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Abstract Existing computational models for salient object
detection primarily rely on hand-crafted features, which are
only able to capture low-level contrast information. In this
paper, we learn the hierarchical contrast features by formu-
lating salient object detection as a binary labeling problem
using deep learning techniques. A novel superpixelwise con-
volutional neural network approach, called SuperCNN, is
proposed to learn the internal representations of saliency
in an efficient manner. In contrast to the classical convolu-
tional networks, SuperCNN has four main properties. First,
the proposed method is able to learn the hierarchical con-
trast features, as it is fed by two meaningful superpixel
sequences, which is much more effective for detecting salient
regions than feeding raw image pixels. Second, as SuperCNN
recovers the contextual information among superpixels, it
enables large context to be involved in the analysis efficiently.
Third, benefiting from the superpixelwise mechanism, the
required number of predictions for a densely labeled map
is hugely reduced. Fourth, saliency can be detected indepen-
dent of region size by utilizing a multiscale network structure.
Experiments show that SuperCNN can robustly detect salient
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objects and outperforms the state-of-the-art methods on three
benchmark datasets.

Keywords Convolutional neural networks ·
Deep learning · Feature learning · Saliency detection

1 Introduction

The human brain and visual system are able to quickly local-
ize the regions in a scene that stand out from their neighbors.
Saliency detection aims at simulating the human visual sys-
tem for detecting pixels or regions that most attract human’s
visual attention. Although earlier saliency detection work
focused on predicting eye fixations on images (Itti et al.
1998; Harel et al. 2007), recent research has shown that
extracting salient objects or regions (Cheng et al. 2011; Liu
et al. 2011; Perazzi et al. 2012) is more useful and ben-
eficial to a wide range of computer vision, graphics and
multimedia applications. For example, predicting eye fixa-
tions may not be the best way to determine region of interest
for image cropping (Marchesotti et al. 2009) and content-
aware image/video resizing (Avidan and Shamir 2007), as
eye fixation prediction only determines parts of the object,
leading to object distortion.

Perceptual research (Itti and Koch 2001; Parkhurst et al.
2002) has shown that contrast is a major factor to visual atten-
tion in the human visual system. Various saliency detection
algorithms based on different contrast cues
(Cheng et al. 2011; He and Lau 2014) have been designed
with success. However, as they typically combine individ-
ual hand-crafted image features (e.g., color, histogram and
orientation) with different fusion schemes (Liu et al. 2011;
Margolin et al. 2013) to form the final saliency map in a
local or global manner, they are not suitable for all cases. For
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example, local methods cannot detect homogenous regions,
while global methods suffer from background distractions.
Although learning techniques are adapted to detect salient
objects (Liu et al. 2011; Jiang et al. 2013), they focus on learn-
ing the fusion scheme, i.e., saliency integration by combining
saliency maps obtained from different types of features.

To alleviate the need for hand-crafted features, fea-
ture learning using convolutional neural networks (CNNs)
(LeCun et al. 1998) has been successfully applied to differ-
ent vision tasks, such as image classification (Krizhevsky
et al. 2012) and scene parsing (Farabet et al. 2013; Pinheiro
and Collobert 2014). Nonetheless, there are two problems
when applying CNNs to saliency detection. First, contrast-
based saliency should be determined from a large context.
However, for applications requiring a densely labeled map,
classical CNNs are not suitable as they are typically fed
with small image patterns in order to maintain efficiency.
Second, whether an object is salient or not is independent
of its appearance but dependent on its contrast to its sur-
rounding. For example, a red object that is salient in a grass
field may not necessarily be salient in others. As a result,
training a CNN in a way like image classification or image
parsing is not appropriated in our case, as demonstrated in
Fig. 1.

In this paper, we propose a novel superpixelwise convolu-
tional neural network (SuperCNN) approach to address the
above problems. Instead of a 2D image pattern, the input
to SuperCNN is a sequence of superpixels, which can eas-
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Fig. 1 Detection precision w.r.t using different saliency thresholds,
when feeding the CNN (using a single scale structure of Farabet
et al. 2013) with raw pixels and tested it on the MSRA-1000 dataset.
Feeding the network with small patches (red curve) is not suitable for
detecting salient objects, as saliency should be determined from a large
context. Although enlarging the patch size improves the performance
(green curve), it leads to a large network and takes around 2 mins to
obtain a dense saliency map. In addition, as saliency is independent of
object appearance, feeding with raw pixels cannot successfully detect
objects under different contrasts, as compared with the state-of-the-art,
GMR (Yang et al. 2013) (Color figure online)

ily take into account long range context while limiting the
capacity of the network. To recover the contextual infor-
mation among the superpixels, a spatial kernel and a range
kernel (inspired by bilateral filtering) are derived to pro-
duce two meaningful sequences as inputs to describe color
uniqueness and color distribution, respectively. Ideally, a
salient object exhibits distinct colors from its surrounding,
and these colors are compactly distributed in the image
plane. Once the networks are properly trained, SuperCNN
is able to produce the two internal representations of salient
objects, which capture different saliency properties. The
learned hierarchical features encode information analogous
to what the human visual system does, which is to per-
form selection in a hierarchical manner (Macaluso et al.
2002; Lee and Mumford 2003). The softmax function is
used after the feature extractor to convert the two fea-
ture vectors into saliency scores. To robustly detect salient
regions regardless of their sizes, we use a multiscale net-
work structure with shared weights. The architecture of the
proposed salient object detection framework is illustrated in
Fig. 2.

