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Memory Network-Based Interpreter of User Preferences in

Content-Aware Recommender Systems

NHU-THUAT TRAN and HADY W. LAUW, School of Computing and Information Systems,

Singapore Management University, Singapore

This article introduces a novel architecture for two objectives recommendation and interpretability in a
unified model. We leverage textual content as a source of interpretability in content-aware recommender
systems. The goal is to characterize user preferences with a set of human-understandable attributes, each
is described by a single word, enabling comprehension of user interests behind item adoptions. This is
achieved via a dedicated architecture, which is interpretable by design, involving two components for
recommendation and interpretation. In particular, we seek an interpreter, which accepts holistic user’s
representation from a recommender to output a set of activated attributes describing user preferences.
Besides encoding interpretability properties such as fidelity, conciseness and diversity, the proposed
memory network-based interpreter enables the generalization of user representation by discovering relevant
attributes that go beyond her adopted items’ textual content. We design experiments involving both human-
and functionally-grounded evaluations of interpretability. Results on four real-world datasets show that
our proposed model not only discovers highly relevant attributes for interpreting user preferences, but also
enjoys comparable or better recommendation accuracy than a series of baselines.

CCS Concepts: • Information systems→ Recommender systems; Collaborative filtering;

Additional Key Words and Phrases: Interpretable user preferences, content-aware recommendation, memory
network
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1 INTRODUCTION

Recommender systems are prevalent in various domains including e-commerce, news, social
media, and so on. The methodologies range from matrix factorization [25] to attention-based
historical aggregation [9], autoencoder-based models [33, 53, 69], and graph-based models [18, 66].
Two issues that commonly plague recommender systems are sparsity and lack of interpretability.
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The former is due to the few observations relative to the large number of users or items, resulting
in difficulty in building models that are sufficiently generalizable, particularly for long-tail
instances. The latter is due to the abstract nature of latent representations of users and items
derived from representation learning methods.
Side information such as textual content could provide another pathway for establishing simi-

larities across users or items to improve recommendation accuracy. Representative content-aware
recommender system models, including [28, 32, 42, 62, 74], mainly employ textual content to
resolve sparsity. Going beyond, this work employs textual content as a source of interpretability
of user’s preferences. We consider two objectives, recommendation and interpretability, in a
unified model, realized by two components respectively. Recommender focuses on learning to
recommend items, while interpreter accepts user’s representation from recommender as input and
outputs an interpretation of user interests.
To implement our idea, we design a novel architecture, which is inspired by Supervised Learn-

ing with Interpretation (SLI) [48]. We realize recommender as an autoencoder, learning non-
linear representation of user at the hidden layer and predicting user-item interactions at the out-
put layer. In the scope of this article, we focus on two variants of autoencoder-based recommender,
namely AutoRec [53], and CDAE [69]. Autoencoder is chosen to help reducing the learning com-
plexity as described in Section 3.3. Our architecture design is flexible enough to plug in other neural
recommenders. We verify this applicability by examing non-autoencoder recommender called Di-
rectAU. Pertaining to interpreter, a key-value memory network [46, 56] lies at the core. It stores two
matrices of the same size, namely key matrix and value matrix. Key matrix is a vocabulary-sized
dictionary, whose each element stores the representation of a word, also called an attribute. The
definition in [13] refers a single word as a cognitive chunk, i.e., unit of interpretability. Without any
other specification, in this article, we term single word, attribute and cognitive chunk interchange-
ably. Value matrix, on the other hand, stores another representation for each word. Generally, the
difference is that key matrix stores representations from textual content signals, i.e., item-word
relationships, while value matrix stores representations from collaborative filtering signals. Key
matrix acts a ‘translator’ in the sense that multiplying user representation from recommender with
key matrix is equivalent to translating user representation into word space and high-similarity
words captures user’s preferences well. Value matrix stores building blocks to build up user rep-
resentation based on generated words. The score produced by multiplying key matrix and user
representation is the weight to aggregate building blocks from value matrix to output interpreter-
based user vector. Key-value memory network brings two pertinent advantages. Firstly, it is flexi-
ble so that one can store n-grams as cognitive chunks. However, a larger-sized dictionary requires
larger memory consumption and may slow the learning process. Secondly, by storing all words in
the vocabulary, interpreter can generalizes user’s representation by attending to relevant words
that go beyond user’s adopted items’ texts. We empirically demonstrate that this also benefits
recommendation performance (see Section 4).
For a sense of the kind of interpretable representation we seek, Table 1 shows how given a

user’s historical adoptions, in this case titles of academic articles (left column), we arrive at a list
of inferred natural language words (right) underlying the given user’s preferences, presented as a
word cloud. This is not merely keyword extraction, as some of these words may not necessarily
have occurred within the adopted titles.
Our work is widely divergent from existing works in explainable recommendation and post-hoc

explanation. The former concerns the underlying reasons behind a single user-item interaction
while ours makes sense of user preferences holistically underlying their interactions with a set of

items. Our model is interpretable by design, distinguishing itself from post-hoc explanation, which
has been criticized for the lack of faithfulness of interpretation [52].
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Memory Network-Based Interpreter of User Preferences 108:3

