCS,NS}
: foreach T' € OrderSet do
9:  if SeletSize > |T'| then

10: S < Append(S,T)

11: SeletSize < SeletSize — |T|

12: else

13: S’ < selectTest (T, SeletSize)
// Refer to Component 3.

14: Return S

15:  end if

16: end for

where p(z) \ p(S) ={t € p(z) |z ¢ p(S)}, and |-| returns
the length of corresponding set. In other words, the fitness
metric would pick the following test input that covers the
maximum number of class-level combinations not covered by
S.

Algorithm 3 shows a pseudocode description of Compo-
nent 3. In Algorithm 3, Combination and UncoverCombinations
are used to store class-level combinations of each test input
and test set, respectively (Line 1-5). Then, RTS calculates the
fitness function value for each test input and retains the test
inputs with the maximum value in MaxCombination (Line
14-24). For the elements in MaxCombination, RTS selects the
test input with the maximum uncertainty as the next test
input to be added to S’ (Line 30-31). Before selecting the next
test input, RTS examines whether there are any class-level
combinations that are not covered by the test input in S: If
not, the remaining test inputs are selected by restarting the
previous process (Line 9-11). Once a test input is selected,
RTS updates the set of uncovered class-level combinations
(Lines 35). This process is repeated until all the elements of T'
have been added to S or the size of S is equal to SN (Lines
32-34 and Line 37).

To further explain the details of the test selection, Figure 5
illustrates an example of the selection process. RTS counts the
number of class-level combinations covered by per test input.
Since there are three candidates with the same maximum
fitness values, RTS chooses the x3 with maximum uncertainty
and adds it to S. RTS then updates the set UncoverCombina-
tions, and calculates the fitness function for each candidate:
Fitness(z1, S) = 2 and Fitness(zq, S) = 3. Since z3 has the
greater fitness value, it is selected as the next test input and
added to S.

4.6 Robust Test Selection Algorithm

Algorithm 4 provides a pseudocode description of RTS.
We divide the whole selection procedure into three parts:
filtering noisy data, filtering successful test inputs, and test
selection. From Line 1 to 3, we divide the raw candidate set
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TABLE 4
Dataset and DNN models.

Dataset Description [DNN Modelf#Parameters|Layers|Accuracy .w/Accuracypew
MNIST 28 x 28 hand- | LeNet-1 7,206 5 98.78% 89.31%
writtern digits | LeNet-5 44,404 7 99.03% 90.18%
CIFAR-10 32 X 32 color | ResNet-20 | 273,066 20 75.61% 65.08%
images VGG-16 | 15,769,930 | 21 86.71% 79.16%
Fashion 28 x 28 gray- | LeNet-1 7,206 5 89.25% 77.16%
scale images | ResNet-20 272,778 20 90.48% 79.14%
SVHN street view LeNet-5 61,984 7 88.51% 77.51%
numbers VGG-16 | 15,769,930 | 21 95.37% 89.11%
32 x 32 color | ResNet-20 | 272,778 20 51.46% 47.65%
CIFAR-100 images ResNet-32 | 470,868 32 52.77% 47.96%
Caltech-101 200 x 200 color] ResNet-20 | 590,629 20 72.13% 65.51%
images ResNet-32 786,405 32 71.52% 64.86%

T Accuracyr,y refers to the accuracy of model on original test set.
2. Accuracynpew refers to the accuracy of model on our newly constructed test set.

(CS) into NS, SCS, and SPS through Component 1 and 2.
Then, RTS assigns different selection priorities to different
subsets, i.e., Ordersps > Orderscs > Orderys (Line 6). This
means that test inputs from SPS are prioritized over SCS,
which is prioritized over NS. Starting from Line 7, RTS begins
the test selection process. It first selects test inputs from the
SPS subset. If the required number of test inputs (SN) is
greater than the size of SPS, RTS utilizes Component 3 to
select the remaining test inputs from the SCS subset. This
process continues until the required number of test inputs is
reached or all subsets are exhausted (Line 7-14). Additionally,
based on empirical evidence, the value of k is set to 5.

Note that we do not immediately delete or discard the
noisy data identified by the RTS. This decision is based
on two key considerations: 1) Precision of Noisy Data
Identification: Although we want to precisely identify all the
noisy data in the candidate test set, it is a non-trivial task,
and RTS may misclassify some valid test inputs as noise as
well. Removing NS set directly would lose these valid test
inputs. 2) Availability of Labeling Resources: When testers
have sufficient labeling resource, they can further examine
the data in the NS set to select an adequate number of test
inputs.

5 EXPERIMENTS DESIGN

This section details our experimental settings, including
the data set, the DNN model under test in the experiment,
candidate set construction, and a series of research questions.
Thanks to the contributions of Gao et al. [15], we implement
our algorithm based on their testing framework upon Keras
2.3.1 with TensorFlow 1.13.1. We release these data and our
scripts for follow-up work?. All experiments are conducted
on a Ubuntu 20.04 with four NVIDIA GeForce RTX 3090
GPUs, one 12-core processor, and 256GB memory.

5.1

Following previous research [12], [15], we adopt four well-
known publicly available DNN datasets: MNIST, Fashion-
MNIST, CIFAR-10, and SVHN. To further demonstrate the
generalizability of RTS, we additionally add two more
complex datasets: CIRAR-100 and Caltech-101. Table 4
presents detailed information on these datasets. We measure
model performance in terms of accuracy, the original metric

Datasets and DNN models

2. https:// github.com/swf1996120/RTS



employed for the tasks and datasets under investigation.
Since we do not use all the training data and do not use data
augmentation techniques to train the model, the accuracy
achieved by our models (as shown in Accuracy, column
of Table 4) may not be comparable to state-of-the-art results
reported in the literature. Nevertheless, our focus is not on
achieving the highest accuracy but rather on investigating
the effectiveness of TS methods in detecting failures of the
pre-trained DNNs. MNIST [37] is a grayscale image dataset
of hand-written digits with ten labels, e.g., 1, 2. Fashion-
MNIST [36] includes ten categories of fashion products, e.g.,
coats and shirts. Each class consists of a training dataset
of 6,000 images and a test dataset of 1,000 images. Each
input data is a 28 x 28 greyscale image. CIFAR-10 [49], [50]
dataset (abbreviated as CIFAR) contains 60,000 32 x 32 images
with three channels, e.g., airplane, bird, from which 50,000
are training data, and 10,000 are test data. SVHN [51] is a
real-world image dataset obtained from house numbers in
Google Street View images for developing machine learning
and object recognition algorithms. CIFAR-100 [49] is a well-
known benchmark dataset extensively utilized in computer
vision research. It comprises 100 classes, which are organized
into two levels of granularity: coarse and fine. The coarse-
level classification consists of 20 main classes that represent
high-level concepts, such as aquatic mammals, insects, and
trees. Our paper primarily focuses on the challenging task of
coarse-level classification due to the complexities involved
in model training. Caltech-101 [52] consists of approximately
9,000 images categorized into 101 classes, with each class
containing roughly 40 to 800 images. Additionally, we
consider five famous DNN models with different scales to
ensure the generalizability of our experiments, which are
LeNet-1, LeNet-5 [53], VGG-16 [54], ResNet-20 [55], ResNet-
32 [55]. To ensure the evaluation result is stable, we train two
different DNN models separately for each dataset.

5.2 Candidate Test Input Collection

In line with prior work [15], for candidate test input construc-
tion, we generate additional new test inputs using seven well-
used benign perturbations for each dataset, while preserving
their original label. Such benign data augmentation opera-
tors involve zoom, shift, brightness modification, rotation,
shearing, blur, and contrast ratio adjustment [20], [56]. Image
transformations apply basic geometric transformations to
simulate different real-world conditions, which can reflect
realistic data mutations in the usage scenario. In this study;,
we adhere to the image transformation procedures specified
in previous literature [10], [15], [57]. Furthermore, we conduct
careful inspections of the transformed images to ensure their
semantic consistency with the original ones.

We apply all the above-mentioned data augmentation op-
erators to each original test input so that each augmentation
operator produces the same amount of data. Subsequently,
we evenly partition the original test set and each generation
set into two parts: one for constructing the candidate test set
and the other for constructing the new test set. For example,
for the Fashion-MNIST (whose test set size is 10,000), a
candidate set and a new test set with the same size of 40,000
is constructed, respectively, including 5,000 original test data
and 5,000 x 7 generated test data for seven augmentation
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operators. Note that TS methods can only select test inputs
from the constructed candidate test set, and the new test
set is only used to evaluate the DNN’s performance. To
simulate various types of invalid data that could exist in an
unfiltered dataset, we follow prior work [15] and construct
four polluted candidate sets. Each polluted set corresponds
to a specific data pollution method and contains 20% invalid
data, where the percentage and amount of noise are exactly as
set by Gao et al [15]. Such methods involve adding irrelevant
data (e.g., incorporating Fashion-MNIST data [36] into the
MNIST dataset [37]), generating meaningless synthetic data
(randomly assigning pixel values based on the image size),
introducing repeated data (randomly selecting and adding
existing data to the dataset), and creating crashed data
(setting a portion of the image’s pixel values to zero). For
distinguishing noisy data from valid test inputs, except for
repeated data which retains the original class labels, the
labels of the other types of noisy data are set to “-1”.

In summary, for each dataset, we construct a new test set
and five candidate sets, including a purely valid candidate set
and four candidate sets containing partially invalid data. In
the subsequent experiments, we apply a specific TS method
to each candidate set to select test inputs. These inputs are
then used to evaluate the failure detection rate (RQ1) of the
TS methods and the repair/optimization performance (RQ2).
Consistent with previous study [15], we report the average
results across all candidate sets as the final performance of
the TS method. This way enables us to comprehensively
evaluate the performance of TS methods across different
testing scenarios. Note that, the original test set may have
some limitations when it comes to accurately evaluating the
robustness of a model, particularly in terms of capturing
specific data transformation modalities. Hence, we utilize
the newly constructed test set to assess whether the selected
inputs can further optimize the model’s performance. As
indicated in the Accuracypew column of Table 4, the perfor-
mance of the tested models degrades to some extent on the
new test set.

5.3 Baseline Approaches

We conduct extensive experiments to evaluate the effective-
ness of RTS and compare it with 14 baseline approaches,
which can be categorized into four types: neuron-coverage-
based, uncertainty-based, active learning, and other TS
methods based on different concepts.

1) Neuron-Coverage-Based TS Method. We compare
RTS with four well-known neuron coverage criteria (i.e.,
NBC, TKNC, SNAC [10] and NAC [9]). Furthermore, we
follow the default settings of the original papers to specify
the configurable parameters of the neuron coverage criteria.

2) Uncertainty-Based TS Method. We chose Deep-
Gini [12], ATS [15], and variance score (VS) [58] as rep-
resentatives of the uncertainty-based TS method. Please
refer to Section 2.4 for details of DeepGini and ATS. VS
estimates the uncertainty by sampling k dropped-out models
and computing the variance of their resulting prediction
probabilities over a test input.

3) Active learning Method. Active learning strategi-
cally assesses the informativeness of unlabeled instances
to bolster model training. In this context, we employ three



representative active learning methods: Maxp [48], Entropy
Sampling with Dropout (EDrop) [59], and CLUE Sampling
(CLUE) [60]. Maxp selects the instance with the least confident
prediction, based on the maximum prediction probability.
EDrop serves as a fundamental active learning strategy,
selectively sampling instances that embody maximal model
uncertainty, quantified through entropy. Conversely, CLUE
adopts an uncertainty-weighted clustering approach, pin-
pointing instances for labeling that not only exude model
uncertainty but also maintain diversity in the feature space,
thereby ensuring a breadth of information is incorporated
during model refinement.

4) Other TS methods. We select three widely-used TS
methods based on different conceptions, including random
sampling (for short, RS), CES, LSA. RS may be the simplest
test selection technique, which utilizes a random manner
to select test input from the candidate set according to
the target size. CES [61] is a test selection method based
on conditioning, which aims to select a small subset from
the original test inputs to estimate the performance of
the target DNN model via cross-entropy. LSA (Likelihood-
based Surprise Adequacy) [16] measures how surprising
or out-of-distribution the DNN activations for a given test
input are with respect to the activations observed on the
training set. The higher the LSA value of the test input,
the more surprising it is for the DNN. We introduce a
variant of DeepGini, denoted as DMsp, serving as one
baseline method, which implements a pre-filtering step for
out-of-distribution (OOD) data prior to utilizing DeepGini
for test input selection. The DMsp employs the Maximum
Softmax Probability [62] to discriminate between normal
and abnormal test inputs, establishing itself as a widely
accepted baseline. In this work, the minimum-maximum
softmax probability value derived from the training data is
employed as a threshold to discern normal samples from
their abnormal counterparts.