Although the computational time of individual predictions
of SuperCNN is similar to the classic CNNs fed with a 2D
image pattern, SuperCNN requires two orders of magnitude
fewer predictions than the classical CNNs for computing fea-
tures of an image. It takes only 0.45s to produce a saliency
map for a 400 × 300 image. In addition, it encodes the infor-
mation from a large context and is generalized for different
types of input data once it is properly trained. We have exten-
sively evaluated it on three different benchmark datasets. The
hierarchical features that we have learned generalize well to
all three datasets. While SuperCNN produces comparable
results to the state-of-the-art methods on the simple MSRA-
1000 dataset, it achieves much better performances than all
other methods on the other two datasets that contain complex
scenarios.

2 Related Work

Visual attention can be driven by either low-level stim-
uli (bottom-up fashion) or high-level objectives (top-down
fashion). Most saliency detection methods are based on
bottom-up computational models using low-level features
such as color, motion, or orientation of edges. Depending on
the extent of the context where saliency is computed, these
methods can be roughly categorized into local methods and
global methods. Comprehensive literature review on these
saliency detection methods can be found in Borji et al. (2012)
and Toet (2011).

Local Saliency Methods compute saliency of an image
region with respect to a small neighborhood. An earlier local
saliency detection method (Itti et al. 1998) is based on a

123



Int J Comput Vis

f1(Qx1 )

f1(Qx2 )

f1(Qx3 )

f2(Qx1 )

f2(Qx2 )

f2(Qx3 )

↑

↑

↑

↑

Fig. 2 Architecture of the proposed SuperCNN for salient object
detection. The input image is first segmented into different numbers of
superpixels (i.e., regions). Two meaningful sequences, color uniqueness
sequence and color distribution sequence, are extracted from each super-
pixel and fed to the convolutional networks. (Upsampling is needed for

coarser scales to keep the same input size.) Due to the superpixelwise
strategy, each feature vector takes into account the information from the
entire image in an efficient manner. The inferred results are integrated
into the saliency scores. Finally, all the scales are combined to form a
smooth saliency map (Color figure online)

biologically-plausible architecture (Koch and Ullman 1985).
It uses an image pyramid to compute color and orienta-
tion contrasts. Ma and Zhang (2003) combine local contrast
analysis with a fuzzy growth model. Harel et al. (2007)
propose a graph-based random walk method using multi-
ple features. As these methods are based on computing local
contrast, they are sensitive to high frequency content like
image edges or noise only, and they attenuate any homoge-
nous interior regions.

Global Saliency Methods estimate saliency by considering
contrast relations over the entire image. Achanta et al. (2009)
detect salient regions by computing color deviation from the
mean image color on a per-pixel basis. Cheng et al. (2011)
propose a fast color histogram based method, and compute
saliency based on dissimilarity among the histogram bins. To
take into account spatial relationships, Perazzi et al. (2012)
apply two contrast measures based on the uniqueness and
spatial distribution of elements. Yan et al. (2013) propose a
hierarchical model to reduce the effect of small-scale struc-
tures on saliency detection. Recently, Jiang et al. (2013) use
two additional cues, focusness and objectness, together with
color contrast to detect salient objects. Despite the demon-
strated improvements, these methods measure saliency by
fusing saliency maps computed from hand-crafted features,
which are only able to capture low-level contrast informa-
tion. While high-level knowledge has also been applied for
detecting saliency (Borji 2012; Lu et al. 2012), it is limited
to specified objects or assumptions. Furthermore, incremen-

tally adding more input features leads to a more complicated
and time-consuming algorithm.

Deep Learning Techniques aim to learn hierarchical fea-
ture representations from natural images, where the higher-
level features are defined from lower-level ones. CNNs
and other deep learning techniques have been shown to be
effective in many vision applications, such as face detec-
tion and pose estimation (Osadchy et al. 2007), facial point
detection (Sun et al. 2013), scene parsing (Farabet et al.
2013; Pinheiro and Collobert 2014), and image classifica-
tion (Krizhevsky et al. 2012). The works on scene parsing
using CNNs (Farabet et al. 2013; Pinheiro and Collobert
2014) have a similar spirit to our work, as both works can be
treated as a labeling problem. However, unlike CNN-based
scene parsing, SuperCNN does not require a complex net-
work architecture or post-processing to handle large image
context. To the best of our knowledge, our method is the first
to explore the contrast information using CNNs.

Deep learning techniques have also been used in eye fixa-
tion prediction. Shen et al. (2012) sample salient regions from
the dataset, and learn the high-level features in an unsuper-
vised manner using sparse coding. However, the models used
to learn high-level information are usually limited to specific
objects (e.g., faces or texts), due to the constrained categories
of the dataset. On the other hand, predicting eye fixations is
less useful than identifying the complete salient object in
vision applications (Liu et al. 2011). As a contrary, the pro-
posed method is a general purpose salient object detector.
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3 Salient Object Detection with SuperCNN

In general, human organizes information hierarchically.
CNNs are driven by this observation. They aim at learning
hierarchical internal representations. We formulate salient
object detection as a binary labeling problem to predict
whether an input region is salient. Generally, a CNN consists
of alternating filter bank modules and spatial pooling mod-
ules. The hierarchical feature representations are learned via
end-to-end training. The resulting output of each module is
called feature maps (or feature vectors in 1D). The CNNs
seek to find a highly nonlinear transformation function f to
map the input into a space where the input can be linearly
classified. To obtain a densely labeled map, classical CNNs
divide the input image into grid patterns to be fed to the net-
works. The output feature maps are then classified as scores
for each class of interest. However, these classical methods
cannot be easily employed for salient object detection due to
three problems:

– Saliency should be determined from a large context. To do
this, the CNN typically needs to be fed with a sufficiently
large image patch, leading to an unmanageable large net-
work.

