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ABSTRACT
Variational Autoencoder (VAE) offers a non-linear probabilistic
modeling of user’s preferences. While it has achieved remarkable
performance at collaborative filtering, it typically samples a single
vector for representing user’s preferences, which may be insuffi-
cient to capture the user’s diverse interests. Existing solutions ex-
tend VAE to model multiple interests of users by resorting a variant
of self-attentive method, i.e., employing prototypes to group items
into clusters, each capturing one topic of user’s interests. Despite
showing improvements, the current design could be more effective
since prototypes are randomly initialized and shared across users,
resulting in uninformative and non-personalized clusters.

To fill the gap, firstly, we introduce iterative latent attention for
personalized item grouping into VAE framework to infer multiple
interests of users. Secondly, we propose to incorporate implicit dif-
ferentiation to improve training of our iterative refinement model.
Thirdly, we study the self-attention to refine cluster prototypes for
item grouping, which is largely ignored by existing works. Exten-
sive experiments on three real-world datasets demonstrate stronger
performance of our method over those of baselines.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Variational AutoEncoder (VAE) has established a new pathway for
Collaborative Filtering (CF) via neural network-based non-linear
probabilistic modeling. Representative VAE-based CF models [19,
29] typically render a single vector for representing user’s interests.
We are increasingly cognizant that a user may well have varied
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interests, and a single representation vector may be insufficient to
capture the full breadth of a user’s diverse interests.

Recently, researchers have shown improvements by using multi-
ple embedding vectors to represent a user [4, 17, 23, 48]. MacridVAE
[23], the most representative VAE-based multi-interest CF model,
has shown superior performance compared to MultiVAE [19], a no-
table VAE-based single-embedding user representation work. Even
so, MacridVAE has a couple of shortcomings. For one, it employs
randomly initialized prototypes to group items into several clus-
ters, each of which capturing one user’s topic of interests, which
could result in uninformative clusters. For another, cluster proto-
types are shared across users, which could be less effective since
recommender systems are oriented towards personalization. Thus,
our goal is to design a more effective VAE-based architecture for
multi-interest modeling in collaborative filtering.

Existingmulti-interest modeling recommendationmodels widely
adopt two approaches, self-attentive method and dynamic routing
mechanism. The former method (of which a variant is adopted by
MacridVAE), relying on attention mechanism, typically employs a
set of prototypes, rather than computing from input, to attend to dif-
ferent historical behaviors of users. The resulting multiple vectors
are taken as multi-interest representations. As would be analyzed
in Section 3, self-attentive method has the drawbacks of uninforma-
tive and non-personalized cluster prototypes. The latter method,
inspired by dynamic routing algorithm from Capsule network [27],
treats interest representations as higher-level capsules and refine
their representations through routing from lower-level capsules, i.e.,
interacted items. The routing process potentially resolves the short-
comings of self-attentive method by iteratively refining and person-
alizing high-level capsules, i.e., cluster prototypes. However, itera-
tive refinement suffers from training instabilities and increases the
model complexity, making it challenging to apply to large datasets.

To resolve the shortcomings of existing works, firstly, we in-
troduce iterative latent attention for personalized item grouping
into VAE framework to infer multiple user’s interests, which would
refine cluster prototypes to produce more informative and person-
alized item clusters. Secondly, to reduce the complexity stemming
from iterative refinement, we propose to incorporate implicit differ-
entiation to ease the training process and to strive for better recom-
mendation accuracy. Thirdly, we study the interactions between
cluster prototypes via self-attention, which has received less atten-
tion by prior multi-interest modeling works. Encouraging empirical
results suggest that this a direction to improve recommendation per-
formance besides designing more effective multi-interest extractor.

Contributions.Our primary contributions are first, we study ex-
isting works on multi-interest modeling under a unified clustering
lens to uncover their shortcomings. Second, we design a novel and
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more effective VAE-based model called VALID, which stands for
Variational Autoencoder via iterative Latent attention and Implicit
Differentiation. VALID equips iterative latent attention and implicit
differentiation, achieving higher recommendation accuracy than
related VAE-based baselines. Third, we explore the interactions
between cluster prototypes, which yields interesting insights. Last
but not least, we conduct experiments on three real-world datasets
to demonstrate the favorable performance of VALID.

2 RELATEDWORK
VAE-based Recommender Systems. MultiVAE [19] is a notable
VAE-based Collaborative Filtering (CF) model, proposing the use of
multinomial likelihood and adjusting standard VAE objective for
recommendation task. Subsequent works [14, 26, 28, 39, 51] have
been proposed, but these works typically render a single vector for
user representation, which is insufficient to capture the diversity
of user’s interests. MacridVAE [23] is the most representative VAE-
based multi-interest model, inspiring a series of later works [9, 38,
47]. Ourwork generalizesMacridVAE by introducing iterative latent
attention and implicit differentiation for multi-interest modeling.

Multi-Interest User Modeling. Representative works that em-
ployed self-attentive method include MacridVAE [23] for collabora-
tive filtering and ComiRec-SA [4] for sequential recommendation.
[38, 47] leverage external information to improve MacridVAE. A se-
ries of works improve ComiRec-SA for sequential recommendation
[7, 16, 18, 31, 33, 43, 45, 53, 54]. Regarding dynamic routing approach,
DGCF [48] and MIND [17] are notable for routing-based multi-
interest modeling, which are inspired by dynamic routing from Cap-
sule network [27]. A string of subsequent works following this di-
rection are [4, 5, 7, 37, 49]. Another less common direction for multi-
interest modeling is to include multiple user vectors [2, 34, 50].

Our work shares the same spirit with MacridVAE and DGCF
and is distinct in several respects. Firstly, we employ iterative latent
attention for personalized item grouping to derive multiple user’s
interests, generalizing MacridVAE. Secondly, we study implicit dif-
ferentiation to resolve training instabilities caused by iterative re-
finement in our model. This study not only improves the training,
resulting in better accuracy, but also brings insight on the connec-
tion between clustering and multi-interest modeling. Thirdly, we
model interactions between cluster prototypes by self-attention.

Iterative Representation Learning. A wide range of models
have employed iterative refinement to induce a set latent repre-
sentations from inputs. Typically, starting from an initial guess
(e.g., random), these models iterate multiple rounds over input to
embed informative information to transform the initial guess into
the desired solution. Capsule network and variants [27, 40] iter-
atively update representation of higher-level capsules based on
lower-level capsules, as applied to image reconstruction, classifi-
cation and segmentation. Slot Attention [22] and its extension [15]
leverage iterative attention mechanism to produce a set of vectors
capturing objects from input images or videos. Perceiver [11, 12]
uses multiple cross-attention and self-attention blocks repeatedly
to efficiently learn representations from inputs with a large number
of elements and apply to multiple modalities without much change
to the architecture. Perceiver has inspired many works to apply

iterative refinement procedure into various tasks, e.g., graph mod-
eling [1], speech processing [41], vision-language modeling [35],
robotic manipulation [30], autoregressive modeling [10].

These works share in common a soft clustering [3] structure, in
which each cluster is associated with one component from inputs,
e.g., objects from images. Correspondingly, multi-interest modeling
induces the clusters underlying user’s historical interactions, and
each cluster represents a certain topic of user interest. The semantic
connection between these two disciplines motivate us to study a
novel iterative approach for multi-interest user modeling.

3 PRELIMINARIES
Problem Formulation.Our problem setting includes a set of users
U and a set of itemsI with𝑀 = |U| and𝑁 = |I | being the number
of users and items, respectively. Let R ∈ {0, 1}𝑀×𝑁 represent the
interactions between users and items. Let r𝑢 ∈ R, r𝑢

𝑙
= 1 indicate

user 𝑢 interacted with item 𝑙 , otherwise r𝑢
𝑙

= 0. The goal is to
predict the likelihood of interactions between user𝑢 and item 𝑙 that
𝑢 has not interacted. To achieve this goal, the key is to effectively
capture user preferences from her adopted items. Let I𝑢 be the set
of all items that user 𝑢 interacted, i.e., r𝑢

𝑙
= 1. Given I𝑢 as inputs,

multi-interest extractor produces a set of 𝐾 vectors z𝑢 = {z𝑢
𝑘
}𝐾
𝑘=1,

z𝑢
𝑘
∈ R𝑑 , to capture 𝐾 topics of interest for user 𝑢.
Multi-Interest Modeling under Clustering Lens. Two most

popular methods to derive multiple interests of user for recom-
mendation are self-attentive method and dynamic routing. We study
these approaches under the clustering lens to understand how they
work and draw the connection to our proposed model.

