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a b s t r a c t

Pixelization is arguably one of the most well-adopted deterministic obfuscation techniques for privacy
preservation purposes. Although the recovery of pixelized faces is underexplored, the powerful deep neu-
ral networks might combat this problem in a data-driven manner. As a consequence, an unbreakable pix-
elization approach is desired. To achieve this goal, in this paper, we delve into two contradictory
problems of unrecoverable pixelization and its counterpart, depixelization, by leveraging the best recov-
ery to strengthen the robustness of the unrecoverable pixelized patterns. In particular, on the offensive
end of recovery, we combat the large and continuous nature of pixelized regions by proposing two strate-
gies, 1) an iterative depixelization network that progressively decomposes and predicts the pixelized
regions and thus outer results are used to support inner inferences; 2) a dynamic dilated convolution
operation is proposed to stride over the redundant identical pixels from the same pixelized region,
enabling the network to adaptively extract valid feature representations. We show that our tailored
depixelization method significantly outperforms several baselines or inpainting approaches by over 1.0
FID and 2% ID-SIM improvements on CelebA dataset which includes 182,732 human face images, and
therefore we study how to defend this advanced recovery and produce unrecoverable pixelized patterns.
To balance the visual perception and robustness of pixelization, we propose to generate two types of
adversarial examples, pixel-wise and block-wise perturbations, which make different trade-offs between
quality and robustness. By deploying our depixelization network in a semi-whitebox setting, our pixeliza-
tion method can generate imperceptible perturbations while being robust to depixelization.

� 2022 Elsevier B.V. All rights reserved.

‘‘Attack is the secret of defense; defense is the planning of an
attack.”

— Sun Tzu, The Art of War

1. Introduction

Ubiquitous surveillance cameras and mobile devices capture a
massive amount of image data everyday. While this amount of
data may be beneficial to applications like smart city, it also cap-
tures the sensitive individual information like identities. Image
obfuscation, e.g., pixelization or mosaic, is arguably the most

widely-used technique to preserve identity privacy, as it can
obscure sensitive information while leaving basic image content
perceivable (unlike cropping out).However, pixelization procedure
still leaves a small amount of information, which keeps a possibil-
ity of recovering the pixelized face images to its original appear-
ance. With the development of deep learning, neural networks
have been widely used in neuroscience and computer science.
LSTM has a powerful ability to analyze and process time series
data, and CNN is able to handle a wide variety of image tasks.
Large-scale data, the model parameters and the capability of the
features paly an important role in deep learning [1,2]. Although
no previous attempt has been made to recover a pixelized face,
deep neural network is a potential solution due to its ability in
‘‘synthesizing” plausible faces [3,4].

To avoid the leak of pixelized identity, in this paper, we aim to
develop a pixelization approach that provides rigorous privacy
guarantees. Following the spirit of ‘‘the best defense is a good
offense”, we study two contradictory problems, pixelization and
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depixelization, to evolve an unrecoverable pixelization approach
with a better depixelization model (see Fig. 1). For the offensive
end of depixelization, the main barrier is the large, continuous,
repetitive pixelized regions. The inference of a pixelized face
requires building the correlation between blurred blocks and their
surroundings, but repetitive pixels may provide redundant and
even invalid feature representations. We overcome this barrier
from two aspects. First, instead of inferring the pixelized face in
one shot, we propose an iterative depixelization network that pro-
gressively recovers the original face. More importantly, unlike the
progressive models in other applications performed in the image
space [5–7], we model this iterative process as a feature recovering
problem. In this way, we inject outer predictions as the clues for
inner inference at each step, meanwhile avoiding the distortions
from multiple inter-space transformations. Cross-stage attention
and fusion are proposed to fully propagate the in-process informa-
tion to every stage. Second, we combat the problem of large repet-
itive pixelized block by presenting a novel dynamic dilated
convolution operation. Traditional convolution operation has a
small kernel size that cannot stride out the pixelized block, and
the dilated convolution works with a larger receptive field but
may skip the important neighboring face regions. Instead, our
dynamic dilated convolution operation can adaptively adjust the
dilation rate, such that a larger receptive field can be obtained in
pixelized regions while a smaller stride is used for face regions.
Extensive experiments demonstrate that the proposed depixeliza-
tion method significantly outperforms several baseline models as
well as state-of-the-art inpainting architectures.

Our tailored depixelization model is further deployed as the
‘‘attacker” for our pixelization model. We aim to adversarially gen-
erate small perturbations on the pixelized regions such that our
depixelization model cannot recover the original identity success-
fully. For this purpose, we devise two types of adversarial exam-
ples, pixel-wise and block-wise perturbations, to balance the
visual quality and robustness of pixelization. We demonstrate that
the proposed pixelization methods are unrecoverable and can be
integrated to arbitrary depixelization models.