– Pixelwise prediction by the CNN can be noisy. Predicting
an image with mega pixels also takes time, especially for
large networks.

– Feeding raw image pixels to the networks is difficult to
detect saliency, as saliency does not depend on particular
object appearance (e.g., red color or human face).

In this section, we present SuperCNN to address the
above problems and implement the transformation function
f . Section 3.1 discusses how we extract hierarchial contrast
features. Section 3.1.3 describes the network structure, and
Sect. 3.2 presents the saliency score inference. Sections 3.3
and 3.4 describe the multiscale structure and the schemes to
reduce overfitting, respectively.

3.1 Hierarchical Contrast Features Extraction

Regions that contrast strongly with their surroundings typi-
cally catch viewers’ attention (Einhauser and Konig 2003).
Our goal is to learn contextual contrast information, and
thus the input of the CNNs must be meaningful to contrast
and as raw as possible (since raw data is more flexible to
learn good internal representations (Farabet et al. 2013; Pin-
heiro and Collobert 2014). However, pixel-level contrast is
computationally expensive when taking spatial information
into account, not to mention the overhead of considering a
large context with CNNs. Superpixel-based saliency detec-
tion methods (Cheng et al. 2011; Perazzi et al. 2012; Yan
et al. 2013; Margolin et al. 2013) have shown to be accu-

rate and efficient. These advantages motivate us to design
superpixelwise convolutional networks.

Feeding superpixels to the CNNs faces a major issue—the
structural information of the image is destroyed. Although
some methods like superpixel lattices (Moore et al. 2008)
are proposed to address this problem, the imposed lattice,
however, sacrifices the segmentation accuracy. As shown in
a psychology study (Intriligator and Cavanagh 2001), visual
attention of the human visual system is mainly affected
by the spatial distances of the surrounding objects. As a
result, we aim at re-injecting the spatial information into the
regions, rather than recovering the original image structure.
We treat the segmented image as a 1D array, and recover
the contextual information by introducing a spatial kernel to
the color uniqueness. Other than spatial information, salient
objects can typically be distinguished by color distribution.
A range kernel is further applied to describe the distribu-
tional property of the salient objects. Hence, two meaningful
input sequences are produced, and we feed them to a two-
column CNN. As demonstrated in Ciresan et al. (2012),
multi-column CNNs fed with various inputs lead to com-
plementary and superior predictions. In our implementation,
images are segmented into regions using the SLIC superpixel
method (Achanta et al. 2012).

3.1.1 Color Uniqueness Sequence

Color uniqueness sequence is used to describe the color con-
trast of a region. Given an image I and the segmented regions
R = {r1, . . . , rx , . . . , rN }, each region rx contains a color
uniqueness sequence QC

x = {qc
1, . . . , qc

j , . . . , qc
M } with size

M , where M ≤ N . Each element, qc
j is defined as:

qc
j = t (r j ) · |C(rx ) − C(r j )| · w(P(rx ), P(r j )), (1)

where t (r j ) counts the total number of pixels in region r j .
Regions with more pixels are considered to have higher con-
tributions to the contrast than those with fewer pixels. C(rx )

is the mean color vector of region rx (Fig. 3a), |C(rx )−C(r j )|
is a 3D vector storing the absolute differences of each color
channel (Fig. 3b), P(rx ) is the mean position of region
rx , w(P(rx ), P(r j )) = exp(− 1

2σ 2
s
||P(rx ) − P(r j )||2) is a

Gaussian weight to describe the distance between rx and
r j . The sequence QC

x is then sorted by the spatial distance to
region rx in order to maintain the spatially local correlation of
the convolution operation (see Sect. 3.1.3). In addition, sort-
ing the sequence can be treated as adding extra information
to the input sequence (Fig. 3d) to help learn the internal rep-
resentations. According to Eq. (1), each uniqueness sequence
describes the relationship between region rx and all the other
M−1 regions by computing color differences. Figure 3 shows
the intermediate results from the color uniqueness sequences.
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Fig. 3 Two example color uniqueness sequences. Both c, d refer to
superpixel #11 in the two images shown in a, b (in blue color). a Mean
color images. b Absolute difference images. c Uniqueness sequences.
d Sorted uniqueness sequences (Color figure online)

By introducing w(P(rx ), P(r j )), the spatial information
is embedded into color uniqueness. Thus, the internal rela-
tionship between color uniqueness and spatial distance can
be learned using CNNs. A salient region implies large dif-
ferences over the entire color uniqueness sequence, while
most of the elements of a non-salient region exhibits low
values due to the low contrast with its neighboring regions.
Since CNNs have the ability to collectively encode informa-
tion, i.e., the network is able to learn the influential range
of an input sequence and to determine the influential ele-
ments of the sequence, we set M = N to cover the entire
image.

Consequently, for each region, input QC
x is a 1D array

of size M and contains three channels of absolute differ-
ences. The uniqueness sequence captures the dominant struc-
ture information by integrating color-spatial information.
(Figure 4b shows the uniqueness saliency maps produced
by SuperCNN.) However, considering global color rarity
alone is not enough to handle all situations. For example,
if a girl stands in front of a green field with several yel-
low flowers distributed in the field, the colors from the
girl and the yellow flowers are rare colors in this sce-
nario. However, only the girl should be considered as
salient. Hence, we explore another input sequence as a
complement.