Under clustering lens, the problem of multi-interest modeling in
recommender systems is to induce 𝐾 groups of items underlying
user 𝑢’s adopted items set I𝑢 with 𝐿 = | |I𝑢 | |. Mathematically, let
𝜽𝑢 = {𝜽𝑢

𝑘
}𝐾
𝑘=1 represent 𝐾 centroids/prototypes of 𝐾 clusters for

user 𝑢; 𝝓𝑢 = {𝝓𝑢
𝑙𝑘
}𝐿
𝑙=1 denote the assignment of each item 𝑙 ∈ I𝑢

to cluster 𝑘 . Each interest of user is obtained by aggregating item
representations assigned to the corresponding cluster. Let z𝑢

𝑘
denote

the 𝑘-th interest representation of user 𝑢 and H𝑙 is representation
items 𝑙 , we have z𝑢

𝑘
=
∑𝐿
𝑙=1 𝝓

𝑢
𝑙𝑘
H𝑙 . Existing works mainly differ by

how they derive cluster prototypes 𝜽𝑢 and cluster assignment 𝝓𝑢 .
Self-Attentive Method. Existing works mainly employ the

idea from [20], which is described by the following equations:
A = softmax

𝐾
(W2𝑡𝑎𝑛ℎ(W1H𝑇 ))𝑇

V = A𝑇H
(1)

H ∈ R𝐿×𝑑 contains representations of adopted items.W1 ∈ R𝑑×𝑑
projects H to latent space.W2 ∈ R𝐾×𝑑 is interpreted as 𝐾 cluster
prototypes1, i.e., 𝜽𝑢 in clustering framework. A ∈ R𝐿×𝐾 represents
the weights of assigning items to clusters, i.e., A𝑙𝑘 is the weight
of assigning item 𝑙 to cluster 𝑘 . Hence, A acts as 𝝓𝑢 . Finally, user
interests are represented by V ∈ R𝐾×𝑑 , obtained by aggregating
item representations weighted by assignment scores, i.e., V = A𝑇H.

Self-attentive method has its own shortcomings. Firstly, cluster
prototypes W2 is randomly initialized and updated solely based
on supervision signals from user-item interactions, which is often
sparse. This results in sub-optimal performance. Secondly,W2 is
1We consider dimension of W2 , which is equal to that of W1H, is 𝑑 for simplicity
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shared across users, which is less personalized. As such, one of our
goals in this paper is to address these two drawbacks.

Dynamic Routing Method. Existing works mainly follow the
idea from MIND [17], which repeats following equations 𝑅 times

A𝑙𝑘 =
𝑒𝑥𝑝 (b𝑙𝑘 )∑𝐾
𝑘=1 𝑒𝑥𝑝 (b𝑙𝑘 )

with b𝑙𝑘 = (W𝑙𝑘H𝑙 )𝑇 v𝑘

v𝑘 = 𝑠𝑞𝑢𝑎𝑠ℎ(
𝐿∑︁
𝑙=1

A𝑙𝑘W𝑙𝑘H𝑙 ) (𝑠𝑞𝑢𝑎𝑠ℎ(x) =
| |x| |2

1 + ||x| |2
x
| |x| |2

)
(2)

W𝑙𝑘 ∈ R𝑑×𝑑 is the connection weight2 between item 𝑙 (low-level
capsule) and user interest 𝑘 (high-level capsule). b𝑙𝑘 is the routing
logit between item 𝑙 and cluster 𝑘 . A𝑙𝑘 is the weight of assigning
item 𝑙 to interest 𝑘 (cluster 𝑘). Therefore, A ∈ R𝐿×𝐾 plays the role
of 𝝓𝑢 . v𝑘 ∈ R𝑑 represents 𝑘-th interest (cluster) of user, obtaining
by aggregating adopted items representations followed by squash
non-linearity. Hence, V ∈ R𝐾×𝑑 plays the role of 𝜽𝑢 .

Equation 2 implies that dynamic routing has potential to address
issues of self-attentive method. Firstly, 𝑘-th cluster prototype v𝑘
is aggregated from user adopted items, which is personalized. Sec-
ondly, v𝑘 is iteratively refined and further updated with supervision
signals, which is more informative than randomly initialized ones.
However, as there is no ground-truth label in each iteration, the iter-
ative refinement of dynamic routing results in deep model, which
is known to be difficult to train, affecting the model performance.

Overview of Proposed Approach. First, we introduce iterative
latent attention for personalized item grouping into VAE frame-
work, which iteratively updates cluster prototypes to alleviate non-
personalized and uninformative prototypes problems of existing
VAE-based self-attentive methods. Second, we employ implicit differ-
entiation to alleviate the training difficulty caused by iterative refine-
ment, which has not been done by existing dynamic routing multi-
interest modeling methods. Thirdly, we study self-attention meth-
ods to explicitly model the interactions between cluster prototypes.

4 METHODOLOGY
Figure 1 presents the architecture of our proposed model VALID.
The core idea is iterative latent attention for personalized item group-
ing. Concretely, prototypes in latent space iteratively attend to input
items to group items into meaningful clusters. Prototypes are then
updated to become more informative and personalized, meaning
that each user has her own set of prototypes. Updated prototypes
are used in subsequent cluster steps to better identify item groups.

LetA ∈ R𝑁×𝐾 be the assignment scores of𝑁 items to𝐾 interests
(clusters). m ∈ R𝐾×𝑑 is the set of randomly initialized 𝐾 cluster
prototypes andm𝑢 ∈ R𝐾×𝑑 be the set of updated cluster prototypes
of user 𝑢.H ∈ R𝑁×𝑑 denote the item embedding matrix of 𝑁 items,
each of dimension 𝑑 . Next, we will describe details of our proposed
model, following the illustration of Figure 1 from left to right.

4.1 Iterative Latent Attention for Personalized
Item Grouping

VALID first groups 𝑁 items into 𝐾 clusters via an iterative manner.
A series of clustering blocks are employed, each has cluster and

2The dimension of W𝑙𝑘 is 𝑑 × 𝑑 to ease the understanding.

update steps, except the last block only includes cluster step. In the
first clustering block, cluster centroids inm are shared across users
and are refined in the subsequent blocks to make it personalized
and informative. Using a set of independent prototypesm, which
is not a function of 𝑁 , is favorable as it can scale up without bur-
dening model’s trainable parameters. We start by describing the
first clustering block then present the proposed iterative approach.

4.1.1 Clustering Block. As depicted in Figure 1, each clustering
block includes two steps, Group items and Update prototypes. The
second step, Update prototypes includes updating prototypes and
self-attention to model interactions between prototypes.

Group Items. As its name suggests, this step groups items into
several clusters. The input includes prototypes m and item matrix
H and the output is assignment scores A obtained as follows.

b𝑙𝑘 = H𝑇
𝑙
m𝑘/(𝜏 · | |H𝑙 | |2 · | |m𝑘 | |2) ∀𝑘 = 1, 2, ..., 𝐾

A𝑙 ∼ 𝐶𝐴𝑇𝐸 (𝑆𝑂𝐹𝑇𝑀𝐴𝑋 ( [b𝑙1, b𝑙2, .., b𝑙𝐾 ]))
(3)

A𝑙 ∈ R𝐾 is the score of assigning item 𝑙 to interest (cluster) 𝑘 .A𝑙
is one-hot approximated vector estimated by Gumbel-Softmax [13]
sampling (CATE). b𝑙𝑘 measures the cosine similarity between item
representationH𝑙 and cluster representationm𝑘 . Cosine similarity
helps to prevent mode collapse where items are mostly grouped to a
single prototype with highest magnitude [23]. A small temperature
𝜏 helps concentrate score to the most similar cluster.

Existing self-attentive methods stop at this step and move to
user’s interest aggregation. The inherent drawback is that the re-
sulting clusters are based on randomly and non-personalized cluster
prototypes m, which negatively affects recommendation accuracy.