Table 1. Inferred Words for a user based on their Adoptions

Contributions. In this work, we make the following contributions. Firstly, we present a novel
architecture, called Interec (Section 3), which stands for Memory-based INTErpretable represen-

tation for user-oriented content-aware RECommendation, a dedicated and unified architecture for
both recommendation and interpretability. To the best of our knowledge, this is the first work that
incorporates textual content-based interpreter of user preferences into a recommendation model.
Secondly, we innovatively use key-value memory network as means of interpretation. The pro-
posed architecture is flexible, so various neural recommenders as well as various types of attributes
can be leveraged for interpretation. Thirdly, we investigate a technique to promote conciseness
of interpretability, which also brings recommendation performance gain. Lastly, we empirically
demonstrate a significant advancement over comparable baselines on four datasets in accuracy
and interpretability, quantitatively and qualitatively (Section 4).

2 RELATEDWORK

Content-Aware Recommender Systems. The line of research that incorporates item textual
content into recommendation models includes CTR [60] with text modeling based on LDA [2],
CDL [62] based on stacked denoising auto-encoder, ConvMF [28] based on convolutional neural
networks, and CVAE [32] based on variational autoencoder. Though they vary in the text model-
ing, they have in common a regularization framework that encourages the text representation of
an item to be close to its collaborative filtering representation. The goal of these works is to mainly
resolve sparsity of user-item interaction data, leading to better recommendation performance. Sub-
sequent works include JSR [74] that jointly predicts user-item interaction and reconstructs item
textual description; GATE [42] that leverages attention network to model textual content of items
and gating mechanism to combine collaborative filtering and content-based representation. These
works also aim at achieving higher accuracy. Ourwork is distinct in a couple of ways. For one, exist-
ing works mainly employ textual content to resolve sparsity while we focus on both interpretation
of user’s preferences and sparsity alleviation. For another, our model generates a personalized set
of words describing user interests, which achieves higher level of interpretability, while existing
works mainly employ textual content on item side. For parity, we compare against baselines in
both item-oriented and user-oriented fashions.
Our work is also related to the use of heterogeneous side information to resolve data sparsity

and cold-start problems, leading to better recommendation accuracy as well as improving inter-
preterbility. For instance, knowledge graph (KG) provides rich item attributes to characterize
items and enhance user-item relationships. Notable works include path-based models [22, 67],
regularization based-models [36, 76], and GNN models [63, 65]. On the other hand, social con-
nections provide useful information to characterize user’s preferences based on their friendships
on social platforms. Representative approaches include fusing user representations from social
domain and item preference domain [6, 24, 70] or leveraging graph neural networks to model
user-user and/or user-item connections [14, 39, 68]. Recently, thanks to the advance of learning

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 6, Article 108. Publication date: November 2023.
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from heterogeneous information network (HIN) [72], researchers have designed novel
mechanisms to model the heterogeneity of users, items and their associated information, e.g., user
social connections, item relations, from a heterogeneous network [3, 4, 10]. Our model Interec
distinguishes itself with a couple of points. For one, our motivation stems from interpretability
perspective, where textual content of items is employed as the source of interpretability in our
dedicated interpreter to discover related words capturing user preferences. Despite can be used
for interpretability like textual content, KG is costly to construct and not all benchmark datasets
accompany KG. For another, Interec is able to generate relevant textual-based interpretation of
user’s preferences relying solely on item textual information, which achieves lower level of model
complexity than those using both item and user side information.
Explainable Recommendation. Recently, there are also active efforts [77] in making rec-

ommendations more explainable to consumers. The gist is in accompanying a recommendation
of an item to a user with an explanation, which could be in various forms such as text [64, 78],
rules [43], social graph [50], and visual imagery [37]. Our focus in this article is in interpreting
the preferences of a user as a whole in terms of keywords to provide some interpretability to the
workings of the content-aware recommendations. It is not our intention to explain individual
item-wise recommendation instances.
User Profiling. There exist several works that seek to profile users for recommender systems.

[15, 40] infers topics of interest to a user, both static, and dynamic. In [16], the authors profile user
as a hierarchy of interactions, item level and category level. In contrast, we focus on words as units
of interpretation. Outside of recommendation, user profiling is also investigated in Twitter [35],
streaming short texts [34], or Question Answering [41].

Interpretable AI. Generally, studies on interpretable AI can be broadly categorized into two
groups [38]. The first group relies on internal structure to interpret the working of a machine
learning system [5, 31, 58]. The second group, post-hoc interpretation, including [51, 54, 75], treats
machine learning model as blackbox and attempt to explain the model outputs. Our work fits into
the former group of interpretable by design.

