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ABSTRACT Single image de-raining is challenging especially in the scenarios with dense rain streaks.
Existing methods resolve this problem by predicting the rain streaks of the image, which constrains the
network to focus on local rain streaks features. However, dense rain streaks are visually similar to mist or fog
(with large intensities), in this case, the training objective should be shifted to image recovery instead of
extracting rain streaks. In this paper, we propose a coupled rain streak and background estimation network
that explores the intrinsic relations between two tasks. In particular, our network produces task-dependent
feature maps, each part of the features correspond to the estimation of rain streak and background.
Furthermore, to inject element-wise attention to all the convolutional blocks for better understanding the rain
streaks distribution, we propose a Separable Element-wise Attention mechanism. In this way, dense element-
wise attention can be obtained by a sequence of channel and spatial attention modules, with negligible
computation. Extensive experiments demonstrate that the proposed method outperforms state-of-the-arts
on 5 existing synthesized rain datasets and the real-world scenarios, without extra multi-scale or recurrent
structure.

INDEX TERMS Background estimation, de-raining, element-wise attention.

I. INTRODUCTION
Most existing computer vision systems are designed for
disturbance-free scenarios. Therefore, rain streaks in an
image degrade visibility and prevent many computer vision
algorithms from working properly. Addressing this visibility
problem is challenging due to the random rain streaks dis-
tribution. Early researches [2], [16], [17] treat it as a signal
separation problem using low rank decomposition or Gaus-
sian mixture models (GMM), or resolve it in a denoising
manner with a nonlocal mean smoothing algorithm [13].
Recently, deep learning based models [4], [25], [27] learn
from synthesized data and achieve preferable performance
due to the powerful ability of feature representation.

Notwithstanding the demonstrated success, these deep
models suffer from two main issues. First, most

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

state-of-the-art models [4], [15], [25], [27] focus on predict-
ing rain streaks only. While this is reasonable as the rain
streaks are sparse and contain simple texture information,
it enforces the network focus only on local feature repre-
sentations. As can be seen in Fig. 1b, the feature responses
learned from a residual prediction network highlights rain
streaks other than background regions. On the other hand,
the dense rain streak scenario is visually similar tomist or fog,
which makes the prediction of rain streaks easy but diffi-
cult in recovering original image content. A network that
predicts a rain-free background shows a different learning
focus (see Fig. 1c), and these two different objectives may
complement each other.

Second, the attention on rain streak distribution is not
fully explored in de-raining models. Although a spatial visual
attention map is incorporated as one of the network inputs
in raindrop removal [19], the attention module should be
injected into feature levels of the entire network. Attention not
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FIGURE 1. Deep networks that estimate the rain streaks residual
(b) or rain-free background (c) show substantially different feature
responses (the activation value of the neurons). Relying on predicting the
residual only cannot handle dense rain streaks scenarios.

only filters out the redundant information but also improve
the representation of the features. In this sense, traditional
spatial attention is not enough as it shares the same weights
to all the channels of the feature maps. However, learn-
ing an element-wise attention module with the same size
of the feature maps hugely increases the computational
overhead.

In this paper, we address the above two problems by
proposing a coupled rain streak and background estima-
tion network with Separable Element-wise Attention. The
proposed network produces task-dependent features so that
the intrinsic relationship between two tasks can be explored
during training. Furthermore, we implement element-wise
attention using a sequence of channel and spatial attention
modules. The combination of the channel and spatial atten-
tion modules is able to achieve the element-wise attention
with negligible computation, in this way it can be applied to
all the convolutional blocks. Extensive experiments show that
the proposed method outperforms state-of-the-art de-raining
methods on 5 benchmarks and real-world scenarios. More
importantly, our superior performance is obtained without
additional multi-scale or recurrent structures.

To summarize, our contributions are three-fold:

• We propose to jointly estimate rain streaks and
background in the same network with task-dependent
features. This simple approach shows significant
improvement over individual prediction of two tasks.

• We present a Separable Element-wise Attention module.
This method allows focusing on important feature ele-
ments while suppressing redundant ones. Addition-
ally, our separable implementation enables involving
element-wise attention with negligible computation
efforts. It is a general component and can be applied to
other deep models.