5.4 Research Questions

We expect the test inputs selected by RTS can reveal more
failures of tested model and fix/optimize the tested model’s
incorrect behaviors. Thus, it is necessary to evaluate the
effectiveness of RTS in terms of two aspects: failure detection
performance and model optimization capability. Further-
more, we further explore the contribution of each component
of RTS. The empirical study is meant to answer the following
three research questions (RQ):

o RQ1: To what extent can RTS outperform baseline ap-
proaches in detecting failures?

o RQ2: Does retraining with RTS-selected test inputs result
in more effective model?

o RQ3: How effective is each component of RTS?

- RQ3.1: Do all components of RTS contribute to the
effectiveness of failure detection?

- RQ3.2: Can RTS’s retrieval strategies reduce time
overhead effectively?

5.4.1 RQ1: Failure Detection

For RQ1, we adopt the failure detection rate (denoted as
FD,qti0), which is defined as the proportion of failure-
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revealing test inputs in the selected set S. Given a selected
set S, FD,.q1i0 is computed as follows:

|Swrong|
5]

where |Swmng| is the number of misclassified test inputs, and
|S| is the size of the selected set. We select the 10% size of
each candidate set for each DNN&Dataset combination and
collect the corresponding FD,qt0. Higher FD, 4, values
indicate better performance in deteting defects.

FDratio (S) - (10)

5.4.2 RQ2: Optimization Effectiveness

As mentioned in Section 1, developers can fix incor-
rect/unexpected behaviors of DNNs by retraining them
with new data and additional training epochs. Therefore,
RQ2 evaluates the effectiveness of TS methods in fixing or
optimizing DNN models. We use the new test set T'est ey
constructed in Section 5.2 to evaluate the performance of
the tested model, obtaining accuracy results denoted as
Aucey (see the Accuracypew column of Table 4). We then
retrain the DNN model by combining test inputs of different
sizes (2.5%, 5%, 7.5%, 10%) selected by TS methods with
the original training set. We evaluate the retrained model
on T'estyey, obtaining accuracy results denoted as Aucq fer-
The optimization effectiveness (OE) is defined as:

OE = Aucgfter — Auches (11)

We perform the experiment three times for all combina-
tions to reduce the impact of random errors in the retraining
process. Furthermore, we use the Wilcoxon rank-sum test [63]
to determine whether RTS significantly outperforms baseline
approaches at the 95% significance level.

5.4.3 RQ3: Ablation Experiment

We conduct a series of ablation experiments to thoroughly
investigate the effectiveness and efficiency of RTS.

RTS demonstrates its effectiveness in enhancing the
failure detection performance of TS, particularly in complex
testing scenarios. This improvement is attributed to three
crucial components: a noise filtering component, a voting
mechanism for identifying failure-revealing test inputs, and
an innovative test metric that quantifies test case differences
better. In RQ3.1, we investigate the impact of these compo-
nents on RTS’s effectiveness by comparing it to three variants:
1) RTS-1, which excludes the noise filtering component that
divides the NS set; 2) RTS-2, which excludes the voting
mechanism that divides the SCS set; and 3) RTS-3, which
uses a random test selection method instead of component
3. Since retraining the model is time-consuming, we only
compare the FD,.,4;, of RTS and its three variants.

To expedite the nearest neighbor retrieval process, we
implement two key steps (refer to Section 4.3.1): 1) retrieving
the subset of the most similar instances for each test input
based on the sampled training data; and 2) speeding up the
search for the k nearest neighbors using the p-hash algorithm.
In RQ3.2, we investigate the impact of these steps on the
efficiency of retrieving the top-k nearest neighbors in RTS.
To assess this effect, we compare RTS against two variants:
1) RTS-OBO, which sequentially compares training data to
identify the most similar instances; and 2) RTS-phash, which
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TABLE 5
The average failure detection rate (%) for each configuration. Values highlighted in red and blue indicate the best and second best.

Selection Dataset Model RTS Neuron-Coverage-Based Uncertainty-Based Active Learning Other
Rate NAC [ NBC | SNAC [ TKNC ATS Gini VS Maxp | EDrop [ CLUE | CES LSA | DMsp RS
MNIST LeNet5 53.60 | 10.50 8.88 8.92 10.94 4512 | 2580 | 4234 | 26.82 25.18 22.04 | 1020 | 37.16 | 26.78 8.64
LeNet1 55.06 | 11.06 | 11.28 9.48 9.94 4554 | 30.76 | 4656 | 31.34 31.44 24.16 870 | 3852 | 3286 9.48
Fashion LeNetl 60.00 | 21.18 | 19.58 19.72 21.98 59.90 | 57.88 | 39.34 | 59.70 52.62 26.92 17.50 | 3038 | 57.90 | 20.96
ResNet20 58.08 | 20.00 | 19.66 17.54 20.34 55.98 | 56.18 | 3298 | 55.94 51.00 22.58 19.34 | 33.74 | 53.78 19.56
CIFAR VGGl16 60.26 17.74 16.28 15.62 23.44 57.90 51.84 47.22 50.32 50.78 34.72 23.48 25.70 51.62 19.06
ResNet20 68.66 | 31.86 | 28.78 30.14 30.34 64.62 | 6246 | 4746 | 61.86 61.04 43.04 | 32.06 | 28.06 60.8 29.88
SVHN LeNet5 67.44 | 1929 | 20.98 19.90 20.05 61.45 | 6340 | 39.00 | 61.83 58.46 34.65 19.98 | 30.50 63.39 | 20.18
25% VGG16 56.07 9.87 11.18 10.12 12.23 5193 | 38.06 | 41.31 | 38.14 38.63 18.35 17.33 | 14.78 | 38.01 9.64
CIFAR-100 ResNet20 67.70 | 4556 | 4392 | 46.14 46.72 61.32 | 69.12 | 53.70 70.98 68.12 54.86 | 46.90 | 39.66 69.38 | 47.68
ResNet32 69.20 | 46.00 | 4340 | 46.46 47.20 60.26 | 70.62 | 56.72 | 71.42 70.00 55.82 | 4826 | 43.58 7054 | 49.78
Caltech-101 ResNet20 7457 | 28.03 | 31.48 24.44 40.62 63.70 | 61.73 | 69.75 | 63.58 59.51 5235 | 3272 | 43.95 69.51 32.22
ResNet32 7222 | 2469 | 3198 | 27.16 38.89 69.75 | 60.62 | 6247 | 62.96 64.07 44.07 | 3358 | 4247 | 64.32 | 3593
Avg. — 63.57 | 23.81 | 2395 2297 26.89 5812 | 54.04 | 4824 | 5457 5257 36.13 | 25.84 | 34.04 | 5491 25.25
Statistical p-value J— *kk ok ok kK *okk *kk *ok * kK *k *k okok okok ok ok *ok koK
Results cliff’s delta —_— 1.00 1.00 1.00 1.00 0.33 032 0.72 031 0.47 0.96 1.00 1.00 0.28 1.00
Effect-size — L L L L S S L S M L L L S L
MNIST LeNet5 49.13 9.64 9.27 8.25 9.90 4647 | 2497 | 4152 | 2617 2374 21.05 1025 | 39.52 | 26.34 8.68
LeNetl 50.73 10.37 10.73 9.09 10.30 45.84 30.56 43.25 31.67 31.47 23.22 8.10 34.80 32.45 9.46
Fashion LeNet1 57.21 21.05 | 20.02 19.23 21.42 55.11 | 57.92 | 39.71 | 58.02 52.41 27.19 1753 | 30.05 | 5791 20.67
ResNet20 56.42 | 19.81 | 18.97 17.62 20.29 53.43 | 53.78 | 34.02 | 53.70 49.20 22.78 19.38 | 30.64 | 5234 | 19.07
CIFAR VGG16 57.02 | 17.66 | 16.85 17.09 21.86 55.02 | 47.98 | 4741 | 48.89 48.43 3473 | 2428 | 2423 | 4794 | 1876
ResNet20 67.10 | 31.79 | 29.96 30.09 31.25 6196 | 5991 | 4827 | 60.32 58.21 4292 | 3191 | 2610 | 5860 | 29.92
SVHN LeNet5 65.79 | 2030 | 20.55 19.99 20.24 58.49 | 59.21 | 38.05 | 59.72 54.81 34.96 19.57 | 28.89 | 59.17 | 20.13
59 VGG16 51.26 9.82 10.02 10.02 10.83 4795 | 36.66 | 40.11 | 37.05 35.81 18.00 17.10 | 1241 36.63 9.62
CIFAR-100 ResNet20 67.07 | 4659 | 4547 | 46.21 46.21 60.51 | 69.44 | 53.74 | 70.53 68.02 54.83 | 47.50 | 37.38 69.31 47.35
ResNet32 67.96 | 47.07 | 45.80 | 47.25 47.47 5834 | 69.95 | 56.39 | 70.28 69.25 55.73 | 47.71 | 39.54 | 69.95 | 49.15
Caltech-101 ResNet20 75.68 | 30.68 | 30.43 28.89 34.63 6222 | 6198 | 67.90 | 64.07 61.48 4932 | 33.09 | 4377 | 6895 | 32.72
ResNet32 72.35 | 29.01 | 29.07 30.49 33.21 64.69 | 59.82 | 63.09 | 61.05 64.44 4426 | 35.00 | 4407 | 64.01 34.32
Avg. — 6148 | 2448 [ 2393 23.69 25.63 55.84 | 52.68 | 47.79 | 53.46 51.44 3575 [ 2595 | 32.62 | 53.63 [ 24.99
Statistical p-value [— KKK ok ok kK KKK *kK *k KKK ok * *o%k %ok ok *x *%k
Results cliff’s delta | —— 1.00 1.00 1.00 1.00 0.38 0.26 0.71 0.26 0.38 0.90 1.00 1.00 0.21 0.99
Effect-size — L L L L M S L S M L L L S L
MNIST LeNet5 4445 8.93 9.39 822 9.61 4451 [ 2471 | 4055 | 2596 23.23 20.64 | 10.41 | 39.23 | 2651 8.59
LeNet1 47.81 | 10.17 | 10.68 9.29 10.01 4418 | 30.64 | 4086 | 31.64 31.17 2291 828 | 3277 | 32.03 9.30
Fashion LeNet1 55.13 | 2039 | 19.84 19.84 20.77 52.76 | 56.76 | 39.36 | 56.91 52.05 27.45 17.36 | 31.05 56.77 | 20.61
ResNet20 54.93 | 19.63 | 19.03 1831 19.47 51.92 | 52.05 | 3449 | 5227 48.23 23.23 19.82 | 3147 | 50.65 18.98
CIFAR VGGl6 55.13 18.12 17.69 17.44 21.40 53.18 46.41 47.76 47.27 46.63 34.54 24.54 23.31 46.35 18.75
ResNet20 65.07 | 31.97 | 30.73 30.63 31.33 60.26 | 5871 | 47.77 | 59.21 57.27 4287 | 3156 | 2549 | 5752 | 30.08
SVHN LeNet5 64.15 | 2017 | 20.42 19.97 20.22 56.80 | 56.93 | 37.58 | 57.46 53.23 35.98 19.36 | 27.85 | 5691 19.85
75% VGG16 47.65 9.65 9.77 9.90 10.18 4485 | 3559 | 39.21 | 36.55 35.05 18.21 1712 | 11.20 | 35.58 9.57
’ CIFAR-100 ResNet20 66.54 | 4670 | 46.12 | 46.77 46.68 59.75 | 69.47 | 54.16 | 70.25 67.71 54.40 | 4717 | 36.08 69.36 | 47.48
ResNet32 67.68 | 47.06 | 46.47 | 48.04 48.17 57.79 | 69.27 | 56.83 | 69.75 69.05 55.51 47.63 | 38.07 | 69.33 | 48.84
Caltech-101 ResNet20 7436 | 2942 | 29.51 28.03 33.66 6136 | 6226 | 6626 | 63.58 62.43 4786 | 3226 | 4342 68.03 | 30.95
ResNet32 73.05 | 2856 | 29.79 30.29 32.76 63.83 | 59.75 | 6226 | 61.28 64.53 43.66 | 33.79 | 43.13 63.33 | 33.46
Avg. — 59.66 | 2423 [ 2412 | 23.89 25.36 5427 | 51.88 | 4726 | 52.68 50.88 35.61 2577 | 3192 | 5270 | 2470
Statistica] p-Value —_— kkk *kk *kk kkk kkk *k *kk *k *k kok ok kk *kk *k kk ok
Results cliff’s delta —_— 0.97 0.97 0.94 0.94 0.35 0.25 0.63 0.25 0.32 0.83 0.97 1.00 0.19 0.94
Effect-size — L L L L M S L S S L L L S L
MNIST LeNet5 39.84 8.76 9.04 8.40 9.25 4215 | 24.09 | 38.70 | 2555 2292 2054 | 1028 | 38.62 | 26.63 8.78
LeNetl 44.39 9.80 10.26 9.14 9.62 4222 | 3030 | 3889 | 31.52 30.46 23.35 815 | 3196 | 3150 9.31
Fashion LeNetl 53.77 | 2072 | 20.06 19.91 20.54 50.87 | 55.11 | 39.55 | 54.90 51.38 27.45 1750 | 31.71 55.08 | 20.60
ResNet20 5433 | 19.76 | 19.13 18.14 19.35 50.58 | 50.84 | 34.60 | 51.13 46.87 23.63 19.72 | 31.70 | 49.79 18.87
CIFAR VGG16 53.13 | 1839 | 17.82 17.72 20.57 51.39 | 45.61 | 47.05 | 46.03 45.28 34.41 24.31 | 2219 | 45.63 18.74
ResNet20 6442 | 3214 | 30.24 30.64 30.88 5842 | 5819 | 48.17 | 57.69 56.52 4324 | 3120 | 2518 | 57.05 | 3047
SVHN LeNet5 62.59 | 20.32 | 20.34 19.83 20.17 55.08 | 5474 | 3724 | 5548 51.79 36.06 19.27 | 2747 | 5474 | 19.84
10% VGG16 44.33 9.67 9.86 9.75 9.84 4172 | 35.63 | 3810 | 36.18 34.35 18.40 16.84 | 10.68 | 35.60 9.67
CIFAR-100 ResNet20 66.84 | 4741 | 46.64 | 46.68 4712 58.80 | 69.38 | 54.37 | 69.76 67.61 5426 | 46.67 | 3549 69.25 | 47.48
ResNet32 6743 | 47.68 | 46.71 47.99 4828 57.40 | 6899 | 57.13 | 69.22 68.83 55.15 | 47.68 | 37.48 68.91 48.33
Caltech-101 ResNet20 7120 | 29.20 | 29.66 | 27.65 32.62 61.67 | 6210 | 66.02 | 62.90 62.84 4691 3293 | 42.84 67.19 | 3031
ResNet32 70.53 | 2852 | 29.75 28.95 32.69 64.23 | 60.68 | 6259 | 61.48 64.07 4355 | 3349 | 4154 | 63.89 | 32.38
Avg. — 57.73 | 2436 [ 2412 23.73 25.08 52.87 | 5130 | 4687 | 51.82 50.24 3558 [ 25.67 | 31.40 [ 52.10 [ 24.56
Statistical p-value —_— *kK ok ok *kok * %k *k *k %ok *% *% *¥k %ok ok *x %k
Results cliff’s delta | —— 0.92 0.92 0.92 0.92 0.32 0.22 0.55 0.21 0.28 0.78 0.92 0.97 0.17 0.92
Effect-size —_— L L L L S S L S S L L L S L