In summary, our contributions are threefold:

� We present the first attempt to recover a pixelized human face.
To this end, we propose an iterative depixelization network
with dynamic dilated convolution, both two elements are tai-
lored for recovering large and repetitive pixelized regions. The
iterative depixelization network recurrently recovers the pix-
elized boundaries and then uses the inferred intermediate
results as additional information for further recovery.

� We present the first attempt to generate unrecoverable pix-
elized patterns. Two types of perturbations are proposed and
both of them are robust to depixelization.

� We delve deep into both the face depixelization and pixeliza-
tion. Extensive experiments show that the proposed depixeliza-

tion and pixelization approaches outperforms several baselines
and state-of-the-art architectures by a large margin. We
demonstrate the first feasible privacy-preserved pixelization
solution.

The remainder of this paper is organized as follows. We review the
relevant approaches including image inpainting, image super-
resolution and adversarial examples in Section 2. After that, we
elaborate the proposed depixelization method named Iterative
Depixelization Network in Section 3. And our adversarial pixeliza-
tion approach including pixel-wise perturbations and block-wise
perturbations are described in Section 4. Evaluations from extensive
experiments are provided in Section 5, and we conclude the paper
in Section 6.

2. Related Work

As we are the first to address the problems of human face depix-
elization and unrecoverable pixelization,we discuss the most rele-
vant researches in this section, including image inpainting, image
super-resolution, and adversarial examples.

2.1. Image Inpainting

Image inpainting aims to recover the missing regions of a given
damaged or deteriorating image, which shares a similar objective
to depixelization. Recent researches mainly apply deep neural net-
works to synthesize the missing regions. Context-encoder [8] first
apply a conditional GAN [9] to generate large missing regions with
exquisite details. Iizuka et al. [10] adopt local and global discrimi-
nators to ensure both the local continuity and the global composi-
tion of the scene. Liu et al. [11] introduce the partial convolution
layer to inpaint irregular missing holes, which classifies pixels as
valid/invalid to make better use of the original image information.
Yu et al. [12] devise the gated convolution to utilize pixels informa-
tion with a learnable mask. Liu et al. [13] propose to mutually learn
the representations of structure and texture for generating coher-
ent image content. Unlike image inpainting that focuses only on
the surrounding pixels, depixelization has a unique emphasis on
the blurred information in the pixelized regions, leading to a com-
pletely different design principle.

2.2. Image Super-resolution

The purpose of image super-resolution is to reconstruct a corre-
sponding high-resolution image from its low-resolution image.
Considering the pixelized faces as low-resolution images, recover-
ing the original identity can be also treated as upsampling with a
ultra high scaling factor. A shallow three-layer CNN is firstly pro-
posed by Dong et al. [14] to learn a LR-HR mapping. Kim et al.
[15] introduce a 20-layer CNN based on residual learning for utiliz-

Fig. 1. We study two contradictory problems of depixelization and unrecoverable pixelization. We first tailor an iterative depixelization network with dynamic dilated
convolution (result shows in (c)), both have a consistent aim to extract valid feature representations over the large and continuous repetitive information of pixelized regions.
By taking this advanced recovery model in a semi-whitebox setting, we next propose a robust pixelization approach to defend depixelization (as shown in (d) & (e)).
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ing more contextual information. Lim et al. [16] devise a deeper
and wider network by stacking modified residual blocks [16]. Fur-
thermore, MemNet [17] and RDN [18], which are based on dense
blocks [19], focus on utilizing hierarchical features from convolu-
tional layers to achieve impressive performance. Different with
super-resolution which reconstructs the whole image just based
on low-resolution information, depixelization utilizes low-
resolution information in pixelized regions and high-resolution
information around pixelized regions to generate more realistic
images. Thus, depixelization could be regarded as a combination
of image inpainting and image super-resolution. To the best of
our knowledge, we are the first to study the depixelization task.

2.3. Adversarial Examples

Deep neural networks have been demonstrated to be vulnerable
to adversarial examples by adding imperceptible perturbations to
input images, which can mislead the network to predict wrong
results. Previous research on adversarial attacks mainly focus on
classification model [20,3,21–23], but paid less attention to gener-
ative models such as image-to-image translation task [24]. In addi-
tion, a number of adversarial attack strategies are gradient-based
[3,22,23,25] or optimization-based [26–28], which need to have
white-box access to the architecture and parameters of the model.
While for generator-based strategies [29,4], once the network is
trained, it could instantly produce adversarial examples without
requiring access to the model. We adopt the latter strategy for gen-
erating unrecoverable pixelized patterns.