• Extensive experiments conducted on 5 challenging
benchmarks and real-world data demonstrate the effec-
tiveness of the proposed approaches over state-of-the-art
methods.

II. RELATED WORK
Rain streak removal is challenging, and therefore early works
leverage the additional temporal information from multiple
frames. Garg and Nayar [5] propose to detect and remove
rain streaks based on the dynamics and photometry of rain.
Besides temporal information, other information such as
chromatic properties and shape characteristics of rains, are
also utilized in [29] and [1] respectively. Recently, video
rain removal are addressed using low-rank matrix [14],
optical flow in local phase information [21], and matrix
decomposition [20].

Different from video-based de-raining with temporal
information, single image rain removal is an ill-posed prob-
lem and therefore much more challenging. Many traditional
methods solve this problem with additional prior information
and regard it as a signal separation problem. Kang et al.
[12] and Sun et al. [22] separate images into high and low
frequency parts by analyzing the morphological and struc-
tural information of rain images. Luo et al. [17] separate rain
streaks and background scene by discriminative sparse cod-
ing method. In addition, Gaussian mixture models (GMM)
[9], [16] are used to decompose the rainy image into back-
ground and rain streaks layers. Low rank models are also
used to separate the input image into the different layers in
[2], [3], [26]. Zhang and Patel [13] propose a novel idea
and try to recover the rain-free image by nonlocal means
filter. Although these methods can detect and remove rain
streaks, their main limitation is over-smoothing the image
details since a lot of texture and fine structure information
belongs to the high frequency part.

Recent approaches adopt deep learning and achieve
notable success in single image de-raining. Fu et al. [4]
introduce a model to predict the residual rain streaks using
the decomposed high frequency part as input. Yang et al.
[25] present a deep recurrent model with a dilated network
to detect and remove rain streaks iteratively. Zhang et al. [27]
propose a density classifier and combine the predicted label
with the features of a multi-stream network for de-raining.
Li et al. [15] integrate deep convolutional and recurrent neural
networks to remove rain streaks in a multi-stage manner.

As we mentioned above, all of these methods predict the
residual rain streaks and neglect semantic background infor-
mation. Additionally, they do not involve attention in the
network.

III. APPROACH
A rain image O is commonly formulated as the linear combi-
nation of the rain-free background B and rain streaks R layers
as follows:

O = B+ R. (1)

We aim to estimate both two layers simultaneously in the
same network. Below we discuss the detail.

A. NETWORK DESIGN
The pipeline of the proposed method is shown in Fig. 2.
Given an input rainy image Oin, our network predicts the
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FIGURE 2. The pipeline of the proposed method and detailed structure of the Separable Element-wise Attention Block.

residual rain streak image Rout and the rain-free image Bout .
By subtracting Rout from Oin, we can obtain another indirect
rain-free image Bsub.
Our network has a plain encoder-decoder architecture.

In each resolution level of the encoder and decoder except
the outermost layer, we replace the single convolution with
the proposed Separable Element-wise Attention (SEA) block
to enrich feature representations. Average pooling is used as
the downsampling operation and bilinear interpolation is used
for upsampling. Skip layers concatenate the feature maps of
the encoder to the feature maps of the same resolution in the
decoder before feeding it to the next block.

To cope with the joint estimation of rain streaks and
background, we output task-dependent features in the last
layer. In particular, the last feature maps are separated into
two parts. The first part corresponds to the rain streaks resid-
ual, while the other part generates a rain-free background
image. Unlike traditional multi-task learning that shares all
the features and uses them to output the final results at
the same time, we explicitly coordinate the corresponding
features of two tasks. This is able to avoid the imbalance of
feature maps for two outputs and enforce the responsibility of
each part that reduces the information interference at the final
prediction. Although we share all the features except the last
layer that generates two outputs, the entire network is gov-
erned to produce two independent features. This one-to-many

supervision encourages interactions between two substan-
tially different tasks within the network, leading to diverse
and rich features representations.