Studies on interpretability in recommender systems include [55] using CNN-based attention
network to model globally and locally user’s preference from reviews, [23] exploiting attention
network to model the content features of movies, and [47] projecting item’s representation into
interpretable space to infer user preference on item’s features. Our work is distinct in deriving
top-k words as “interpretation” for a user’s latent representation.
Pertaining to dictionary of attribute-based interpretability, representative works include [12, 26,

30]. These are not comparable with ours since the dictionary of attribute is assumed to be available
in advance. FLINT [48] is dedicated for multi-class image classification while ours is applied to
recommendation. Hence, there is a wide difference in constructing dictionary of attributes and
visualization of interpretability. Moreover, we usememory network for interpretationwhile FLINT
employs softmax function over attribute dictionary.
Neural Attention-Based Recommender Systems. ACF [9] leverages attention to model

multi-media contents in collaborative filtering. [11] leverages memory network [56] to model
dynamic user preferences to improve sequential recommendation. LRML [57] employs memory
network to generate relation vector between user and item in metric learning so as to improve
recommendation. Our novelty comes from the employment of key-value memory network
[46, 56], in which attention lies at the heart, to build up interpreter from textual content.

3 METHODOLOGY

Our proposed architecture is illustrated in Figure 1 and the list of notations is presented in Table 2.
The input includes binary interaction matrix R ∈ {0, 1}M×N , M,N are the number of users and
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Fig. 1. Illustration of Interec. Figure (a) presents our general idea while Figure (b) is a realization with

recommender and interpreter.

Table 2. List of Notations

u, i , j User index, item index and word index
M,N ,K The number of users, items and words, respectively

d Dimensionality of user, item and word embedding vector
ϵ Exponential weight of normalization term in memory-based representation (Equation (8))
τ Temperature hyper-parameter (Equation (6))

X,xi Tf-idf item textual content matrix and textual content vector of item i
R, ru User-item interaction matrix and binary rating vector of user u

zu , ẑu , z̃u Latent representation, memory-based representation and combined representation of user u
Vtext ,V Text-based and collaborative filtering-based item embedding matrices
M,K Memory matrix and Key matrix in Memory Network
aT ,AT Transpose of vector (bold lower case letter) and matrix (bold upper case letter)

items, respectively. Each uth row, ru , of matrix R denotes the interaction vector of user indexed
by u and rui = 1 indicates interaction between user and item (indexed by i). Furthermore, items
have side information, i.e., textual content, denoted by matrix X ∈ RN×K , with K is the number
of words in vocabulary. Each ith row xi of X is tf-idf representation of textual content of item
i . For textual-aware recommendation task, Supervised Learning with Interpretation SLI involves

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 6, Article 108. Publication date: November 2023.
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two explicit empirical losses for recommendation, and interpretability.

argmin
f ∈F ,д∈G

Lr ec ( f ,R,X) + Lint ( f ,д,R,X), (1)

in which F is the model space of recommender, G is the model space of interpreter, Lr ec (·) is
recommendation loss while Lint (·) is designed for interpretability objective. Next, we describe
our proposed realization of SLI called Interec, including details of recommender f , interpreter д
and learning objectives.

3.1 Interec

3.1.1 Recommender. We set F as the class of deep neural networks to learn a recommenda-
tion model. Each realization f ∈ F is parameterized by Θf . f should satisfy the following prop-
erties (i) f takes user information, e.g., rating vector ru or user’s ID, as input and outputs a list of
recommended items for useru and (ii) the output of hidden layer of f abstractly encodes user’s pref-
erences. In this work, we focus on examining two autoencoder-structured variants for f : vanilla
autoencoder (AE) and denoising autoencoder (DAE). While other neural recommenders are
feasible, the choice of autoencoder reduces model complexity, which will be elaborated later in
Section 3.3. We denote the correspoding recommenders are f AE and f DAE , respectively.

Encoder f AEenc of recommender f AE , which is based on AutoRec [53]:

zu = f AEenc = e (ruW
enc + benc ). (2)

Encoder f DAEenc of recommender f DAE , which is based on CDAE [69]:

zu = f DAEenc = e (rcuW
enc + Qu + b

enc ). (3)

Decoder of recommender f AE and recommender f DAE has similar formulation, which is denoted

as fdec :

ou = fdec = s (z̃uW
dec + bdec ), (4)

in which, rcu is a corrupted version of ru , obtained by randomly zeroing out some elements, e and s
are non-linearity functions. e is set to tanh for both variants, while s is set to siдmoid for f AE and
so f tmax for f DAE . These activation functions result in different loss functions for two examined
recommendationmodels, allowing us to test the proposed architecture on different learning scenar-
ios. The difference between f AEenc and f DAEenc is that f DAEenc accepts a corrupted version of user’s rating
vector and uses bias vector Qu , which is model’s parameter, for user representation. z̃u = zu + ẑu ,
where ẑu is interpreter-based representation of user u. Section 3.1.2 describes how to derive ẑu .
Parameters of recommender is Θf = {Wenc ∈ RN×d , benc ∈ Rd ,Wdec ∈ Rd×N , bdec ∈ RN ,Qu ∈
Q ∈ RM×d }, d is the dimensionality. We denote Interec with vanilla autoencoder recommender is
Interec-AE while Interec-DAE is Interec with denoising autoencoder recommender.

