
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2023

When routing meets recommendation: Solving dynamic order When routing meets recommendation: Solving dynamic order

recommendations problem in peer-to-peer logistics platforms recommendations problem in peer-to-peer logistics platforms

Zhiqin ZHANG

Waldy JOE

Yuyang ER

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Citation Citation
ZHANG, Zhiqin; JOE, Waldy; ER, Yuyang; and LAU, Hoong Chuin. When routing meets recommendation:
Solving dynamic order recommendations problem in peer-to-peer logistics platforms. (2023).
Proceedings of the 14th International Conferences on Computational Logistics, Berlin, Germany, 2023
September 6-8. 18-35.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8348

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

When Routing Meets Recommendation:
Solving Dynamic Order

Recommendations Problem
in Peer-to-Peer Logistics Platforms

Zhiqin Zhang1, Waldy Joe1, Yuyang Er2, and Hoong Chuin Lau1(B)

1 School of Computing and Information Systems, Singapore Management University,
Singapore, Singapore

{zqzhang.2020,waldy.joe.2018}@phdcs.smu.edu.sg, hclau@smu.edu.sg
2 AI Singapore, Singapore, Singapore

yuyang@aisingapore.org

Abstract. Peer-to-Peer (P2P) logistics platforms, unlike traditional
last-mile logistics providers, do not have dedicated delivery resources
(both vehicles and drivers). Thus, the efficiency of such operating model
lies in the successful matching of demand and supply, i.e., how to match
the delivery tasks with suitable drivers that will result in successful
assignment and completion of the tasks. We consider a Same-Day Deliv-
ery Problem (SDDP) involving a P2P logistics platform where new orders
arrive dynamically and the platform operator needs to generate a list
of recommended orders to the crowdsourced drivers. We formulate this
problem as a Dynamic Order Recommendations Problem (DORP). This
problem is essentially a combination of a user recommendation prob-
lem and a Dynamic Pickup and Delivery Problem (DPDP) where the
order recommendations need to take into account both the drivers’ pref-
erence and platform’s profitability which is traditionally measured by
how good the delivery routes are. To solve this problem, we propose
an adaptive recommendation heuristic that incorporates Reinforcement
Learning (RL) to learn the parameter selection policy within the heuris-
tic and eXtreme Deep Factorization Machine (xDeepFM) to predict the
order-driver interactions. Using real-world datasets, we conduct a series
of ablation studies to ascertain the effectiveness of our adaptive approach
and evaluate our approach against three baselines - a heuristic based on
routing cost, a dispatching algorithm solely based on the recommenda-
tion model and one based on a non-adaptive version of our proposed
recommendation heuristic - and show experimentally that our approach
outperforms all of them.

Keywords: Crowdsourced delivery · Data-driven optimization ·
Recommendations system

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. R. Daduna et al. (Eds.): ICCL 2023, LNCS 14239, pp. 18–35, 2023.
https://doi.org/10.1007/978-3-031-43612-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43612-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-43612-3_2

When Routing Meets Recommendation 19

1 Introduction

Peer-to-Peer (P2P) transportation platforms, such as Uber, Lyft, and Food-
Panda, have been gaining popularity in recent years with greater adoption of
internet technology (such as e-commerce and mobile apps) and the growing
demand for more efficient urban mobility. These platforms include ride-hailing
or ride-sharing and crowdsourced delivery service providers where the former
provide transportation services for people while the latter for goods. The key
feature of such platforms is that the platform owners do not own the physical
assets (fleet of vehicles) nor employ the transport operators (drivers or riders,
used interchangeably) unlike the traditional taxi companies or logistics service
providers. Thus, the efficiency of such P2P transportation model lies in the suc-
cessful matching of demand and supply, i.e., how to match the delivery tasks
(or orders or jobs, used interchangeably) with the appropriate drivers that will
result in successful assignment and completion of the jobs. This is an interesting
research challenge as unlike in the traditional routing problems, the drivers have
a choice to accept or reject the jobs.

The work presented in this paper is motivated by a real-world problem sce-
nario involving a P2P logistics platform uParcel1, where new delivery tasks are
being recommended throughout the day in the form of a ranked list (also known
as menu) to individual crowdsourced drivers who have already existing pre-
scheduled delivery tasks. This problem is essentially a combination of a user rec-
ommendation problem [23] and a Same-Day Delivery Problem (SDDP) which is
a variant of a Dynamic Vehicle Routing Problem (DVRP) [5]. For a successful
matching of delivery tasks to drivers, the recommendations need to take into
account not only the platform’s profitability (which in classical SDDP is deter-
mined by how good the delivery routes are), but also the drivers’ preferences for
the tasks recommended.

Both, the user recommendation problem and the SDDP have been widely
studied and researched in their respective fields. However, there is a great poten-
tial for synergy between the two research domains in addressing the problem pre-
sented in this paper. The traditional Recommender Systems (RS) are only able
to capture users’ general personal preferences [29] while the Sequential Recom-
mender Systems (SRS) go one step further by taking into account the sequential
dependencies of user-item interactions for more accurate recommendation [7].
Although an SRS takes into account the existing state of a user, it is only able
to recommend the user’s next action, i.e., in the context of e-commerce, the item
that he or she will purchase next. This is insufficient in addressing the problem
in this paper which is akin to recommending a new product given that users
have purchased a list of items (pre-scheduled orders) and that they are planning
to purchase another list of items in the future (new orders that arrive dynami-
cally). Meanwhile, current works in solving the SDDP assume that the drivers

1 uParcel is a Singapore start-up company which offers on-demand delivery and courier
services for business and consumers. See https://www.uparcel.sg/ (last access date
02 July 2023).

https://www.uparcel.sg/

20 Z. Zhang et al.

will always accept the assigned delivery tasks [27,28], which is not the case in a
crowdsourced setting.