B. SEPARABLE ELEMENT-WISE ATTENTION
Rain streaks distribution is of great importance to either
removing rain streaks or estimating background. Intuitively,
this information is modeled as the spatial attention to
govern network training. However, each map of the
high-dimensional features is substantially different from each
other, and they may correspond to different objectives that
cannot be unified using a single spatial attention map.
Directly computing the element-wise attention for all the con-
volutional blocks leads to high computational costs. Inspired
by the separable bilateral filter [18] in the signal processing
area, we propose the Separable Element-wise Attention to the
network.

As shown in the bottom part of Fig. 2, the proposed
Separable Element-wise Attention block is mainly composed
of two parts. The first part is a dense connection module [10],
which propagates the output of each convolutional layer to
subsequent convolutional layers within the block, promoting
the information and gradient flow.

The second part of the SEA block is the proposed element-
wise attention module. This module calculates the channel
attention Ac(xm) ∈ RC and spatial attention As(xm) ∈ RH×W
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FIGURE 3. The architecture of our spatial and channel attention
sub-modules.

of the input featuremaps xm ∈ RC×H×W in different branches
separately. Then these two attentions are expanded to the
same size as xm and then multiplied together to generate
a 3D attention volume A(xm) ∈ RC×H×W . In this way,
the element-wise attention can be obtained by the spatial and
channel attention modules, and all the feature elements can
be focused or suppressed during the training of the network.
The detailed architecture of our spatial and channel attention
modules are shown in Fig. 3. The ins and outs are specifically
made in the following passage.

1) CHANNEL ATTENTION
Our channel attention focuses on the relation between
different channels, aiming to assign higher weights to
those important feature maps. To reduce the computational
complexity, we aggregate the spatial information by global
average pooling and global max pooling, encoding the
input feature maps softly into two vectors

{
V avg
c ,Vmax

c
}
∈

RC×1×1. Then both vectors are fed to a shared fully con-
nected (FC) layer and the outputs are added together to obtain
the final attention. The objective of this strategy is to con-
sider both the global and local information of feature maps.
To reduce the number of parameters, there is only one hidden
layer and the number of neurons in the hidden layer is set to
C/r , where r is a reduction ratio.

2) SPATIAL ATTENTION
Different from the channel attentionmodule, the spatial atten-
tion focuses on the relation between different locations on
the feature maps, aiming to emphasize the spatially discrim-
inative information. Similar to the channel attention, we first
apply average pooling and max pooling on the input fea-
ture maps along the channel axis, which obtains two maps{
Mavg
s ,Mmax

s
}
∈ R1×H×W . In addition, we apply an 1 × 1

convolution on the input feature maps and obtain another map
M1×1
s ∈ R(C/r−2)×H×W , where r is the same reduction ratio

as in the channel attention. We concatenate these maps and
feed it to three 3 × 3 dilated convolutions and then a 1 × 1
convolutions to get the final spatial attention map As(xm) ∈
RH×W . We follow [23] to set the dilated rates of those three
dilated convolution layers as 1, 2, 5, respectively. It can avoid
sampling in the checkerboard pattern that skips pixels within

the convolutional regions. At the same time, as its well-known
properties, dilated convolution can compute attention values
with a large receptive field.

At the end of the SEA block, we utilize residual connection
directly from input to output. If the number of channels is
different, we use a 1×1 convolution on the input feature maps
to fit the channel number. Residual connections can avoid
the notorious problem of gradient vanishing or exploding [7].
At the final output layer of the network, we use half of the
feature maps for rain-free image prediction and another half
for rain streak residual prediction. The final output is obtained
by averaging two rain-free images Bsub and Bout .

C. TRAINING OBJECTIVES AND DETAILS
We use four loss functions to optimize the proposed network.

1) PIXEL LOSS
Given the ground truth rain-free image Bgt , the pixel loss is
defined as follows:

Lp =

∥∥Bsub − Bgt∥∥1
Ngt

+

∥∥Bout − Bgt∥∥1
Ngt

=

∥∥Oin − Rout − Bgt∥∥1
Ngt

+

∥∥Bout − Bgt∥∥1
Ngt

, (2)

where Ngt = C ×H ×W denotes the number of pixels in the
ground truth. Pixel loss measures the accuracy of each pixel
between the network outputs and their corresponding ground
truth by L1 distance.