Fig. 4 Saliency maps from the color uniqueness and distribution
sequences, which focus on different color properties, producing com-
plementary results (Color figure online)

3.1.2 Color Distribution Sequence

Although having contrast with the surrounding may indi-
cate saliency, a high contrast region might not necessarily be
salient (e.g., a background object). Detecting saliency with
only color uniqueness often highlights background regions.
Color distribution is complementary to color uniqueness. It is
able to differentiate foreground objects from the background.
Colors belonging to the foreground object are more compact,
while colors belonging to the background are usually widely
distributed over the whole image (Liu et al. 2011). The sec-
ond row of Fig. 4 shows such an example—the colors of the
grid are widely distributed, while the colors of the leaf are
more compact.

We formulate a new input sequence to describe color dis-
tribution. Similar to the color uniqueness sequence, each
region can be represented by a color distribution sequence
Q D

x = {qd
1 , . . . , qd

j , . . . , qd
M }. Each element qd

j is defined
as:

qd
j = t (r j ) · |P(rx ) − P(r j )| · w(C(rx ), C(r j )), (2)

where w(C(rx ), C(r j )) = exp(− 1
2σ 2

r
||C(rx ) − C(r j )||2) is

the range kernel to describe color similarity. The position
value is normalized to adapt to different image sizes. By
integrating the range kernel into the position difference, the
distribution of color C(rx ) can be easily identified. Similar
to the uniqueness sequence, Q D

x is sorted by the spatial dis-
tance to region rx . Typically for a salient object, the regions
within this object should exhibit small position differences
but high color similarity. These combined values encode the
distribution relationship within the sequence, and thus can
be learned by CNNs. In addition, the distribution sequence
describes objectness information rather than color contrast,
which is a complement to the color uniqueness sequence, as
shown in Fig. 4c. On the other hand, a psychophysical study
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Fig. 5 A simple example of our color uniqueness network. For each
superpixel, there is a 1D array (the number of superpixels is 7 here)
containing three channels of absolute differences. There are three
layers in this example. We first apply five 4 × 1 convolution opera-

tions to the input array, followed by one 2 × 1 max pooling, and then
two 2 × 1 convolutions. The final output can be represented as class
distributions (Color figure online)

(Tatler 2007) shows that human usually pays more attention
to the center region of the image. This preferred location
of salient objects can also be learned by the distribution
sequence, as it is constructed by spatial differences (i.e., the
value of an element will be different if it is located at the cen-
ter or at the boundary). Like the color uniqueness sequence,
we set M = N to include the whole image.

3.1.3 Network Structure

The proposed SuperCNN has a multi-column trainable archi-
tecture. Each of the columns is fed with 1D sequences. It
is a feature extractor and consists of sequential layers. Fig-
ure 5 illustrates a simple example of our color uniqueness
column. The two operators included in the example form
two key properties of the CNN. The convolutional operator
exploits spatial correlation among the local regions, and the
max pooling operator reduces the computational complexity
and provides invariance to slight translations. Our network
architecture extends the network shown in Fig. 5 to three
sequential stages, each of which contains multiple layers.
This three-stage architecture is inspired by Krizhevsky et al.
(2012), Farabet et al. (2013) and Girshick et al. (2014), which
obtain state-of-the-art performances with efficiency using a
similar architecture on different applications. There are two
layers involved in the first two stages: a filter bank layer and
a spatial pooling layer. The pooling layer is always followed
by a nonlinearity function. The last stage only contains a filter
bank layer. Finally, each column is followed by a classifica-
tion module.

For a network fu at column u ∈ {1, . . . , U } with L lay-
ers, given an input sequence Qx , the output of fu can be
represented as:

fu(Qx ) = Wu,L Hu,L−1, (3)

where Hu,l at layer l can be computed as:

Hu,l = tanh(pool(Wu,l Hu,l−1 + bu,l)), (4)

where l ∈ {1, . . . , L} and H0 = Qx . Wu,l is the Toeplitz
matrix of connection between layers l and l − 1. bu,l is the

bias vector. Filters Wu,l and bias vectors bu,l are the train-
able parameters of the network. The filter banks perform a 1D
convolution operation on the input to produce multiple fea-
ture maps, each of which describes local information of the
input. Spatial pooling operator pool is able to inject spatial
invariance while passing the features to the next layer. Max-
pooling is used in our implementation and pooling regions
do not overlap. The nonlinearity is brought by the point-wise
hyperbolic tangent function tanh.

Finally, there are U output feature maps Fu produced. For
each of these feature maps, the regions within it are classi-
fied as either belonging to the salient object or not, once the
networks are properly trained. As our goal is to compute a
saliency value instead of a binary value, we apply a softmax
activation function to transform the network scores into con-
ditional probabilities of whether each region is salient. For
each region, a ∈ {0, 1} indicates the saliency binary label.
The class distributions du,a of region rx are predicted from
Fu by a two-layer neural network:

yu,x = Wu,c2 tanh(Wu,c1 Fu(rx ) + bu,c1), (5)

du,a(rx ) = eya
u,x

ey0
u,x + ey1

u,x
, (6)

where Wu,c1, Wu,c2 and bu,c1 are the trainable parameters
of the classifier at the uth column. The network trainable
parameters Wu,l and bu,l are trained in a supervised manner,
by minimizing the negative log-likelihood (NLL) between
the prediction and the groundtruth over the training set:

L(Wu,l , bu,l) = −
∑

x∈R

∑

a∈{0,1}
d̂u,a(rx ) ln(du,a(rx )), (7)

where d̂u,a(rx ) is the groundtruth class distribution. The min-
imization is implemented through stochastic gradient descent
(SGD).