3. Depixelization Approach

3.1. Overview

Fig. 2 show the pipeline of our proposed depixelized method.
Inspired by deep learning, we design a nerual network model
which is able to restore the pixelized images after training by feed-
ing plenty of ground-truth-pixelized image pairs. It can restore
faithful and realistic images from pixelized images without any
help of ground-truth during testing. Given a pixelized face input,
we propose a depixelization model named Iterative Depixelization
Network that could progressively recover a pixelized human face.
Since the pixelized regions may always be large and continuous,
restoring the entire image in one shot would lead to an ambiguous
result due to the lack of valid information. In contrast, our method
separates the depixelization process into several stages. At each
stage, the network predicts a depixelized boundary of the pixelized

area which is then to be shrunk and updated for the next stage. In
this way, each outer prediction could provide additional cues for
inner inference, facilitating a final realistic and natural
reconstruction.

Our model consists of two modules, including a Dynamic Fea-
ture Recovering (DFR) Module and a Cross-stage Fusion Module.
The former one is used to recurrently repair the boundary of the
pixelized area as well as shrinking it at each stage. To reinforce
the ability of DFR module in inferring semantic content, we also
embed a cross-stage attention mechanism into it. And the latter
one is designed to organically merge all the generated intermedi-
ate feature maps from DFR module at each recurrence to produce
a final result. The pipeline of our depixelization approach is illus-
trated in Fig. 3. (See Fig. 4).

Except for the framework, we also present a new convolution
operation, named dynamic dilated convolution. This operation is
proposed to cope with the problem of repetitive pixels in the
neighboring pixelized regions. It can adaptively adjust the dilation
rate of the convolution, locating the most discriminative features
of the pixelized faces.

To train our network, we need to first obtain pixelized/non-
pixelized image pairs. Different with other corrupted image
inverse problems (e.g., image inpainting), image depixelization is
commonly without any indicated mask of the missing or invalid
region. In order to provide the hint on the pixelized regions, we
synthesize the training samples with the aid of a specific binary
mask that labeled the pixelized region and non-pixelized region
with 0 and 1. Note that such a mask could be provided by users,
or obtained by performing plain grouping/clustering methods on
pixelized images. Below we will elaborate the architecture of our
depixelization network and the tailored dynamic dilated convolu-
tion operation.

3.2. Iterative Depixelization Network

Dynamic Feature Recovering Module. As shown at the top of
Fig. 3, the DFR module is our main backbone to recover the pix-
elized faces. Particularly, we utilize this module for the repeated
inferences in different recurrences. Such a module is able to restore
semantic content in specific regions of different depixelization sub-
tasks. We first cascade several Dynamic Dilated Convolutional lay-
ers (which would be explained detailedly in Section 3.3) to
integrate the features of non-pixelized and pixelized regions. With
the introduction of such layers, the duplicated information in the
pixelized region would be reduced, and the spatial distant valid
features in the non-pixelized region can be fully exploited. Mean-
while, these layers could help to mark the recovered area in the

Fig. 2. Overview of our proposed depixelized methods based on deep learning.
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current recurrence and update the mask of the pixelized region.
After that, we place an encoder-decoder network composed of sev-
eral convolution layers with skip connection to generate high-
quality features in pixelized region for efficiently inference. Finally,
the predicted result would be fed into the next recurrence for fur-
ther recovery.

Cross-stage Attention. Convolutional neural network with fil-
ters focus on the local texture details but hardly take into account
the global semantic information in image processing task. Espe-
cially for large region reconstruction, it is inefficient in capturing
features from distant spatial locations. The attention strategy
which borrows reasonable features from the known regions to gen-
erate patches in unknown regions is a solution to address this
issue. However, existing attention mechanisms are unsuitable for
our model since they just take effect in individual recurrence.

In order to reconstruct the high-quality feature maps, we pre-
sent a novel attention module named Cross-stage Attention which
adaptively combines the attention scores from every recurrence.
The attention applied to patches swapping passes across the whole
depixelization process to enhance the consistency among different
recovering stages. We follow the attention strategy in [8] to calcu-
late each component of the proposed attention map, and let scorei
denotes the attention score map in the ith recurrence, then the
attention score map in the next recurrence scoreiþ1 is the weighted
sum of scores in previous recurrences, which is formulated as
follows:

scoreiþ1 ¼ kiþ1 ^scoreiþ1 þ 1� kiþ1ð Þscorei; ð1Þ
where kiþ1 is a learnable parameter, and ^scoreiþ1 indicates the corre-
sponding attention map of the current recurrence before the
weighted average operation.

Cross-stage Fusion Module. DFR module would generate sev-
eral groups of intermediate feature maps. To produce explicit
depixelized results, just utilizing the features at the last recurrence
only would lead to a gradient vanishing problem. On the other
hand, directly summing up all the features for reconstruction
would make the result ambiguous. Therefore, we design a Cross-
stage Fusion module to adaptively combine all intermediate fea-
ture maps. The feature values in pixelized regions of each group
of feature maps have no contribution to the depixelized result
and should be firstly discarded before feeding into this module.
Then the feature maps that only contain valid values are smoothly
merged for further recovery. Specifically, let Fi denotes the features
generated by DFR module and Mi denotes the corresponding bin-
ary mask which identifies the pixelized and non-pixelized regions
in the ith recurrence, then the final features F for reconstruction
are calculated by averaging all the intermediate feature maps as
follows:

F ¼

XN
i¼1

Fi �Mi

XN
i¼1

Mi

; ð2Þ

where � denotes element-wise multiplication, and N denotes the
number of recurrences. The division operation here is element-
wise division rather than matrix division.

