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Abstract. Effective police patrol scheduling is essential in projecting
police presence and ensuring readiness in responding to unexpected
events in urban environments. However, scheduling patrols can be a
challenging task as it requires balancing between two conflicting objec-
tives namely projecting presence (proactive patrol) and incident response
(reactive patrol). This task is made even more challenging with the fact
that patrol schedules do not remain static as occurrences of dynamic inci-
dents can disrupt the existing schedules. In this paper, we propose a solu-
tion to this problem using Multi-Agent Reinforcement Learning (MARL)
to address the Dynamic Bi-objective Police Patrol Dispatching and
Rescheduling Problem (DPRP). Our solution utilizes an Asynchronous
Proximal Policy Optimization-based (APPO) actor-critic method that
learns a policy to determine a set of prescribed dispatch rules to dynam-
ically reschedule existing patrol plans. The proposed solution not only
reduces computational time required for training, but also improves the
solution quality in comparison to an existing RL-based approach that
relies on heuristic solver.

Keywords: Reinforcement Learning · Multi-Agent · Dynamic
Dispatch and Rescheduling · Proximal Policy Optimization · Police
Patrolling

1 Introduction

Effective scheduling of police patrols is essential to project police presence and
ensure readiness to respond to unexpected events in urban environments. Law
enforcement agencies have the challenging task of balancing two conflicting
objectives of projecting presence (proactive patrol) and incident response (reac-
tive patrol). When an unexpected incident occurs, complex and effective response
decisions must be made quickly while minimizing the disruption to existing
patrol schedule. Such a decision is complex because each decision contains mul-
tiple components, namely which agent needs to be dispatched to respond to the
incident and secondly which existing schedules are disrupted and/or require some
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re-planning. In a real-world environment, the scale of the problem needs to con-
sider multiple patrol areas and teams. Multiple patrol teams need to operate in
cooperative manner to maximize the effectiveness of police patrolling. Hence, it
is challenging to develop an efficient real-time strategy for reallocating resources
when an incident occurs.

In this paper, we present a solution based on Multi-Agent Reinforce-
ment Learning (MARL) that enables rescheduling of patrol timetable when-
ever dynamic events occur. The problem addressed in this paper is based on
the Dynamic Bi-Objective Police Patrol Dispatching and Rescheduling Problem
(DPRP) introduced in [9]. This problem is a variant of Dynamic Vehicle Routing
Problem (DVRP) with the element of university time-tabling scheduling incor-
porated and in the context of cooperative multi-agent environment.

The key contribution of the paper is the successful application of Asyn-
chronous Proximal Policy Optimization (APPO) policy-gradient method with
dispatch-rules based actions for solving a dynamic patrol scheduling prob-
lem based on a real-world police patrolling environment. Our solution method
emphasizes on the use of patrol dispatch rules to significantly reduce the compu-
tational time in making such a complex decision. In addition, RL is used to learn
the policy in choosing the dispatch rule rather than relying on some fixed heuris-
tic rules. We experimentally demonstrate that our proposed solution method is
able to reduce training time by a factor of 40 while improving the quality of the
solution by around 10% against the benchmark approach [9].

2 Background

The police patrol routing problem can generally be seen as an extension of the
stochastic DVRP. In addition to route optimization, this routing problem also
needs to consider scheduling aspect i.e. when and how long an agent remains
in a particular node within a given route. A patrol unit patrolling in existing
allocated area can be dispatched to an emergency call, and a redistribution
of patrol resources is necessary to ensure optimal deployment. Existing works
in the literature such as [2,5] mostly addresses the offline planning aspect of
patrolling problem where the planned schedule is assumed to be static. These
solutions include genetic algorithm, routing policies, and local search based on
the network Voronoi diagram [7,16]. However, significant operational challenges
lie mainly in the dynamic planning aspect, since there may be disruption from
an unforeseen event that requires dispatch and re planing of the existing patrol
schedules.

2.1 Scheduling Problem with Reinforcement Learning

The use of RL to solve dynamic scheduling problem has gained traction in the
community [10,11,17] in recent years. Single-agent reinforcement learning (RL)
algorithm suffers from a curse of dimensionality since the state-action space
grows exponentially as the number of agents increases, particularly in the context
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of large-scale patrolling environment in modern metropolis. Cooperative multi-
agent reinforcement learning (MARL) algorithms are necessary for solving such
problem. Based on current works on MARL [1,8,12], MARL approach training
schemes can generally be classified into centralized setting, decentralized setting
with networked agents, and fully decentralized with independent learners setting.
Common challenges of MARL include non-unique learning goals among agents,
non-stationary environment, scalability, and partial observability [18].