3.2 Saliency Inference

To determine the saliency of a region, each network column
predicts a two-class distribution du , which typically takes the
argmax for classification (i.e., salient object segmentation).
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The class distribution of a region being salient, i.e., a = 1,
in Eq. (6) is a positive normalized value and therefore can
be considered as saliency confidence. The saliency value of
region rx is defined as: Su(rx ) = du,1(rx ). Saliency map Su

is then normalized to (0, 1).
In our framework, U is set to 2, as we have two input

sequences. Two saliency maps are obtained, each of which
is complementary to the other. A common approach to inte-
grate multiple cues is by linear summation or multiplication.
As we seek to obtain objects that are salient in all cues, we
employ multiplication to integrate the saliency maps. The
final saliency map can be obtained by:

S(rx ) =
∏

u∈U

vu
c · Su(rx ), (8)

where vu
c is the learned weight by linear regression accord-

ing to the mean absolute difference between the saliency
map and the groundtruth. Saliency map S is again normal-
ized to (0, 1). Figure 4 shows the predictions of the color
uniqueness sequences, the color distribution sequences and
the final saliency map. The superpixelwise strategy easily
embeds the global relationships in the predictions. Thus, it is
able to avoid post-processing (e.g., conditional random field)
to maintain the consistency of the labeling results.

3.3 Multiscale SuperCNN

Although Eq. (8) considers different aspects of saliency, its
performance may still be affected by the size of the pattern.
In addition, the resulting saliency map may not be smooth
enough (see Fig. 6b–d). We handle this problem with a mul-
tiscale structure. The number of superpixels is set differently
depending on the scale. A small number of superpixels is able
to diminish the color contrast effect from small scale patterns.
Segmentation errors can be mitigated by considering multi-
ple scales. However, different numbers of superpixels (i.e.,
different input sequences) may lead to extra training efforts
and more parameters to be handled. Similar to Farabet et al.
(2013), we share the parameters across different scales.

Given the number of superpixels N of the finest scale, the
other scales are set to N/2g , where g ∈ {1, . . . , G} is the
scale number. The input sequences from the other scales are
then upsampled to have the same size, i.e., N . Finally the
upsampled sequences are fed to the networks. The networks
for all the other scales are copies of the finest scale networks,
sharing all parameter values. The final multiscale saliency
map is the weighted sum of all the scales:

S f =
∑

g∈G

v
g
s · Sg. (9)

Similar to Eq. (8), vg
s is the learned weight using linear regres-

sion. S f is then normalized. Results of the multiscale saliency

Fig. 6 Saliency maps produced from three scales

are shown in Fig. 6. The resulting saliency maps may recover
small scale patterns, while producing smooth predictions,
which are important for energy-based image editing (Avidan
and Shamir 2007) (Fig. 7).

3.4 Reducing Overfitting

While the proposed superpixewise framework hugely reduces
the required number of predictions during testing, the overfit-
ting problem may occur as the number of examples within the
training data is reduced. Since a training image has only N
superpixels (e.g., N = 1000), only N training examples are
available in an image. As a typical saliency dataset contains
only hundreds of labeled images, the total number of avail-
able training examples is insufficient to train the proposed
SuperCNN with a large number of parameters.

Introducing jitter to the training data has been shown very
effective to augment the dataset and prevent overfitting (Cire-
san et al. 2011). We apply bounded random distortions to each
training example as pre-processing during training. The dis-
tortion level is randomly determined from a specified range,
including horizontal reflection, rescaling (±5 %), translation
(±10 % of the image size), rotation (±5◦) and superpixel
number (−5 %). These distortions greatly increase the size
of the training set, allowing us to learn a large number of
parameters without considerable overfitting.

We further combat overfitting by regularizing the neural
networks. While numerous regularizers (Bell and Koren
2007; Breiman 2001) have been proposed to prevent over-
fitting, the recently proposed “dropout” (Hinton et al. 2012)
has shown to be effective and efficient. The main idea of
dropout is to set the activations to zero with probability 0.5
to prevent co-adaptation of neurons. By randomly dropping
out neurons, the procedure forces each neuron to rely on the
population behavior of its inputs rather than relying exces-
sively on the outputs of other neurons. We use dropout in the
first two convolutional layers. Dropout plays a significant role

123



Int J Comput Vis

Fig. 7 Qualitative comparison of the state-of-the-art methods on the
MSRA-1000 dataset. Our learned hierarchical features are able to ren-
der the entire objects as salient, yielding continuous saliency maps that
are closest to the groundtruth. The quantitative evaluation of the MSRA-

1000 dataset is presented in Fig. 8. a. Input. b GT. c PCA (Margolin et al.
2013). d GMR (Yang et al. 2013). e HS (Yan et al. 2013). f GC (Ming-
Chng et al. 2013). g CBS (Jiang et al. 2011). h RC (Cheng et al. 2011).
i CA (Goferman et al. 2010). j Ours (Color figure online)
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Fig. 8 Quantitative evaluation on the MSRA-1000 dataset. a Precision-recall curves. b F-measure curves. c Precision, recall, and F-measure for
adaptive thresholds. The proposed approach consistently produces better results than the state-of-the-art methods (Color figure online)

in SuperCNN, as it is able to avoid overfitting with relatively
small training size and improve generalization performance.
A limitation of this approach is that it typically doubles the
converging time in training. Table 1 shows the binary classifi-
cation test errors (i.e., using the class with higher distribution
as the label) of the color uniqueness network with respect to
different approaches for combating overfitting.

4 Experiments

To study the performance of the proposed salient object
detection framework, we have quantitatively and qualita-
tively evaluated it on three fully labeled datasets: MSRA-
1000 (Achanta et al. 2009) (1000 images), the Berkeley
image set BSDS-300 (Arbelaez et al. 2011) (300 images),
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Table 1 The test errors of the color uniqueness network with respect
to different approaches to reduce overfitting

Approach Test error (%)

No data augmentation and dropout 24.3

Data augmentation 20.1

Data augmentation + dropout 17.4

The reported results are the binary classification error rates on the
ECSSD dataset

and a newly proposed dataset ECSSD (Yan et al. 2013)
(1000 images). All three datasets have manually segmented
groundtruth. While the MSRA-1000 dataset is widely used
by most methods for evaluation, the other two datasets are
more challenging. The ECSSD dataset contains images with
more complex backgrounds, and most images in the BSDS-
300 dataset contain multiple objects.