T ix% p < 0.001, %% p < 0.01, % p < 0.05,— p > 0.05.

2L, M, S and N represent Large, Medium, Small and Negligible effect size according to Cliff’s delta.

eschews the use of the p-hash algorithm during retrieval. The
efficiency of top-k nearest neighbor retrieval is appraised by
timing the instance retrieval process. Besides, we delineate
the accuracy of RTS and its two variants in pinpointing
noise data, aiming to substantiate whether this approximated
nearest-neighbor retrieval mechanism furnishes performance
that is commensurate with precise nearest-neighbor retrieval.

6 RESULT ANALYSIS
6.1 Answer to RQ1: Failure Detection

In particular, since labeling test output is costly and requires
large human resources, it would be better if more failure-
revealing test inputs could be identified while labeling fewer
test inputs. Therefore, we display four selection ratio results,

including 2.5%, 5%, 7.5%, and 10%. We compare the average
failure detection rate between RTS and baseline methods
in Table 5. We use red color to highlight the best FD,44;0
and blue color to highlight the second best FD,.4;, for
each DNN&Dataset configuration. Table 5 reveals that all
neuron-coverage-based TS methods have poor performance
in detecting failures. Such observation can be explained as:
previous researches [12] has demonstrated that achieving
the maximum neuron coverage is an easy task (only a
few test inputs) and that neuron coverage is no longer
increased by selecting more test inputs. Compared with
the RS baseline, both RTS and most uncertainty-based TS
methods have a better failure detection capability. Among
the 48 cases (6 subjects x 4 selection rates x 2 models),
RTS outperforms others in 72.92% of cases (35 out of 48),
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TABLE 6

The DNNs’ accuracy improvement (%) value after retraining with the selected tests. Values highlighted in red

and blue indicate the best and

second best.

Dataset Model | RTS Neuron-Coverage-Based Uncertainty-Based Active Learning Other
NAC | NBC [SNAC] TKNC | ATS | Gini VS | Maxp [EDrop [CLUE | CES | LSA [ DMsp [ RS

MNIST LeNet5 | 3.461 [ 1.908+ | 1.901x% | 1.979= | 2.309+ | 3.084x | 2.125x | 3.491- | 2.194x | 2.035x | 2.889x | 2.065x | 3.087x | 2.146x | 2.000x
LeNetl | 3.288 | 1.940x | 1.937x | 1.879% | 1.942x | 3.242- | 2.187x | 2.608x% | 2.351x | 2.339x | 2.648x | 1.512x | 2.901x | 2.563x | 1.982x
Fashion LeNetl | 2.501 | 1.597x | 1.364% | 1.412x | 1.758+ | 2.510- | 1.965x | 1.923x | 2.078x | 1.924x | 1.840x | 1.357x* | 1.630= | 1.906x | 1.647x
. ResNet20 | 3.390 | 0.517x | 0.737+ | 1.189x | 1.081% | 3.383- | 2.713x | 2.963% | 3.166- | 2.804x | 2.970% | 2.314x | 2.038x | 2.728x | 2.165x
$ CIFAR VGG16 | 2.500 | 1.667x | 1.679% | 1.604x | 1.857x | 2.245- | 2.148x% | 2.014x | 2.207% | 2.293% | 2.115% | 1.908x | 1.610x | -7.174x | 1.786%
o ResNet20 | 1.284 | 1.073- | 1.457- | 0.920- | 0.696- | 1.484- | 1.311- | 1.011- | 1.670- | 1.582- | 1.318- | 1.497- | 0.770- | 2.152x% | 1.197-
o SVHN LeNet5 | 1.333 | 0.375% | 0.384x | 0.403+ | 0.343+ | 1.182- | 0.904x | 0.963% | 0.951x | 0.697x | 1.006% | 0.204x | 0.681x | 0.896x | 0.393x
X VGG16 | 3.227 | 1.439% | 1.570% | 1.589x | 1.694x | 2.878x | 2.275x% | 2.862x | 2.366% | 2.082% | 2.170% | 2.010x | 1.106x | 2.234x | 1.615%
CIFAR-100 ResNet20 | 0.917 | 1.085- | 0.824- | 0.847- | 0.490- | 0.573- | 1.283- | 0.907- | 0.675- | 0.689- | 0.692- | 0.530- | 0.670- | 0.412x% | 0.545-
ResNet32 | 0.832 | 0.428- | 0.601- | 0.321- | 0.494- | 0.503- | 0.570- | 0.837- | 0.919- | 0.751- | 0.972- | 0.444- | 0.757- | 0.880- | 0.582-
Caltech-101 ResNet20 | 2.498 | 2.050« | 2.384- | 2.300- | 2.728- | 2.883x | 2.204- | 2.825x | 2.346- | 2.385- | 2.982x | 2.044x | 1.557* | 2.431- | 2.242-
ResNet32 | 2.521 | 1.419x | 1.018x | 1.621x | 1.764% | 2.521- | 2.124x | 2.167* | 2.210% | 2.031* | 2.508- | 1.857x | 1.842x | 2.069* | 1.634x
MNIST LeNet5 | 4.456 | 2.625% | 2.630% | 2.640% | 2.863% | 4.236x | 2.614x | 4.528- | 2.982x | 2.642x | 3.786x | 2.761x | 4.172x | 2.934x | 2.657x
LeNetl | 4.351 | 2.680% | 2.604x | 2.674x | 2.672x | 4.318- | 3.146% | 3.512x | 3.396% | 3.327x | 3.682x | 2.020x | 3.595% | 3.415% | 2.674x
Fashion LeNetl | 3.476 | 2.394x | 2.408+ | 2.141% | 2.599% | 3.323% | 2.951x | 2.901* | 3.092x% | 2.571x | 2.793x | 2.055x% | 2.191x | 2.915% | 2.409%
ResNet20 | 4465 | 2.087x | 2.154x | 2.075% | 2.225% | 4.525- | 3.782x | 3.841x | 4.185- | 4.073- | 3.844x | 3.354x | 2.879x | 4.312- | 3.428x
E\: CIFAR VGG16 | 3.289 | 1.999% | 2.220x% | 2.157+ | 2.396% | 3.194x | 2.938 | 2.936x | 3.016% | 2.948+ | 2.798x | 2.454x | 1.988x | 2.553x | 2.276%
5 ResNet20 | 2.446 | 1.408x | 1.628- | 1.137x | 1.526% | 2.275- | 2.250- | 2.010- | 2.085- | 2.097- | 1.845- | 1.307x | 1.611- | 2.009- | 1.956%
< SVHN LeNet5 | 2.738 | 1.183x | 1.275x | 1.099% | 1.142x | 2.322x | 2.060% | 2.064x* | 2.262x | 1.836x% | 2.087x | 0.891* | 1.461x | 2.032x | 1.073x
» VGG16 | 4.005 | 2.272x | 2.183% | 2.270« | 2.343+ | 3.807x | 3.119x | 3.695% | 3.262x | 2.968+ | 2.990% | 2.824x | 1.469x | 3.117x | 2.232x
CIFAR-100 ResNet20 | 1.618 | 1.273- | 1.328- | 1.563- | 1.319- | 1.195- | 1.247- | 1.554- | 1.351- | 1.017x | 1.669- | 0.487x | 0.657* | 1.341- | 1.052x%
ResNet32 | 1.452 | 0.874- | 1.361- | 1.079- | 1.407- | 1.376- | 1.534- | 1.344- | 1.149- | 1.675- | 1.130- | 1.421- | 0.346x% | 1.030- | 0.952-
Caltech-101 ResNet20 | 3.851 | 2.727x | 3.390% | 2.864x | 3.230% | 3.966- | 3.202x | 3.770- | 3.389x | 3.576- | 4.144x | 2.823x | 2.036* | 3.844- | 3.270«
ResNet32 | 3.706 | 2.773x% | 2.222x | 2.580x% | 2.553% | 3.426x | 3.026% | 3.163x% | 3.193x* | 3.024x | 3.537- | 2.795% | 2.534x | 3.350% | 2.343x
MNIST LeNet5 | 4.921 | 3.036% | 3.120« | 3.149% | 3.231% | 4.863- | 3.167x | 5.102% | 3.461x | 3.048x | 4.431x | 3.256% | 4.749% | 3.473x | 3.161x
LeNetl | 4.940 | 3.127x | 3.178% | 3.164x | 3.217x | 4.916- | 3.833x | 3.977x* | 4.031x | 4.001x | 4.265x | 2.453x% | 4.155x | 4.098x | 3.257x
Fashion LeNetl | 4.102 | 2.984x | 2.862x | 2.749+ | 3.050% | 4.100- | 3.620% | 3.565% | 3.774x | 3.315x | 3.322x | 2.583x | 2.899x | 3.594x | 2.972x
. ResNet20 | 5.146 | 2.649x | 2.494x | 2.527x | 2.667+ | 5.068- | 4.503* | 4.768+ | 4.790- | 4.755% | 4.769* | 3.963x | 3.310% | 5.001- | 4.297x
% CIFAR VGG16 | 3.799 | 2.685% | 2.703x | 2.687x | -1.889x | 3.473- | 3.482x | 3.554- | 3.597x | 3.473x | 3.351x | 2.895% | 2.294x | 3.486% | 2.431x
> ResNet20 | 2.426 | 2.365- | 1.989% | 1.692x% | 1.925- | 2.651- | 2.206- | 2.441- | 2.564- | 2.910- | 2.208- | 2.412- | 1.302% | 2.589- | 2.098-
3 SVHN LeNet5 | 3.712 | 1.794x | 1.885x% | 1.752x% | 1.809% | 3.299% | 2.822s | 2.940% | 3.148x | 2.854x | 3.064x | 1.505x% | 2.100x | 2.842x | 1.835x
& VGG16 | 4.483 | 2.706% | 2.715% | 2.651x | 2.836% | 4.325- | 3.758% | 4.165% | 3.931% | 3.660% | 3.520% | 3.237x | 1.749% | 3.859% | 2.795x
CIFAR-100 ResNet20 | 1.967 | 1.718- | 1.468+ | 1.828- | 1.253% | 1.774- | 1.704- | 1.715- | 1.781- | 1.796- | 1.855- | 1.636- | 1.203x | 1.502% | 1.596-
ResNet32 | 2.325 | 1.308* | 1.758- | 1.660* | 1.732- | 2.286- | 1.840- | 1.757- | 1.638- | 1.684- | 1.084x | 1.714% | 0.779% | 1.508+% | 1.194x
Caltech-101 ResNet20 | 4.808 | 3.471x | 4.046x | 3.774x | 3.823% | 4.643- | 4.128x | 4.584- | 4.276x | 4.289- | 5.143x | 3.626% | 2.806x* | 4.511* | 3.824x
ResNet32 | 4.573 | 3.329x | 3.320% | 2.987x | 2.936x% | 3.828x | 3.842x | 4.096% | 3.939x | 3.757x | 4.334x | 3.571x | 3.193x% | 4.251% | 3.272x
MNIST LeNet5 | 5.301 [ 3.396x | 3.487x | 3.483x | 3.547+ | 5.266- | 3.592x | 5.514x | 3.904x | 3.499x | 4.819x | 3.598x | 5.273- | 3.996x | 3.543x
LeNetl | 5.344 | 3.547x | 3.584x | 3.504x | 3.526% | 5.445- | 4.421% | 4498+ | 4.560% | 4.455% | 4.774x | 2.760x% | 4.628x | 4.532x | 3.679x
Fashion LeNetl | 4.484 | 3.306% | 3.391x | 3.283x% | 3.612x | 4.491- | 4.211x | 3.949x% | 4.279% | 3.678x | 3.849x | 3.007x | 3.275x | 4.217x | 3.398x
ResNet20 | 5.825 | 3.008x | 3.197x | 3.145% | 3.193% | 5.718- | 5.384x | 5282 | 5.458- | 4.981x | 5.252x | 4.834x | 3.768x% | 5.447- | 4.568x
§ CIFAR VGG16 | 4.105 | 3.049x | 3.099% | 3.057* | 3.152% | 4.151- | 4.006- | 4.185- | 3.994- | 3.971- | 4.033- | 3.295x% | 2.515% | 4.039- | 3.017x
- ResNet20 | 3.697 | 2.271x | 2.359x | 2.680% | 2.362x% | 2.785% | 2.803 | 2.704x | 3.101- | 3.081- | 3.246x | 2.797x | 1.692x% | 3.683- | 2.365%
3 SVHN LeNet5 | 4.476 | 2.476x | 2.415% | 2.316% | 2.414x | 4.091% | 3.632x | 3.521x | 3.737x | 3.613x | 3.795% | 1.954x | 2.618x | 3.642% | 2.299%
& VGG16 | 4.937 | 3.103x | 3.093x | 3.040% | 3.158% | 4.640% | 4.320% | 4.604x% | 4.372x | 4.129x% | 4.000% | 3.650% | 2.011x | 4.330x | 3.084x
CIFAR-100 ResNet20 | 2.426 | 2.012- | 1.742x | 1.672x | 1.924x | 2.431- | 1.962% | 2.501- | 2.317- | 2.024- | 2.141- | 1.980- | 1.514x% | 2.102- | 2.275-
ResNet32 | 2.321- | 1.748% | 2.091- | 2.349- | 2.178- | 2.013- | 2.044- | 2.140- | 2.041- | 2.686- | 1.369x* | 1.963- | 1.291x | 1.686- | 2.244-
Caltech-101 ResNet20 | 5.514 | 3.896% | 4.824x | 4.387x | 4.180% | 5.206% | 4.889% | 5.244x | 5.057* | 5.039- | 5.608- | 4.236% | 3.546x% | 5.365- | 4.359x
ResNet32 | 5.207 | 3.654x | 3.685x | 3.599x | 3.715% | 4.578x | 4.540% | 4.822x | 4.729- | 4.429x | 5.103- | 4.180% | 3.893% | 5.154- | 3.872x