To address this gap, we bring together two key ideas from Reinforcement
Learning and Recommender Systems. More precisely, we propose an adaptive
recommendation heuristic (ARH) that incorporates reinforcement learning (RL)
to learn the parameter selection policy within the heuristic and a RS model called
xDeepFM [15] to predict the driver’s probability of accepting an order based on
their preference. ARH relies on a linear scalarization function that takes into
account both routing information and order-driver interaction in generating the
recommendation, and the RL-trained policy is utilized to adaptively determine
the exact weightages of this linear function at a given pre-decision state.

2 Related Works

Same-Day Delivery Problem. There are two broad categories of approaches for
solving SDDP or DVRP in general namely offline or pre-processsed decision
support and online decision [24]. In offline approaches, policies or values for
decision-making are computed prior to the execution of a plan. Here, the problem
is usually formulated and solved as an Markov Decision Process (MDP). Unfor-
tunately, MDP-based approaches (specifically tabular-based ones) fall into the
curse of dimensionality and hence are not suitable for most real-world problems
[19]. Approximate Dynamic Programming (ADP) approaches [20] are commonly
used to tackle the scalability issue, and one such ADP method for the DVRP is
Approximate Value Iteration (AVI) [1]. Increasingly, there also have been many
recent works that addressed to solve the DVRP using RL [6,8,13,14]. Mean-
while, lookahead approaches have been applied successfully to solve dynamic
and stochastic routing problems. These are commonly termed as rollout algo-
rithms, e.g., [25], the pilot method, e.g., [17] and Multiple Scenario Approach
(MSA), e.g., [4,28]. The approaches proposed in these works are not directly
applicable to our problem since we are dealing with crowdsourced drivers; how-
ever, like many current works that use RL to solve the DVRP, we utilize RL to
learn a policy to guide our recommendation heuristic.

Recommender System. There are two broad approaches to recommender sys-
tems, namely collaborative filtering methods and content-based methods. Col-
laborative filtering methods rely on past-recorded interactions between users and
predict through similar user patterns to produce new recommendations. One
such example is Factorization Machines (FM) [22]. Meanwhile, content-based
methods use item features to recommend other items similar to what the user
likes and based on their previous action or explicit feedback. One such example
is linear models with Follow-the-Regularized-Leader (FTRL) [16]. Lately, Deep
Neural Networks have been utilised to learn high-order interactions [15]. To com-
bine the strength of a wide linear model (i.e., Generalized Linear Models) and
a deep neural network for recommender systems, Google proposed a framework
called Wide & Deep [9]. Subsequently a wide and deep architecture of DeepFM

When Routing Meets Recommendation 21

that integrates the Factorization Machine (the wide component) and the Multi-
Layer Perceptron (the deep component) was proposed in [11]. xDeepFM, an
extension of the DeepFM that can jointly model explicit and implicit feature
interactions was proposed in [15]. In this paper, we select xDeepFM to predict
drivers’ probability of selecting an order as it combines both content-based and
content filtering (hybrid approach) and mitigates the cold start and data sparsity
issues by relying on the factorization of the sparse user-item matrix.

Dynamic Matching Problem. [3] introduced the concept of dynamic order match-
ing in a Peer-to-Peer (P2P) logistics platform, which shares similarities with the
problem addressed in this paper. The authors framed the problem as a two-
stage decision problem and proposed a multiple scenario approach that involved
sampling various driver selection scenarios and solving an integer program for
each scenario to generate the final menu. However, it should be noted that the
authors of [3] considered a simplified version of the DORP where drivers are
only allowed to select one order, and no time windows or capacity constraints
are imposed. Furthermore, the authors modeled the drivers’ preferences using a
pre-determined utility function. In contrast, the problem addressed in this paper
takes into account real operational constraints and incorporates drivers’ prefer-
ences based on historical data, making it a more realistic and comprehensive
representation of the DORP.

3 Problem Description and Model

3.1 Problem Description

We assume that dynamic orders are generated throughout the planning horizon,
and at a predetermined frequency, the platform consolidates the newly arrived
dynamic orders and any unassigned orders and generates a personalized order
recommendation list for the crowdsourced drivers. The dynamic orders consist
of pickup and delivery tasks, order size, time window requirements for both
pickup and delivery, and an expiration time. If a driver arrives at the pickup
or delivery location earlier than the specified time window, a waiting time will
be incurred. In the event that no driver accepts an order and arrives at the
pickup location after the specified time limit, the order will be automatically
canceled. A simple illustration of the proposed problem can be found in the
supplementary materials2.

The objective of the problem is to maximize the number of orders fulfilled
within the given planning horizon, specifically, a full working day. This objec-
tive can be achieved by ensuring that the order recommendation list considers
both the driver’s preference and routing considerations. The driver’s preference
ensures that they have a high probability of selecting at least one of the recom-
mended orders, while the routing considerations ensure that drivers with optimal
delivery routes can fulfill more orders while minimizing delivery costs.

2 https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf.

https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf
https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf

22 Z. Zhang et al.

Fig. 1. Sequential decision process of a DORP.

3.2 Model Formulation

This problem can be modeled as a sequential decision process with stochastic
information [20]. A visual depiction of the entire decision process is presented in
Fig. 1. Here, we present an MDP formulation of the problem.