We train the proposed SuperCNN on the ECSSD dataset
as it consists of more complex scenes, allowing SuperCNN to
learn more robust features for real world scenes. The training
follows a five fold cross validation—800 images are ran-
domly selected for training and the remaining 200 images
are used for testing. It involves training a two-column, three-
stage neural network system. The first two stages both include
a bank of filters of kernel size 50, a max-pooling operator of
kernel size 2 and a tanh unit. The last stage contains only
a bank of filters. The other two datasets are evaluated using
the trained network.

Each input image is transformed to the CIE LAB space,
and the input sequences are normalized to have zero mean
and unit variance. We use a three-scale structure, 1000, 500
and 250. We set the finest scale to 1000 superpixels in order
to learn more representative hierarchical features. As it may
not be possible to obtain an exact number of superpixels,
we force the SLIC algorithm to produce no more than the
specified number of segments and the remaining elements
are then filled with zeros. The standard deviations σ of the
spatial and range kernels of the input sequences are set to
0.4, both in training and testing.

For the network column handling the color uniqueness
sequence, the first stage transforms each 3-channel input
feature vector to 16 dimensions. The second stage further
transforms it to 64 dimensions. Finally, the third stage trans-
forms it to an output 256D feature vector. The first two
convolutional layers are connected to all the kernel maps
in the previous layers, and the last layer is a combination
of 32 randomly connected feature vectors from the previous
layer. For the network column handling the color distribution
sequences, the input is a 2D feature vector. The architecture is
the same as the column for handling color uniqueness, except
for the numbers of bank of filters; instead of being 16, 64 and
256, they are now 12, 48 and 192, respectively. The last layer
is a combination of 24 randomly connected feature vectors

from the previous layer. The size of the input sequence is
the same as the number of superpixels (i.e., 1000) to involve
the whole image in making a global decision. The proposed
SuperCNN typically needs four to six days for the training
to converge.

The proposed framework is implemented in Lua, using
Torch7 toolbox (Collobert et al. 2011), and tested on a PC
with a 4-core i7 CPU and 18GB RAM. Due to the special
network structure, Farabet et al. (2013) shows that CNNs
can be parallelized on either CPUs or GPUs. Taking advan-
tage of the parallel implementation of convolutions on CPU,
our algorithm takes on average 0.45 s to process one image
of resolution 400 × 300. Segmentation and preprocessing
take a total of 0.32 s, while the detection time takes 0.13 s.
Despite using a large number of superpixels (vs. GMR, Yang
et al. 2013, using only 200 superpixels), the execution time is
comparable to the state-of-the-art methods (e.g., GMR, Yang
et al. 2013, takes 0.38 s to process one image).

4.1 Quantitative Evaluation

We have compared the proposed method with 7 state-of-
the-art methods, the top three algorithms according to Borji
et al. (2012) (RC Cheng et al. 2011, CA Goferman et al.
2010, CBS Jiang et al. 2011), plus four latest algorithms
(GMR Yang et al. 2013, HS Yan et al. 2013, PCA Margolin
et al. 2013, GC Ming-Chng et al. 2013). The implementa-
tions provided by the authors were used for fair comparison.
Like the previous work (Perazzi et al. 2012; Ming-Chng
et al. 2013), we quantitatively evaluate the performances of
these methods by measuring their precision-recall values,
F-measure numbers, and mean absolute errors.

4.1.1 Precision and Recall

Precision indicates the percentage of the output salient pixels
that are correct, while recall indicates the percentage of the
ground truth pixels detected. The F-measure is defined as:

Fβ = (1 + β2) · precision · recall

β2 · precision + recall
, (10)

where β2 is set to 0.3 to emphasize on precision (Achanta
et al. 2009).

Two different threshold criteria are used to conduct the
evaluation. In the first experiment, we binarize the saliency
map for every threshold in the range of [0, 255]. In the second
experiment, we use an image dependent adaptive thresh-
old (Achanta et al. 2009), which is computed as twice the
mean value of the saliency map.

Results of the evaluations on the three datasets are shown
in Figs. 8, 10 and 12. It is interesting to note the extremi-
ties of the precision and recall curves in the first experiment
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Fig. 9 Qualitative comparison of the state-of-the-art methods on the
ECSSD dataset. Our learned hierarchical features are able to render the
entire objects as salient in clustered backgrounds, yielding continuous
saliency maps that are closest to the groundtruth. The quantitative eval-
uation of the ECSSD dataset is presented in Fig. 10 a Input. b GT. c

PCA (Margolin et al. 2013). d GMR (Yang et al. 2013). e HS (Yan
et al. 2013). f GC (Ming-Chng et al. 2013). g CBS (Jiang et al. 2011).
h RC (Cheng et al. 2011). i CA (Goferman et al. 2010). j Ours (Color
figure online)
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Fig. 10 Quantitative evaluation on the ECSSD dataset. a Precision-recall curves. b F-measure curves. c Precision, recall, and F-measure for
adaptive thresholds. The proposed approach consistently produces better results than the state-of-the-art methods (Color figure online)

(i.e. fixed threshold, Figs. 8a, 10a, 12a): at maximum recall
where the threshold is equal to zero and thus all the pixels
are considered as salient, i.e., the precision value at maxi-
mum recall indicate the average percentage of salient pixels
within an image of the dataset (that is why all the meth-
ods have the same precision at this recall). As can be seen,
the average sizes of salient objects are relative small for all
the three datasets, which implies that to obtain high preci-
sion is more important and difficult than high recall. On the
other hand, the minimum recall value indicate the robustness
of the saliency detection algorithm, high precision at this
recall represent most of the high confidence saliency val-

ues (close to 255) are correctly located to the salient object
(Figs. 9, 11).