T % p < 0.05,—p > 0.05.

while ATS, Maxp, and DeepGini perform the best in 4.17%,
20.83%, and 2.08% of cases, respectively. Interestingly, the
active learning approaches show satisfactory failure detection
performance on the CIFAR-100 dataset, but they significantly
underperform compared to RTS on other datasets. Upon fur-
ther analysis, we discover that the tested DNN’s performance
on the CIFAR-100 dataset is worse than on other datasets.
For example, the accuracy of ResNet-20 on the CIFAR-100
dataset is only 51.46%, whereas it can reach 75.61% on
CIFAR-10. A plausible explanation posits that when model
performance is suboptimal, test inputs exhibiting higher
information entropy potentially provoke aberrant behavior
in the DNN. Overall, our experiments clearly indicate that
active learning methods are not as effective in identifying
misclassified instances. This can be attributed to the fact
that active learning methods are primarily designed for
model training rather than testing purposes, focusing on
data that provides more information for the model. However,
informative data does not necessarily lead to more incorrect
classifications by the model. Moreover, the experimental

results indicate that DMsp can improve the failure detection
results of existing TS methods in noisy scenarios, but the
improvement is very limited and does not exceed 2%.

We further conduct statistical analysis for each selection
rate to investigate whether RTS significantly outperforms all
the baseline methods by conducting the Wilcoxon signed-
rank test [38] at the significance level 95%. Meanwhile, the
non-parametric Cliff’s delta effect size is used to evaluate
the amount of the difference® between the two approaches.
Specifically, for each selection rate, we compute the p-value
of RTS with respect to each baseline, based on the FD,.44;0
results for the 12 DNN&Dataset configurations (6 subjects x
2 models). We found that all the p-values are smaller than
0.05, indicating that RTS significantly outperforms all the
compared approaches in terms of failure detection metric in
statistics. The effect-size results show that compared with

3. We use the following mapping for the values of the delta that are
less than 0.147, between 0.147 and 0.33, between 0.33 and 0.474 and
above 0.474 as “Negligible (N)”, “Small (S)”, “Medium (M)”, “Large (L)”
effect size, respectively [64]
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Fig. 6. The average failure detection rate (%) of RTS and the three variants for each configuration.

neuron-coverage-based, other TS methods (such as CES
and LSA), and CLUE, RIS can bring large performance
differences regardless of selection rate, dataset, and DNNs
under test. Besides, RTS has a medium or small average
performance difference in contrast to DeepGini, Maxp, and
ATS.

¥ We conclude that RTS has an outstanding capability of
detecting more failures within a limited selection size. For
example, when selecting 2.5% test input, RTS achieves an
improvement of 9.37%-176.75% over other baseline methods
in terms of failure detection.

6.2 Answer to RQ2: Retraining Effectiveness

To address RQ2, we merge the test inputs selected by differ-
ent TS methods with the original training set to evaluate the
effectiveness of DNN optimization. Following the previous
work [15], we collect the accuracy improvement results for
four selection ratios (2.5%, 5%, 7.5%, 10%). The accuracy
improvement results are provided in Table 6, where the
best optimization effectiveness (OE) value (as defined in
Equation 11) is highlighted in red, and the second best OF
value is highlighted in blue for each DNN&Dataset config-
uration. Each TS method has 15 OF results (5 candidate
sets x 3 experiment repetitions) under each DNN&Dataset
configuration. The table presents the average performance
of these 15 OF results. Additionally, p-values are computed
to determine if there are statistically significant differences
among the investigated methods based on the 15 OF
results. A “x” is used to mark the corresponding accuracy
1mprovement value if the p-value is less than 0.05; otherwise,
“-" is used.

From the analysis of Table 6, it is evident that most
TS methods exhibit superior performance compared to
random sampling in terms of average accuracy improvement.
Notably, for neuron-coverage-based selection techniques,
there are cases where the retraining results are even worse
than random sampling with the same test input size. Re-
garding the comparison among different TS methods, RTS
outperforms the other methods in 56.25% of cases (27
out of 48), making it the most effective approach. ATS
achieves the best result in 8.33% of cases (4 out of 48), while
DeepGini performs the best in only 2.08% of cases (1 out
of 48). Additionally, VS demonstrates better DNN accuracy
improvement compared to DeepGini due to its more accurate
uncertainty calculation. VS achieves the best result in 12.5%
of cases (6 out of 48), but it still falls short compared

to RTS, which achieves the best or second-best result in
79.17% of cases. Statistical analysis reveals that, compared
with RTS, most baseline methods perform worse, especially
the neuron-coverage-based and other types of TS methods.
Apart from ATS and VS, RTS significantly outperforms the
other 12 baseline methods in more than 28 cases. When
comparing with VS and ATS, RTS demonstrates significantly
better DNN accuracy improvement results in 27 and 15
instances, respectively. Notably, upon contrasting Maxp and
CLUE, it becomes apparent that Maxp markedly surpasses
CLUE in failure detection. This assertion is substantiated by
statistical analysis, revealing a considerable disparity irre-
spective of selection rate and DNN&Dataset configurations.
Nevertheless, in model optimization, CLUE accrues best or
second-best outcomes in nine instances, outstripping Maxp,
which secures three second-best results. This promising
performance by CLUE in model optimization necessitates a
deeper examination into additional factors that potentially
influence model optimization. Consequently, we ardently
advocate for further empirical studies, urging researchers
to diligently explore the interplay between distinct test
input characteristics and their consequent impact on model
optimization.

& We conclude that RTS has an outstanding capability of
improving the performance of the pre-trained model within
a limited selection size.

6.3 Answer to RQ3: Ablation Experiment
6.3.1 Answer to RQ3.1

Figure 6 presents the F'D,.,;;, results of RTS and its three
variants across different DNN&Dataset configurations and
Selection,qi. values. The Selection,.qq refers to the ratio of
selected test inputs and F'D,.q1;, represents the failure detec-
tion rate, calculated by Equation 10. Three variants, RTS-1,
RTS-2, and RTS-3, are constructed by excluding Component 1,
Component2, and Component 3, respectively. This allows us
to evaluate the individual contributions of each component
to the effectiveness of RTS. The elimination of any single
component within RTS typically precipitates a deterioration
in failure detection performance, albeit to differing extents
across various scenarios. Among the three components, the
probability-tier-matrix-based selection metric contributes the
most to RTS’s performance improvement, as the performance
of RTS-3 has the worst performance compared to RTS. RTS
performs better than RTS-1 in most cases, which indicates
the noise-resilient component (i.e., Component 1) effectively
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Fig. 7. The retrieval time of RTS and the two variants for each dataset.

improves the robustness of RTS in candidate sets with noise.

The paired Mann Whitney-Wilcoxon Test [65] is used to
verify the significance of the performance differences. All
the p-values between RTS and RTS-1, as well as RTS and
RTS-3, are less than 0.05, indicating that RTS significantly
outperforms these two variants. Although the performance
difference between RTS and RTS-2 is not significant, RTS still
obtains similar or better results in most cases. For instance,
when selection, ;e = 0.025, RTS achieves better FD,4t0
values for 7 out of 12 DNN&Dataset combinations, and
similarly for the other selection rates. In instances where
RTS-2 outperforms RTS, we hypothesize that the discrepancy
arises from Component 2 misclassifying failure-revealing
test inputs as successful ones. This issue could potentially
be mitigated by amplifying the k value. Above-mentioned
results indicate that the noise filtering component, the voting
mechanism, and the novel test metric are useful and effective
for improving RTS’s failure detection performance.

u# Overall, when each of the three components of the RTS
is removed, the failure detection performance of the RTS
is typically reduced to varying degrees, with Component 1
and Component 3 significantly affecting the performance
of the RTS.