3.3. Dynamic Dilated Convolution

In pixelized images, the embed information in the non-
pixelized regions is very rich, while that is extremely sparse in

Fig. 3. Overview of our Iterative Depixelization Network. We resolve the large and repetitive nature of the pixelized region by decomposing it intro several sub-regions, such
that previous inferences can be used as clues for next stages. A cross-stage attention module is used to inherit stage-specific information, and all side-outputs are integrated
by a cross-stage fusion module into the final prediction.

Fig. 4. Illustration of different convolution operations. Due to the large and
repetitive pixelized regions, vanilla convolution extracts redundant pixelized
information, while dilated convolution skips surrounding face information. Our
dynamic dilated convolution adaptively adjusts the dilation rate, optimizing the
extracted features from both face and pixelized regions.
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the pixelized areas. This implies that it is not suitable to use vanilla
convolution operation to capture features, since the values in pix-
elized and non-pixelized regions should not be treated equally.
Besides, vanilla convolution is usually limited in the size of its
receptive field, such that could not fully consider spatial
dependencies.

As for dilated convolution [30], which expands receptive field
by skipping pixels in feature maps without increasing the filter
size, focuses on excavating global structural information of the
whole features. Even such a strategy could be helpful to integrate
the sparse information in pixelized regions, it ignores certain val-
ues in the non-pixelized areas, resulting in a loss of feature details.

To tackle such problems, we propose a novel convolution oper-
ation named Dynamic Dilated Convolution. It consists of a vanilla
convolution operation over non-pixelized regions and a dilated
convolution operation over pixelized regions, and thus integrates
rich non-pixelized representations and sparse pixelized informa-
tion to depixelize pixelized images with exquisite details. Specifi-
cally, the dynamic dilated convolution operation in the iþ 1ð Þth
recurrence can be formulated as follows:

X0 ¼ WT
vanilla X � Siþ1ð Þ þWT

dilated X � 1� Siþ1ð Þð Þ; ð3Þ

where X and X0 respectively denote the input and output features in
the current convolution sliding window, e.g., X is a 3� 3 feature
map if the kernel size of the convolution operation is
3� 3;Wvanilla and Wdilated respectively indicate the vanilla part and
the dilated part of the convolutional filter. The superscript T denotes
the matrix transposition operation. And Siþ1 is the binary mask of X,
which is sampled from the maskMi according to the location of X in
the whole feature map, with 1 for identifying non-pixelized regions
and 0 for pixelized ones.

At the same time, we will update the mask Miþ1 as follows: if
there is any non-pixelized pixel in the sliding window, then we
mark all pixels in this window to be non-pixelized, that is

m0 ¼ 1; if sum Siþ1ð Þ > 0;
0; otherwise;

�
ð4Þ

where m0 denotes the values inside the corresponding window of
the mask Miþ1. In this way, the mask M will be shrunk after each
recurrence and finally we can recover the whole pixelized image.

3.4. Loss Function

The goal of our depixelization network is to recover pixelized
images in both local details as well as global plausibility. Thus,
we consider to optimize our depixelized model from two aspects,
that is, a pixel-wise accuracy and a perceptual consistency. Let
H;W , and C respectively denote the height, weight, and channel
size of the corresponding image or feature map, IGT denotes the
ground truth image while Ipred indicates the predicted depixelized
image by our depixelization network, M denotes the binary mask
of input image identifying non-pixelized and pixelized regions
with 1 and 0 respectively. We first define the losses of a pixel-
wise accuracy respectively in pixelized and non-pixelized regions,
which are formulated as follows:

Lpixelized ¼ 1
HWC

jj IGT � Ipred
� �� 1�Mð Þjj1; ð5Þ

Lnon�pixelized ¼ 1
HWC

jj IGT � Ipred
� ��Mjj1: ð6Þ

Next, the perceptual loss [31] from an ImageNet-pretrained VGG16
[32] model is used. It compares the features generated by VGG16 of
the ground truth images with that of the predicted images, so that

the high-level information (texture, content, and global structure)
can be maintained. The perceptual loss can be expressed as follows:

Lperceptual ¼
X3
i¼1

1
HiWiCi

jj/GT
i � /pred

i jj1; ð7Þ

where /�
i denotes the output feature maps of the ith selected pool-

ing layer (in our case they are pool 1, pool 2 and pool 3 layers) in the
fixed VGG16 when given IGT or Ipred.