Although the proposed method performs similarly to
GMR (Yang et al. 2013) on the simple MSRA-1000 dataset
(Fig. 8), it performs much better than all other methods
on the other two challenging datasets (Figs. 10, 12). Fur-
thermore, the saliency maps produced by our method are
smoother and contain more correctly assigned high confi-
dence salient regions than all the other methods (i.e. high
precisions at low recall values). In addition, we achieve
the best F-measures either using fixed or adaptive thresh-
olds on all the three datasets. The main reason is that the
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Fig. 11 Qualitative comparison of the state-of-the-art methods on the
BSDS-300 dataset. Our learned hierarchical features are able to render
the entire objects as salient in complex scenarios, yielding continuous
saliency maps that are closest to the groundtruth. The quantitative eval-
uation of the BSDS-300 dataset is presented in Fig. 12. a Input. b GT.

c PCA (Margolin et al. 2013). d GMR (Yang et al. 2013). e HS (Yan
et al. 2013). f GC (Ming-Chng et al. 2013). g CBS (Jiang et al. 2011).
h RC (Cheng et al. 2011). i CA (Goferman et al. 2010). j Ours (Color
figure online)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

Precision and Recall − Fixed Threshold

Ours PCA GMR HS GC CBS RC CA

(a)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Threshold

F−
m

ea
su

re

F−measure − Fixed Threshold

Ours PCA GMR HS GC CBS RC CA

(b)

OURS PCA GMR HS GC CBS RC CA
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision and Recall − Adaptive Threshold

Precision
Recall
F−measure

(c)

Fig. 12 Quantitative evaluation on the BSDS-300 dataset. a Precision-recall curves. b F-measure curves. c Precision, recall, and F-measure for
adaptive thresholds. The proposed approach consistently produces better results than the state-of-the-art methods (Color figure online)

hand-crafted features of the other methods are somewhat
limited to particular scenarios. (We will be visually ver-
ified this in Sect. 4.2.) For example, the performance of
GMR (Yang et al. 2013) is guaranteed while the back-
ground prior (i.e., pixels close to the image boundary likely
belong to the background) is valid (this assumption can be
met easily in the simple MSRA-1000 dataset but not for

the others); PCA (Margolin et al. 2013) uses patch-based
features that tend to highlight object boundaries. On the con-
trary, our method learns the hierarchical contrast features
in a global manner, which are more robust than the hand-
crafted features especially for complex scenes like cluttered
background or similar colors between foreground and back-
ground.
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Fig. 13 Mean absolute errors of the state-of-the-art methods on the three datasets. The proposed approach consistently achieves the lowest error
rates on all three datasets
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Fig. 14 Evaluation of different components in the proposed frame-
work. The experiments are performed on the BSDS-300 dataset. a
Precision-recall curves. b F-measure curves. c Precision, recall, and
F-measure for adaptive thresholds. We can observe the advantages of
aggregating two complementary network columns and the multi-scale

structure. The aggregation of color uniqueness (CU) and color dis-
tribution (CD) leads to a better precision as it removes background
distractions (i.e., CU and CD vs. Scale 1). The multi-scale structure
leads to a better recall as it recover the small scale patterns (i.e., Scale
1–3 vs. final) (Color figure online)

4.1.2 Mean Absolute Error

For a faithful comparison, mean absolute error (MAE) (Per-
azzi et al. 2012) is introduced to reflect the negative saliency
assignments. It is defined between a saliency map S and the
binary groundtruth GT as:

M AE = 1

|I |
∑

x

|S(Ix ) − GT (Ix )|, (11)

where |I | is the total number of pixels. The MAE results on
three datasets are shown in Fig. 13. The proposed method
achieves the lowest MAE values on all three datasets. This
means that its predicted saliency pixels are very close to those
of the groundtruth. This is partly due to the way that we
aggregate two saliency measures—we aim to obtain objects
that are salient in both measures.

4.1.3 Component Analysis

We further evaluate the effectiveness of different com-
ponents: color uniqueness sequences, color distribution

sequences and three scales. Results in Fig. 14 show the
importance of constructing two complementary sequences
to form a two-column neural network. As the color unique-
ness sequence and the color distribution sequence (i.e., CU
and CD in Fig. 14, both computed from the finest scale,
Scale 1) predict saliency in different aspects, the combined
results achieve superior performance. The multi-scale struc-
ture also achieves a better recall than a single scale structure,
as small scale patterns are recovered (i.e., Scale 1–3 vs. final
in Fig. 14c).

4.2 Qualitative Evaluation

Figures 7, 9 and 11 show visual comparisons of the state-
of-the-art methods on the three datasets. All the existing
methods perform poorly in the scenarios with cluttered back-
ground (e.g., the sixth row of Fig. 9 and the last row of
Fig. 11). Methods that rely on background priors, such as
GMR (Yang et al. 2013), cannot successfully render salient
objects when these assumptions are invalid (e.g., the colors
of the image boundary are similar to the salient object in
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the fifth row of Fig. 9). The proposed method, on the con-
trary, is able to distinguish salient objects from these complex
distractions. On the other hand, as the learned features are
hierarchical and capture salient information in a global man-
ner, the proposed method is able to extract the whole object
properly. For example, in the second row of Fig. 7 and the
fourth row of Fig. 11, the proposed method assigns smooth
saliency values to the whole persons, while the other meth-
ods only capture parts of them. In contrast to patch-based or
central-surround features like PCA (Margolin et al. 2013) and
CA (Goferman et al. 2010), which attenuate homogeneous
regions to certain extent, the proposed method renders highly
salient regions over the entire homogenous regions. In addi-
tion, the assigned saliency values are very confidence (close
to the groundtruth), which is beneficial to applications like
segmentation. We further discuss two saliency applications
using the proposed method, image resizing and stylization.