6.3.2 Answer to RQ3.2

In Section 5.4.3, two variants of the RTS algorithm, namely
RTS-OBO and RTS-phash, are introduced to evaluate the
impact of two pivotal steps in the nearest neighbor retrieval
process. To verify that RTS effectively preserves the global
similarity matching capability, 20% noise data comprising
irrelevant data, synthetic meaningless data, and crashed

data, is integrated into the original test set. This enables
us to delve into the performance of these variants in noise
data identification. Specifically, the efficiency of RTS and
its variants in retrieving the nearest neighbors for different
percentages (n) of test inputs from each dataset’s candidate
set is assessed. Chosen values for (n) encompass 2.5%,
5.0%, 7.5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,
and 100%. Ultimately, we report the accuracy results with
which each variant is capable of detecting noise within the
candidate set.

Figure 7 presents the nearest neighbor retrieval time for
RTS and its variants. Each subfigure corresponds to a specific
dataset, where the z-axis represents the percentage of test
inputs from the candidate test set, and the y-axis indicates
the time taken to retrieve the nearest neighbors for those
test inputs. Based on the data in Figure 7, we make the
following observations: 1) RTS vs. RTS-OBO: RTS-OBO
always requires more retrieval time than RTS for the same
number of test inputs. This is because RTS-OBO needs to
compare the similarity of each test input with all training
data one by one. This disadvantage becomes prominent
when both the training data and the candidate test sets
are relatively large. 2) RTS vs. RTS-phash: RTS consistently
outperforms RTS-phash in terms of retrieval time across all
datasets and test input percentages. When the number of
test inputs is small, such as only 2.5%, the retrieval time of
RTS is comparable to that of RTS-phash. We analyze that
this is due to the overhead incurred by computing the hash
values of both the test inputs and training data. However,
as the number of test inputs increases, the difference in
retrieval time becomes significantly larger. This highlights the



effectiveness of the p-hash algorithm in accelerating nearest
neighbor retrieval, particularly when dealing with a large
number of test inputs.

TABLE 7
The accuracy results of RTS vs. its variants in identifying noise
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being a cluster member to each data point, classifying any
point with a low probability as noise.

Data Collection. We utilize the datasets introduced
in Section 5.1 and apply the same construction method
described in Section 5.2 to generate additional valid test
inputs, besides the original test set. To assess the robustness

of RTS and the three noise detection methods, we introduce
20% of invalid data using three data pollution techniques [15]:

Method | MNIST Fashion CIFAR SVHN CIFAR-100 Caltech-101,

RTS-OBO | 0.9620 0.8517 0.8828 0.9265 0.8681 0.8628

RTS-phash | 09498 0.8550 0.8942 0.9442 0.8998 0.8597
RTS 09490 0.8562 0.8898 0.9449 0.8987 0.8592

irrelevant data (IR), meaningless synthetic data (RG), and
crashed data (CR). Subsequently, we evaluate the ability of

Table 7 further elucidates the accuracy of RTS and its
two variants in identifying noise. The experimental results
reveal that approximate nearest neighbor retrieval, as ex-
hibited by RTS-phash and RTS, consistently achieves noise
identification accuracy comparable to that of exact nearest
neighbor retrieval (i.e., RTS-OBO). Notably, RTS-OBO does
not always secure the best performance. For instance, both
RTS-phash and RTS yield superior accuracy results on the
SVHN and CIFAR-100 datasets. Analysis indicates that this
occurrence might stem from the degree of “fault tolerance”
to proximity retrievals, given the challenges in assuring that
SSIM furnishes a wholly accurate similarity assessment. Ad-
ditionally, RTS demonstrates a noise detection performance
strikingly similar to that of RTS-phash, with a mere average
accuracy difference of 0.0008. This substantiates our descrip-
tions in Section 4.3.1 that, although p-hash predominantly
concentrates on local similarity, it effectively maximizes the
retention of image pairs with substantial global similarity.
Considering the notable temporal advantage and minimal
performance degradation afforded by p-hash, it is concluded
that RTS presents the most cost-effective performance.

¥ In summary, the experimental results underscore that
RTS facilitates an expedient retrieval of nearest neighbors,
eclipsing its variants RTS-OBO and RTS-phash in retrieval
time efficiency. Moreover, this reduction in computational
demand exerts only a marginal impact on the ability
to pinpoint matches in global information, positioning
RTS as the best selection that furnishes the optimal cost-
effectiveness.

7 DISCUSSION
71

Baselines. To mitigate the effects of noise, RTS employs a
novel SSIM-based noise filtering component that identifies
and filters out invalid test inputs. In order to evaluate the
performance of RTS in detecting noise, we compare it with
three related techniques: Embeddings;,,, One-class SVM [66],
and HDBSCAN algorithm [67]. Here is a brief description of
each technique: 1) Embeddings;,, shares a similar approach
with RTS but uses the feature embedding provided by
the tested model as the similarity metric. It calculates the
similarity between test inputs based on their embeddings
to identify potential noise. 2) One-class SVM identifies
anomalies or noise in a dataset by learning the boundaries of
the majority class. It considers data points that fall outside
of these boundaries as potential noise. 3) HDBSCAN is a
density-based clustering algorithm that has been utilized in
prior research related to TS [68]. It assigns a probability of

The Performance of RTS in Detecting Noise Input

such methods to precisely identify noise data (Positive: noise
data, Negative: valid test input).

Evaluation Metrics. We use accuracy, precision, recall, F1-
score, and area under the precision recall curve (AUC) [69]
as evaluation measures.

Table 8 presents a comprehensive overview of the perfor-
mance metrics for each method, including accuracy, precision,
recall, F1-score, and AUC. The experimental results reveal
valuable insights: 1) Embeddingg;m: This method usually has
poor noise detection performance, although it occasionally
achieves a precision exceeding 0.90. In complex datasets
like VGG-16&CIFAR, the precision, recall, and Fl-score of
Embeddinggn, are all 0.0 in the IR and CR categories. Upon
analysis, we attribute this to two factors: (1) The tested model
is optimized based on numerous valid test inputs, allowing it
to effectively recognize and differentiate between the feature
embeddings of valid test inputs with different categories, but
not those of noise. (2) Noisy data often possesses irregular
and diverse characteristics that the neural network may
struggle to capture effectively. 2) HDBSCAN: HDBSCAN
achieves the best recall values in 13 out of 36 cases, ranking
second overall. This method successfully identifies and
eliminates a significant amount of noise by identifying data
with a low probability of being a cluster member. However,
this approach also results in a large number of valid test
inputs being filtered out. For instance, in the LeNet-5&SVHN
dataset, HDBSCAN filter out all irrelevant test inputs (IR
noise types), but its precision is only 0.1683. Moreover, man-
ual examination of the noisy data detected by HDBSCAN
reveals that many of them are actually failure-revealing test
inputs. This suggests that HDBSCAN discards many valuable
failure-revealing test inputs while filtering noise, which
could potentially reduce the failure detection performance
of the TS method during subsequent test selection. 3) One-
class SVM: Similar to Embedding,,, and HDBSCAN, the
performance of One-class SVM varies across different metrics
and datasets. For example, when identifying noisy data
in LeNet-1&Fashion, One-class SVM achieves better AUC
results than Embeddingg,, and HDBSCAN, regardless of
the pollution types. However, for the ResNet-20&Fashion,
One-class SVM exhibits inferior AUC performance compared
to the other two baselines in CR and IR categories, and it
also performs worse than Embeddingg, on RG. This can be
explained that when training One-class SVM, information
is extracted from the last hidden layer of each model as
representations of the training samples. Even for the same
dataset, the different architectures of tested models result
in different extracted features, leading to differences in the
effectiveness of noise filtering to some extent. Therefore,
for the aforementioned outlier/noise detection methods,
including Embeddinggim, One-class SVM, and HDBSCAN,
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TABLE 8
RTS vs. outlier detection methods in identifying noise