We also adopt the style loss which can be written as:

Lstyle ¼
X3
i¼1

1
Ci � Ci

jj 1
HiWiCi

/GT
i /GT

i

� �T � /pred
i /pred

i

� �T
� �

jj1: ð8Þ

The total variation (TV) loss which aims to smooth images is the
final term of our objective, that is:

LTV ¼ 1
HWC

X
h;w;c

jjIh;wþ1;c
pred � Ih;w;c

pred jj1 þ jjIhþ1;w;c
pred � Ih;w;c

pred jj1: ð9Þ

where Ih;w;c
pred denotes the pixel value at the location of h;wð Þ in the cth

channel.
In summary, the total objective of our depixelization model can

be formulated as follows:

Ltotal ¼ kpixelizedLpixelized þ knon�pixelizedLnon�pixelized

þ kperceptualLperceptual þ kstyleLstyle þ kTVLTV : ð10Þ
where k� is the weight with respect to different loss terms.

4. Unrecoverable Pixelization

4.1. Problem Definition

Most of adversarial attack researches focus on image classifica-
tion task [3,23,26,29], which require the softmax probabilities cor-
responding to the confidence of classifying images to each label,
such that it can mislead the model to predict incorrect results. Dif-
ferent from the classification task, there is no quantitative layer
such as the softmax layer to directly affect the outcome quality
of image generation task. Considering that our goal is to pixelize
a face image so that it cannot be recovered by the recovery model,
we aim to add imperceptible noise for this purpose. As a conse-
quence, we define the distance between the model outcome and
its ground truth pixelized image as the adversarial attack objective
function.

Let Ipixelized be the pixelized face image of the ground truth image
IGT . Given G is the pixelized face recovery network, we can derive
Ipred ¼ G Ipixelized

� �
, where Ipred is similar with IGT . In the adversarial

setting, we aim to add some imperceptible noise d to Ipixelized for
misleading G to produce images similar with the original pixelized
face images visually. The misleading target can be varied, we
decide to maintain the original pixelized appearance due to the
clear and direct objective that can be easily trained. And a pixel-
wise constraint L1 is imposed on the misleading prediction Ipred0,
which is formulated as follows:

L1 ¼ jjIpred0 � Ipixelizedjj1; ð11Þ
where Ipred0 ¼ G Ipixelized þ d

� �
.

It is easy to apply gradient-based adversarial attack strategies
such as FGSM [3] or PGD [23] to generate adversarial examples,
but most of them are white-box attack which need to access the
architecture and parameters of the model all the time. Instead,
we aim to propose a more practical pixelization method that can
be widely applied to images or videos to help protecting sensitive
information without any constraint on the recovery model. There-
fore, a generator-based adversarial attack strategy is proposed in a
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semi-whitebox setting. It is able to produce adversarial examples
in the black-box setting in testing phase once the model is trained
in the white-box setting. In this setting, it is able to attack the
recovery network with a high success rate and adapt to other
recovery models. In addition, it can accelerate the producing pro-
cess and generate more natural and undetectable adversarial
examples. Let F denotes the adversarial generator and the process
of producing adversarial examples Ipixelized0 can be written as

d ¼ F Ipixelized
� �

;

Ipixelized0 ¼ Ipixelized þ d:
ð12Þ

To guarantee an imperceptible difference between adversarial
examples and the corresponding pixelized images, we use another
constraint L2 for the adversarial examples, that is

L2 ¼ jjIpixelized0 � Ipixelizedjj1: ð13Þ
And the whole objective for the generation of unrecoverable pix-
elized images is thus defined as follows:

Ladv ¼ k1L1 þ k2L2: ð14Þ
To balance the pixelization effect and robustness, we explore two
types of perturbations in the following.

4.2. Pixel-wise Perturbation

In order to maintain the functionality to preserve identity pri-
vacy of pixelization, the adversarial examples should be as close
to the original pixelized face image as possible. It is natural to gen-
erate imperceptible noises to the pixelized regions. It will seize the
weaknesses of the model and concentrate on sensitive regions so
as to destroy the recovery effects.

We design a convolutional encoder-decoder network to trans-
late pixelized face images into perturbation images, and then
merge perturbation images and pixelized face images to the get
adversarial examples (see Fig. 5a). During training, the pixelized
recovery network is fixed and placed after the adversarial genera-
tor, taking the adversarial examples as input and inferring desired
results (pixelized face images) to guide the process of generating
adversarial perturbations with the back propagation gradient.
Although pixel-wise perturbation can be easily trained to fool the
network, it is vulnerable to smoothing algorithms such as Gaussian
filter which is able to erase these tiny noises. We nextly explore
another alternative.

4.3. Block-wise Perturbation

Different from pixel-wise pixelization, block-wise pixelization
aims to generate block-wise noise of the same size as pixelized
grids. By adding the perturbation in block level to pixelized images,
the colors of some essential pixelized grids are changed slightly.

The block perturbation is more harmonious in visual and is hard
to be eliminated by smoothing algorithms.