Update Prototypes. To alleviate this shortcoming, we propose
to update and embed personalization into cluster representations,
i.e.,m becomes m𝑢 (symbol 𝑢 means association to a specific user
𝑢). To understand why personalization is needed for clustering,
let us examine the case when m contains only one element, i.e.,
m ∈ R𝑑 . In this case, A𝑙 (without softmax normalization) measures
the importance of each item 𝑙 to user. In other words, A𝑙 repre-
sents the degree to which user likes item 𝑙 . Therefore, sharingm
across users is equivalent to setting the same preference weight for
each item across users, which is in contrast with the intention of
personalization in recommender systems.

This step’s input includes assignment scoresA, non-personalized
prototypes m and the output is personalized prototypesm𝑢

m𝑢
𝑘
=

𝑁∑︁
𝑙=1

r𝑢
𝑙
A𝑙𝑘H𝑙 ∀𝑘 = 1, 2, ..., 𝐾 (4)

In Equation 4, each m𝑢
𝑘
is updated based on user rating vector

r𝑢 ∈ {0, 1}𝑁 . Therefore, the resultingm𝑢 ∈ R𝐾×𝑑 are personalized
and each user has their own set of clusters, depending on their
rating vector r𝑢 . Additionally, users with similar rating vectors will
have similar set of clusters because m𝑢 is updated based on r𝑢 , i.e.,
m𝑢 ≈ m𝑢′ given r𝑢 ≈ r𝑢

′
(≈ is approximation symbol).

Self-Attention between Prototypes. Interactions between
cluster prototypes have received less attention by existing works.
Although each prototype represents a single interest, there may be
the case that multiple interests of one user are related to one another.
In this case, prototypes should exchange their information with oth-
ers to refine themselves. Thus, we study self-attention [42] between
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Figure 1: Architecture of VALID. Input is the interaction vector r𝑢 of user 𝑢. Then an array of clustering blocks is designed to group items into
meaningful clusters. Each clustering block includes group and update steps, except the last one. In update step, only observed interacted items
are considered, followed by an optional self-attention block. An implicit differentiation is added after (𝑅 − 1)𝑡ℎ block and before 𝑅𝑡ℎ block to
improve training. In the last step, output of clustering is passed to interests aggregation layer, followed by decoder to predict rating r̂𝑢 .

prototypes, allowing them to read information from other proto-
types of the same user. The input of self-attention is m𝑢 and the
output is its refined version. We study two self-attention variants.

Scaled Cosine Attention. Attention score is calculated based on
cosine similarity.m𝑢 is updated asm𝑢 = Bm𝑢 +m𝑢 , in which:

B𝑘 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
m𝑢
𝑘
·m𝑢

𝑗

𝜏𝑠𝑎 · | |m𝑢
𝑘
| |2 · | |m𝑢

𝑗
| |2
) ∀𝑘, 𝑗 = 1, 2, ..., 𝐾 (5)

We follow [8] to add residual connection to prevent vanishing or ex-
ploding gradients over multiple iterations. Equation 5 can be used in
recursive manner for high order information exchange. 𝜏𝑠𝑎 controls
information exchange between prototypes. When 𝜏𝑠𝑎 → 0, output
of softmax is one-hot vector, i.e., B𝑘 𝑗 = 1 if 𝑘 = 𝑗 and B𝑘 𝑗 = 0 if 𝑘 ≠

𝑗 . As such, self attention acts as identity function, i.e., no informa-
tion exchanged between prototypes. Large 𝜏𝑠𝑎 results in averaging
information between prototypes, i.e.,m𝑢

𝑘
andm𝑢

𝑗
are highly similar.

Compositional De-Attention. (CoDA for short) Unlike scaled
cosine attention, CoDA [36] introduces negative attention weights,
which allows add, delete and forget information.

B = 𝑡𝑎𝑛ℎ(B𝑡 ) ⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (B𝑠 ) (B ∈ R𝐾×𝐾 )

B𝑡 = B𝑡 −𝑚𝑒𝑎𝑛(B𝑡 ), B𝑡
𝑘 𝑗

=
m𝑢
𝑘
·m𝑢

𝑗

𝜏𝑠𝑎 · | |m𝑢
𝑘
| |2 · | |m𝑢

𝑗
| |2
∀𝑘, 𝑗 = 1, ..., 𝐾

B𝑠 = B𝑠 −𝑚𝑒𝑎𝑛(B𝑠 ),B𝑠
𝑘 𝑗

= − 1
𝜏𝑠𝑎
| |m𝑢

𝑘
−m𝑢

𝑗 | |1 ∀𝑘, 𝑗 = 1, ..., 𝐾

(6)
⊙ is element-wise multiplication. | | · | |1 is 𝐿1 norm. B𝑡 ∈ R𝐾×𝐾
measures similarity while B𝑠 measures the negative dissimilarity
between prototypes inside m𝑢 . B is towards 1 iff 𝑡𝑎𝑛ℎ(B𝑡 ) and
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (B𝑠 ) are both close to 1. B is −1 iff 𝑡𝑎𝑛ℎ(B𝑡 ) is −1 and
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (B𝑠 ) is 1. Furthermore, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (·) controls whether to for-
get information, e.g., forget when 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (·) ≈ 0. 1

𝜏𝑠𝑎
acts as hyper-

parameters 𝛼 and 𝛽 in original paper. We hypothesize CoDA has
more representation capacity than scaled cosine attention to model
the interactions between prototypes. Subtracting𝑚𝑒𝑎𝑛(·) from B𝑡

andB𝑠 is to ensure they have both negative and positive values. Sim-
ilar to scaled cosine attention, we update m𝑢 as m𝑢 = Bm𝑢 +m𝑢 .

4.1.2 Iterative Clustering. Subsequent clustering blocks, in-
dexed from 2 to 𝑅 − 1 in Figure 1, has the similar mathematical
formulation as described in the first block in Section 4.1.1. The main
difference is the input prototypes, which is personalized prototypes
m𝑢 . The main idea here is that each block accepts updated and per-
sonalized prototypes from previous block as input and uses these
prototypes to group items. This is followed by updating prototypes
for the next block. As a result, in each clustering block, prototypes
are refined to better capture user’s preferences, leading to better
grouping items in the next block. This process is presented in detail
by function Iterative Item Grouping in Algorithm 1. Iterative proto-
type refinement creates a deeper network, which increases model
complexity and is known to suffer from training instabilities. Next,
we present an implicit differentiation approach to resolve this issue.

4.2 Implicit Differentiation
Updating cluster prototypes, i.e., from m to m𝑢 , to better reflect
user’s preferences is iterative refinement applied in representation
learning. From attention perspective [12], each clustering block
employs a cross-attention layer to group items. As noted by [6],
iterative refinement is particularly useful for this case thanks to
symmetric-breaking mechanism, which is brought by cross atten-
tion. However, iterative refinement is difficult to train due to its
unsupervised learning nature, as we do not have access to ground-
truth interests of users. Additionally, the clustering process has
recurrent form, resulting in deep network, which causes training in-
stabilities aswell as increases the computational complexity.We pro-
pose to incorporate implicit differentiation [6] to improve training.

From optimization perspective, the process of grouping items
into clusters for recommendation in VALID can be seen as:

𝑚𝑖𝑛
m𝑢 ,𝝓𝒖

𝑀∑︁
𝑢=1
L𝑟𝑒𝑐 (I𝑢 ,m𝑢 , 𝝓𝑢 ) 𝑠 .𝑡 . m𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛

m𝑢

L𝑐𝑙𝑢𝑠 (I𝑢 ,m𝑢 , 𝝓𝑢 )

(7)
I𝑢 is the set of user 𝑢’s adopted items, m𝑢 , 𝝓𝑢 represent personal-
ized cluster representations and the assignment of items to clusters
for user 𝑢. L𝑟𝑒𝑐 is the recommendation objective and L𝑐𝑙𝑢𝑠 is the
clustering objective, guided by recommendation supervision sig-
nals. From this formulation, we further understand the connection
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between item clustering and recommendation. Clustering serves
as inner objective for outer objective recommendation.m𝑢 is up-
dated in each iteration, i.e.,m𝑢

𝑟+1 = 𝑓𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (m
𝑢
𝑟 ,I𝑢 ) with 𝑓𝑐𝑙𝑢𝑠𝑡𝑒𝑟

is the clustering function at iteration 𝑟 , while 𝝓𝑢 is updated as
intermediate step inside 𝑓𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .

Back-propagating gradients through clustering function which
has recursive form causes training instabilities. To resolve this
problem, we leverage implicit differentiation [6]. As illustrated in
Lines 27-28 in Algorithm 1, implicit differentiation is implemented
by differentiating computation graph of applying update m𝑢 once
tom𝑢

∗ , which is the output of multiple clustering rounds.
By equipping implicit differentiation, the time complexity (as a

function of the number of iterations 𝑅) of forward pass remains
O(𝑅) while forward space, backward time and backward space
complexities are all O(1). Because the gradient to m𝑢 is detached
before the last iteration, the complexity depends on the last itera-
tion only. MacridVAE, a representative of VAE-based self-attentive
multi-interest modeling method, has time complexity O(1) of for-
ward pass because there is no iterative refinement inside. Otherwise,
forward space, backward time and backward space complexities of
MacridVAE are the same as those of VALID. It is worth noting that
forward pass is matrix multiplication, which is highly optimized on
GPU. Therefore, forward pass is not the bottleneck of VALID com-
pared to MacridVAE. Furthermore, VALID achieves significantly
higher recommendation accuracy thanks to the iterative nature of
forward pass, as presented in Table 2.
4.3 Interest Aggregation
After obtaining assignment scores A𝑢 , this step aggregates item
representations assigned to clusters to produce multiple interest
representations of user. Concretely, a context matrix E ∈ R𝑁×𝑑𝑒𝑛𝑐
is employed to derive interest representations. Despite being similar
with H, i.e., storing 𝑁 representations, E is different from H in the
sense that from auto-encoder perspective,E is the weight of encoder
while H is the weight of decoder.

x𝑢
𝑘
=

∑𝑁
𝑙=1:r𝑢

𝑙
=1 A

𝑢
𝑙𝑘
E𝑙√︃∑𝑁

𝑙 :r𝑢
𝑙
=1 (A

𝑢
𝑙𝑘
)2
∀𝑘 = 1, 2, ..., 𝐾 (8)

In Equation 8, each x𝑢
𝑘
of user 𝑢 is derived by aggregating the rep-

resentation of user 𝑢 adopted item, i.e., item 𝑙 such that r𝑢
𝑙
= 1.

Each item has a weight A𝑢
𝑙𝑘
, showing how item 𝑙 fits interest 𝑘 of

user 𝑢. The denominator is for normalizing assignment score in A𝑢 .
Finally, we follow MacridVAE [23] to derive final representation of
interests. Each x𝑢

𝑘
,∀𝑘 = 1, 2, ..., 𝐾 , is further processed by a function

𝑓𝑛𝑛 : R𝑑𝑒𝑛𝑐 → R2𝑑 to estimate parameters of Gaussian distribution

𝝁𝑢
𝑘
=

y𝑢
𝑘

| |y𝑢
𝑘
| |2

; 𝝈𝑢
𝑘
= 𝜎0 · 𝑒𝑥𝑝 (−

1
2
t𝑢
𝑘
) with (y𝑢

𝑘
, t𝑢
𝑘
) = 𝑓𝑛𝑛 (x𝑢𝑘 ) (9)

𝝁𝑢
𝑘
is the estimated mean of distribution while 𝝈𝑢

𝑘
is the estimated

of log variance. 𝜎0 is a hyper-parameter, whose value is around 0.1
as noted by [23]. Then the 𝑘-th interest of user is sampled from
Gaussian distribution, i.e., z𝑢

𝑘
∼ N(𝝁𝑢

𝑘
, [𝑑𝑖𝑎𝑔(𝝈𝑢

𝑘
)]2).

4.4 Learning and Optimization
Decoder. Given 𝐾 interests of user𝑢, represented by z𝑢 = {z𝑢

𝑘
}𝐾
𝑘=1

and assignment scores A𝑢 , our model predicts the likelihood of

interaction between user 𝑢 and item 𝑙 , i.e., 𝑝 (r𝑢
𝑙
|z𝑢 ,A𝑢 ) as follows:

𝑔(z𝑢
𝑘
) = 𝑒𝑥𝑝 (

(z𝑢
𝑘
)𝑇 · H𝑙

𝜏𝑑𝑒𝑐 · | |z𝑢𝑘 | |2 · | |H𝑙 | |2
)

𝑝 (r𝑢
𝑙
|z𝑢 ,A𝑢 ) =

∑𝐾
𝑘=1 A

𝑢
𝑙𝑘
· 𝑔(z𝑢

𝑘
)∑𝑁

𝑙=1
∑𝐾
𝑘=1 A

𝑢
𝑙𝑘
· 𝑔(z𝑢

𝑘
)

(10)

Learning Objective. Our learning objective, following 𝛽-VAE
[23], over a batch of user B is to maximize the following:

L =
∑︁
𝑢∈B
[
𝑁∑︁
𝑙=1

r𝑢
𝑙
𝑙𝑛 (𝑝 (r𝑢

𝑙
|z𝑢 ,A𝑢 ) ) − 𝛽 · 𝐷𝐾𝐿 (𝑞 (z𝑢 |r𝑢 ,A𝑢 ) | |𝑝 (z𝑢 ) ) ]

(11)
The first term is the reconstruction objective, aiming at recon-

structing observed user-item interactions. The second term is Kull-
back–Leibler (KL) divergence to match variational distribution
𝑞(z𝑢 |r𝑢 ,A𝑢 ) = Π𝐾

𝑘=1N(𝝁
𝑢
𝑘
, [𝑑𝑖𝑎𝑔(𝝈𝑢

𝑘
)]2) with prior distribution

𝑝 (z𝑢 ) = N(0, 𝜎20 I), forcing the distribution of interests follows
prior distribution. 𝛽 controls the influence of KL divergence term,
aiming at balancing the effects between recommendation objective
and distribution regularization. The value of 𝛽 is increased from 0
and 1 via annealing procedure as noted by [19].

5 EXPERIMENTS
Our experiments aim to answer the following research questions.
• (RQ1) How does VALID perform compared to existing multi-
interest modeling collaborative filtering models?
• (RQ2)How do iterative latent attention and implicit differentiation
affect model performance?
• (RQ3) Does self-attention between cluster prototypes bring in-
formation gain? Is self-attention suitable for this?
• (RQ4) How does iterative clustering affect user representations?
Is VALID able to group items into meaningful clusters for user?

5.1 Experimental Settings
Datasets. Table 1 lists three datasets with implicit feedbacks.
• Citeulike-a3 contains the interactions between users and
articles, e.g., a user saves an article to their own collection.
• Gowalla4 contains interactions between users and locations,
e.g., a user shares her location by checking in.
• Yelp5 contains reviews that users wrote for businesses. A
review is considered one interaction.

For Citeulike-a, we keep the original data. For Gowalla and Yelp,
we follow the common pre-processing practices [21, 24, 25, 48]. We
retain users and items with at least 10 interactions for Gowalla. For
Yelp, we consider interactions from 2016 onwards and keep users
and items with at least 15 interactions. On all datasets, for each user,
we randomly divide their interactions with ratio 0.8:0.1:0.1 for train-
ing, validation and test sets. Cold-start users and items in validation
and test sets are discarded, as there have no trained parameters.

Competitors. We compare VALID against existingmulti-interest
models for collaborative filtering (MacridVAE, DGCF, DPCML)
and VAE-based models (MacridVAE, RecVAE). We also include
3http://wanghao.in/CDL.htm
4https://github.com/RUCAIBox/RecSysDatasets
5https://www.yelp.com/dataset
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Algorithm 1: Pseudo Code for VALID
Input: User rating vector r𝑢 ∈ {0, 1}𝑁 ; Parameters Θ (item matrix

H ∈ R𝑁 ×𝑑 , context matrix E ∈ R𝑁 ×𝑑𝑒𝑛𝑐 , cluster
representation m ∈ R𝐾×𝑑 , parameters of neural network
𝑓𝑛𝑛 : R𝑑𝑒𝑛𝑐 → R2𝑑 ); Number of clustering iterations 𝑅.