Both f AE and f DAE satisfies the two mentioned properties. Firstly, the output of decoder can
be seen as predicted probability of items that user is likely to interact. Secondly, zu can be seen
as a compact representation of user’s preferences. Its individual dimension, however, is abstract
and not immediately interpretable. Therefore, interpreter is required to associate these latent fea-
tures with human-understandable natural language words. Two salient notions in implementing
recommender f , f AE or f DAE , are

— To incorporate textual content into recommender,Wdec is implemented asWdec = (Vtext +

V)T . By doing so, each item is represented by two components, V ∈ RN×d is a free matrix
learned during training to capture item’s features from collaborative filtering signals and
Vtext ∈ RN×d captures textual-based item’s features and is obtained by stacking outputs
of hidden layer in Equation (7). Note that Vtext is left unchanged to preserve its meaning

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 6, Article 108. Publication date: November 2023.
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not to be overwritten by collaborative filtering signals, which is empirically found useful for
interpretability as evidenced in Section 4.3. Unlike existing more restrictive models that treat
text-based item representation as regularization or to be trained using collaborative filtering
signals, this design enables user representation captures both collaborative filtering signals
and textual signals more effectively as shown in the experimental results in Section 4.

— For encoder, tanh non-linearity is used to model likes and dislikes with positive and negative
values, respectively.

Extension. To verify the applicability of our proposed method, we examine a recently de-
veloped non-autoencoder recommendation model called DirectAU [61]. Under encoder-decoder
framework, the encoder of DirectAU is simply a look-up tableU ∈ RM×d ofM rows, each is vector
representation of one user. User u representation is produced as zu = Uu ∈ Rd . Similarly, item
representations are also stored in a look-up table V ∈ RN×d of N rows, each for one item. Item i’s
representation is produced as zi = Vi ∈ Rd . DirectAU distinguishes itself by the learning objec-
tive, which will be elaborated in Section 3.3. We name our model variant extending DirectAU as
Interec-DirectAU. Interec-DirectAU predicts interaction score between user u and item i as

oui = (z̃u )
TWdec

i = (zu + ẑu )
T (Vtext

i + Vi ). (5)

Similar to Interec-AE and Interec-DAE, user representation in Interec-DirectAU also con-
tains two terms, one is zu and the other ẑu , which is output of interpreter as elaborated in the next
section. The interpretation of combined item representationWdec

i and (Vtext
i +Vi ) are identical to

those of Interec-AE and Interec-DAE. For Interec-DirectAU, we empirically found that nor-
malizing each row ofVtext to unit length helps model converge faster and achieve higher accuracy.
Additionally, Vtext in Interec-DirectAU is also left unchanged during training model.

3.1.2 Interpreter. Unlike existing interpretability models [1, 8, 51, 73] aiming at interpreting
model prediction given input as an image or a sentence, our target is interpreting user’s preferences.
In recommender systems, the input is a list of user’s adopted items, oftentimes described by their
IDs, followed by an embedding layer. Therefore, it is difficult to understand user’s preferences
based solely on item IDs. As such, the task of interpreter is to generate a set of attributes capturing
user’s preferences. Following [13], our interpretability is formulated as

— Understanding user’s preferences behind their adoptions.
— The interpretability is evaluated towards how good they capture user’s preferences using
both human-grounded metrics and functionally-grounded evaluation.

— The scope of interpretability is local interpretability, i.e., understanding preferences of a sin-
gle user.

— Single words from item textual content are treated as cognitive chunks or attributes, i.e., units
of interpretability.

Given user representation zu , which is abstract and not interpretable, interpreter д, д : zu → R+,
computes the activation score of user representation with an attribute j, i.e.,

д(zu )j = siдmoid
(
zuK

T
j ,τ
)
= 1/

(
1 + e−

zuKT
j

τ

)
,∀j = 1, 2, . . . ,K . (6)

K ∈ RK×d is key matrix and also called dictionary of attributes in this article. Each row of K
stores the d-dimension representation of a word, i.e., cognitive chunk or attribute. Several notions
are implemented here.

— Interpreter д accepts user representation from recommender as input, enabling interpretation
of user’s interests.

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 6, Article 108. Publication date: November 2023.



108:8 N.-T. Tran and H. W. Lauw

—Dictionary K stores all of K words in the vocabulary. Consequently, д(zu ) is defined over
word space, potentially attending to words outside user’s own corpus, resulting a more gen-
eralized user’s representation in z̃u in Equation (4).

— Sigmoid non-linearity is used instead of softmax as in [46, 56]. The reason is that softmax

acts as a L1-normalization over attributes, overly punishing attentive scores in Equation (6)
for active users who are associated with many attributes because of her interactions with
a wide range of items. Sigmoid allows independent attention over attributes, meaning that
many words can have attention score close to 1. In addition, a temperature hyper-parameter,
τ , is introduced to strengthen the gap between positive and negative elements in zuK

T . Our
finding is consistent with other works [19, 71], which also study method to relax softmax,
i.e., output does not sum to 1, to improve recommendation performance.