Similar with the pixel-wise pixelization network, we propose a
convolutional encoder-decoder to generate block-wise adversarial
examples (see Fig. 5b). In order to craft perturbations in block-
level, we insert two resize layers, one is down-sampling layer
and the other is up-sampling layer, into the adversarial generator
to control the size of feature maps. In this way, the learned pertur-
bations are large enough to integrate into the input pixelized
regions.

5. Experimental Evaluations

We implement both the depixelization and pixelization algo-
rithms in Pytorch [33] on a PC with an Nvidia GeForce RTX
2080Ti GPU. Both two algorithms can be performed in real-time,
and depixelization takes 25 ms to recover a 256� 256 image,
and 2.8 ms to add perturbations.

Evaluation Settings. To evaluate our two models, we use the
CelebA dataset which contains 182,732 human face images. We
follow the original splitting, in which 162,770 images are used
for training and 19,962 images are used for testing. Regarding
the mask, we use a face detector and pixelize the face with a
128*128 binary mask for data generation, and provide a ground-
truth of it. We get the pixelized data by downsampling the face
regions of images to specific size and then upsampling it to the
original size with nearest neighbor algorithm. The specific size is
controlled by the pixelization ratio, calculated as specific size = orig-
inal size � pixelization ratio. We empirically define all the hyper-
parameters, we set
kpixelized ¼ 6; kunpixelized ¼ 1; kperceptual ¼ 0:05; kstyle ¼ 120, and ktv ¼ 0:1
in the Iterative Depixelization Network. Regarding the case of
pixel-wise perturbation, we set k1 ¼ 1 and k2 ¼ 3, while for the
case of block-wise perturbation, we set k1 ¼ 1 and k2 ¼ 8.

Both models are optimized by the Adam optimizer with
b1 ¼ 0:9 and b2 ¼ 0:999. The Iterative Depixelization Network is
firstly trained for 8 epochs with a learning rate of 0.0002, and then
finetuned for 2 epochs with a learning rate of 0.00005. The entire
training procedure takes 3 days on a PC with an Nvidia GeForce
RTX 2080Ti GPU. As for the perturbation models, with the learning
rate 0.0001, pixel-wise perturbation is trained for 2 epochs while
block-wise perturbation is trained for 4 epochs.

EvaluationMetrics. To evaluate whether a pixelized face is suc-
cessfully recovered or defended, we use two perceptual-based
metrics. Fréchet Inception Distance (FID) [34] computes the
Wasserstein-2 distance between the distribution of GT and output
images. Identity similarity (ID-SIM) is computed to examine
whether the recovered faces can be recognized as the same iden-
tity with the ground truth. We adopt a state-of-the-art face recog-
nizer [35] for computing this score. We also use two traditional

Fig. 5. Architectures used to generate two types of perturbations.
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metrics, PSNR and SSIM [36]. Although these two metrics cannot
measure semantic similarity, and PSNR even biases to blurry syn-
thesis, they are reported here to indicate the numerical gap
between our method and the perfect recovery.

5.1. Evaluations on Depixelization

5.1.1. Ablation Studies
We first evaluate the effect of pixelization settings in pixelized

images, as well as the contributions of different components of the
proposed depixelization model.

Effect of Pixelization Ratio. Pixelization results depend on the
pixelization ratio (i.e., block size) defined in advanced. It is of great
importance to have a general depixelization approach that can
handle arbitrary pixelization ratios in practise. Here we examine
different strategies for training our depixelization network with
respect to different pixelization ratios. Three strategies are used
to generate the training images. (1) Single, we use a fixed ratio of
0.1 to produce training images. (2) Multiple, we randomly select
one of three ratios (0.08, 0.1, 0.12) to generate the training data.
(3) Infinite, we select a random ratio ranging from 0.08 to 0.12.
All these strategies are tested on five ratios, and they are trained
with the same amount of data.

Table 1 shows the quantitative results of these three strategies.
For all strategies, images processed by smaller pixelization ratios
are more difficult to depixelize since there is not enough informa-
tion (larger block sizes) to recover to their original appearances.
Training the network with a fixed ratio of 0.1 (i.e., ‘‘Single” in the
table) cannot generalize to the other ratios. Compared with ‘‘Multi-
ple”, the model trained with the infinite strategy is more robust to
pixelization ratio variations and thus more practical. We select
infinite strategy in all the other experiments.

Effect of Iterative Recovery Strategy. It is worthy to be noted
that our depixelization approach is based on an iterative recovery
strategy, of which the recurrence number would influence the
depixelization performance. As a result, we examine our iterative
recovery strategy by comparisons of 1-stage, 3-stage and 6-stage
predictions, i.e., the recurrence number is set to 1, 3 and 6, respec-
tively. Quantitative results are given in Table 2. We can see our
final model achieves the best performance, meanwhile we can
see by decomposing the predictions into multiple stages, the
depixelization quality is better than one-shot prediction. Due to
the size of pixelized regions, the performance is converged to 6-
stage (our final model). The first row of Fig. 6 shows the qualitative
comparison, and we can see that the results generated by 1-stage
and 3-stage are semantically ambiguous especially in center
regions. This is because the correlations between known and cen-
ter regions are too weak for few-stage recovery.