2) PERCEPTUAL AND STYLE LOSSES
We introduce perceptual and style losses [6] into the network,
which are used to measure the content and style differences
between two images. The reconstructed image should be
close to the ground truth image not only in pixel-level, but
also in high- and semantic-level. We first define the percep-
tual loss:

Lperc=
∑
p

∥∥∥8p
Bsub−8

p
Bgt

∥∥∥
1

N8p
Bgt

+

∑
p

∥∥∥8p
Bout −8

p
Bgt

∥∥∥
1

N8p
Bgt

, (3)

where 8p
B∗ represents the feature maps at p-th layer of

the ImageNet-pretrained VGG-16 model. Pool1, pool2, and
pool3 layers are selected in our method.We use L1 distance to
compute the corresponding feature maps between both Bout
and Bsub and the ground truth Bgt .

Style loss is also calculated based on the projected VGG
feature maps, but it is actually calculating the L1 distance of
the Gram matrix of each VGG feature maps:

LstyleB′ =
∑
p

∥∥∥Kp((8p
Bsub )

T (8p
Bsub )−(8

p
Bgt )

T (8p
Bgt ))

∥∥∥
1

CpCp
, (4)

LstyleB =
∑
p

∥∥∥Kp((8p
Bout )

T (8p
Bout )−(8

p
Bgt )

T (8p
Bgt ))

∥∥∥
1

CpCp
. (5)
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Here, feature maps 8p are expanded to the matrix of size
Cp × (HpWp), which then generates a Cp × Cp Gram matrix.
It represents the autocorrelation of each feature map. Kp is a
normalization factor with value 1/CpHpWp.

3) EDGE LOSS
Due to the influence of rain streaks, the edges of the
background are discontinuous or blurred. Using pixel loss
only cannot guarantee edges correctness. To this end,
we extract edges for the outputs and ground truth using Sobel
operator, and then compute their L1 distances to enforce
correct edges:

Ledge=

∥∥fs(Bsub)−fs(Bgt )∥∥1
Ngt

+

∥∥fs(Bout )− fs(Bgt )∥∥1
Ngt

, (6)

where f(s) denotes the Sobel operator.
Then the total loss is the summation of the above losses.

Ltotal = λrLp + λpLperc + λsLstyle + λeLedge, (7)

where the λ∗ denotes the weight of the corresponding loss
term.

IV. EXPERIMENTS
In this section, we evaluate our proposed method on both
synthetic and real collected rainy data. We also make a com-
parison with other state-of-the-art methods on these datasets.

A. EXPERIMENT SETTINGS
1) TRAINING SETTINGS
We first describe the hyper-parameters used in our model.
For each SEA block, the growth-rate, which is the feature
number of sub-convolutional layer [10] in dense connection
part, is set to 32, and the number of sub-convolutional layers
in dense part is 8 for the innermost 9 blocks and 4 for the
remaining. This setting is based on the resolution and feature
numbers in each level. Furthermore, the reduction ratio r in
the attention module of each SEA block is set to 16 according
to the analysis in [8]. The weight of each loss item are as
follows: λr = 500, λp = 1.5, λs = 250, λedge = 1.
Within these weights, the pixel loss contributes the most and
reconstructs the image structure at the beginning of training,
while the edge loss, perceptual loss and style loss are used
to further refine the image. The input image is resized to
512×512 and the batch size is 5. Our method is implemented
with the Pytorch framework on an NVIDIA 1080 Ti GPU.
We use the SGD optimizer with momentum equals 0.9 and
the initial learning rate is set to 2 × 10−4. The learning rate
decreases linearly from the 50th epoch to the 300th epoch.