Dictionary of Attributes. A natural question until here is how to derive matrix K. Therefore,
we seek a function ϕ : A → Rd that maps each attribute from attribute spaceA to a d-dimension
vector. As in [48], ϕ should encode patterns related to input, which is the list of items in our case.
Intuitively, a solution that jointly derives representations of words and items is satisfied. Therefore,
we implement ϕ as a denoising auto-encoder (DAE) [59], i.e.,

x̂i = tanh(xciK + b
denc )KT + bddec , (7)

xci is the corrupted version
1 xi , which is tf-idf textual content of item i . Parameters areΘ1 = {K ∈

R
K×d , bdenc ∈ Rd , bddec ∈ RK }, which are randomly initialized and refined during training. Hence,

elements inK capture relationships between words, i.e., cognitive chunks/attributes, and items. The
importance of K to the quality of user preference interpretation is analyzed in Section 4.3. Other
choices such as CNN [28] or attention [42] are eligible. Finally, tanh(xiK + b

denc ) composes each
row of Vtext used in Equation (4).
Interpretation in Interec. We are interested in interpreting preferences of a single user. This

scope is local interpretability. The following definition guides our model to output interpretation
of user’s preferences.

Definition 3.1 (Local Interpretability). A local interpretation of user’s preferences for a user u
by an interpreter д given her representation zu from recommender f is the set of k attributes with
highest activated scores in Equation (6).

Note that whenk , a pre-chosen number, gets larger, the interpretation is better at covering user’s
preferences. From human perspectives, however, large k of words results in difficulty to quickly
grasp user’s preferences.
Interpretability-Based Representation. Sinceд(zu ) is defined over word space, it is potential

that д(·) gives higher score for words outside user’s own associated texts. Intuitively, we can gen-
eralize user’s representation beyond their interacted items, enabling delivering more interested
items to user. We seek a function l : RK → Rd to cater the generalized representation.

ẑu = l (д(zu ),M) = tanh ��
�
K−ϵ

K∑
j=1

д(zu )jMj
��
�
. (8)

Here, each row of value matrix M, Mj ∈ Rd , stores representation of word j, which captures
collaborative filtering supervision signals. M will be trained during learning model. K−ϵ is used
to promote conciseness, one property of interpretability mentioned in [48]. This property expects
a small number of attributes for interpretation. We give a detailed explanation for ϵ in Section 3.2

1Randomly zeroing an element with probability of 0.3.
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Memory Network-Based Interpreter of User Preferences 108:9

and empirical study on ϵ is presented in Section 4.3. The parameters of interpreter д isΘд = {K,M}.
After obtaining ẑu , we plug it into Equation (4) or Equation (5).

3.2 Model Analysis

Expanding Equation (4) and Equation (5), omitting non-linearity and bias for simplicity, the pre-
dicted score between user u and item i is

oui = z̃uW
dec
i = zuW

dec
i + ẑuW

dec
i . (9)

Without the second term ẑuW
dec
i in Equation (9), Interec reduces to a form of content-aware

recommendation, decoding the adoption-based user encoding zu with item encoding Wdec
i in-

formed by both content and collaborative filtering signals. Furthermore, by expanding the first
term zuW

dec
i , we obtain:

zuW
dec
i = zu (V

text
i )T + zu (Vi )

T . (10)

In Equation (10), the first term forces user latent vector zu to capture user preferences from tex-
tual content signals, while the second term forces zu to capture user preferences from collaborative
filtering signals. By leaving Vtext

i unchanged during training, the textual semantics are preserved.
If Vtext

i were to be updated during training, the collaborative filtering signals would potentially
change the textual semantics underlyingVtext

i . By separatingVtext andV, ourmodel fully exploits
the representation power of both content-based representation and collaborative filtering-based
representation. In experiments, we empirically show that this plays important role to achieve both
of our goals in this article.
In Equation (9), we interpret the second term ẑuW

dec
i as a retrieval function, in which the in-

ferred words act as a query to retrieve relevant items for each user. Expanding ẑuW
dec
i and omit-

ting non-linear activation for simplicity, we have

ẑuW
dec
i = K−ϵ

K∑
j=1

(д(zu )jMj )W
dec
i , (11)

д(zu )jMj can be interpreted as the jth word representation w.r.t. user preference on this word.
д(zu )jMjW

dec
i measures the similarity between item i and word j w.r.t. user u. The output of

Equation (11) is the similarity between item i and user u based on the inferred words for u. If
д(zu )j outputs high score for words outside user’s adopted item texts, Equation (8) potentially
results in retrieving more relevant items for user.
To understand the role of normalization term K−ϵ , we examine two extreme cases. When ϵ = 1,

the predicted score is averaged over all words in the vocabulary, an item i gets a high score provided
it gets high inner product with nearly all words in the vocabulary. This is unrealistic since each
item possesses only a certain number of features, described by their textual content. When ϵ = 0,
the predicted score is the sum over inner product of all features with item i . Item i could get
high score if it only gets high inner product with a few words. This may result in retrieving more
irrelevant items than relevant items since too few words are insufficient to retrieve relevant items.
We believe that an appropriate value of ϵ would be somewhere between 0 and 1, which is shown
by empirical evidence in Section 4.3.