Dataset | Noise | Method | Acc Prec. Rec. FL AUC || Dataset | Noise | Method | Acc Prec. Rec. FL AUC
Embedding, 0.8309 03077 0.0115 0.0222 0.5032 Embedding, 0.8179 0.2263 0.0383 0.0654 0.5061
CR One-class SVM | 0.7893  0.0562 0.0168 0.0258 0.4803 CR One-class SVM | 0.7569 0.0784  0.0426 0.0552 0.4712
HDBSCAN 0.1201 0.0737  0.3700 0.1229 0.2201 HDBSCAN 0.1571 0.1559 0.9193 0.2666 0.4620
Z} RTS 0.8379 0.5086 0.8164 0.6267  0.8293 i RTS 0.8611 0.5628 0.7476 | 0.6422 0.8157
E Embeddingn, 0.8299 0.0060 0.0001 0.0002 0.4980 § Embedding, 0.8251 0.3723 0.0721 0.1208 0.5239
! IR One-class SVM | 0.7867  0.0049 0.0014 0.0021 0.4726 - IR One-class SVM | 0.7658  0.1611 0.0963 0.1205 0.4980
ko] HDBSCAN 0.1399 0.0971 0.5013 0.1627  0.2844 k] HDBSCAN 0.1450  0.0803 0.3949 0.1334 0.2450
% RTS 0.8517  0.5327  0.8990 0.6690  0.8706 E RTS 0.8792  0.5957  0.8560 0.7025 0.8699
Embedding, 0.8236  0.0224  0.0014 0.0026 0.4947 Embedding, 0.8186  0.1326  0.0160 0.0286 0.4975
RG One-class SVM | 0.7865 0.0018 0.0005 0.0008 0.4721 RG One-class SVM | 0.7657  0.1600  0.0955 0.1196 0.4976
HDBSCAN 0.1280  0.1167  0.6443 0.1976 0.3345 HDBSCAN 0.0346  0.0101 0.0493 0.0167 0.0405
RTS 0.8683 0.5587  0.9986 0.7165  0.9204 RTS 0.9029  0.6321 0.9981 0.7740 0.9410
Embedding, 0.8397 | 0.9501 0.0405 0.0777  0.5200 Embedding, 0.8767 0.7067  0.4448 | 0.5459 0.7039
CR One-class SVM | 0.8348  0.5070 03111 | 0.3856  0.6253 CR One-class SVM | 0.7939 0.0256  0.0064  0.0102 0.4789
o HDBSCAN 0.5203 0.2083 | 0.6705 0.3178 0.5804 g HDBSCAN 0.5469 0.2452 | 0.8273 0.3783 0.6590
:g RTS 0.8570 0.7770 0.1995 0.3175 0.5940 J:; RTS 0.8534 | 0.7961 0.1620 0.2692 0.5769
é Embeddingsi,, | 0.8341 | 1.0000 0.0048 0.0095 0.5024 u?‘ Embedding, 0.8240  0.1394  0.0109 0.0202 0.4987
i IR One-class SVM | 0.9479 0.7659 | 0.9899 0.8636  0.9647 S IR One-class SVM | 0.7930  0.0041 0.0010 0.0016 0.4762
k] HDBSCAN 0.4638  0.2035 0.7605 0.3210 0.5825 k] HDBSCAN 0.3985  0.1717 | 0.6825 0.2744 0.5121
é RTS ‘ 0.8373  0.5866 0.0813 0.1427  0.5349 Zﬁ RTS 0.8356  0.5705 0.0551 0.1005 | 0.5234
Embedding, 0.8332  0.3333 0.0008 0.0015 0.5002 e Embedding, 0.9296 0.8538 | 0.6966 0.7673 0.8364
RG One-class SVM | 0.8114  0.3608 0.1708 0.2318 0.5551 RG One-class SVM | 0.8823  0.6884  0.5363 0.6029 0.7438
HDBSCAN 0.1055 0.0179 0.0813 0.0294 0.0958 HDBSCAN 0.4930  0.1252  0.3410 0.1831 0.4322
RTS 0.8911 0.8758 0.4038 0.5527  0.6962 RTS 0.8907 | 0.9029 0.3859 0.5407 0.6888
Embedding, 0.8427 | 0.9536 0.0591 0.1113 0.5293 Embeddingsi, 0.8333  0.0000  0.0000 0.0000 0.5000
CR One-class SVM | 0.7934  0.0092  0.0023 0.0036 0.4770 CR One-class SVM | 0.7865  0.1663 0.0700 0.0985 0.4999
HDBSCAN 0.4302  0.1157  0.3643 0.1757  0.4038 ~ HDBSCAN 0.2838  0.0456  0.1656 0.0716 0.2366
% RTS 0.9574 0.8098 0.9725 0.8837 0.9634 fE RTS 0.9526 0.7885 0.9776 0.8729 0.9626
E Embedding, 0.8326 0.0000 0.0000 0.0000 | 0.4996 U‘ Embeddingsi, 0.8333 0.0000  0.0000 0.0000 0.5000
< IR One-class SVM | 0.7931 0.0005 0.0001 0.0002 0.4759 5\‘3_, IR One-class SVM | 0.8151 | 0.4078 0.2418 0.3036 0.5858
Y HDBSCAN 0.1881 | 0.0986 0.4754 0.1633 0.3030 2 HDBSCAN 02884  0.0450  0.1615 0.0703 0.2376
& RTS 07963 00272 00064 00103 04804 % RTS 07910 00296 00080 00126 04778
&
Embeddingsi, 0.8321 0.0000 0.0000 0.0000 0.4992 - Embeddingsi, 0.8411 | 0.9820 0.0476 0.0908 0.5237
RG One-class SVM | 0.7960  0.0684  0.0178 0.0282 0.4847 RG One-class SVM | 0.8761 0.6338 0.6074  0.6203 0.7686
HDBSCAN 0.1094  0.0038 0.0168 0.0062 0.0723 HDBSCAN 0.1637  0.1002  0.5035 0.1671 0.2996
RTS 0.9049 0.7422 0.6576 0.6974 0.8060 RTS 0.8993 0.7150 | 0.6579 0.6852 0.8027
Embeddingsin 0.8333  0.0000  0.0000  0.0000  0.4999 Embeddingsi, 0.6080  0.2674 | 0.7779  0.3980 0.6760
— CR One-class SVM | 0.7918  0.2846  0.1650 0.2089 0.5410 — CR One-class SVM | 0.6857  0.0026  0.0023 0.0024 0.4123
9[ HDBSCAN 0.8330  0.4982  0.3254  0.3937  0.6299 .9[ HDBSCAN 0.6510  0.2257  0.4503 0.3006 0.5707
5 RTS 0.8290  0.3803 0.0416 0.0751 0.5140 5 RTS 0.8310  0.4240  0.0409 0.0745 0.5149
4 |4
c Embeddingsin 0.8334  0.0000 0.0000 0.0000 0.5000 ] Embeddingsi, 0.6091 0.2980  0.9931 0.4584 0.7627
U‘ IR One-class SVM | 0.7643  0.0000 0.0000 0.0000 0.4585 U‘ IR One-class SVM | 0.6854  0.0009 0.0008 0.0008 0.4115
8' HDBSCAN 0.3089 0.1172  0.4819 0.1885 0.3781 % HDBSCAN 0.5029 0.1124  0.2876 0.1616 0.4168
% RTS 0.8221 0.0000 0.0000 0.0000 0.4932 2 RTS 0.8241  0.0000  0.0000 0.0000 0.4945
&Jj Embeddingsi, 0.8333  0.0000  0.0000  0.0000  0.4999 é)’ Embeddingsi, 0.6227  0.2816 | 0.8150  0.4185 0.6996
RG One-class SVM | 0.8014  0.3495 0.2228 0.2721 0.5699 RG One-class SVM | 0.6870  0.0111 0.0100 0.0106 0.4162
HDBSCAN 0.8297  0.1778 0.0062 0.0119 0.5002 HDBSCAN 0.6172  0.1110  0.1850 0.1387 0.4443
RTS 09315  0.9064  0.6569 0.7617  0.8217 RTS 09336  0.9221 0.6569 0.7672 0.8229
Embeddingsi, 0.8333  0.0000 0.0000 0.0000 0.5000 Embeddingsi, 0.8328  0.0345 0.0001 0.0002 0.4997
o CR One-class SVM | 0.7807  0.0205 0.0068 0.0102 0.4711 o CR One-class SVM | 0.7883  0.0041 0.0011 0.0018 0.4735
=1 HDBSCAN 0.2677  0.0591 0.2275 0.0938 0.2516 =4 HDBSCAN 0.4483  0.1857 | 0.6826  0.2920 0.5421
% RTS 0.9390  0.8998  0.7131 0.7957  0.8486 %‘ RTS 0.9215  0.9266  0.5745 0.7093 0.7827
=1 Embeddingsi, 0.8334  1.0000  0.0001 0.0002 0.5001 =1 Embeddingsi, 0.8335  0.6452  0.0025 0.0050 0.5011
/L_)\ IR One-class SVM | 0.7849 0.0893 0.0316 0.0467  0.4836 :\ IR One-class SVM | 0.7890  0.0190  0.0053 0.0082 0.4755
5 HDBSCAN 0.2938  0.0827 | 0.3206 0.1314  0.3045 o) HDBSCAN 0.5048  0.2280 | 0.8264  0.3574  0.6334
% RTS 0.8202  0.0078  0.0006 ~ 0.0012  0.4924 f RTS 0.8258  0.0027  0.0001  0.0002 0.4955
7 7
& Embeddingsi, 0.8441 1.0000 0.0649 0.1218 0.5324 & Embeddingsi, 0.8330  0.2000  0.0008 0.0015 0.5001
RG One-class SVM | 0.8583  0.5941 0.4721 0.5262 0.7038 RG One-class SVM | 0.8071 0.2951 0.1135 0.1639 0.5296
HDBSCAN 0.0987  0.0711 0.3651 0.1190 0.2053 HDBSCAN 0.4469 0.1439 0.4684  0.2201 0.4555
RTS 0.9296  0.8922  0.6573 0.7569 0.8207 RTS 09351  0.9352  0.6564  0.7714 0.8236
Embeddinggin 0.8329 0.0959 0.0003 0.0007  0.4999 Embeddingsi, 0.8329 0.0959 0.0003 0.0007 0.4999
CR One-class SVM | 0.8028  0.0000 0.0000 0.0000 0.4817 CR One-class SVM | 0.8254 04787  0.5351 0.5053 0.7093
HDBSCAN 05612  0.1793 0.4564 0.2575 0.5193 HDBSCAN 0.1598  0.1566  0.9213 0.2677 0.4644
% RTS 0.9823 0.9328 0.9632 0.9478  0.9747 % RTS 0.9756  0.8725  0.9994 0.9316 0.9851
(% Embeddingginm 0.8333  0.3333 0.0000 0.0001 0.5000 a Embeddingsi, 0.8333  0.3333 0.0000 0.0001 0.5000
< IR One-class SVM | 0.8058  0.0892  0.0180 0.0299 0.4906 @‘ IR One-class SVM | 0.8343  0.5025 0.5884  0.5420 0.7359
50 HDBSCAN 0.6324  0.3106 | 0.9883 04726  0.7747 é HDBSCAN 0.1766  0.1683 | 1.0000 0.2882 0.5060
;‘3 RTS 0.8718  0.8123 0.3002 0.4384 0.6432 K] RTS 0.9319  0.8346 0.7372 | 0.7829 0.8540
Embeddingsi, 0.8332  0.0000 0.0000 0.0000 0.4999 Embeddingsi, 0.8332  0.0000  0.0000 0.0000 0.4999
RG One-class SVM | 0.8377  0.5332 0.2096 0.3009 0.5864 RG One-class SVM | 0.7468  0.0981 0.0633 0.0770 0.4734
HDBSCAN 0.5600  0.1077  0.2251 0.1457  0.4260 HDBSCAN 0.1365 0.1367 | 0.7870 0.2330 0.3967
RTS 0.9323 0.9053 0.6631 0.7655  0.8246 RTS 0.9198 0.8199  0.6650 | 0.7343 0.8179
Embeddingi, 0.8338  0.3335 0.0102 0.0193 0.5044 Embeddingiy 0.8021 03094 02176 0.1623 0.5683
AVRAGE One-class SVM | 0.8093  0.2075 0.1465 0.1631 0.5441 AVRAGE One-class SVM | 0.7825 02076  0.1676 0.1802 0.5365
HDBSCAN 03662  0.1410 0.4045 0.1839 0.3815 HDBSCAN 0.3419 0.1360  0.5363 0.2123 0.4197
RTS 0.8811 0.6198 0.5017  0.5088 0.7293 RTS 0.8869  0.6295  0.5099 0.5206 0.7361

the feature embeddings extracted by the tested model greatly
influence the effectiveness of these methods.

RTS demonstrates the best performance across all metrics.
Among the 36 cases (6 subjects x 2 models x 3 data pollu-
tion types), RTS outperforms the other methods in 75.00%
(27/36) cases for accuracy, 69.44% (25/36) for precision,
47.22% (17/36) for recall, 61.11% (22/36) for Fl-score, and
63.89% (23/36) for AUC. The average values of accuracy,
precision, recall, F1-score, and AUC for RTS are 0.8840, 0.6246,
0.5058, 0.5147, and 0.7327, respectively, with improvements
compared to the baseline methods ranging from 8.07% to
149.68% for accuracy, 94.33% to 350.96% for precision, 7.53%

to 344.19% for recall, 159.83% to 466.78% for Fl-score, and
35.61% to 82.91% for AUC. RTS filters noise by utilizing
the original features of the image instead of relying on
information from the hidden layer, which enables RTS to
maintain consistent performance even when applied to the
same dataset with different models under test. Analyzing
Table 8, we observe that the SSIM-based filtering method
can distinguish well between noisy and valid test inputs
for the MNIST dataset, with an average AUC value of
0.8745. However, for complex datasets such as CIFAR and
CIFAR-100, the effectiveness of the SSIM-based filtering
method decreases slightly, but it still achieves satisfactory
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Fig. 8. The exploration of SSIMy,, setting.

performance with an average AUC value of 0.7482 and 0.7106,
respectively. It is worth mentioning that an AUC of 0.7 is
considered as a promising performance score, as stated in
previous studies [70], [71].

TABLE 9
The average failure detection rate (%) for each selection rate in
noiseless candidate set.

Baselines Select 2.5% Select 5.0% Select 7.5% Select 10.0%

ATS 69.56 66.54 63.97 62.07
Gini 7591 73.04 70.71 68.84
CES 27.98 28.63 28.73 28.64
LSA 52.96 51.38 50.34 48.72
Maxp 75.60 72.50 70.19 68.05
EDrop 75.01 71.84 69.84 67.80
CLUE 40.27 40.14 39.47 38.70
VS 56.45 56.28 55.74 55.25
DMsp 75.53 72.46 70.08 68.28
NAC 26.76 26.64 26.49 26.64
NBC 27.52 27.20 27.22 27.08
SNAC 26.50 26.97 27.05 26.87
TKNC 28.90 28.15 27.96 27.72
Random 26.78 26.48 26.64 26.87
RTS 71.84 69.16 66.60 64.60

7.2 RTS Performance in Noiseless Candidate set

In this section, we focus on evaluating the performance of
RTS and its baseline methods specifically in the noiseless
candidate set. Our evaluation considers both the failure
detection capability and the model optimization capability.
Due to space limitations, we provide average results for
each TS method across 12 DNN&Dataset configurations at
each selection rate. For more detailed results, please refer to

Selection,

(e) ResNet-32&CIFAR-100

Selection, e

(f) ResNet-20&Caltech-101

TABLE 10
The DNNs’ accuracy improvement (%) performance for each selection
rate in noiseless candidate set.

Baselines Select 2.5% Select 5.0% Select 7.5% Select 10.0%

ATS 2.51 3.42 4.17 4.67
Gini 2.36 3.55 4.07 4.55
CES 1.64 2.19 2.80 3.19
LSA 2.00 2.78 3.27 3.94
Maxp 2.46 3.54 4.16 4.89
EDrop 2.30 3.40 4.04 4.47
CLUE 222 3.12 3.53 4.10
\E) 2.18 3.31 3.84 4.39
DMsp 242 3.32 3.96 4.64
NAC 1.42 2.26 271 3.08
NBC 1.53 2.32 2.78 3.23
SNAC 1.35 2.15 2.75 3.16
TKNC 1.53 2.32 2.74 3.30
Random 1.57 2.26 2.88 3.42
RTS 2.51% 3.50% 4.06% 4.70%

our open-source replication package®. Table 9 provides the
average failure detection rate for each selection rate. From
the table, we can observe that among the 15 TS methods,
RTS ranks fifth in terms of failure detection, regardless of the
selection rate. However, DeepGini stands out by being able
to identify the highest number of failure-revealing test inputs.
It is understandable, because DeepGini and Maxp methods
prioritize test inputs with the highest uncertainty. In contrast,
RTS aims to diversify the selected test input, which may
result in a slight loss in the failure detection performance.
This also applies to state-of-the-art ATS, which is guided by
diversity. Additionally, RTS incorporates a component for

4. https:/ / github.com/swf1996120/RTS
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Fig. 9. The exploration of k setting.

filtering noise, which may misclassify valid test inputs as
noise, especially for noiseless candidate sets. This dynamic
is similarly mirrored in DMsp, where the incorporation of a
pre-processing phase aimed at filtering out-of-distribution
(OOD) data inadvertently precipitates a sub-optimal perfor-
mance relative to DeepGini. However, selecting more failure-
revealing test inputs does not necessarily indicate better
model optimization capabilities. When examining Table 9
and Table 10, we find that DeepGini do not show significant
accuracy gains after retraining, even though it can select a
large number of failure-revealing test inputs. As explained
in Section 3.1, using biased failure-revealing test inputs does
not enhance model performance but rather results in biased
DNN . This issue can be addressed by selecting diverse test
inputs, which is a focus of RTS.