2) DATASETS
In order to evaluate the de-raining ability of our method,
we utilize three synthesis datasets in the experiments.
The first one is the Rain800 dataset [28], which includes
700 images as the training set and 100 images as the
testing set. The second one is the Rain200 dataset [25]

(extended from Rain100), including two subsets represent-
ing: 1) heavy rain set (Rain200H) that is synthesized with
five types of streaks, and 2) light rain set (Rain200L) that
is synthesized with only one streak type. Each set contains
1,800 images for training and 200 images for testing. In the
experiment, we train a model based on the training set of
Rain200H and evaluate it with both testing set of Rain200H
and Rain200L. We exclude Rain200L from the training set
since the rain streak patterns of Rain200L are included in
Rain200H, and in this way we can evaluate the generalization
ability of the methods. The third dataset is the DIDMDN
dataset, including one training set and two testing sets. The
training set consists of 12,000 images, synthesized by adding
three different densities (light, medium, heavy) of rain streaks
to 4,000 rain-free images. The first testing set, denoted as
DID-Test1, is constructed in a similar way to the training
set and contains 1,200 images in total. The second one is
obtained by randomly sampling 1,000 images from the syn-
thetic dataset provided by Fu et al. [4], which is also utilized
to test the generalization capability, denoted as DID-Test2.
Since the proposed model predicts the rain-free image as one
of the output, in order to avoid overfitting caused by predict-
ing the same rain-free image multiple times, we choose the
same number of training images with different backgrounds
from three density levels, to build a new training dataset, with
4,000 images in total for our experiment.

For real-world dataset, we use the real-world rainy images
provided by Yang et al. [25] and Zhang et al. [28]. We also
collect some photos from the web, most of which are captured
in street and city scenes, which are more consistent with the
application scenario of the de-raining task.

3) MEASUREMENT AND COMPARISON
We evaluate the de-raining methods by the commonly used
peak signal to noise ratio (PSNR) [11] and Structure Similar-
ity Index (SSIM) [24] metrics. For real images, we mainly
present the qualitative comparison and user study (see our
supplementary materials), due to the absence of correspond-
ing ground-truth. We compare our proposed method with
several state-of-the-art CNN-based methods, including DDN
[4], JORDER [25], DID-MDN [27], SCAN and its recurrent
version (RESCAN) [15].

B. EVALUATION ON SYNTHETIC DATASET
For a comprehensive evaluation, we train one model on each
of the training sets mentioned above and test the model with
the corresponding testing sets. For a fair comparison, we fine-
tune their models on the corresponding training sets with
the same number of epochs as ours, except the JORDER
method that only provides a model trained on Rain200H and
no training details.

The quantitative results of PSNR and SSIM are shown
in Table 1. We can see that our method performs better
than all the other deep learning based methods. Although the
latest RESCAN method achieves the best result among pre-
vious methods on almost all synthesized datasets, it performs
worse than the DID-MDN method on restoring structure
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TABLE 1. Quantitative results of each method in (PSNR/SSIM).

FIGURE 4. Results and evaluations of each method on synthetic images. The first image is chosen from Rain200H testing set. The second image is
chosen from DID-Test2.

information (SSIM) on DID-Test2, implying that it cannot
well generalize to unseen rain streaks. In contrast, our method
performs better than previous methods on both DID-Test1
andDID-Test2. In addition, the rainy image is only processed
once without combining RNN (as used in RESCAN) or other
extra refinement networks (as used in DID-MDN).

Fig. 4 shows the visualization results of all methods.
The first image is chosen from the testing set of Rain200H,

which is the most difficult dataset since the original images
are mostly destroyed. We can see that both DID-MDN and
RESCAN methods are able to well remove the rain streaks
and restore the color of the original image. However, their
results contain distortions and unsmooth regions on the back-
ground and details of objects (better zoom-in on the digital
version). In contrast, our method performswell for both detail
recovery and background smoothing. The second image is
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TABLE 2. Validation of proposed strategy (predicting residual
rain-streaks and rain-free results at the same time) in (PSNR/SSIM).

chosen from the DID-Test2 to show the generalization of
each model. We can see that on this image, most methods
including the recent RESCAN are not able to completely
remove the rain streaks. Although there are no obvious white
rain streaks on the result of DID-MDN method, there exist
many misplacements and distortions in rain streaks shape,
which results in low PSNR and SSIM. Compared to other
methods, our proposed model is able to remove the unseen
rain streaks and well restore the structure and intensity of the
original image.