3.3 Learning Objectives

This section elaborates ourmodel’s learning objectives for both recommendation and interpretabil-
ity. We discuss several properties needed to output relevant interpretation as presented in [48].
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Objective Function. For Interec-AE, we use weighted binary cross-entropy loss for
optimization

L = − 1

B
B∑

u=1

N∑
i=1

Cui [ruiloд(oui ) + (1 − rui )loд(1 − oui )]. (12)

For Interec-DAE, we empirically find that using cross entropy loss achieves higher accuracy
on four chosen datasets.

L = − 1

B
B∑

u=1

N∑
i=1

rui loд oui . (13)

Cui = 1 if rui = 1, otherwise Cui = 0.01 for all datasets, following [32, 62]. B is batch data size.
For Interec-DirectAU, the objective includes two terms alignment and uniformity. While

alignment encourages the representation of user and the representation of her adopted item are
close, uniformity encourages discrimination between user and item representations. γ is a hyper-
parameter controlling the influence of uniformity.

L =
∑

(u,i )∈B
E

u,i∼ppos
| | f (u) − f (i ) | |2

︸�����������������������︷︷�����������������������︸
Laliдnment

+γ ·(loд E
u,u′∼puser

e−2 | |f (u )−f (u
′) | |2/2 + loд E

i,i′∼pitem
e−2 | |f (i )−f (i

′) | |2/2)︸�������������������������������������������������������������������������︷︷�������������������������������������������������������������������������︸
Lunif ormity

,

(14)
in which f (u) and f (i ) are unit-length normalization of user representation z̃u and item repre-
sentation Wdec

i , respectively. ppos ,puser ,pitem are distribution of positive (observed) user-item
interactions, users and items, respectively.u ′ and i ′ are other user and item in the same batch with
u and i .

Examining multiple variants of recommender and their associated learning objectives gives us a
broader view of the behavior of our proposed architecture. Minimizing these losses is equivalent
to force predicted rating ou for user u to be closed to ground truth values ru . Compared to the
SLI framework in Equation (1), our objective includes only one term for both recommendation
and interpretability. We now give the explanation for this design as well as examine several other
properties discussed in [48] which are encoded Equation (12), Equation (13), and Equation (14).

Fidelity to Output. This property requires the interpreter д to be close to recommender f . In
[48], the authors impose a regularization for this property by minimizing cross-entropy between
outputs of д and f , leading to another term in loss function. Here, we implicitly impose this prop-
erty in Equation (12), Equation (13), and Equation (14). Recall from Equation (4), predicted rating
ou is composed of user representation from recommender f , i.e., f AE or f DAE , and interpreter д.
Therefore, minimizing Equation (12), Equation (13) and Equation (14) forces f and д to converge
to the same objective as observed rating ru .
Conciseness of Interpretation. A small number of attributes is expected for interpretation

because it is easier for human to grasp the user’s preferences from generated words. In addition,
focusing on smaller number of words implicitly forces model learn to choose illustrative words
rather than less representative ones. Our model encodes this property in Equation (8).
Diversity of Interpretation. Diversity encourages different attributes to be generated given

many randomly selected input samples. After learning DAE described in Equation (7), K is fixed.
Therefore, in Equation (6), д(zu ) � д(zu′ ) for ru � ru′ . In other words, users with different set
of interacted items have different local interpretations. We empirically found that this idea works
well and leave other optimization-based method as in [48] for future work. Note that optimization-
based methods will introduce new term in loss function, imposing difficulty for convergence. Our
design, on the other hand, focuses on only one objective function.
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Fidelity to Input requires attributes stored in K related to input, i.e., the list of adopted
items. As elaborated in Section 3.1.2, training denoising autoencoder in Equation (7) inherently
captures relationships between words, i.e., attributes, and items. For recommender f , the input is
a list of adopted items, hence inherently relates to words stored in K. Furthermore, we leverage
autoencoder structure for recommender f , enforcing Fidelity to Output is equivalent to imposing
Fidelity to Input for recommender, because the input and output of recommender f are both the
list of adopted items per user.
Note that FLINT [48] introduces a new loss term for each of the above properties with corre-

sponding hyper-parameters, which is highly dynamical in nature. Finally, let parameters in In-
terec as Θ = {Θ1,Θ2}. In which, Θ1 = {K, bdenc , bddec } are parameters of denoising autoencoder
in Equation (7) while Θ2 = {Θf ,Θд } are parameters of recommender f and interpreter д. Learning
model boils down to learning its parametersΘ. Our training procedure including two stages. In the
first stage, we train denoising autoencoder in Equation (7) with Θ1 and then fix these parameters
regarding use or not use in the second stage. Then, we train Θ2 in the second stage with loss term
defined in Equation (12). Algorithm 1 presents more details the training procedure of our proposed
model.