In a closely related problem of the Job-Shop Scheduling Problem (JSSP),
the use of Proximal Policy Optimization (PPO) [14] with Graph Neural Net-
work algorithm was able to learn the priority dispatch rule for JSSP from first
principles without intermediate handcrafted rules [17]. While such generalized
learning approach is novel, it is important to note that the action-space of JSSP
is reduced as the solution space narrows over time due to precedence constraint.
This, however is not true for DPRP, where the same graph node can be visited
multiple times and the action-space does not reduce over time. Another proposed
method [11] based on actor-critic Deep Deterministic Policy Gradient (DDPG)
algorithm in multi-agent environment only considers a set of simple dispatching
heuristics rules in the agent action space. The constrained action-state space
proved to be efficient for learning and sufficiently effective for solving complex
scheduling problem. However, such a framework requires in-depth prior domain
knowledge, and retraining of the model is needed when input parameters vary.

For our problem DPRP, [9] demonstrated successful application of a deep
RL-based method with a rescheduling heuristic based on input and constraints
from the real-world environment. The proposed method combines the value func-
tion approximation through Temporal-Difference (TD) learning with experience
replay and an ejection chain heuristic solver. The solution is able to compute
dispatch and rescheduling decisions instantaneously as required in real-world
environment. There were also other works that addressed a similar variant of
such problem. Most of these approaches adopted a two-stage decomposition that
learns the dispatching and scheduling policies in separate stages (see [3,4]).

3 Problem Description

The problem being addressed in this paper closely represents the scenario of
police patrolling in a modern and large city in which police needs to respond
to incidents of various types within very short time frames (in less than 10min
within receiving the call for response). At the start of the day, police officers are
assigned to different patrol areas under their jurisdiction. A centralized authority
is tasked to plan the resource to ensure sufficient patrol presence for the entire
city. In addition to patrol duties, the plan must also adapt to incidents arising in
real time, to ensure that police officers are able to respond to incidents as soon
as possible while not compromising the level of patrols within each jurisdiction.

Figure 1 shows an example of multiple patrol officers dispatched to different
patrol areas based on the initial schedule given. We assume that all patrol agents
have homogeneous capability.



570 S. Wong et al.

Fig. 1. Schematic diagram that shows multi-agent patrol environment and the initial
timetable schedule at T = 0.

Fig. 2. An incident happened at T + 5 and patrol agent 1 is deployed to respond to
the incident. Following the disruption, a rescheduling is made to the time table of the
relevant patrol agents (patrol agent 1 and 3) at T ≥ 5.

Figure 2 shows an example of a situation where an incident occurs at location
G during in a given day or shift. In this case, Agent 1 is deployed to respond
to the incident. The original patrol location of C is changed to G at T = 5
and this change may result in the need to reschedule the plans of other agents.
For simplicity, we assume that only one incident can occur one at a time. In
addition, we assume that the condition of partial observability does not exist
with the presence of a central authority akin to a police headquarter.

4 Model Formulation

The objective of the problem is for every agent to make rescheduling and dis-
patching decision at every decision epoch in order to maximize both global patrol
presence and response rate to dynamic incidents.

We model our problem as a fully cooperative multi-agent Markov Decision
Process - (S,A,T,R) where S is a state for the timetable, A is a set of actions
taken by the agents, T is the transition probability vector between state for
different state-action pairs, and R is the immediate reward transitioning from
state s to s′ given action a.
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The objective of the problem is for every agent to make rescheduling and
dispatching decision at every decision epoch in order to maximize both global
patrol presence and response rate to dynamic incidents (Table 1).

Table 1. Set of notations used in this paper.