Decision Epoch. The decision epoch in our model is time-based. We discretize
the planning horizon (e.g., a day) into multiple time periods. Here, we use k =
1, 2. . . , i, i + 1. . . , n to represent each decision point.

State. As shown in Fig. 1, a state consists of two parts, pre-decision state Sk and
post-decision state Sxk

k . Both states are represented by the same tuple 〈dk, ok〉
where dk denotes the list of drivers and ok denotes the list of unassigned orders.
The list of drivers can be further broken down as follows: dk =

{
d1k, . . . , d

mk

k

}
,

where mk denotes the number of the active drivers at decision epoch k. We
assume the drivers are active when they arrive at pickup or delivery nodes within
this decision time slot. Each element in dk consists of the following features: the
last reported location, vehicle capacity and the route of the remaining orders.
Similarly, the list of unassigned orders is denoted as ok =

{
o1k, . . . , o

nk

k

}
, where nk

denotes the number of the unsigned orders at decision epoch k. Each element in
ok consists of the following features: pickup and delivery locations, time windows
for pickup and delivery, and size of the order.

Action/Decision. The decision in this model refers to the action of generating
personalized order recommendation lists for each driver. Although in reality,
the platform needs to execute an assignment action once drivers make their
selections (see Fig. 1), we assume that this assignment is governed by a pre-
determined rule and we treat this step as part of the environment. We denote
our decision variable as xk =

{
x1
k, . . . , x

mk

k

}
, where mk still denotes the number

of the riders available in this time slot. Each element xi
k in xk contains a subset

of unassigned orders a sorted in descending order of suitability for driver i. Note
that each order may be recommended to more than one driver and each driver
can have more than one recommended order.

Transition. There are two main transitions in this model. Firstly, the transi-
tion occurs from the previous post-decision state, denoted as S

xk−1
k−1 , to the pre-

decision state, represented as Sk. This transition is triggered by the realization
of new dynamic orders, denoted as ωk. The second transition takes place from

When Routing Meets Recommendation 23

the pre-decision state to the post-decision state, which occurs after executing
the action xk. However, this second transition introduces additional complexity
due to multiple uncertainties that influence the outcome of the action taken.
Specifically, there are two intermediate states that arise from two sources of
uncertainty, namely the selection behaviors of the drivers and the assignment
rule.

Reward/Objective Function. The reward R(Sk, xk) of an action xk is defined
as the total number of orders fulfilled for the decision epoch k. The solution to
this Markov Decision Process (MDP) is a policy that generates the menus at
each state. The optimal solution is the policy that maximizes the current reward
and the total expected rewards for future states.

4 Solution Approach

Generating the personalized order recommendation lists directly based on the
model formulation presented in the previous section will involve an enumeration
of all possible permutations of unassigned orders of variable length for each
driver. Even if we limit the length of the lists, the action space will still be
combinatorial. Thus, to address the curse of dimensionality, we design a heuristic
approach to generate the recommendation lists.

The remaining part of this section is organised as follows. We first introduce
how our proposed ARH generates the recommendation lists. We then explain
the two key components within the ARH, namely how RL is used to train the
weightage selection policy for this heuristic; and how the drivers’ preference is
modelled and learnt from historical data by using xDeepFM.

4.1 Adaptive Recommendation Heuristic

In DORP, the state space and action space are too large to enumerate for large-
scale problems. Compared with most dynamic same-day delivery problems such
as [10,12] where a decision involves the assignment of one dynamic order to
one rider, our problem involves a multi-order multi-driver matching, which leads
to a very large state space. In addition, the action space also faces the “curse
of dimensionality”. Unlike the action space in [3], the recommendation lists for
riders in DORP need to be sorted by the relevance (rider-order relevance) which
contributes to a larger action space. This task is even made more challenging
as decisions need to be done in real-time. Thus, we propose a heuristic solution
approach to aggregate the action space.

Heuristic Scoring Function. In our heuristic, the key idea is to compute a
driver-order pair score based on the routing cost and riders’ personal preference.
For a given rider-order pair score, the higher this score is, the more suitable
for this rider to serve this order by our consideration. The recommendation list
for each rider is then generated by these scores. The function to calculate the
driver-order score is given as follows:

24 Z. Zhang et al.

score(di, oj) = αH1 + (1 − α)H2 (1)

where α and 1 − α are the weights on H1 and H2, respectively. The value H1

is the estimated cost for inserting this order to this rider’s route, calculated
by the distance of the pickup location of this order to the nearest location of
the remaining orders carrying by this rider (referred to as Dn) and normalized
between 0 and 1:

H1 =
Dmax − Dn

Dmax
(2)

where Dmax is the largest distance value for any two locations in a given problem
instance.

The value of H2 is the probability of the prediction for this rider’s preference
for this order, and computed using our proposed xDeepFM model where the
details will be presented in Sect. 4.3.

Balancing Platform Objective and Driver Preferences. As a recom-
mender system, the challenge is in calibrating the values of α adaptively over
decision epochs, as the environment changes, in order to ensure good profitability
(jobs served) on one hand, and good acceptance rate by drivers on the recom-
mended jobs on the other.

From the point of view of the logistics platform, the efficiency of the dynamic
routing plan hinges on timeliness of deliveries which in turn is measured by the
physical measures such as the routing cost, as proposed in the SDDP and DVRP
literature. On the other hand, from the drivers’ point of view, they would like to
serve orders of their preferences. For instance, the drivers may be more willing to
serve the orders in the region which they are more familiar with, even though the
locations may be a little far away from their current location and/or the locations
of their pre-scheduled orders. If the heuristic generates the menu based on the
preferences of the riders, it will not only improve the acceptance of these orders
but also the user experience for drivers.