4 EXPERIMENTS

Our experiments seek to evaluate both aspects of recommendation accuracy and interpretability
of user preferences. We aim at answering the following research questions

— (RQ1) How does the proposed model Interec, which consists of recommender and inter-

preter, perform recommendation compared to existing baselines, including collaborative fil-
tering and textual-aware models?

— (RQ2) Is the interpreter in Interec able to generate textual units which well capture user’s
preferences? How does interpreter affect the recommendation performance?

— (RQ3) What are the effects of key components in recommender and interpreter on recom-
mendation performance as well as the interpretation of user’s preferences?

Datasets. We consider CDs & Vinyl, Cell Phones, Toys & Games, which are three categories of
the Amazon dataset [17, 44]. We use the provided 5-core data2 where each user and item has a
least five reviews. For each item, we concatenate its title and description, and the resulting text is
referred to as item’s textual description/content. Citeulike-a3[62]. To branch out to a non-product
dataset, we use dataset that associates users and academic articles. Item’s textual description is the
concatenation of title and abstract of each article.
Preprocessing.We first remove html code (if any) then employ spaCy [21] to tokenize text into

single words. For each dataset, we only keep words with frequency higher than 5 and appearing in
less than 50% of textual descriptions, remove all stop words and retain most frequent words as the
vocabulary proportionately to the dataset size. All items for which textual description is empty,
i.e., there is no in-vocabulary word in the description, together with their interactions with users
are discarded. Table 3 shows the statistics of our data after preprocessing.
Data Split.We construct training, validation and testing set by utilizing leave-one-out strategy

following [20]. For Amazon datasets with provided time-stamp, we first sort the user’s interactions
chronologically. Then the latest item of each user is added to test set, the penultimate is added to
validation set and the remaining items are added to the training set. For citeulike-a dataset, where
timestamp of each user-article interaction is not available, for each user, we select a random article
for the validation set and the test set respectively.

2https://jmcauley.ucsd.edu/data/amazon/
3http://wanghao.in/CDL.htm
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Table 3. Statistics of Dataset used in our Experiments

Data #users #items #interactions #words

Cell Phones 4,775 4,883 31,749 4,000
Toys & Games 9,466 7,964 80,919 8,000
CDs & Vinyl 38,406 39,260 524,459 10,000
Citeulike-a 5,551 16,980 204,986 8,000

ALGORITHM 1: Training procedure of Interec

Input:

— tf-idf -based text matrix of items X ∈ RN×K
— rating matrix R ∈ {0, 1}M×N , ru ∈ {0, 1}N is binary rating vector of user u
—model’s collective parameters Θ = {Θ1,Θ2}
– parameters of denoising autoencoder for modeling item textual content Θ1 = {K, bdenc , bddec }
– parameters of Interec Θ2 = {Θf ,Θд }
∗ parameters of recommender Θf = {Wenc , benc ,Wdec , bdec ,V} or {U,V} (for
Interec-DirectAU)
∗ parameters of interpreter Θд = {M,K}

Output: updated Θ
1 Randomly initialize model’s parameters
// Stage 1: training denoising autoencoder for item textual content modeling

2 for batch item Bitem do

3 for i ∈ Bitem do

4 x̂i = tanh(xci K + b
denc )KT + bddec

5 Litem = 1
| |Bitem | |

∑
i ∈Bitem | |xi − x̂i | |2

6 Update Θ1 to minimize Litem
7 Calculate Vtext

i = tanh(xiK + b
denc ),∀i = 1, 2, . . . ,N , Vtext ∈ RN×d

8 Use Vtext and K in stage 2
// Stage 2: training recommender and interpreter in Interec.

9 for batch user Buser do
10 for u ∈ Buser do
11 zu ← Output of encoder as Equation (2), Equation (3) or Uu (for Interec-DirectAU)

12 ẑu ← Output of interpreter as in Equation (8)

13 z̃u = zu + ẑu // Final user representation.

14 ou ← Interaction prediction as Equation (4) or Equation (5)

15 Calculate objective Luser ← Equation (12), Equation (13) or Equation (14)

16 Update Θ2 to minimize Luser // Vtext and K are not updated, as shown by empirical study in

Section 4.3

Baselines. We compare Interec against a series of baselines, including collaborative filtering
and text-aware recommendation baselines on implicit feedback data.
Collaborative filtering models:

—AutoRec [53] uses autoencoder for collaborative filtering. Interec-AE’s recommender is
based on AutoRec.

—CDAE [69] studies recommendation problem through autoencoder view and learns to rec-
ommend items from corrupted inputs. The recommender in Interec-DAE is based on CDAE.
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—NeuMF [20] combines generalized matrix factorization, which linearly models user/item
latent feature interactions, and multi-layer perceptron to learn the interaction function be-
tween users and items.