Notation Description

I Set of patrol agents, I ∈ {1, 2, 3, · · ·, |I|}
J Set of patrol areas, J ∈ {1, 2, 3, · · ·, |J |}
T Set of time periods in a shift, T ∈ {1, 2, 3, · · ·, |T |}
k Decision epoch

tk Time period in a shift where decision epoch k occurs, tk ∈ T

a(k) Set of dispatch actions taken by all agents at decision epoch k

xi(k) Dispatch action taken by agent i at decision epoch k

δi(k) A schedule of patrol agent i at decision epoch k

δ(k) A joint schedule of all patrol agents at decision epoch k

δ−i(k) A joint schedule of all patrol agents except for agent i at decision epoch k

δa
i (k) A schedule of patrol agent i after executing action a at decision epoch k

δa(k) A joint schedule of all patrol agent after executing action a at decision epoch k

τtarget A response time target

τmax A maximum buffer time for response time for incident

τk Actual response time to incident at epoch k

Dh(δ
′
, δ) Hamming distance between schedules δ

′
and δ

d(j, j′) Travel time from patrol area j to another patrol area j’

Qj Minimum patrol time for patrol area j

σj Patrol presence for area j in terms of ratio of the effective patrol time over Qj

ωk State representation of dynamic incident that occurs at decision epoch k

N(k) State representation of patrol agents availability at decision epoch k

Ωi,k Patrol status of agent (patrolling or travelling) i at decision epoch k

Di,k Patrol or travel destination of agent i at decision epoch k

Mi,k Travel arrival time of agent i at decision epoch k

4.1 State

The state of the MDP, Sk is represented as the following tuple:
〈tk, δ(k), ω(k), N(k)〉. tk is the time period in a shift where decision epoch k
occurs. δ(k) is the joint schedule of all patrol agents, ω(k) is the dynamic inci-
dent, and N(k) is the patrol agents’ availability at decision epoch k.

Joint Schedule. The joint schedule, δ(k) has a dimension of |T | × |I| × |J |,
which represents the time tables for all patrol agents.
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Incident. A dynamic incident, w(k) occurs at decision epoch k and is described
as the following tuple:

〈
ωj

k, ωt
k, ωs

k

〉
where ωj

k ∈ J refers to the location of the
incident, wt

k ∈ T refers to the time period when the incident occurs, and ws
k

refers to the number of time periods required to resolve the incident.

Agents’ Availability. The agents’ availability, N(k) represents the availability
of patrol agents in the decision epoch k. It comprises the individual agent’s
availability, Ni(k) for every agent i.

4.2 Action

ai(k) is a dispatch action taken by an agent i at decision epoch k. The set of
action space is a set of dispatch rules described in Table 2. The action taken by
the agent determines the state of the agent’s individual time table at the next
time step. The selection of action is made with an ε-greedy strategy.

Table 2. List of dispatch-rule-based actions for patrol agents.

Dispatch Rule Description

a1. Respond to incident Travel to the location of incident if there is an occurrence
of incident. Otherwise, this action is not allowed

a2. Continue Continue to patrol the same area or continue traveling to
the destination patrol location if the agent was in the
midst of traveling to another patrol area. This heuristics
tries to minimizes deviation from initial schedule as the
initial schedule was optimal for patrol presence in a
situation where no unforeseen incident occurs

a3. Patrol an unmanned area Travel to an unmanned patrol area that yields the best
patrol presence utility. If multiple patrol areas have same
the utility, randomly select one. This heuristics is a
greedy approach that aims to maximize patrol presence
utility of the schedule, with the assumption that
unforeseen incidents may occur in unmanned patrol areas

a4. Patrol an existing
manned area by other agents

Patrol an existing area currently being patrolled by other
agents. Choose the area that has the best patrol presence
utility. If multiple patrol areas have the same utility,
randomly select one. This heuristics also aims to
maximize patrol presence utility, but allowing the agent
to take over an existing patrol area of another agent if the
original agent needed to be dispatched elsewhere

a5. Nearest and least
disruptive

Patrol the next nearest location such that it results in
least deviation from the initial schedule. If multiple patrol
areas have same the travel distance, randomly select one.
This heuristics tries select a patrol area in such a way
that it minimizes travel time and deviation from the
initial schedule
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4.3 Transition

A decision epoch k occurs at every time step. We move to the next decision
epoch k + 1 after all agents have completed their actions, transiting from the
pre-decision state Sk to the post-decision state Sk+1. In our formulation, the
transition between state is deterministic, and we let transition probability T =
1 for every state-action pair. It is deterministic as in if an agent has chosen an
action, there is no possibility that the agent deviates from the chosen action.