Effect of Dynamic Dilated Convolution. To evaluate the effect
of our dynamic dilated convolution in depixelization, we replace it
with vanilla convolution and dilated convolution. The results are
shown in Table 2. We can see that dynamic dilated convolution
has the best FID and ID-SIM. Although PSNR and SSIM are similar
for three variants, the bottom row of Fig. 6 shows that vanilla con-
volution tends to blur the face due to the extracted repetitive infor-
mation, and dilated convolution cannot recover the face regions
correctly as it strides over the neighboring pixels.

Effect of Cross-stage Attention. As shown in the third row of
Fig. 6, when we remove Cross-stage Attention mechanism or just
replace it with ordinary attention module which is widely used
in image processing without any modification, the results are
unnatural and severe artifacts can be easily found. Due to the tai-
lored design of Cross-stage Attention mechanism which captures
relations among different recurrences, it can generate more realis-
tic and semantically consistent results.

Effect of Cross-stage Fusion Module. We compare our Cross-
stage Fusion module with other feature fusion variants in Fig. .6,
i.e., generating the final feature map from DFR module without
any feature fusion strategy, or averaging all the intermediate fea-
tures. The former one neglects features produced by easiler recur-
rences, and the latter one combines redundant information from
all recurrences. Both results are blurry and lack of details, while
our Cross-stage Fusion module is capable of producing faithful
and clear results with plausible details.

Effect of Noises and Contrast. To verify the robustness of our
proposed method to various input pixelized images with different
modifications such as noises or contrast, we conduct experiments
by adding random noises to images and modifying images with dif-
ferent gamma curves. As shown in Fig. 7 and Table 3, the perfor-
mance of our method is insensitive to noises and contrast of
input images.

5.1.2. Comparisons with SOTA Architectures
As discussed in Section 2, we are the first to study depixeliza-

tion problem and there is no other pixelized face recovery
approach. Hence, we tend to compare our depixelization approach
with inpainting methods. In addition, we try our best to modify
these inpainting methods according to the input pixelized images
so that they can be regarded as depixelization approaches to some
extent. Eight state-of-the-art inpainting architectures, FFI [12], CRA
[37], PConv [11], PRVS [38], RN [39], MADF [40], LGNet [41], and
DSNet [42] methods and their corresponding modified
depixelization-adapted versions are compared in here.

Comparing with Original Inpainting Models. We first directly
adopt the original architectures of these competitors. To remove
irrelevant affecting factor of data differences, we finetune all these

Table 1
Evaluation on three training strategies.

Ratio FID # ID-SIM " PSNR " SSIM "
Single 0.08 1.3282 0.37 27.81 0.8967

0.09 0.8143 0.46 29.32 0.9148
0.10 0.6803 0.52 30.82 0.9298
0.11 0.6511 0.51 30.48 0.9268
0.12 0.7978 0.53 30.93 0.9303

Multiple 0.08 0.7845 0.45 30.07 0.9233
0.09 0.7753 0.48 30.18 0.9236
0.10 0.7149 0.52 30.96 0.9311
0.11 0.6819 0.55 31.00 0.9320
0.12 0.6769 0.59 31.70 0.9370

Infinite 0.08 0.7807 0.45 30.09 0.9238
0.09 0.7429 0.50 30.66 0.9283
0.10 0.6840 0.53 31.00 0.9317
0.11 0.6504 0.57 31.54 0.9359
0.12 0.6375 0.59 31.67 0.9369
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Table 2
Evaluation on our proposed components.

FID # ID-SIM " PSNR " SSIM "
1-stage Depixelization 0.6997 0.47 30.24 0.9090
3-stage Depixelization 0.6894 0.50 30.61 0.9216

Vanilla Conv 0.7106 0.49 30.64 0.9278
Dilated Conv 0.6962 0.48 30.55 0.9292
w/o Attention 0.7511 0.46 29.65 0.9057

Ordinary Attention 0.6913 0.48 30.27 0.9195
w/o Fusion 0.7364 0.48 30.08 0.9136

Average Fusion 0.6907 0.49 30.48 0.9262
Ours (6-stage + Dynamic Dilated Conv + Cross-stage Attention + Cross-stage Fusion) 0.6803 0.52 30.82 0.9298

Fig. 6. Qualitative comparison with respect to different variants of our model.
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models using our face depixelization data. Quantitative and quali-
tative evaluations (top-6 performers are compared) are shown in
Table 4 and Fig. 8, respectively. We can see that all these models
perform badly in depixelization. The reason is that all these
inpainting models are designed to handle empty user defined holes
in the images, which has a completely different emphasis to depix-
elization. As a consequence, all these models adopt partial convo-
lution operation to prevent extracting meaningless features from
the holes. Neglecting the critical information in the pixelized
regions ruin the final predictions.