4.2.1 Image Resizing

While image resizing is a popular operation, it often affects
the image content or the aspect ratio. Effective image resizing
should be content-aware. Salient objects typically represent
important image content to be preserved. Here, we examine
the importance of obtaining continuous saliency maps to the
energy-based resizing techniques. The comparison is con-
ducted between the proposed method and the context-aware
saliency detection method CA (Goferman et al. 2010), using
the non-homogeneous resizing technique proposed by Avi-
dan and Shamir (2007). We can see from Fig. 15 that the
resizing results produced by our continuous saliency maps
preserve the important objects very well. On the contrary,
since CA (and other methods that emphasize on edges) can-
not detect interior regions, the resulting saliency maps may
mislead the resizing algorithm. We note that the proposed
method consistently produces smooth saliency maps, which
is important for energy-based applications.

4.2.2 Image Stylization

Similar to photographers, artists have tendency to empha-
size the important objects in the scene when they paint. The
emphasized objects are usually drawn with far more details
than the background. This observation has been adopted by
non-photorealistic rendering techniques to generate interest-
ing effects. Here, we compare the proposed method with
the state-of-the-art method GMR (Yang et al. 2013), using
XDoG (Winnemoller et al. 2012) for portrait stylization. For
the portrait images shown in Fig. 16a, the persons are the
salient objects. Artists would tend to capture more details
from the faces and the bodies. However, Fig. 16b shows
that GMR fails to recover the entire human bodies by using
hand-crafted features, due to the distraction from the high

Fig. 15 Importance of obtaining continuous saliency maps to content
aware image resizing (Avidan and Shamir 2007). a Input images. b The
saliency maps produced by CA (Goferman et al. 2010) tend to empha-
size edges. c The saliency maps produced by the proposed method are
able to recover homogeneous regions. Resizing results of CA (Gofer-
man et al. 2010) (d) and the proposed method e show the importance
of extracting continuous saliency

Fig. 16 Importance of detecting the entire salient objects to portrait
stylization (Winnemoller et al. 2012). a Input images. b The saliency
maps produced by GMR (Yang et al. 2013) fail to detect faces of
the salient objects. c The saliency maps produced by the proposed
method include the whole salient objects. Hence, the stylization results
of GMR (Yang et al. 2013) (d) cannot preserve face details, while the
proposed method can e

contrast outliers (e.g., clothes or backgrounds). On the con-
trary, Fig. 16c shows that the proposed method can recover
the whole bodies as salient. Hence, the details of the persons’
faces are well preserved after stylization.

4.3 Limitations

Although the proposed method is able to detect salient objects
by learning hierarchical features in a global manner, the
learned features still rely on contrast information. For a scene
with similar foreground/background colors, the contrast
information is usually invalid. Some image enhancement
techniques like histogram equalization may not guarantee to
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Fig. 17 A failure case of the proposed method. Although the proposed
method fails due to the low contrast between the salient object and the
background, the learned positional information still helps recover the
salient object to a certain extent. a Input. b CU result. c CD result.
d Combined

highlight the salient objects. In fact, all existing approaches
also suffer from this limitation, which can only be addressed
by introducing extra information such as depth (He and Lau
2014). On the other hand, the input sequences of our networks
include positional information, which may help recover the
salient objects to a certain extent. In other words, the pro-
posed method can predict the potential location of salient
objects (most likely near to the center of the image) when
the contrast information is not available, as shown in Fig. 17.

Similar to other learning-based saliency detection meth-
ods (Liu et al. 2011), we require an extra training step,
which takes a few days. On the other hand, once the net-
works are properly trained, the resulting detector can robustly
extract salient objects in an efficient manner without parame-
ter adjustment.

5 Conclusion and Future Work

In this paper, we propose a superpixelwise convolutional
neural network approach for saliency detection, called Super-
CNN. We overcome the barriers of classical CNNs that they
are not suitable for contrast extraction and are only able to
capture high-level information of specific categories. Super-
CNN is a general purpose saliency detector. While it takes
into account the whole image to make a global decision,
it also significantly reduces the required number of predic-
tions in runtime. In order to capture saliency information,
two meaningful superpixel sequences, the color uniqueness
and the color distribution sequences, are proposed to extract
saliency properties. Due to the efficiency of the superpixel-
wise mechanism, the proposed SuperCNN can be applied
to other CNN applications, such as image segmentation
(Girshick et al. 2014), image classification (Krizhevsky et al.
2012) and image parsing (Farabet et al. 2013).

As a future work, we are currently considering to jointly
train the two columns of SuperCNN. As shown in a recent
work for pose estimation (Li et al. 2014), jointly training two
networks, one for joint point regression and one for body part
detection, is able to achieve superior performance compared
with individually training each network. Another possible
future work is to redesign SuperCNN into a deeper network.

The top performer (Szegedy et al. 2014) in the latest Ima-
geNet LSVRC-2014 contest shown that a carefully crafted
deep architecture (22 layers) is able to achieve a surprisingly
high performance in image classification, while maintaining
efficiency.
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