7.3 Exploration of RTS Parameter Settings

As explained, the performance of the RTS is influenced
by two import parameters: SSIM;, and k. The value of
SSIMy, determines the threshold for filtering noise data
in Component 1 based on the SSIM. On the other hand,
k determines the number of nearest neighbors considered
in both Component 1 and Component 2. Both of these
parameters are crucial in the noise filtering process, and
the value of k also impacts the number of successful test
inputs identified by Component 2. This, in turn, affects the
final failure detection rate of the RTS. Therefore, this section
focuses on exploring the influence of different SSI My, and
k parameter values on the RTS. To conduct the analysis, we
follow the same data construction approach as in RQ1 and
RQ2. Due to space limitation, we select 6 DNN&Dataset

T T T T T
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Selectiony gte

(e) ResNet-32&CIFAR-100

T T T T T T
75% 10% 20%  30%  40%  50%
Selectiony gte
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T T
2.5% 5%

configurations, i.e., LeNet-5&MNIST, ResNet-20&Fashion,
VGG-16&CIFAR, VGG-16&SVHN, ResNet-32&CIFAR-100,
and ResNet-20&Caltech-101. These configurations represent
cases where the selected DNNs achieve the highest accuracy
values in their respective datasets. All other results exhibit a
similar trend and can be accessed online® for further exami-
nation. To cover a wide range of scenarios, we set SSIM;,
to four different values: 0, 0.05, 0.1, and 0.2. Similarly, we
vary the value of k across four levels: 5, 10, 30, and 50. By
examining the performance results obtained with different
parameter values, we gain insights into the impact of these
parameters on the RTS’s performance.

Figure 8 and Figure 9 present the failure detection rate
results of RTS for the different parameter values. The data
presented in the figures allows us to make several observa-
tions: 1) As SSIM;;, increases, the difference in F'D,.,4;, of
RTS becomes significant. Generally, lower values of SSI My,
correspond to better fault detection performance, particularly
for the LeNet-5&MNIST. When a higher SSIM threshold
is employed, RTS has greater confidence in identifying
valid test inputs, but it may also discard some failure-
revealing test inputs that could trigger unexpected behavior
of the tested model, despite exhibiting visual differences
from the training samples. Comparing SSIM;, = 0 and
SSIM,;, = 0.05, their performance is comparable. For
example, SSIM,;;, = 0.05 achieves optimal results with
VGG-16&CIFAR but it performs worse than SSIM;, = 0
when applied to LeNet-5&MNIST. 2) Increasing the value
of k£ can improve the precision of identifying noise and
successful test inputs. Overall, there is a slight performance

5. https:/ / github.com/swf1996120/RTS



improvement with increasing £, although the difference is
not significant. However, for the Caltech-101 dataset, larger
k values actually reduce the failure detection performance of
RTS. For example, when k = 50 and Selection,qt. = 2.5%,
the FD, 40 results of RTS are significantly worse than those
of RTS with k£ = 5,10. This is because some classes in the
training set have fewer than 30 data points. When k exceeds
the maximum number of similar instances for a test input
(i.e., the number of training data points in the same class), the
average SSIM score obtained in Component 1 is low, leading
to the test input being filtered out as noise.

Based on the above, considering the potential label-
ing errors in the training dataset, this study opts to set
SSIMy, = 0.05, bolstering the RTS’s robustness in noise
filtering. This choice effectively mitigates the impact of
inaccuracies within the training corpus and ensures the
reliability of the noise filtering process in the RTS. Given
that a higher k value introduces additional time overhead
for RTS, we have selected k& = 5 in this paper. When testing
resources are sufficient, testers can consider employing a
reasonably larger k.

7.4 The Performance of RTS in Adversarial Examples

Data Collection & Baselines. In this section, we further
discuss the performance of RTS in adversarial attack sce-
narios. Adversarial attacks add imperceptible perturba-
tions to images to mislead DNNs. To generate adversar-
ial test inputs, we utilize four state-of-the-art techniques,
including FGSM [72], BIM [73], JSMA [74], and CW [75].
These generated adversarial samples are combined with
the original test set to form candidate test sets. In ad-
dition, we have chosen six DNN&Dataset configurations
where the selected DNN models achieve the highest ac-
curacy in their respective datasets. These configurations
are as follows: LeNet-5&MNIST, ResNet-20&Fashion, VGG-
16&CIFAR, VGG-16&SVHN, ResNet-32&CIFAR-100, and
ResNet-20&Caltech-101. The remaining results demonstrate
a similar trend and are also available online®. We select ATS,
LSA, NAC baselines, representing three distinct TS categories
(refer to Section 5.3). Considering that among active learning
methods, Maxp achieves the best results in RQ1 and CLUE
has the best model optimization performance in RQ2, we
chose Maxp as well as CLUE as representatives of active
learning.

Evaluation Metrics. Following previous studies [12], we
adopt the Average Percentage of Fault-Detection (APFD)
metric [76], which can provide overall performance of TS in
adversarial examples. A higher APFD value indicates a faster
and more efficient detection of misclassifications. Consider a
permutation of n test inputs, where £ tests are misclassified.
Let r; represent the order of the first test that uncovers the
ith misclassified test. The APFD value for this permutation
can be calculated using the following formula:

Zl‘ilri 1
APFD =1 &~=—/—~ 4+ —
kn 2n

We normalize the APFD values to the interval [0, 1], ensuring
that the TS assigns a higher input priority when the APFD

(12)

6. https:/ / github.com/swf1996120/RTS
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TABLE 11
The performance of RTS in adversarial examples. Values highlighted in

red and blue indicate the best and second best.

Baseline LeNet-5 ResNet-20 VGG-16 VGG-16  ResNet-32 ResNet-20

MNIST Fashion CIFAR SVHN CIFAR-100  Caltech-101
ATS 0.5811 0.5684 0.5487 0.5743 0.5011 0.5366
LSA 0.6177 0.5766 0.5477 0.5405 0.5127 0.5634
Maxp 0.5908 0.5778 0.5422 0.5875 0.5210 0.5416
CLUE 0.5069 0.5160 0.4914 0.5123 0.4982 0.5031
NAC 0.4996 0.5000 0.4991 0.4994 0.4991 0.5045
RTS | 0.6016 0.5722 0.5680 0.5884 0.5178 0.5490

value approaches 1 and a lower selection priority as the
APFD value nears 0.

Results. Table 11 presents the performance of TS methods
on the six datasets, with the best results highlighted in
red color and the second best highlighted in blue color
for each dataset. Among them, NAC and CLUE exhibit the
poorest performance, while LSA, Maxp, and RTS demonstrate
advantages on different datasets. RTS achieves the best or
second best APFD values in most cases. Specifically, RTS
achieves the highest APFD values on VGG-16&CIFAR and
VGG-16&SVHN. RTS ranks second best on LeNet-5&MNIST,
ResNet-32&CIFAR-100, and ResNet-20&Caltech-101, with a
minor difference of 0.0161, 0.0032, and 0.0144 from the best
performance, respectively. In RTS, suspect test inputs can be
selected by aggregating predictions from multiple similar test
inputs. This voting mechanism is designed to alleviate the
model’s prediction limitations, specifically in cases involving
adversarial samples with high confidence levels. RTS aims to
achieve consensus among similar inputs, thereby filtering out
misleading predictions caused by adversarial perturbations
or model vulnerabilities. By aggregating predictions, RTS
effectively identifies and prioritizes suspicious test inputs
that exhibit inconsistencies or ambiguities in their prediction
labels. In conclusion, RTS shows competitive performance
compared to other advanced TS methods in adversarial
sample scenarios. Future work will focus on investigating
RTS'’s performance on large-scale datasets and models under
adversarial attack scenarios.

7.5 Reasons for Improvement of Effectiveness

In the RQ1 and RQ2, we explore the effectiveness of RTS by
comparing it to 14 baseline methods. The promising results
show that RTS is more effective. This improvement can be
attributed to three key aspects, each alleviating a specific
issue that has impeded the progress of existing uncertainty-
based TS methods.

(1) The presence of noisy data in the candidate test set
can significantly impact the failure detection capability of
TS methods (as shown in Table 1). However, in practical
scenarios, it is challenging for testers to determine the pres-
ence and extent of noise. Besides, existing TS methods do not
propose strategies to handle test selection scenarios involving
noisy data. Therefore, we design an adaptive filtering test
noise method by comprehensive evaluating local and global
information of image. The results in Table 8 demonstrate that
the anti-noise component of RTS effectively identifies noise,
with AUC results exceeding 0.70 even for complex datasets
like CIFAR. Ablation experiments corroborate that RTS can
filter noise to mitigate its detrimental effects and enhance
overall effectiveness.



(2) Existing TS methods use hidden layer information
or output probabilities to select failure test inputs near
the decision boundary. However, DNN models also have
strong confidence for some false predictions [19]. Moreover,
adversarial input generation techniques, such as C&W [75],
aim to generate test inputs that maximize the probability of
error classes. These failure-revealing test inputs often lie far
from the decision boundary, making existing TS methods less
effective or even inapplicable. In contrast, RTS introduces
a novel testing perspective by leveraging the class labels of
similar instances of test inputs to identify suspicious test
cases. Despite the high classification confidence displayed
by these failure-revealing test inputs, their class labels are
inconsistent with those of similar instances. As a result,
RTS can assign a higher test priority to these test inputs.
The ablation experiments provide further evidence that the
removal of Component 2 results in a varying degree of
decrease in the failure detection performance of the RTS.

(3) The probability-tier-matrix-based test metric in RTS
offers several advantages over other TS techniques: 1) Con-
sideration of both test input uncertainty and diversity: The
proposed test metric in RTS can utilize both uncertainty and
diversity aspects when selecting test inputs. The selected
inputs can cover a wide range of scenarios and capture
different aspects of the model’s behavior. 2) Discretization
of prediction probabilities: By leveraging the probability
tier matrix, the discretization process serves two primary
functions: it discerns and highlights significant variations in
output probabilities and also standardizes these probabilities
inherently. In real-world scenarios, training datasets may ex-
hibit imbalances across categories, resulting in varied sample
sizes among them. Such discrepancies induce models to be
overly confident in well-represented classes, while showing
reduced confidence in sparsely represented ones. However,
the inter-class output probability differences can be coun-
terproductive, especially during cross-class comparisons,
leading the TS method to habitually lean towards the lesser-
represented classes. Through discretization, we transition
from potentially biased raw probabilities to standardized
intervals, ensuring a consistent and equitable comparison
of the model’s predictions across all categories. 3) Class-
level combination coverage: RTS introduces the concept
of class-level combination coverage based on the probabil-
ity tier matrix. By exploring different output probability
combinations in the selected test inputs, RTS can realize
the complexity and richness of the test output. Despite the
state-of-the-art ATS proposes the concept of fault pattern to
achieve diversity in test inputs, but compared to RTS, ATS
has the following limitations: 1) Limited applicability: ATS
is designed specifically for classification tasks with class
labels greater than 3; 2) Computational complexity: for m-
class classification tasks, ATS needs to compute two-by-two
combinations among m — 1 classes to obtain the fault pattern
in each sub-output space. For complex datasets, such as
ImageNet, the computational complexity is significant.

7.6 Limitations of RTS
7.6.1  Similarity Assumption

Component 2 is proposed based on an intuition that class
labels of instances similar to the test input can guide the
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identification of suspicious test inputs. Admittedly, this
assumption may not hold true in all cases within image
classification and computer vision tasks, especially in en-
tangled datasets where deep learning models may struggle
to recognize recurring data patterns. As a result, achieving
class label consistency for similar instances may not always
be possible, resulting in some successful test cases being
classified in the SPS. Nevertheless, we propose Component
3 to prioritize the inputs in the SPS, trying to rank successful
test inputs towards the end. Moreover, in all 48 experimental
configurations, we demonstrate that Component 2, which
is based on the intuition mentioned above, can enhance the
failure detection performance in most cases. Furthermore,
in this paper, we would like to convey the message that
making use of the relationships between test inputs can
further complement existing test criteria and derive new
test selection methods. Our evaluation is performed on a
relatively low-dimensional dataset, and we hope that our
work can be used as a starting point for test selection in
higher dimensional and more complex datasets.