Output: updated Θ
1 A𝑢 ← 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝐼𝑡𝑒𝑚 𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔 (H,m)
2 {z𝑢

𝑘
}𝐾
𝑘=1 ← 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 (r𝑢 ,A𝑢 )

3 {𝑝 (r𝑢
𝑙
|z𝑢 ,A𝑢 ) }𝑁𝑙=1 ← 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ({z𝑢

𝑘
}𝐾
𝑘=1,H,A

𝑢 )
4 Calculate loss L as in Equation 11
5 Update Θ using gradients of L
6

7 Function Group items(H, m)
8 for l = 1, 2, ..., N do
9 b𝑙𝑘 = H𝑇

𝑙
m𝑘/(𝜏 · | |H𝑙 | |2 · | |m𝑘 | |2 ), ∀𝑘 = 1, 2, ..., 𝐾

10 A𝑙 ∼ 𝐶𝐴𝑇𝐸 (𝑆𝑂𝐹𝑇𝑀𝐴𝑋 ( [b𝑙1, b𝑙2, .., b𝑙𝐾 ] ) )
11 return A

12 Function Update prototypes(A, m, r𝑢 )
13 for k = 1, 2, ..., K do
14 m𝑢

𝑘
=
∑𝑁
𝑙=1 r

𝑢
𝑙
A𝑙𝑘H𝑙

15 m𝑢 ← Self-Attention(m𝑢 ) // Optional

16 return m𝑢

17 Function Iterative Item Grouping (H, m, r𝑢 )
18 for r = 1, 2, ..., R do
19 if r = 1 then
20 A← Group items(H,m)
21 m𝑢 ← Update prototypes(A,m, r𝑢 )
22 else
23 A𝑢 ← Group items(H,m𝑢 )
24 if r = R then
25 stop

26 m𝑢 ← Update prototypes(A𝑢 ,m𝑢 , r𝑢 )
27 if r = R - 1 then
28 m𝑢 = m𝑢 .𝑑𝑒𝑡𝑎𝑐ℎ ( ) // Implicit Differentiation

29 return A𝑢 // return assignment score

30 Function Interest Aggregation(r𝑢 ,A𝑢 )
31 for k = 1 to K do

32 x𝑢
𝑘
=

∑
𝑙 :r𝑢
𝑙
=1 A

𝑢
𝑙𝑘

E𝑙√︂∑
𝑙 :r𝑢
𝑙
=1 (A

𝑢
𝑙𝑘
)2

33 y𝑢
𝑘
, t𝑢
𝑘
= 𝑓𝑛𝑛 (x𝑢𝑘 )

34 𝝁𝑢
𝑘
= y𝑢

𝑘
/| |y𝑢

𝑘
| |2 𝝈𝑢

𝑘
= 𝜎0 · 𝑒𝑥𝑝 (− 1

2 t
𝑢
𝑘
)

35 z𝑢
𝑘
∼ N(𝝁𝑢

𝑘
, [𝑑𝑖𝑎𝑔 (𝝈𝑘𝑢 ) ]2 ) // 𝑘𝑡ℎ interest

36 return {z𝑢
𝑘
}𝐾
𝑘=1

37 Function Decoder({z𝑢
𝑘
}𝐾
𝑘=1,H,A

𝑢 )
38 for l = 1, 2, ..., N do
39 𝑔 (z𝑢

𝑘
) = 𝑒𝑥𝑝 ( (z𝑢

𝑘
)𝑇 · H𝑙 / (𝜏𝑑𝑒𝑐 · | |z𝑢𝑘 | |2 · | |H𝑙 | |2 ) )

40 𝑝 (r𝑢
𝑙
|z𝑢 ,A𝑢 ) =

∑𝐾
𝑘=1 A

𝑢
𝑙𝑘
·𝑔 (z𝑢

𝑘
)∑𝑁

𝑙=1
∑𝐾
𝑘=1 A

𝑢
𝑙𝑘
·𝑔 (z𝑢

𝑘
)

41 return {𝑝 (r𝑢
𝑙
|z𝑢 ,A𝑢 ) }𝑁

𝑙=1

Table 1: Statistics of our chosen datasets after pre-processing.

Data #users #items #interactions

Citeulike-a 5,551 16,945 204,929
Gowalla 29,858 40,988 1,027,464
Yelp 29,111 22,121 1,052,627

recently state-of-the-art CF models in the last two years as baselines
(SimpleX, UltraGCN, NCL, SimGCL, DirectAU).

• MacridVAE [23] models macro- and micro-level of disentangle-
ment using 𝛽-VAE for recommendation.
• DGCF [48] disentangles multiple factors representations of users
and items through iterative refinement on interaction graph.
• DPCML [2] includes multiple representation vectors for users
to improve Collaborative Metric Learning.
• RecVAE [29] introduces various techniques to improve training
VAE for collaborative filtering.
• SimpleX [24] proposes cosine contrastive loss and large negative
sampling ratio to improve collaborative filtering.
• UltraGCN [25] improves CF by approximating the limit of mes-
sage passing layers and incorporating item-item relationships.
• NCL [21] incorporates structural and semantic neighbors via con-
trastive learning to improve graph-based collaborative filtering.
• SimGCL [52] adds random noise to representations for augmen-
tation and regulate uniformity to enhance contrastive learning.
• DirectAU [44] directly optimizes uniformity and alignment of
representations to improve recommendation accuracy.

We do not compare with MultiVAE [19] since MacridVAE and Rec-
VAE have shown superior performance compared to MultiVAE. As
we are working on collaborative filtering, which does not consider
time dimension for recommendation, we do not compare VALID
against existing multi-interest modeling methods for sequential
recommendation, e.g., MIND[17] or ComiRec [4].

Hyper-parameter Settings. We set the embedding size to 64
for all datasets. For multi-interest models MacridVAE, DPCML and
DGCF, the number of interests is 4. For baselines, we search other
hyper-parameters following the range in original papers and choose
those that achieve best results on validation set. For VALID, we set
the hyper-parameters identically to those of MacridVAE for fair
comparison: dropout rate is 0.5, 𝜎0 is chosen from {0.05, 0.075, 0.1},
𝛽 is chosen from {0.2, 0.5, 1}, the total number of annealing steps is
from {5000, 10000, 20000}. For Gowalla dataset, 𝜏𝑑𝑒𝑐 = 0.08 and for
Yelp and Citeulike-a, 𝜏𝑑𝑒𝑐 = 0.1. 𝜏 is set to 0.1 for all datasets. We
use 1-layer hidden layer for MacridVAE and VALID with hidden
size is searched in range {64, 128, 256, 512}. All models are trained
with Adam optimizer and the learning rate is set to 0.001 for VALID
and MacridVAE. For other models, we search learning rate in range
{0.0001, 0.0003, 0.001}. The default value of 𝑅 is 2. All models are
trained on NVIDIA RTX 2080 Ti GPU machine. We run each model
ten times with different random seeds and report the averaged
numbers on test set. Training phase stops after 15 epochs without
improving Recall@20 on validation set.

Evaluation Metrics. We use Recall at top P (Recall@P) and
Normalized Discounted Cummalative Gain at top P (NDCG@P)
[32] to evaluate recommendation performance. We follow the full
ranking strategy in [55] and report numbers with 𝑃 = 20 and 𝑃 = 50.
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5.2 Performance Comparison (RQ1)
Table 2 presents recommendation performance of all models. For
MacridVAE and VALID, we report numbers generated by model
with encoder hidden size 64. We study more values of encoder
hidden size in Section 5.3. We also do not use self-attention between
prototypes and study its effect in Section 5.4. Overall, our proposed
model VALID achieves higher recommendation accuracy than all
baselines w.r.t. all chosen metrics.

Among the baselines, MacridVAE stands out, achieving better
accuracy than others in most cases (except lower NDCG@20 than
SimpleX on Gowalla). VALID performance gain over MacridVAE
is attributed to iterative latent attention and implicit differentiation,
which will be extensively verified in Section 5.3. Despite including
multiple representations for user, DPCML performance is close to or
even lower than single-embedding representation (SimpleX, Ultra-
GCN, NCL, DirectAU). This reveals that merely employing multiple
vectors for user representation is not as effective as grouping items
employed in VALID and MacridVAE. Regarding DGCF, VALID en-
joys much better recommendation accuracy on chosen datasets.
One explanation is the design of DGCF, i.e., dividing representation
vector into 𝐾 factors evenly, resulting in small number of dimen-
sions for each factor, which may be insufficient to capture user’s
interests. In contrast, the employment of prototypes in VALID al-
lows aggregating interest vectors with the same size as that of item.