C. EVALUATION ON REAL-WORLD DATASET
The final goal of the de-raining task is to apply in real-world
scenes. As a result, we perform another evaluation on rainy
images captured in the real-world. For a fair comparison,
we select the model trained by Rain200H for each method
since Rain200H can further enhance the robustness of the
network as mentioned in [25]. Example results on real-world
de-raining are shown in Fig. 5. It can be observed that our
proposed method can well remove the rain streaks and does
not break the original structure. The result of the second
image shows that our proposed method even performs well
on removing rain-drop form and watermark form rain streaks,
while other methods fail to handle such types of rain streaks.
To further evaluate the proposed method on real-world data,
we conduct a user study in the supplementary materials.

D. ABLATION STUDY
In this section, we study the effectiveness of each
term/module in our model. To better test the fitting and
generalization ability of each module, we train and test on
the DID-MDN dataset.

Firstly, we validate the effectiveness of our main strategy,
which simultaneously estimates the rain-free image and
the residual rain streak image. In this ablation study,
we train three additional models as shown in Table 2. The
‘‘Rain-Streak Only’’ refers to the model only predicting the
residual rain streak image (and subtracting by rainy image
to get the rain-free background). ‘‘Rain-free Only’’ refers to
the model only predicting the rain-free background. ‘‘w/o
Task-dependent’’ refers to the model predicting two outputs
using the last feature maps without separating them into task-
dependent features. In addition, we use the notation Bsub and
Bout in Sec. III to indicate the different rain-free outputs.

From the result in Table 2, we can see that when jointly
predicting two outputs without task-dependent features, their
performances decrease compared with predicting only one
output. This implies that simply adding an extra prediction

TABLE 3. Validation of each module in (PSNR/SSIM).

TABLE 4. Voting results of DDN [4], DIDMDN [27], JORDER [25], RESCAN
[15] and our method on real images. ‘Selected’ represents the number of
images obtain the most votes.

task in the network cannot benefit removal performance.
However, when predicting results with task-dependent fea-
ture maps, our results obtain a significant improvement com-
pared with the single output, even though the number of
feature maps for each output is reduced by half. It reveals
that the motivation of our method which uses the rain-free
background as one of the outputs provides more information
and enables better interaction between different kinds of
features.

Next, we perform experiments to compare the effectiveness
of the element-wise attention, perceptual and style losses, and
edge loss. The results are shown in Table 3. It can be observed
that each module and loss has a positive effect on the removal
performance and generalization ability of the model. Note
the proposed Separable Element-wise Attention (SEA) block
significantly boosts the performance.

E. USER STUDY ON REAL RAINY IMAGES
To further evaluate the effectiveness of our proposed method,
we conduct a user study on 30 real rainy images. These
images are collected to simulate the actual usage of a derain-
ing system, they are captured in close-up shots, pedestrians,
buildings in heavy rains, or images with a black background
and strong white light source to simulate the rainy scene at
night. We compare our method with DDN [4], JORDER [25],
DID-MDN [27], and RESCAN [15]. We invite 30 people to
participate in the survey to choose the one that is the best
rain-free and most natural image after the deraining process.
Results are shown in Table 4, where ‘‘Voted’’ represents the
total number of votes for the corresponding method, and
‘‘Selected’’ represents the number of images obtaining the
most votes. We can see that our proposed method obtains
the most votes, and DID-MDN ranks the second. It reveals
that although RESCAN method shows good performance on
the training set, DID-MDN generalizes better in real-world
scenes. On the contrary, the proposed method performs the
best on both the synthetic scenes and real-world scenes.
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FIGURE 5. Qualitative results of each method on real-world images.

V. CONCLUSION
We propose a coupled rain streak and background estimation
network with Separable Element-wise Attention modules.

It addresses the problem of rain streaks removal from two
aspects. First, we delve into the problem of the estima-
tion for rain streak and rain-free background, and these
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two tasks are bridged by task-dependent features. Second,
we present a Separable Element-wise Attention module to
explore the rain streaks distribution in all the layers of the
network. It is achieved by two attention modules: the spatial
and channel attention modules. All existing convolutional
blocks can inject such element-wise attention on the fly.
Extensive experiments demonstrate that the proposed method
achieves superior performance against state-of-the-art meth-
ods, both quantitatively and qualitatively. The proposed Sep-
arable Element-wise Attention is a general framework, which
we believe to be effective in other vision tasks.
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