4.4 Constraints

We subject our final schedule δ(T ) at the end of the last decision epoch to the
following soft constraint:

Dh(δ(T ), δ(0)) ≤ Dh,max (1)

where Dh(δ(T ), δ(0)) is the Hamming distance of the final schedule with respect
to the initial schedule δ(0).Dh,max is the maximum Hamming distance allowed.
The constraint helps minimize disruption to our existing schedule caused by
rescheduling.

4.5 Patrol Presence

Before discussing the reward function, we define patrol presence as the number
of time periods each patrol area is being patrolled. Every patrol area j must be
patrolled for a minimum of Qj time periods in a given shift. A schedule with good
patrol presence seeks to maximize the time spent patrolling while minimizing the
travel time of patrol agents when moving to different patrol areas. The patrol
presence utility function fp(δ) is defined as the following

fp(δ) =

∑
j∈J Up(j)
|T | × |I| (2)

where Up(j)

Up(j) = min(σj , 1) + 1j × e−β(σj−1)

1j =

{
1, σj > 1
0, σj ≤ 1

(3)

where β is coefficient for patrol presence utility and patrol presence σj is defined
as

σj =
∑|T |

t=1 pj,t

Qj

pj,t =

{
1,patrol is present at area j at time step t

0, otherwise

(4)
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This utility function measures the utility of each patrol in each patrol area
with respect to the minimum patrol requirement of that area, and additional
patrol time comes with a diminishing return of utility beyond the minimum
requirement.

4.6 Reward Function

The reward function R
(
Sk, ai(k)

)
takes into consideration of three factors; patrol

presence, incident response, and deviation from existing schedule. Note that the
reward at t < T only considers incident response, while the final reward when at
the end of episodes at t = T includes additional factors of patrol presence reward
and schedule deviation penalty. fr

(
ai(k)

)
quantifies the success of an incident

response when action ai(k) is taken by agent i. Similar to the patrol presence
utility, any incident that is responded later than the target time will incur a
reduced utility. The reward function is defined as

R
(
Sk, ai(k)

)
=

{
fr

(
ai(k)

)
+ fp

(
δ(tk)

) − pr

(
δ(tk)

)
, tk = T

fr

(
ai(k)

)
, tk < T

fr(ai(k)) =

{
Ur = exp−α×max(0,τk−τtarget), τk > 0

0, τk = 0 (Incident not responded)
(5)

where α is the coefficient for response utility of a late response, τk is the response
time taken at decision epoch k and τtarget is the target response time.

The penalty function for the deviation of the schedule pr(δ(tk)) based on the
Hamming distance Dh is defined as the following step functions:

pr

(
δ(tk)

)
= C1 · Dh

(
δ(tk), δ(0)

)
+ C2 · 1H

(
δ(tk), δ(0)

)

1H

(
δ(tk), δ(0)

)
=

{
0,Dh

(
δ(tk), δ(0)

) ≤ Dh,max

1,Dh

(
δ(tk), δ(0)

)
> Dh,max

(6)

where C1, C2 are the weights of the Hamming distance penalty coefficients.

5 Solution Approach

The RL algorithm selected for our solution approach is an asynchronous vari-
ant of Proximal Policy Optimization (APPO) [15] algorithm based on IMPALA
[6] actor-critic architecture. IMPALA is an off-policy actor-critic algorithm that
decouples acting and learning, which allows multiple actors to generate expe-
rience in parallel, creating more trajectories over time. The off-policy RL algo-
rithm uses the trajectories created by policy μ (behavior policy) to learn the
value function of target policy π.

At the start of each trajectory, the actor updates its own policy μ in response
to the latest policy from the learner, π, and uses it for n steps in the environment.
After n steps, the actor sends the sequence of states, actions, and rewards along
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with the policy distributions to the learner through a queue. Batches of experi-
ences collected from multiple actors are used to update the learner’s policy. Such
design allows the actors to be distributed across different machines. However,
there is a delay in updating the policies between actors and the learner, as the
learner policy π may have undergone several updates compared to the actor’s
policy μ at the time of the update. Therefore, an off-policy correction method
called V-trace is used here.