Although employing 𝛽-VAE like VALID, RecVAE’s performance
is much lower. This stems from the fact that RecVAE is single-
embedding model, highlighting the need of multi-interest modeling.

Regarding recently developed CF models, i.e., SimpleX, Ultra-
GCN, NCL, SimGCL, DirectAU, despite varying in their approaches
for collaborative filtering, they have in common in how they repre-
sent users and items by a single vector only. Despite of that, these
models achieve comparable or even higher accuracy than multi-
interest modeling counterparts DGCF and DPCML, showing that
they are actually strong baselines for CF. VALID is much better
than these methods, showing the evidence of VALID’s strength.

5.3 Studies of Model Design (RQ2)
We conduct a series of ablative studies to verify our contributions
that incorporates iterative latent attention and implicit differentiation
into VAE framework. We contrast the performance of VALID with
that of MacridVAE to highlight the effects of our proposed methods.

Personalized itemgrouping results in better accuracy. From
Figure 2, VALID employing iterative latent attention for personal-
ized item grouping achieves higher results than MacridVAE with
non-personalized item grouping. The gap between two models is
bigger in case of multi-interest modeling, i.e., K > 2, which shows
that iterative latent attention is able to differentiate user’s prefer-
ences on different topics. As such, personalized item grouping plays
the key role to improve multi-interest modeling.

Multi-interest modeling achieves better performance than
single vector interest representation. From Figure 2, we observe
that representing users with 𝐾 > 1 vectors results in higher accu-
racy than using single vector. While Citeulike-a prefers small 𝐾 , i.e.,
𝐾 = 2, and overly large𝐾 hurts the performance, increasing number
of user interests 𝐾 is generally beneficial on Gowalla and Yelp.

Implicit differentiation helps to resolve training instabili-
ties and improve model performance. We previously showed

that personalized item grouping via iterative latent attention is
the key to performance gain. However, iterative refinement causes
training difficulties and implicit differentiation is one of the solutions.
From Figure 3, we observe that VALID with implicit differentiation
(ID) obtains better recommendation results than VALID without ID.
This supports our claim that implicit differentiation alleviates the
difficulties caused by back propagating gradient through recursive
network. Further contrasting performance w.r.t. number of itera-
tions 𝑅 in Figure 3, we found that when increasing 𝑅, i.e., making
deeper network, the performance of model variant without implicit
differentiation reduces significantly. However, this reduction can be
(partially) alleviated when implicit differentiation appears.

Excessive number of clustering steps results in clusters
may not align with recommendation objective. From Figure 3,
increasing number of clustering iterations generally degrades per-
formance except NDCG@20 on Yelp. This observation suggests
that we should care about the relation between clustering objective
and recommendation objective. From Section 4.2, clustering objec-
tive acts as inner objective of outer recommendation objective. As
such, with higher number of iterations 𝑅, item clusters are highly
personalized but does not benefit recommendation. We conjecture
that this comes from updating prototypes based solely on user’s
adopted item set, which does not contain sufficient number of se-
mantically related items. Therefore, a future direction is to leverage
semantically related items improve updating cluster prototypes.

VALID works better than MacridVAE w.r.t. 𝑑𝑒𝑛𝑐 . Finally, we
verify the performance of VALID w.r.t. 𝑑𝑒𝑛𝑐 , i.e., the dimension of
each element of E in Algorithm 1. Evidently, as shown by Figure 4,
VALID is better than MacridVAE across various dimensionalities.
5.4 Self-Attention between Prototypes (RQ3)
Interactions between cluster prototypes has received less attention
by prior works. For completeness, we investigate the benefits of
refining cluster prototypes, i.e., allowing prototypes to read/share
their captured information from/to other interests. We tune 𝜏𝑠𝑎 (Sec-
tion 5.4) controlling the information exchange between prototypes
in range {0.1, 0.2, 0.5, 0.8, 1}. Results are reported in Table 5. As we
do not introduce any parameters in self-attention, the change in per-
formance comes from information exchange between prototypes.

Refining prototypes by self-attention has potential to im-
prove performance, which is shown by the changes in perfor-
mance, particularly observed on Citeulike-a and Gowalla. We intuit
that on these datasets, multiple interests of a user are similar to a
certain extent. As such, refining prototypes to capture such similar-
ity is beneficial to recommendation performance.

Compositional De-Attention is generally better for refin-
ing prototypes than scaled cosine attention, which supports
our hypothesis that CoDA has more representation learning capac-
ity for modeling interactions between prototypes. This observation
suggests that besides designing better multi-interest extractor, de-
veloping a novel method that effectively refines cluster prototypes
is a promising direction to improve multi-interest modeling.

5.5 Qualitative Analysis of Interests (RQ4)
Uniformity Measure of User Representations. As iterative la-
tent attention embeds personalization into item clusters, it naturally
results in a higher level of discrimination of user’s representations,
which are built upon item clusters. We report uniformity [46] to
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Table 2: Recommendation performance of all models. R@K and N@K stand for Recall at top K and NDCG at top K, respectively. We highlight
the best result with bold face while the runner-up is underlined. ‡ denotes statistically significant number (p-value on paired t-test < 0.05).

Dataset Metric SimpleX UltraGCN RecVAE NCL SimGCL DirectAU DGCF DPCML MacridVAE VALID

Citeulike-a

R@20 0.2607 0.2575 0.2398 0.2378 0.2444 0.2534 0.2066 0.2498 0.2744 0.2804‡

N@20 0.1534 0.1497 0.1435 0.1353 0.1375 0.1412 0.1165 0.1429 0.1632 0.1678‡

R@50 0.3857 0.3839 0.3481 0.3654 0.3706 0.3842 0.3348 0.3770 0.3974 0.4098‡

N@50 0.1865 0.1835 0.1725 0.1688 0.1703 0.1751 0.1499 0.1759 0.1958 0.2020‡

Gowalla

R@20 0.2201 0.2186 0.2034 0.2145 0.2120 0.2005 0.1862 0.1915 0.2227 0.2267‡

N@20 0.1289 0.1271 0.1188 0.1255 0.1243 0.1158 0.1085 0.1022 0.1282 0.1300‡

R@50 0.3334 0.3341 0.3129 0.3292 0.3260 0.3129 0.2905 0.3191 0.3424 0.3486‡

N@50 0.1566 0.1555 0.1456 0.1536 0.1523 0.1432 0.1339 0.1334 0.1577 0.1599‡

Yelp

R@20 0.1163 0.1114 0.1137 0.1551 0.1634 0.1677 0.1337 0.1125 0.1794 0.1835‡

N@20 0.0611 0.0576 0.0596 0.0851 0.0929 0.0994 0.0713 0.0576 0.1134 0.1147
R@50 0.2116 0.2065 0.2104 0.2624 0.2711 0.2763 0.2375 0.2094 0.2835 0.2923‡

N@50 0.0857 0.0820 0.0844 0.1130 0.1207 0.1274 0.0981 0.0824 0.1405 0.1430‡
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Figure 2: Performance of personalized clusteringVALID (red) w.r.t. number of interests𝐾 .We include performance of non-personalized clustering
MacridVAE (blue) for contrasting. For VALID, we set 𝑅 = 2. Heart symbols represent Recall@20 while square symbols represent NDCG@20.
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Figure 3: Effects of Implicit Differentiation (ID) in VALID. Magenta lines are VALID with 𝐼𝐷 while cyan lines are VALID without 𝐼𝐷 . We fix 𝐾 = 4
and vary the number of clustering iterations 𝑅. Heart symbols represent Recall@20 while square symbols represent NDCG@20.
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Figure 4: VALID’s performance (red lines) w.r.t. encoder hidden size 𝑑𝑒𝑛𝑐 . We include results of MacridVAE (blue lines) for contrasting. 𝐾 = 4 is
fixed in this experiments. Heart symbols represent Recall@20 while square symbols represent NDCG@20.

quantify the independence of user’s representations w.r.t. number of
clustering iterations 𝑅: L𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 = 𝑙𝑜𝑔 E

𝑖 .𝑖 .𝑑.𝑥,𝑦∼𝑝𝑑𝑎𝑡𝑎
𝑒−2 | |𝑥−𝑦 | |

2
2 .