To achieve a good balance of these two potentially conflicting measures, we
propose our ARH. The key idea is that we dynamically adjust the weights for
each selection criterion based on the current state when making the decision.
Intuitively, if the delivery resources are insufficient in some time period, the
heuristic should assign orders to focus on the operational efficiency. Otherwise,
we want to recommend preferred options to riders, hoping that the orders rec-
ommended are more likely accepted by riders (according to their personal prefer-
ence). In the following, we present a Reinforcement Learning approach to obtain
the parameter values (weights) for balancing these two selection criteria.

Finally, we present our heuristic approach, ARH, to calculate driver-order
scores that take into account both driver preferences and routing costs at every
decision epoch.

ARH consists of the following components:

– Driver’s predicted preference score to represent the drivers’ selection
behaviour based on historical data.

When Routing Meets Recommendation 25

Fig. 2. Overview of the proposed Adaptive Recommendation Heuristic approach.

– A routing heuristic to calculate the cost for a given driver to serve a given
order.

– RL-trained policy to determine the weights attached to each objective at a
given pre-decision state.

Our proposed heuristic is based on a Policy Function Approximation (PFA)
approach [21]. Traditional PFAs are analytical functions by which information
in the state variable is mapped directly to a decision. The information of the
state in this problem includes two perspectives: platform and drivers. This PFA
applies Eq. 1 to calculate the pair scores to generate the final decision, namely
the recommendation lists.

The overview of ARH can be found in Fig. 2. The two hollow arrows represent
the input of all orders and drivers’ data into the Deep Q-Network (DQN), while
the other solid arrows signify the transfer of a single value. More details about
the algorithm showing how the ARH generates the recommendation lists in a
given decision epoch can be found in supplementary materials.

4.2 RL for Selection in ARH

In order to select a proper heuristic for a given decision epoch, we propose an RL
approach. Before we elaborate this approach, we describe the MDP formulation
for the new decision problem after introducing our proposed heuristic.

MDP Reformulation with State and Action Space Aggregation. The
state of this new MDP is an aggregated state. Then we use handcrafted features
to calculate the rider-order score. To condense the new state to a set of features,
we select the following state information for our new MDP:

– Current time t for this decision epoch k. As the authors of [6,26] select the
current point of time of this decision epoch, we also include this feature in
our representation of state.

https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf

26 Z. Zhang et al.

– Total number of unassigned orders nk and active drivers mk in this time
slot (or decision epoch). We select these two features because it can help to
capture how dense the supply/demand in the current time slot is. Combined
with the current time, these two features can provide the information to learn
the policy for making decisions not only on the current decision epoch but
also looking further in terms of supply/demand ratio.

– Information about riders. We do not need all the rider’s information in the
original MDP. Here we consider to use the remaining orders (or carrying
orders) of riders. Based on the remaining orders, we can calculate the distance
and time-related information of a given new order to those remaining orders.
These are main features to capture the power of supply in the near future
time slots. For example, for driver i, the committed delivery time of carrying
orders is denoted as vector toi . Then the average bottleneck time for all
drivers tb can be calculated by

tb =
1

mk

mk∑

i=1

(‖toi‖−∞ − t) (3)

where the negative infinite norm can give the earliest committed delivery time
of all the on-going orders of a given driver.

– Information about orders. Apart from the total number of the unassigned
orders to calculate the ratio of supply/demand, we also consider average
remaining time to obtain the information of the demand. To be more specific,
the average remaining time tr is the average of the differences between the
expired time tej for a given order j and the current time t.

tr =
1
nk

nk∑

j=1

(tej − t) (4)

The action is to select one heuristic to calculate the rider-order pair score for
this current decision epoch. To be more specific, we use five parameters in our
proposed heuristic. These five values of α are 0, 0,25, 0.5, 0.75 and 1, respectively.

The transition and reward function remain the same as the original MDP.
Then, we formulate this problem and use a RL approach to train a policy to
select a proper heuristic to calculate the rider-order score in each decision epoch.
By these scores, we can directly generate the personalized recommendation lists
to riders.

Deep Q-Learning for Weight Selection. For a given state Sk, the action xk is
to select the most proper heuristic to generate the personalized recommendation
lists for riders. Thus, the solution of the DORP is to learn a policy π ∈ Π that
selects the action for each state. The optimal solution π∗ can maximize the total
reward. Q-learning [30] learns a value Q(Sk, x) for each state and each action
pair. This Q-value can estimate the immediate reward plus the expected future
rewards if the action x is taken to the state Sk. Definitely, we cannot calculate
and learn all these state-action pairs due to the size of the state and action space
(even after aggregation). Thus, we use the DQN approach to estimate this value.

When Routing Meets Recommendation 27

We applied the DQN with experience replay approach in [18]. To calculate
the loss function to train this Q-network, the reward function is defined as the
proportion of accepted jobs in a specific decision epoch (time slot). The hyper-
parameters we used can be seen in the supplementary materials.

4.3 xDeepFM for Preference Prediction

In this subsection, we introduce xDeepFM to predict the job-driver preference
score which will be used by the ARH presented above.

Similar to a typical RS problem, the task is to recommend delivery jobs to
drivers. The role of the xDeepFM model is to generate the value of H2, a score
for each driver-job pair that indicates the probability that driver dmk

k will accept
job onk

k . This probability will subsequently be used by the ARH to take into
account the driver’s preference in selecting a job.