Comparing with Depixelization-adapted Versions. To make
these competitors adapt depixelization task, we simply replace
all the partial convolution layers with vanilla convolution layers,

yielding eight new versions of these methods, FFI++, CRA++,
PConv++, PRVS++, RN++, MADF++, LGNet++ and DSNet++. As can
be seen in Table 4, by considering pixelized regions, these eight
new versions achieve much better performance than the original
ones. However, similar to the observation in our ablation study,
using vanilla convolution results in blurry faces, and therefore met-
rics FID and ID-SIM are much lower than ours. This situation can be
further observed in Fig. 9 (top-6 performers are compared) that our
network generates more semantic and consistent results with
exquisite details.

5.2. Evaluations on Pixelization

Given a properly trained depixelization model, we adopt it in
the semi-whitebox setting for generating unrecoverable patterns.
We examine four different depixelization methods to demonstrate
the effectiveness and adaptiveness of our pixelization approach.
Each of the method is trained to generate both the pixel-wise
and block-wise perturbations, yielding eight pixelization models
in total.

Table 5 shows the results of eight pixelization models. We mea-
sure the generated adversarial examples as well as the recovered
results using PSNR. For both perturbations, we can see that the

Fig. 7. Qualitative comparison with respect to different modifications of input images.

Table 3
Evaluation on images with different modifications.

SNR " PSNR " SSIM "
w/ Noises 4.4209 29.47 0.9125

w/ Gamma 1.4 4.4376 30.02 0.9216
w/ Gamma 1/1.4 4.4287 29.86 0.9189
w/o Modification 4.4754 30.82 0.9298

Table 4
Quantitative comparison with state-of-the-art inpainting models and their depixelization-adapted versions.

Methods FID # ID-SIM " PSNR " SSIM "
FFI [12] 2.9124 0.25 24.36 0.8657
CRA [37] 2.8535 0.23 24.95 0.8726
PConv [11] 2.6842 0.22 24.89 0.8766
PRVS [38] 2.6453 0.24 25.80 0.8891
RN [39] 3.6743 0.22 25.32 0.8825

MADF [40] 5.6695 0.17 25.81 0.8945
LGNet [41] 2.6378 0.23 25.54 0.8821
DSNet [42] 2.6126 0.24 25.57 0.8982
FFI++ [12] 2.1227 0.35 27.85 0.9057
CRA++ [37] 1.9803 0.37 27.97 0.9005

PConv++ [11] 2.0019 0.37 28.01 0.9012
PRVS++ [38] 1.2809 0.50 30.43 0.9277
RN++ [39] 1.7011 0.49 30.35 0.9266

MADF++ [40] 4.5025 0.19 26.73 0.8949
LGNet++ [41] 2.1057 0.36 28.95 0.9183
DSNet++ [42] 1.7967 0.38 29.68 0.9206

Ours 0.6803 0.52 30.83 0.9298
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added perturbations affect the original perception to some extent
for all the four models. After recovery, an interesting finding is that
all PSNR values increase. This is because our designed adversarial
constraint misleads the depixelization network to generate the
original pixelized patterns. In other words, the added perturbations
force the depixelization network to perform ‘‘denoising” and ‘‘re-

finement”. Overall, our proposed pixelization strategy works for
all the tested models.

Fig. 10 presents the adversarial examples and corresponding
recovery results. In terms of pixelization quality, pixel-wise pertur-
bations are small noises, but viewers may discover they are not tra-
ditional pixelization. On the other hand, block-wise perturbations

Fig. 8. Qualitative comparison with six state-of-the-art inpainting models.
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affect the entire color of the block, providing a more plausible pix-
elization result. In terms of recovery quality, all the results remain
blocky faces without leaking the identity, demonstrating the effec-
tiveness of our pixelization strategy. We also find that the patterns

generated from different models vary and therefore they are
model-specific. This is a common limitation of white-box and
semi-white box adversarial attack, in which the learned adversarial
examples cannot generalize to other models.

Fig. 9. Qualitative comparison with six state-of-the-art corresponding depixelization-adapted versions of inpainting models.
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6. Conclusion

In this paper, we address the important privacy preservation
problem of pixelized faces. To this end, we study two contradictory
problems of depixelization and unrecoverable pixelization. We
present the first solutions for these two problems. To effectively
depixelize the large and repetitive pixelized regions, we accord-
ingly propose an iterative depixelization network with dynamic
dilated convolution, both two techniques combat the ambiguity
of the large pixel blocks. Second, under the semi-whitebox adver-
sarial attack setting, our adversarial model is used to learn the
pixel-wise and block-wise perturbations for defending the recover-
ing process. Extensive experiments demonstrate the effectiveness
of both models, yielding the first feasible unrecoverable pixeliza-
tion approach.
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