7.6.2 SSIM-based Noise Filtering Component

While the SSIM-based noise filtering component (i.e., Com-
ponent 1) demonstrates effectiveness in reducing noise (refer
to Table 8), it falls short of achieving metrics surpassing
the 90% threshold overall. This limitation indeed impacts
RTS’s failure detection performance to a certain extent.
From Table 9, RTS achieves the fifth-best failure detection
performance among 15 methods on noiseless candidate sets,
regardless of the selection rate. One plausible explanation
for RTS not achieving peak failure detection on noiseless
candidate sets is the SSIM-based noise filtering component
incorrectly classifies valid test inputs as noise, potentially
containing some failure-revealing test inputs. However, de-
spite this, RTS still manages to attain significant performance
improvements on the noisy candidate sets (Tables 5 and 6),
demonstrating that Component 1 effectively enhances the
robustness of RTS in candidate sets with noise. Given the
benefits of RTS on noisy sets and achieving the best or second-
best model optimization results on noiseless candidate sets,
we maintain our recommendation for RTS as the preferred
test selection method based on the experimental results,
regardless of whether the candidate set contains noise or not.
Furthermore, we recognize that developing more advanced
and comprehensive noise filtering algorithms holds promise
for enhancing the effectiveness of RTS. This avenue will be a
central focus of our future research efforts.

Moreover, we employ the p-hash and SSIM algorithms
to evaluate image similarity. In fact, while both p-hash and
SSIM are sensitive to some transformations, these algorithms
have different sensitivities. The p-hash algorithm can find
similar local structures and demonstrates robustness against
transformations like lighting and rotation by leveraging the
local information of an image. While SSIM is more suitable
for capturing global structural similarities. By sequentially
integrating these algorithms, we can assess image similarity
in a wider range of application scenarios, covering both
local and global information. However, we acknowledge
the challenge of comprehensively capturing all types of
transitions using just p-hash and SSIM. This aspect will be



a focus of our future work, as we endeavor to explore more
comprehensive guidelines for assessing test input similarity.

7.6.3 RTS’s Application

As explained in Section 4.1, our approach is primarily
designed and evaluated for image classification models.
The current form of RTS may not be directly applicable
to regression models due to the distinct objectives and
evaluation metrics employed in classification and regression
tasks. Classification models aim to categorize data into
discrete classes, while regression models focus on predicting
continuous values or estimating variable relationships. The
specific techniques and strategies utilized in our method,
such as the probability tier matrix for quantifying test input
diversity, may require adaptation or replacement to align
with the requirements of regression tasks. Future research
should explore and develop specialized methods and tech-
niques tailored to the unique characteristics of regression
tasks, such as utilizing model interpretability approaches.

8 THREATS TO VALIDITY

In this section, we examine potential threats to our paper’s
validity.

8.1 Threats to Validity

Threats to internal validity pertain to factors within our study
that have the potential to impact our findings.

Similarity metric selection. This paper adopts SSIM as
the similarity metric to filter out the noisy data since SSIM
can provide acceptable visual agreement and computational
overhead. However, SSIM is an image quality metric. Cur-
rently, RTS cannot be directly applied to non-image type
datasets, such as text, video, and audio. But we believe that
RTS can be easily migrated to non-image classification tasks
by changing the way we calculate the similarity. For example,
for text-type test inputs, we can obtain each test input’s
feature representation by large-scale pre-training models and
use cosine distance as a similarity criterion.

Parameters settings. For hyperparameters, k is important
because it determines how test inputs are identified as
successful or suspicious and impact the performance in
identifying noise. Large k value can improve the precision of
identifying noise and suspicious test inputs but lead to high
computation overhead. We experimentally find that k = 5
can have satisfactory cost-effective performances. Regarding
randomness, we repeat 3 times per experiment to ensure
reliable results. In our study, the choice to introduce 20%
pollution to simulate real-world situations raises a potential
threat to the validity of our results. The introduction of
20% pollution is a design decision (that follows previous
work [15]) to strike a balance between disrupting the data
and maintaining its essential characteristics. To mitigate the
threat and improve the validity of our study, we conduct
experiments on different datasets and models, and the results
all show the superiority of RTS. In future research, we will
consider exploring different levels of pollution, evaluating
the approach on diverse datasets with varying characteristics,
and conducting sensitivity analyses to assess the robustness
of the RTS to different pollution thresholds.
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8.2 Threats to External Validity

External validity pertains specifically to the extent to which
our experimental results can be generalized.

Test subject selection. The main threats to validity come
from the datasets and DNN models. We can not claim that
the dataset and DNN models used in this work can be
representative of all datasets and DNN models. However,
the adopted datasets and DNN models are well-known and
typical, and are widely-used in test-selection-related research.
Besides, for each dataset, we utilize two DNN models with
different architectures to evaluate the performance of RTS.
Following the previous works [9], [10], [12], [15], we focus
on DNN classification tasks, and generative tasks will be one
of our future works.

Image transformation. In our experiments, we utilize
seven data augmentation operators to generate additional
test inputs and construct the candidate test sets. However,
this would introduce the potential threat of label incon-
sistency between the transformed images and the original
images. For example, the rotation operation may cause the
number 6 (9) to become 9 (6) in the MNIST dataset. To miti-
gate this threat, for the configurable parameters of the image
transformation techniques, we strictly follow the authors’
suggested settings or adopt the default settings [10], [15],
[57]. Furthermore, in order to ensure semantic consistency,
we employ three volunteers to conduct a thorough check of
the transformed images. By implementing these precautions,
we can minimize the risk of label inconsistency and enhance
the reliability of our experimental results.

Noise data construction. Other threats to validity arise
from the fact that existing publicly available image datasets
are meticulously labeled and collected, typically devoid of
noisy or invalid data. In order to investigate the perfor-
mance of TS methods in real-world scenarios involving
the presence of invalid data, we have to design several
data contamination scenarios. These scenarios are chosen
to be diverse, encompass four different types, and have
been widely adopted in previous studies [15]. However, it is
important to acknowledge that these artificially constructed
contamination scenarios may not fully capture the complexity
and variability of real-world noisy data. The performance
of TS methods on such real noisy datasets remains an area
for future exploration. It is crucial to dedicate efforts to
constructing and collecting datasets that contain invalid data
in realistic scenarios. This will enable us to further investigate
the performance of RTS and other TS methods in real-world
scenarios.

9 RELATED WORKS

This section introduces the related works on two aspects of
test selection: test selection for DNNs and test selection in
traditional software.

9.1 Test Selection for DNNs

In the past few years, many test selection metrics have been
proposed to reduce the labeling effort. On the one hand, Li et
al. [61] view the idea behind traditional structural coverage
as conditioning for variance reduction. Inspired by this
insight, they propose a stratified sampling method CSS based



on the model prediction confidence and a cross-entropy-
based sampling method CSE. After that, Zhou et al. [77]
propose DeepReduce based on a two-phase strategy. First,
DeepReduce selects test inputs satisfying testing adequacy.
Then, more test inputs would be selected to approximate
the distribution between the entire test set and the selected
set by leveraging relative entropy minimization. Recently,
Chen et al. [68] propose a new accuracy estimation method,
namely PACE. PACE first uses cluster analysis to divide
the test inputs into different groups. Then, PACE uses the
MMD-critic algorithm [78] to select prototypes from each
group according to the group size. Also, PACE draws on the
idea of adaptive random testing to choose test cases from
minority spaces to achieve test case diversity. The above-
mentioned works focus on selecting data that can be used
to estimate model performance and represent the entire set.
As the chosen test set is usually small-scale and achieves
comparable evaluation performance to the original test set, it
can significantly reduce the overhead of labeling and save
model evaluation time. In this paper, we use CES, which
is representative among the above-mentioned test selection
methods, as our benchmark. Experimental results show that
such type of test selection cannot effectively identify failure-
revealing test inputs and have limited model optimization
performances. In contrast, RTS aims to select data more likely
to be incorrectly classified by the model and then retrain a
better model with the selected data.

Additionally, Kim et al. [16] utilize the similarity between
the training set and test inputs to propose the surprise-
guided testing metrics, which measure how surprising or
out-of-distribution the DNN activations for a given test input
are compared to the activation observed on the training set.
The surprise-based TS methods select test inputs as close
to the DNN decision boundary as possible. As discussed
in Section 3.2, such methods cannot select failure-revealing
test inputs that far away from the decision boundary of
DNN. Compared to these surprise-based TS methods, RTS
further considers the relationships between test inputs and
similar instances for better selection and experimental results
show RTS achieves better failure-revealing capability. For the
adversarial robustness of DNNs, Wang et al. [79] propose
robustness-oriented testing metrics as well as selection met-
rics. However, their metric can only be applied to adversarial
attacks. Wang et al. [19] propose a new selection approach
via mutation analysis. They use both image mutations and
DNN model mutations to select test inputs that are likely to
reveal DNN bugs, and hence require the inner information
of the model. However, releasing the inner information of
the DNN model may lead to serious consequences, such as
model inversion attacks [79]. In contrast, RTS is black-box
TS method and achieves good failure detection performance
using only the training samples and the output probabilities
output by the model. Thus, RTS is considerably more
practical. Recently, Gao et al. [15] propose a novel adaptive
test selection method (ATS) that is useful to guide model
retraining and achieve promising results. Compared with
ATS, RTS can better handle noise in candidate test inputs
and achieve better performance. Besides, RTS is suitable for
any classification task, whereas ATS cannot select test inputs
for binary classification models.
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9.2 Test Selection for Traditional Software

In traditional software testing, test selection refers to selecting
and executing test cases that are affected by software changes
in regression testing since the execution results of the test
cases that are not affected by code changes should not
change [80]. Therefore, test selection is not only temporary
(i-e., selection result changes with the evolution of the project)
but also is modification-aware (i.e., concerns the modified
parts of the program), typically involving a white-box static
analysis.

To this end, various approaches have been proposed
using different criteria. According to the descriptions of Yoo
and Harman [76], the test selection can divided into following
parts: Integer Programming [81], data flow analysis [82],
symbolic execution [83], CFG graph-walking [84], dynamic
slicing [85], textual difference in source code [86], path
analysis [87], SDG slicing [88], modification detection [89],
firewall [90], CFG cluster identification [91] and design-
based testing [92]. Later, For Java projects, Gligoric et al. [93]
propose a file-level dynamic test selection method through
the changes of bytecode class files. Legunsen et al. [94]
evaluate and compare different static test selection methods
on 986 revisions of 22 open-source projects. Zhang [95]
combine the strengths of existing dynamic test selection
methods at different granularities to propose the first hybrid
approach. Guizzo et al. [96] use the regression test selection
techniques as a core component of the GI (i.e., genetic
improvement, an artificial intelligence technique improving
a given property of an existing software [97]) search process
and demonstrate test selection can speeds up the whole GI
process.

10 CONCLUSION AND FUTURE WORK

In this paper, we propose RTS, a robust test selection for deep
neural networks. Considering noisy data in real scenarios,
RTS combines retrieval and structural similarity index to
filter noisy data. Besides, RTS utilizes class information
of similar instances of test inputs and majority voting to
effectively distinguish suspicious and successful test inputs.
Subsequently, we introduce probability tier matrix and
design a novel test metric. We propose a fitness function
to determine which test in the candidate set is more suitable
to be labeled. The experimental results demonstrate that
RTS can identify more failure-revealing test inputs within a
limited selection size. Additionally, the selected test inputs
can be utilized to retrain the model to improve the quality of
the model. Different from current test selection methods
using prediction probability or neuron activation state,
RTS explores the use of relationships between test inputs
and their similar instances to identify failure-revealing test
inputs, which provides a new perspective for subsequent TS
methods. We expect that RTS can inspire testers to propose
more robust TS methods to deal with more complex test
scenarios. Limited by our noise identification method, RTS
may be more suitable for images. In the future, we will
propose a general noise identification method to expand
the kind of data that RTS can be applied to. Following
the previous works [9], [10], [12], [15], we focus on DNN
classification tasks, and generative tasks will be one of our
future works.
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