Architecture. The architecture of xDeepFM can be broken down into four
parts: (1) embedding layer, (2) linear/FM using the raw input features, (3) Deep
Neural Network (DNN) using the dense feature embeddings, and (4) Compressed
Interaction Network (CIN) using the dense feature embeddings.

The output of parts (2) to (4) jointly contribute to a shared sigmoid out-
put. The embedding layer takes in the FM inputs and represents them as
lower-dimensional vectors. Linear/FM uses matrix factorization to learn the low-
dimensional representations and then learns the linear regression weights for the
FM layer. For higher-order interactions, these are captured by DNN and CIN
where DNN learns implicit high-order feature interactions at the bit-wise level
while CIN learns explicit high-order feature interactions fashion at the vector-
wise manner. CIN and plain DNNs can complement each other to make the model
stronger by combining these two structures. In addition, xDeepFM is customiz-
able as it can be configured as a classical FM model by enabling the linear part
and the FM part only if the dataset does not require high-order feature inter-
actions. The architecture of xDeepFM can be seen in supplementary materials.
See [15] for more details.

Feature Engineering. The features used for training the xDeepRM model are
presented in supplementary materials.

In DORP we face two key challenges involved in the learning task, namely,
data sparsity and highly dynamic input features. The data is sparse because the
platform only records positive samples, i.e., the accepted orders but not orders
that are rejected. In addition, some important input features such as the current
location of the drivers and the current capacity of the vehicle are highly dynamic
and play an important role in determining whether a driver will accept or reject
an order. We address these challenges as follows.

Distance-Based Feature. The current location of a driver plays an important
role in determining whether he or she will accept an order. Thus, inclusion of
distance-based features would improve the model’s performance. These features
capture the distance from the driver’s current location to the pickup point and

https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf
https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf
https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf

28 Z. Zhang et al.

from the pickup point to the dropoff point. The challenge is the former. Unlike in
typical RS, this feature is highly dynamic. The main challenge lies in calculating
this value in real time as there could be some error in calculating expected versus
actual values since such highly dynamic data may not be available or accurate.
If it is not handled properly, these errors could accumulate over time, resulting
in incorrect predictions. To overcome this, we propose to use a proxy feature,
i.e., last known location to represent the current location of the driver in order
to calculate the distance of the current location to the pickup location. During
training, the last known location of a driver is defined as the location at the time
point when jobs have last been accepted by this driver.

Negative Sampling. The given dataset consists of historical jobs accepted by
individual drivers (item features), as well as a list of drivers (user features). For
training the model, the accepted jobs form the positive training samples. As the
platform does not allow drivers to reject jobs, all non-accepted jobs are auto-
matically considered implicit negative samples. Hence most samples recorded
are positive use cases. Thus, implicit negative samples are generated to ensure
a more balanced data during model training. However, not all negative samples
are useful and they may in turn introduce noise, hence negative sampling was
used to decrease the amount of negative use cases. The chosen approach is by
filtering within a time window and computing distance relative to the driver’s
most recent job/known location. We made the assumption that an active driver
who accepted order(s) or performing a job at a given time window is likely to
have seen and “rejected” the non-accepted jobs at the same time window.

5 Experiments

We evaluate our proposed approach using a real-world dataset that we collected
from a local logistics platform. We ensure that the problem settings and input
data closely resemble the real-world scenario.

5.1 Benchmark Algorithms

We present three baseline algorithms as benchmarks: one based solely on rout-
ing cost, one based solely on the driver’s preference, and one that is a linear
combination of these two aspects with equal weightage.

– RH. The first baseline algorithm is a routing heuristic (RH), which is simi-
lar to the order dispatching algorithm which uParcel currently adopts. This
algorithm only considers the distance between the driver’s current location
and the new order location. This can be done by setting the α = 1 in Eq. 1.

– DP. The second baseline algorithm is one which solely relies on the driver’s
preference (DP). This is similar to a typical recommender system which learns
driver-order score to represent the driver’s preference over a certain order.
Section 4.3 describes how this preference score is computed. Then, we set the
α = 0 in Eq. 1 to ensure that the order dispatching is solely based on the
drivers’ preference.

When Routing Meets Recommendation 29

– FWH. The third baseline algorithm is considering both aspects in a fixed
weight. This is done by setting α in Eq. 1 as fixed value, (e.g. setting it as 0.5
as the third baseline algorithm). Thus, this model is a fixed weight heuristic
(FWH) model where we assume a ’balanced’ consideration.

5.2 Experiment Design

Data. In this experiment, we use a total of 894,794 rows of pickup-delivery tasks
collected from 2021 to 2022 provided by uParcel. To train the xDeepFM model
and the DQN, we generate two datasets from the raw data. More details about
the dataset can be found in the supplementary materials.

xDeepFM Module. As mentioned in Sect. 4.3, we use the xDeepFM model
to predict preference of the drivers. Here, we describe the detailed of our imple-
mentation of this model.

xDeepFM Training. The challenge of training the xDeepFM in this problem con-
text lies in the sparsity of data and the dynamicity of the problem. Unlike in the
typical RS, recommendation or preference scores need to be computed quickly and
sometimes the input features change dynamically and may not be available at the
moment of inference. This is because xDeepFM is customizable depending on the
nature of the data used. We conducted an ablation study to ascertain which cus-
tomized architectures of xDeepFM are effective in predicting drivers’ preference.
In addition, given that the current location of a driver plays an important role in
determining how likely an order will be accepted, we include a distance feature to
act as a proxy to determine how far the driver is from the order. Here, we use a
proxy of the driver’s real location because in practice, the exact location of a driver
may not be available or be updated in the system due to the highly dynamic nature
of this feature. See Table 1 for the list of customized models evaluated.