V-Trace Target. For a trajectory state (xt, at, xt+1, rt), the n−steps V-trace
target for V (xs) at time s is given as,

vs
def= V (xs) +

s+n−1∑
t=s

γt−s

(
t−1∏
i=s

ci

)
ρt(rt + γV (xt+1) − V (xt)) (7)

where ρt = min
(
ρ̄, π(at|xt)

μ(at|xt)

)
and ci = min

(
c̄, π(at|xt)

μ(at|xt)

)
are truncated importance

sampling weights. ρ̄ and c̄ are truncation constants with ρ̄ ≥ c̄. In the case of
on-policy learning, then ci = 1 and ρt = 1, and (7) becomes

vs =
s+n−1∑

t=1

γt−srt + γnV (xs+n) (8)

which is the on-policy n−step Bellman target. By varying ρ̄, we change the
target of the value function to which we converge. When ρ̄ = ∞ (untruncated),
the value function of the v trace will converge to the target policy Vπ; When
ρ̂ → 0 (untruncated), the value function converges to behavior policy Vμ. Any
value of ρ̂ < ∞ indicates the value function of the policy somewhere between μ
and π. The truncation constant c̄ changes the speed of convergence.

V-Trace Actor-Critic Algorithm. For every iteration update, Vθ(s) is the
value function of state s parametrized by θ, which is updated by

Δθ = (vs − Vθ(s))∇θVθ(s) (9)

and the policy parameters w is updated through policy gradient

Δw = ρs∇w log πw(as|s)(rs + γvs+1 − Vθ(s)) (10)

Proximal Policy Optimization (PPO). The use of Proximal Policy Opti-
mization (PPO) improve the training stability of our policy by avoiding excessive
large policy update. PPO uses the following clipped surrogate objective function
for policy update:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)] (11)
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Fig. 3. Multi-agent setup with individual policy for the patrol agents.

Algorithm 1. Dispatch-rule based scheduling RL algorithm
for each episode do

Set initial schedule δ → δ0 from a set of initial schedules, generate a scenario
with a set of incident scenarios {ωk, ωk+1, · · · }

Set entries of δi(t ≥ k) → ∅ ∀i ∈ I
for t = tk to T do

for each patrol agent i (in random order) do
takes a feasible patrol action with ε-greedy strategy that decides the state

of δi(t)
end for

end for
Revised schedule is completed δ → δ′

end for

where θ is the policy parameter, Et is the empirical expectation, rt is the ratio of
the probabilities under the new and old policies, Ât is the estimated advantage
at time t, ε is a hyper parameter, usually 0.1 or 0.2.

As our environment is a multi-agent environment, we assign one policy net-
work to each agent as shown in Fig. 3. Algorithm1 describes the procedure for
rescheduling according to the solution approach. We implemented our solution
method using Ray RLlib library [13].

6 Experimental Setup

6.1 Environment

The patrol environment comprises hexagonal grids of size 2.2 km × 2.2 km
derived from local police patrol sectors, each grid representing a patrol area.
We have chosen a large patrol setup with |I| = 11, |J | = 51 for our environment.
This patrol setup represents an environment with a relatively low agent-to-area
ratio. The duration of a day shift is 12 h and is divided into 72 discrete 10-min
time units. The maximum Hamming distance for the revised schedule Dh,max is
set at 0.4.
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6.2 Model Parameters

The input state vectors are flattened into a one-dimensional array as a concate-
nated input to a fully-connected neural network encoder. The encoder neural
network has a size of 256 × 256, with tanh activation functions. The training
batch size is 500. Learning rate α = 0.0001, εinitial = 0.6, εfinal = 0.01. We set
the discount factor γ = 1.0 since the reward function for patrol presence and
deviation from initial schedule is only evaluated at the end of the episode when
τk = T when the revised schedule is complete. Agents must therefore take into
consideration this final reward without discount when evaluating action choices
in an earlier decision epoch. We set the maximum number of training episodes
to be 5000 episodes.

6.3 Training and Test

During training, there are 100 samples of initial joint schedules for initialization.
Each sample consists of an initial joint schedule for all patrol agents for the
entire day. The initial schedules are obtained via a mixed linear integer program
prior to training. We run a total of 5000 training episodes. During each training
episode, an initial schedule is randomly sampled from the pool, and a set of
incidents is generated based on Poisson distribution with λ set as 2 i.e. the rate
of occurrences of incident is 2 per hour. A training episode ends when the time
step reaches the end of the shift. The training results generally begin to converge
after 3000 episodes. After training is completed, we evaluated the performance
of our solution approach based on 30 samples of initial joint schedules separate
from the training set.