𝑥,𝑦 are user representations produced by VALID, which is concate-
nation of 𝐾 interest vectors then normalizing to unit length. As
L𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 is negative, the lower it is, the higher level of indepen-
dence between user’s representations, i.e., they are uniformly dis-
tributed on unit hypersphere. Figure 5 clearly shows that increasing

𝑅 results in lower uniformity, meaning that user’s representations
have higher level of discrimination, supporting our hypothesis.

Case Study on Multiple User’s Interests. For an intuitive
understanding of multiple interests of a user, we present a case
study on Citeulike-a dataset. Table 4 presents the list of titles of
articles with which a user has interacted. It is evident that this user
is interested in multiple topics, e.g., topic modeling, recommendation,
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Table 3: On Citeulike-a dataset, for each factor of VALID and MacridVAE, we present top 3 items with highest predicted score. Each item is an
scientific article, described by its title.

Model Factor 1 Factor 2 Factor 3 Factor 4

VALID

Information extraction
1. Snowball: Extracting Relations
from Large Plain-Text
Collections
2. Automatic labeling of
multinomial topic models
3. Open Information Extraction
from the Web

Topic Modeling
1. Latent Dirichlet Allocation
2. Probabilistic Latent Semantic
Analysis
3. Conditional random fields:
Probabilistic models for
segmenting and labeling
sequence data

Markov Model
1. Discriminative Training Methods
for Hidden Markov Models:
Theory and Experiments with
Perceptron Algorithms
2. Markov logic networks
3. An Introduction to Conditional
Random Fields for Relational
Learning

Collaborative Filtering
1. Amazon.com Recommend-
ations: Item-to-Item
Collaborative Filtering
2. Latent semantic models for
collaborative filtering
3. Collaborative filtering with
temporal dynamics

MacridVAE

No specific topic
1. Pegasos: Primal Estimated
sub-GrAdient SOlver for SVM
2. Snowball: Extracting Relations
from Large Plain-Text
Collections
3. Collaborative filtering with
temporal dynamics

Topic Modeling
1. Probabilistic Latent Semantic
Analysis
2. Latent Dirichlet Allocation
3. Automatic labeling of
multinomial topic models

Markov Model
1. Markov logic networks
2. Discriminative Training Methods
for Hidden Markov Models:
Theory and Experiments with
Perceptron Algorithms
3. Maximum Entropy Markov
Models for Information
Extraction and Segmentation

Conditional Random Fields
1. Dynamic conditional
random fields
2. Conditional random fields:
Probabilistic models for
segmenting and labeling
sequence data
3. An Introduction to
ConditionalRandom Fields
for Relational Learning

Table 4: Titles of interacted articles of a user on Citeulike-a.

List of interacted articles’ titles of a user

1. Latent Dirichlet Allocation
2. Amazon.com Recommendations: Item-to-Item Collaborative Filtering
3. Markov logic networks
4. Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms
5. Collaborative filtering with temporal dynamics
6. Snowball: Extracting Relations from Large Plain-Text Collections
7. Probabilistic Latent Semantic Analysis
8. Automatic labeling of multinomial topic models
9. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
10. Dynamic conditional random fields

Table 5: Effect of refining cluster prototypes by self-attention. CoDA
stands for Compositional De-Attention.

Dataset Metric
No

Self-Attention
Scaled Cosine
Attention CoDA

Citeulike-a

R@20 0.2804 0.2821 0.2816
N@20 0.1678 0.1687 0.1683
R@50 0.4098 0.4096 0.4114
N@50 0.2020 0.2025 0.2026

Gowalla

R@20 0.2267 0.2248 0.2265
N@20 0.1300 0.1290 0.1302
R@50 0.3486 0.3461 0.3488
N@50 0.1599 0.1587 0.1601

Yelp

R@20 0.1835 0.1824 0.1836
N@20 0.1147 0.1124 0.1148
R@50 0.2923 0.2920 0.2923
N@50 0.1430 0.1408 0.1431
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Figure 5: Uniformity measures of user representations w.r.t. number
of clustering iterations 𝑅. Lower is better.

information extraction andMarkov models. In Table 3, for each factor
produced by VALID and MacridVAE, we present the top 3 highest
predicted scoring articles, each described by its title.

• VALID captures the diversity of user’s preferences well. Each
topic in Table 3 has correspondence to those of the user in Table 4.
• AlthoughMacridVAE discovers two interests, e.g.,Markov models
and topic modeling, it does not highlight collaborative filtering as
one interest. Instead, MacridVAE highlights conditional random
fields as a topic, which is only a small aspect. Moreover, the first
factor of MacridVAE is difficult to understand its meaning.

6 CONCLUSION
We analyze multi-interest recommendation models from clustering
perspective to understand how they work and reveal their short-
comings. We then propose a novel VAE-based model called VALID
with a couple of innovations. Firstly, it employs iterative latent at-
tention to personalize item clustering, alleviating uninformative and
non-personalized clustering of current works. Secondly, as iterative
refinement method results in a deep network, to mitigate training
difficulties, we propose to employ implicit differentiation. Thirdly,
we study self-attention methods to refine multiple item clusters of a
user, which opens a new research question for multi-interest model-
ing. We demonstrate the favorable performance of VALID on three
real-world datasets from diverse sources. Qualitative analysis shows
how VALID disentangles multiple interests of one user, more con-
vincingly than those produced by the closest baseline MacridVAE.

ACKNOWLEDGMENTS
This research/project is supported by the Ministry of Education,
Singapore under its Tertiary Education Research Fund (MOE Ref-
erence Number: MOE2021-TRF-013). Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of the Ministry
of Education, Singapore.



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Nhu-Thuat Tran & Hady W. Lauw

REFERENCES
[1] Seyun Bae, Hoyoon Byun, Changdae Oh, Yoon-Sik Cho, and Kyungwoo Song.

2022. Graph Perceiver IO: A General Architecture for Graph Structured Data.
CoRR abs/2209.06418 (2022).

[2] Shilong Bao, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, and Qingming
Huang. 2022. The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm. In NeurIPS.

[3] Christian Bauckhage. 2015. Lecture Notes on Data Science: Soft k-Means Clus-
tering.

[4] Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang.
2020. Controllable Multi-Interest Framework for Recommendation. In KDD.
2942–2951.

[5] Zheng Chai, Zhihong Chen, Chenliang Li, Rong Xiao, Houyi Li, Jiawei Wu,
Jingxu Chen, and Haihong Tang. 2022. User-Aware Multi-Interest Learning for
Candidate Matching in Recommenders. In SIGIR. 1326–1335.

[6] Michael Chang, Thomas L. Griffiths, and Sergey Levine. 2022. Object Represen-
tations as Fixed Points: Training Iterative Refinement Algorithms with Implicit
Differentiation. In NeurIPS.

[7] Wanyu Chen, Pengjie Ren, Fei Cai, Fei Sun, and Maarten De Rijke. 2021. Multi-
Interest Diversification for End-to-End Sequential Recommendation. ACM Trans.
Inf. Syst. 40, 1 (2021).

[8] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine,
Yoshua Bengio, and Bernhard Schölkopf. 2021. Recurrent Independent Mecha-
nisms. In International Conference on Learning Representations.

[9] Zhiqiang Guo, Guohui Li, Jianjun Li, and Huaicong Chen. 2022. TopicVAE: Topic-
Aware Disentanglement Representation Learning for Enhanced Recommendation.
In ACM MM. 511–520.

[10] Curtis Hawthorne, Andrew Jaegle, Cătălina Cangea, Sebastian Borgeaud, Charlie
Nash, Mateusz Malinowski, Sander Dieleman, Oriol Vinyals, Matthew Botvinick,
Ian Simon, Hannah Sheahan, Neil Zeghidour, Jean-Baptiste Alayrac, Joao Carreira,
and Jesse Engel. 2022. General-purpose, long-context autoregressive modeling
with Perceiver AR. In ICML. 8535–8558.

[11] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin
Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shel-
hamer, Olivier J. Hénaff, MatthewM. Botvinick, Andrew Zisserman, Oriol Vinyals,
and João Carreira. 2022. Perceiver IO: A General Architecture for Structured
Inputs & Outputs. In ICLR.

[12] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and
Joao Carreira. 2021. Perceiver: General Perception with Iterative Attention. In
Proceedings of the 38th International Conference on Machine Learning. 4651–4664.

[13] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with
Gumbel-Softmax. In 5th International Conference on Learning Representations.