Model and Training Setup. The xDeepFM model that we implemented includes
a DNN with 4 layers and a CIN with 3 layers. We use optuna [2] to tune the
number of nodes in each layer. Apart from these hyperparameters, the training
epochs is set as 500, the batch size is 128 and the learning rate is 0.001. To train
the model for binary classifications, we use the following loss function:

L = − 1
N

N∑

i=1

yilogŷi + (1 − yi)log(1 − ŷi) (5)

where N is the number of total training instances, yi and ŷi is predicted value 0
or 1 (accept or not) and the related label.

Metrics. To evaluate the performance of the various baseline models, we use
Precision@k and Recall@k where k refers to the top-k order recommendations
given to a driver. To be more specific, the precision@k is defined as the number
of recommended orders at top-k that are accepted by a given driver divided by
k which is the number of top-k orders the model recommended to this driver.

Precision@k =
of recommended orders @k that are accepted

of recommended orders @k
(6)

https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf

30 Z. Zhang et al.

The recall@k is the proportion of accepted orders found in the top-k recom-
mendations.

Recall@k =
of recommended orders @k that are acceptd

total # of accepted orders
(7)

We choose k = 3 and 5 as these are realistic lengths of a recommendation list
that are both not too long (difficult to make decision) but at the same time give
drivers enough options to choose.

RL Module. As mentioned in Sect. 4.2, we train a DQN to select the weights
for our proposed solution method, Adaptive Recommendation Heuristic. Here,
we show the details related to this module.

RL Environment. To conduct the experiments, we build a simulator for the
DORP environment which simulates the selection behavior of riders. Here, we
use a multi-attribute utility model similar to the one proposed in [3]. There are
two attributes in this multi-attribute utility model namely detoured distance and
drivers’ preference, which are two considerations in decisions for our proposed
DORP. In addition, we also introduce a discount factor to reflect the position of
the recommended order in the list:

vi,j = γp(δ1Di,j + δ2Pi,j) (8)

where vi,j is the utility value of order j to driver i. γp is the position discount
factor. This number from large to small represents the position of the order
appearing in the menu from top to bottom. δ1 and δ2 are two weights of the two
attributes mentioned above and they sum up to one. To capture the difference
of the driver selecting behavior, we uniformly randomize these two figures from
driver to driver. Di,j is the estimated detoured distance for driver i to serve
order j. Here we use the H1 value to estimate the routing cost value. Pi,j is the
predicted probability that driver i will accept order j, which can be estimated
by our trained xDFM model. A high value for vi.j indicates high willingness of
driver i to serve the order j. To conduct the experiments, we also borrow the
idea from [3] to set a threshold (0.5 in this environment to get a reasonable
results by the similar current algorithm implemented in the logistics platform).
Other experiment setups can be seen in the following paragraph.

Experiment Setup. The hyperparameters of the DQN can be found in
supplementary materials. We train the DQN for ARH on the two-month dataset
and test the performance of the ARH on the two-week dataset. More details
related to the dataset can be found in supplementary materials. We define each
day (or each instance) as an “episode” in the training and testing because the
problem we consider is same-day delivery. We split each episode into 144 time
steps (or decision epochs), where each step is 10 min.

Metrics. We evaluate our proposed ARH against the three baseline algorithms
based on the test dataset and we use the order fulfill rate to compare the per-
formance. The order fulfill rate can be calculated by:

order fulfill rate = 1 − # canceled order

total order
(9)

https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf
https://anonymous.4open.science/r/iccl2023-7ADC/SupplementaryMaterials.pdf

When Routing Meets Recommendation 31

Table 1. xDeepFM model with additional distance features outperforms the other
baseline models in both precision and recall measures.

Model Precision@3 Precision@5 Recall@3 Recall@5

FM only 0.431 0.436 0.109 0.110

FM + DNN 0.469 0.489 0.335 0.336

FM + CIN 0.468 0.478 0.095 0.095

FM + CIN + DNN 0.491 0.506 0.336 0.324

FM + CIN + DNN

w/distance 0.557 0.578 0.352 0.349

5.3 Experiment Results and Discussion

Firstly, we show the evaluation results of the prediction model. Then, we compare
the results of our ARH method with three baseline models described in Sect. 5.1.

xDeepFM. Figure 3 visualizes the convergence of the models with different
components. In each graph, the horizontal axis is the epochs, while the vertical
axis is the log loss. The blue and orange lines show the loss in the training data
set and test data set, respectively. From these graphs, we can find that the FM
model cannot predict a good result as the loss on test data set converge to about
1.25 to 1.5 after training. If introducing the DNN, the test loss of the prediction
model will reduce to about 0.6 but it is not stable, comparing with the FM and
the CIN model. The final prediction model, xDeepFM with all components can
get the best results as the test loss converge to the smallest value.

Table 1 also shows the results that xDeepFM with the full suite of components
outperforms the classical FM or FM with the subsets of the components. In
addition, inclusion of distance-based feature improves the prediction.

Fig. 3. Convergence of different predic-
tion models. (Color figure online)

Fig. 4. Summary of the performance of
different algorithms.

32 Z. Zhang et al.

Table 2. Experiments results of test data set.