6.4 Evaluation Metrics

Our evaluation considers the following metrics: patrol presence score (%),
incidence response score (%) and deviation from original schedule
(Hamming distance). A good solution should have both high patrol presence
and incidence response scores (where 100% means all incidents are responded
within the stipulated response time), and a low deviation from original schedule
(where 0 means that the existing schedule remains unchanged). We benchmark
the quality of our solution approach against two approaches:

– Myopic rescheduling heuristic - Baseline algorithm with ejection chain
rescheduling heuristic for comparison with VFA-H and our approach APPO-
RL;

– Value Function Approximation heuristic (VFA-H) [9] - An RL-based
rescheduling heuristic with ejection chain based on a learnt value function.
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7 Experimental Results

7.1 Solution Quality

The evaluation scores summarized in Table 3 show that our solution approach
APPO-RL outperformed the VFA-H method. The patrol presence and inci-
dence response scores of our method are higher than that of VFA-H by +10.6%
(+12.6% vs +2%) and +6.6% (−9.9% vs −16.5%) respectively. However, since
schedule deviation is set as a soft constraint in our proposed solution, we see
that the maximum Hamming distance Dh,max of 0.403 obtained by our app-
roach exceeded the threshold of 0.4, implying that in some cases the maximum
Hamming distance imposed has been violated, while this constraint is not vio-
lated in the VFA-H’s method. On average, however, it is encouraging to see that
the Hamming distance (Dh,mean) is less than in VFA-H.

The biggest advantage of our solution approach is the improved computa-
tional efficiency in solving the DPRP problem. Compared to VFA-H, the training
time required is about 40x less. This is due to the reduced search space as we
limit the number of action states to a selected few dispatch rules.

Table 3. Evaluation metric scores and mean training time.

Metric VFA-H APPO RL

Δ in mean incidence response score over Myopic +2% +12.6%
Δ in mean patrol presence score over Myopic −16.5% −9.9%

Dh,max 0.399 0.403
Dh,mean 0.387 0.342
Mean training time per episode (s) 436 10.9

Figure 4 presents the performance of the three approaches with respect to
the number of training episodes.

7.2 Constraint Sensitivity Analysis

We conducted a constraint sensitivity analysis to evaluate the trade-off between
solution quality and constraint satisfaction by varying the value of C2, the coef-
ficient of a step function penalty term linked to the Hamming distance con-
straint threshold of Dh,max = 0.4. As shown in Fig. 5, as we decreased the soft-
constraint penalty coefficient C2 on Hamming distance, the response score gener-
ally improved while the patrol presence score remained largely at similar levels.
This is expected as agents have fewer constraints to consider when responding
to incidents.
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Fig. 4. Comparison of our solution approach (blue) with VFA-H (orange) and myopic
(grey) baseline methods on various evaluation metrics. (Color figure online)
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Fig. 5. Results of constraint sensitivity analysis based on our solution approach (darker
colour indicates higher weightage of constraint penalty coefficient C2). (Color figure
online)

8 Discussion and Future Work

We discuss two major challenges of our work.

Generality. With a limited and handcrafted set of dispatch rules as actions,
we are able to reduce the search space considerably even as the number of
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agents increases. Nonetheless, our approach requires some experimentation or
prior domain knowledge in order to select a set of optimal dispatch rules suit-
able for the problem. This makes it challenging when we need to apply to a
slightly different problem set, as the set of prescribed dispatch rules may have
to be modified. It is also unclear if the learned policy is applicable as we vary
the size of the environment. We may therefore have to train different policies as
we change the size of patrol area and number of agents.

Constraint Satisfaction. The biggest drawback of our solution approach is
that constraint satisfaction is not always guaranteed. In the DPRP problem, this
constraint was set mainly to minimize disruption to patrol agents. Although such
a violation of constraint is acceptable to some extent in our problem set, one
can argue that this may not be applicable to other situations.

To conclude, we have demonstrated a successful application of multi-agent
reinforcement learning technique in solving dynamic scheduling problem in the
context of police patrolling. Our proposed method is able to improve solution
quality while reducing training time considerably. We are in discussion with a
local law enforcement agency to develop a prototype tool for real-world experi-
mentation.

From the research standpoint, it would be worthwhile to apply this in a multi-
agent environment where we have non-homogeneous patrol agents that need to
collaborate with one another in order to respond to incidents. It would also be
interesting to research further into the aspect of constrained RL to ensure that
hard constraint satisfaction is met.
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