[14] Daeryong Kim and Bongwon Suh. 2019. Enhancing VAEs for Collaborative
Filtering: Flexible Priors & Gating Mechanisms. In RecSys. 403–407.

[15] Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara
Sabour, Georg Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff.
2022. Conditional Object-Centric Learning from Video. In ICLR.

[16] Beibei Li, Beihong Jin, Jiageng Song, Yisong Yu, Yiyuan Zheng, and Wei Zhou.
2022. ImprovingMicro-Video Recommendation via ContrastiveMultiple Interests.
In SIGIR. 2377–2381.

[17] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang, Guo-
liang Kang, Qiwei Chen, Wei Li, and Dik Lun Lee. 2019. Multi-Interest Network
with Dynamic Routing for Recommendation at Tmall. In CIKM. 2615–2623.

[18] Jian Li, Jieming Zhu, Qiwei Bi, Guohao Cai, Lifeng Shang, Zhenhua Dong, Xin
Jiang, and Qun Liu. 2022. MINER: Multi-Interest Matching Network for News
Recommendation. In Findings of ACL. 343–352.

[19] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW. 689–698.

[20] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A Structured Self-Attentive Sentence
Embedding. In International Conference on Learning Representations.

[21] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving
Graph Collaborative Filtering with Neighborhood-Enriched Contrastive Learning.
In Proceedings of the ACM Web Conference 2022. 2320–2329.

[22] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahen-
dran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf.
2020. Object-Centric Learning with Slot Attention. In NeurIPS, Vol. 33.

[23] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-
ing Disentangled Representations for Recommendation. In NeurIPS.

[24] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,
and Xiuqiang He. 2021. SimpleX: A Simple and Strong Baseline for Collaborative
Filtering. In CIKM. 1243–1252.

[25] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
2021. UltraGCN: Ultra Simplification of Graph Convolutional Networks for
Recommendation. In CIKM. 1253–1262.

[26] Preksha Nema, Alexandros Karatzoglou, and Filip Radlinski. 2021. Disentangling
Preference Representations for Recommendation Critiquingwith 𝛽-VAE. InCIKM.

1356–1365.
[27] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. 2017. Dynamic Routing

between Capsules. In NeurIPS. 3859–3869.
[28] Aghiles Salah, Thanh Binh Tran, and Hady Lauw. 2021. Towards Source-Aligned

Variational Models for Cross-Domain Recommendation. In RecSys. 176–186.
[29] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I.

Nikolenko. 2020. RecVAE: A New Variational Autoencoder for Top-N Recom-
mendations with Implicit Feedback. In WSDM. 528–536.

[30] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. 2022. Perceiver-Actor: A Multi-
Task Transformer for Robotic Manipulation. In CoRL.

[31] Caiqi Sun, Penghao Lu, Lei Cheng, Zhenfu Cao, Xiaolei Dong, Yili Tang, Jun Zhou,
and Linjian Mo. 2022. Multi-interest Sequence Modeling for Recommendation
with Causal Embedding. In SDM. 406–414.

[32] Yan-Martin Tamm, Rinchin Damdinov, and Alexey Vasilev. 2021. Quality Metrics
in Recommender Systems: Do We Calculate Metrics Consistently?. In Fifteenth
ACM Conference on Recommender Systems. 708–713.

[33] Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou, Hongxia
Yang, and Xia Hu. 2021. Sparse-Interest Network for Sequential Recommendation.
In WSDM. 598–606.

[34] Y. Tan, C. Yang, X. Wei, Y. Ma, and X. Zheng. 2021. Multi-Facet Recommender
Networks with Spherical Optimization. In ICDE. 1524–1535.

[35] Zineng Tang, Jaemin Cho, Jie Lei, and Mohit Bansal. 2023. Perceiver-VL: Efficient
Vision-and-Language Modeling with Iterative Latent Attention. In WACV.

[36] Yi Tay, Anh Tuan Luu, Aston Zhang, Shuohang Wang, and Siu Cheung Hui. 2019.
Compositional De-Attention Networks. In NeurIPS, Vol. 32.

[37] Yu Tian, Jianxin Chang, Yanan Niu, Yang Song, and Chenliang Li. 2022. When
Multi-Level Meets Multi-Interest: A Multi-Grained Neural Model for Sequential
Recommendation. In SIGIR. 1632–1641.

[38] Nhu-Thuat Tran and Hady W. Lauw. 2022. Aligning Dual Disentangled User
Representations from Ratings and Textual Content. In KDD. 1798–1806.

[39] Quoc-Tuan Truong, Aghiles Salah, and Hady W. Lauw. 2021. Bilateral Variational
Autoencoder for Collaborative Filtering. In WSDM. 292–300.

[40] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov.
2020. Capsules with Inverted Dot-Product Attention Routing. In ICLR.

[41] Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, and Marta R. Costa-jussá.
2022. Efficient Speech Translation with Dynamic Latent Perceivers. https:
//arxiv.org/abs/2210.16264

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, Vol. 30.

[43] Chenyang Wang, Zhefan Wang, Yankai Liu, Yang Ge, Weizhi Ma, Min Zhang,
Yiqun Liu, Junlan Feng, Chao Deng, and Shaoping Ma. 2022. Target Interest
Distillation for Multi-Interest Recommendation. In CIKM. 2007–2016.

[44] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,
and Shaoping Ma. 2022. Towards Representation Alignment and Uniformity in
Collaborative Filtering. In KDD. 1816–1825.

[45] Shicheng Wang, Shu Guo, Lihong Wang, Tingwen Liu, and Hongbo Xu. 2022.
Multi-Interest Extraction Joint with Contrastive Learning for News Recommen-
dation. In ECML-PKDD.

[46] Tongzhou Wang and Phillip Isola. 2020. Understanding Contrastive Represen-
tation Learning through Alignment and Uniformity on the Hypersphere. In
Proceedings of the 37th International Conference on Machine Learning.

[47] Xin Wang, Hong Chen, Yuwei Zhou, Jianxin Ma, and Wenwu Zhu. 2023. Disen-
tangled Representation Learning for Recommendation. IEEE TPAMI 45, 1 (2023),
408–424.

[48] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled Graph Collaborative Filtering. In SIGIR. 1001–1010.

[49] ZhikaiWang and Yanyan Shen. 2022. Time-awareMulti-interest Capsule Network
for Sequential Recommendation. In SDM. 558–566.

[50] Jason Weston, Ron J. Weiss, and Hector Yee. 2013. Nonlinear Latent Factorization
by Embedding Multiple User Interests. In ACM RecSys. 65–68.

[51] Zhe Xie, Chengxuan Liu, Yichi Zhang, Hongtao Lu, Dong Wang, and Yue Ding.
2021. Adversarial and Contrastive Variational Autoencoder for Sequential Rec-
ommendation. In Proceedings of the Web Conference 2021. 449–459.

[52] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are Graph Augmentations Necessary? Simple Graph Contrastive
Learning for Recommendation. In SIGIR. 1294–1303.

[53] Shengyu Zhang, Lingxiao Yang, Dong Yao, Yujie Lu, Fuli Feng, Zhou Zhao,
Tat-seng Chua, and Fei Wu. 2022. Re4: Learning to Re-Contrast, Re-Attend, Re-
Construct forMulti-Interest Recommendation. In TheWeb Conference. 2216–2226.

[54] Shengyu Zhang, Dong Yao, Zhou Zhao, Tat-Seng Chua, and Fei Wu. 2021.
CauseRec: Counterfactual User Sequence Synthesis for Sequential Recommenda-
tion. In SIGIR. 367–377.

[55] Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. 2020.
Revisiting Alternative Experimental Settings for Evaluating Top-N Item Recom-
mendation Algorithms. In CIKM. 2329–2332.

https://arxiv.org/abs/2210.16264
https://arxiv.org/abs/2210.16264

	Multi-representation Variational Autoencoder via iterative latent attention and implicit differentiation
	Citation

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Iterative Latent Attention for Personalized Item Grouping
	4.2 Implicit Differentiation
	4.3 Interest Aggregation
	4.4 Learning and Optimization

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Comparison (RQ1)
	5.3 Studies of Model Design (RQ2)
	5.4 Self-Attention between Prototypes (RQ3)
	5.5 Qualitative Analysis of Interests (RQ4)

	6 Conclusion
	References