Instance RH DP FWH ARH

Instance 1 (912) 93.97% 84.87% 86.51% 93.86%

Instance 2 (383) 97.91% 98.17% 98.43% 98.69%

Instance 3 (779) 89.47% 83.44% 85.49% 95.25%

Instance 4 (467) 79.87% 72.38% 76.45% 90.15%

Instance 5 (453) 100% 100% 100% 100%

Instance 6 (435) 98.39% 94.48% 96.55% 98.62%

Instance 7 (1065) 85.45% 78.87% 80.01% 91.27%

Instance 8 (920) 94.02% 86.09% 87.61% 97.83%

Instance 9 (887) 93.46% 86.70% 87.15% 94.59%

Instance 10 (752) 99.20% 89.89% 90.69% 99.34%

Instance 11 (782 93.61% 86.57% 90.41% 97.31%

Instance 12 (384) 97.14% 97.14% 97.14% 96.89%

Instance 13 (440) 90.68% 87.73% 90.23% 90.23%

Instance 14 (424) 83.19% 86.56% 86.08% 84.67%

Avg. 92.59% 88.06 89.49% 94.91%

Var. 0.39% 0.57% 0.47% 0.20%

ARH. After having trained 200 episodes (one episode includes 144 epochs) on
the training dataset, our proposed ARH with the trained DQN policy can achieve
better results on most test datasets. Table 2 shows the results of the performance
of our proposed ARH and three baseline algorithms. The entries are the order
fulfilled rate defined as Eq. 9, so larger numbers represent better performance.
The first column is instances in the two weeks data set. The number in the brack-
ets represents the total number of the dynamic orders in one instance. Columns
two to four are the results of three baseline models described in Sect. 5.1. The
fifth column shows the best results among these three baselines. The last column
shows the performance of our proposed ARH. From this table, we can observe
that our proposed ARH can get the best results in 10 instances. ARH is the
worst only in instance 12 with a slight difference. For the remaining instances,
the ARH can outperform some of the baselines. As the statistical results shows,
the average order fulfill rate of the ARH on the test dataset is the highest and
the its variance is the smallest.

Apart from the order fulfill rate, we present a summary of the comparison
on two other metrics (namely, the total routing cost and the driver preference
measured by the probability of the driver accepting the order recommended to
him/her based on the driver’s historical data). Figure 4 shows that for rout-
ing cost, RH (i.e., solely considering routing cost) achieves the best perfor-
mance compared with the other three algorithms (which is expected). Similarly,
DP performs best in terms of driver preference compared with the other three

When Routing Meets Recommendation 33

approaches. Interestingly, our approach ARH achieves the best performance in
terms of number of orders fulfilled, while not compromising by a large margin
in terms of the other two conflicting metrics.

All in all, the results demonstrate that our proposed framework effectively
dispatches more dynamic orders for P2P platforms, thereby enhancing customer
satisfaction for both riders and customers. This positive impact translates into
increased profitability for the platform in both the short and long term.

Acknowledgements. This research project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme (Award No: AISG2-100E-
2021-089). We like to thank uParcel and AI Singapore for data, domain and comments,
the ICCL PC chairs and reviewers, with special mention of Stefan Voss, for suggestions
and meticulous copy-editing during the review process.

References

1. Agussurja, L., Cheng, S.F., Lau, H.C.: A state aggregation approach for stochastic
multiperiod last-mile ride-sharing problems. Transp. Sci. 53(1), 148–166 (2019).
https://doi.org/10.1287/trsc.2018.0840

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631 (2019). https://doi.org/10.1145/3292500.3330701

3. Ausseil, R., Pazour, J.A., Ulmer, M.W.: Supplier menus for dynamic matching
in peer-to-peer transportation platforms. Transp. Sci. 56(5), 1304–1326 (2022).
https://doi.org/10.1287/trsc.2022.1133

4. Bent, R.W., Van Hentenryck, P.: Scenario-based planning for partially dynamic
vehicle routing with stochastic customers. Oper. Res. 52(6), 977–987 (2004).
https://doi.org/10.1287/opre.1040.0124

5. Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic pickup and delivery problems.
Eur. J. Oper. Res. 202(1), 8–15 (2010). https://doi.org/10.1016/j.ejor.2009.04.024

6. Chen, X., Ulmer, M.W., Thomas, B.W.: Deep Q-learning for same-day delivery
with vehicles and drones. Eur. J. Oper. Res. 298(3), 939–952 (2022). https://doi.
org/10.1016/j.ejor.2021.06.021

7. Chen, X., et al.: Sequential recommendation with user memory networks. In: Pro-
ceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, pp. 108–116 (2018). https://doi.org/10.1145/3159652.3159668

8. Chen, Y., et al.: Can sophisticated dispatching strategy acquired by reinforcement
learning? In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1395–1403 (2019). https://doi.org/10.48550/
arXiv.1903.02716

9. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceed-
ings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10
(2016). https://doi.org/10.1145/2988450.2988454

10. Dayarian, I., Savelsbergh, M.: Crowdshipping and same-day delivery: employing
in-store customers to deliver online orders. Prod. Oper. Manag. 29(9), 2153–2174
(2020). https://doi.org/10.1111/poms.13219

https://doi.org/10.1287/trsc.2018.0840
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1287/trsc.2022.1133
https://doi.org/10.1287/opre.1040.0124
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1016/j.ejor.2021.06.021
https://doi.org/10.1016/j.ejor.2021.06.021
https://doi.org/10.1145/3159652.3159668
https://doi.org/10.48550/arXiv.1903.02716
https://doi.org/10.48550/arXiv.1903.02716
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1111/poms.13219

34 Z. Zhang et al.

11. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine
based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017).
https://doi.org/10.48550/arXiv.1703.04247

12. Hou, S., Gao, J., Wang, C.: Optimization framework for crowd-sourced delivery
services with the consideration of shippers’ acceptance uncertainties. IEEE Trans.
Intell. Transp. Syst. 24(1), 684–693 (2022). https://doi.org/10.1109/TITS.2022.
3215512

13. Joe, W., Lau, H.C.: Deep reinforcement learning approach to solve dynamic vehicle
routing problem with stochastic customers. In: Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 30, pp. 394–402 (2020).
https://doi.org/10.1609/icaps.v30i1.6685

14. Li, X., et al.: Learning to optimize industry-scale dynamic pickup and deliv-
ery problems. In: 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pp. 2511–2522. IEEE (2021). https://doi.org/10.1109/ICDE51399.2021.
00283

15. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining
explicit and implicit feature interactions for recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1754–1763 (2018). https://doi.org/10.1145/3219819.3220023

16. McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: Proceed-
ings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1222–1230 (2013). https://doi.org/10.1145/2487575.2488200

17. Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: Construc-
tive heuristics for the multicompartment vehicle routing problem with stochastic
demands. Transp. Sci. 45(3), 346–363 (2011). https://doi.org/10.1287/trsc.1100.
0353

18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

19. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013). https://doi.org/10.1016/
j.ejor.2012.08.015

20. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, vol. 842. Wiley, Hoboken (2011)

21. Powell, W.B.: Designing lookahead policies for sequential decision problems in
transportation and logistics. IEEE Open J. Intell. Transp. Syst. 3, 313–327 (2022).
https://doi.org/10.1109/OJITS.2022.3148574

22. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on
Data Mining, pp. 995–1000. IEEE (2010). https://doi.org/10.1109/ICDM.2010.
127

23. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58
(1997)

24. Ritzinger, U., Puchinger, J., Hartl, R.F.: A survey on dynamic and stochastic
vehicle routing problems. Int. J. Prod. Res. 54(1), 215–231 (2016). https://doi.
org/10.1080/00207543.2015.1043403

25. Secomandi, N.: A rollout policy for the vehicle routing problem with stochastic
demands. Oper. Res. 49(5), 796–802 (2001). https://doi.org/10.1287/opre.49.5.
796.10608

26. Ulmer, M.W., Thomas, B.W.: Meso-parametric value function approximation for
dynamic customer acceptances in delivery routing. Eur. J. Oper. Res. 285(1), 183–
195 (2020). https://doi.org/10.1016/j.ejor.2019.04.029

http://arxiv.org/abs/1703.04247
https://doi.org/10.48550/arXiv.1703.04247
https://doi.org/10.1109/TITS.2022.3215512
https://doi.org/10.1109/TITS.2022.3215512
https://doi.org/10.1609/icaps.v30i1.6685
https://doi.org/10.1109/ICDE51399.2021.00283
https://doi.org/10.1109/ICDE51399.2021.00283
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1145/2487575.2488200
https://doi.org/10.1287/trsc.1100.0353
https://doi.org/10.1287/trsc.1100.0353
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1109/OJITS.2022.3148574
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1080/00207543.2015.1043403
https://doi.org/10.1080/00207543.2015.1043403
https://doi.org/10.1287/opre.49.5.796.10608
https://doi.org/10.1287/opre.49.5.796.10608
https://doi.org/10.1016/j.ejor.2019.04.029

When Routing Meets Recommendation 35

27. Ulmer, M.W., Thomas, B.W., Mattfeld, D.C.: Preemptive depot returns for
dynamic same-day delivery. EURO J. Transp. Logist. 8(4), 327–361 (2019).
https://doi.org/10.1007/s13676-018-0124-0

28. Voccia, S.A., Campbell, A.M., Thomas, B.W.: The same-day delivery problem for
online purchases. Transp. Sci. 53(1), 167–184 (2017). https://doi.org/10.1287/trsc.
2016.0732

29. Wang, S., Hu, L., Wang, Y., Cao, L., Sheng, Q.Z., Orgun, M.: Sequential recom-
mender systems: challenges, progress and prospects. In: 28th International Joint
Conference on Artificial Intelligence, IJCAI 2019, pp. 6332–6338 (2019). https://
doi.org/10.24963/ijcai.2019/883

30. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992). https://
doi.org/10.1007/BF00992698

https://doi.org/10.1007/s13676-018-0124-0
https://doi.org/10.1287/trsc.2016.0732
https://doi.org/10.1287/trsc.2016.0732
https://doi.org/10.24963/ijcai.2019/883
https://doi.org/10.24963/ijcai.2019/883
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

	When routing meets recommendation: Solving dynamic order recommendations problem in peer-to-peer logistics platforms
	Citation

	When Routing Meets Recommendation: Solving Dynamic Order Recommendations Problem in Peer-to-Peer Logistics Platforms
	1 Introduction
	2 Related Works
	3 Problem Description and Model
	3.1 Problem Description
	3.2 Model Formulation

	4 Solution Approach
	4.1 Adaptive Recommendation Heuristic
	4.2 RL for Selection in ARH
	4.3 xDeepFM for Preference Prediction

	5 Experiments
	5.1 Benchmark Algorithms
	5.2 Experiment Design
	5.3 Experiment Results and Discussion

	References