— LightGCN [18] improves Graph Convolutional Network for collaborative filtering by using
linear propagation and weighted sum of multi-layered embeddings.

— ENMF [7] proposes to learn a neural matrix factorization-based recommendation model
without sampling via reformulating the loss function.

—DirectAU [61] improves collaborative filtering by optimizing uniformity and alignment
of user and item representations. The recommender in Interec-DirectAU is based on
DirectAU.

Text-aware recommendation models:

—CDL [62] proposes a probabilistic model that jointly learns Stacked Denoising Autoenen-

coder (SDAE) for text modeling and collaborative filtering.
—CVAE [32] presents a similar approach with CDL but replacing SDAE by Variational Au-

toencoder (VAE).
—GATE [42] leverages attention to model textual content and neighbor information to enrich
item representation.

— JSR [74] jointly predicts user-item interactions and reconstructs textual content.

As we aim at interpreting user’s preferences, we involve user-oriented baselines, i.e., incorporat-
ing textual content from user’s corpus on user side. For recommendation, we compare Interec-AE,
Interec-DAE and Interec-DirectAUwith both user-oriented and item-oriented competitors. Re-
garding interpretability, only user-oriented baselines are comparable with ours because they are
able to generate a set of words representing user’s interests. For fair comparison, all models use
the same word vocabulary with our proposed model.
Model Training. We use Nvidia Quadro RTX 8000 GPU machines for training with Adam op-

timizer [29]. Learning rate is chosen from {0.0003, 0.001, 0.003, 0.005} and dropout rate is chosen
from {0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6}. In Interec-AE, a dropout layer is added over z̃u before de-
coding step. For other baselines, we follow the original architecture to place dropout layer. For
proposed models, the maximum number of training epochs is set to 200. Training stops after 12
epochs without improving HR@20 on validation set. The average results over 10 runs with differ-
ent random seeds are reported.
Hyper-parameters are first chosen based on validation set, then we re-train models with cho-

sen ones and report results on the test set. d = 50 is set for Citeulike-a and Cell Phones datasets
and d = 100 for others. a = 1 and b = 0.01 are weights for observed and unobserved interactions,
respectively, in CDL, CVAE, and Interec-AE. For fair comparison, we initialize word embedding
matrix in JSR4 as K. Table 4 presents more details of the search space of hyper-parameters. Given
the search space of hyper-parameters, we employ grid search approach for baselines and Interec
to choose the set of hyper-parameters achieving the best recommendation accuracy, i.e., HR@20,
on validation set. The we re-train all models with chosen hyper-parameters and report their per-
formance on test set.
Metrics.Hit Ratio at top-k (HR@K) andNormalized Discounted Cumulative Gain at top-k

(NDCG@K) are employed for recommendation and retrieval-based interpretability evaluation.

HR@K =
1

|U |
∑
u

1[δ (R (u) ∩T (u) � ∅)].

4In original article, authors leverage relevance-based word embeddings, which is not available in our work.
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Table 4. Search Space for Hyper-parameters in Baselines and the Proposed Interec

Model Search Space
AutoRec activation function ∈ {siдmoid, r elu, tanh }; weight decay ∈ {0.0001, 0.001, 0.01}
CDAE

activation function ∈ {siдmoid, r elu, tanh }; weight decay ∈ {0.0001, 0.001, 0.01}
corruption ratio ∈ {0.1, 0.3, 0.5}

NeuMF
hidden layer size ∈ {8, 16, 32, 64, 128, 150, 200}; number of layers ∈ {2, 3};

dropout ∈ {0.1, 0.3, 0.5}
LightGCN number of layers ∈ {1, 2, 3}; L2 regularization coefficient ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1 }
ENMF dropout ∈ {0.3, 0.5, 0.7, 0.9}; weight of missing data c0 ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1}

DirectAU γ ∈ {0.1, 0.2, 0.5, 1, 2, 5}; weight decay ∈ {0, 10−4, 10−6, 10−8}; learning rate in {0.001, 0.003, 0.004}

CDL
λu ∈ {10−x , x ∈ 6, 5, 4, 3, 2, 1, 0}; λv ∈ {10−x , x ∈ 6, 5, 4, 3, 2, 1, 0}; λr = 1; λn = 103

λw = 10−4 for Amazon subsets and λw = 10−1 for Citeulike-a

CVAE
λu ∈ {10−x , x ∈ 6, 5, 4, 3, 2, 1, 0}; λv ∈ {10−x , x ∈ 6, 5, 4, 3, 2, 1, 0}; λr = 1; λn = 103

λw = 10−4 for Amazon subsets and λw = 10−1 for Citeulike-a
GATE maximal sequence length = 4000; ρ ∈ {20, 50, 100};da ∈ {10, 20, 50};

hidden layer size ∈ {100, 200}
JSR

η = 4; hidden layer size ∈ {50, 100, 200}; weight decay = 10−3
λ = 0.5 for Amazon subsets and λw = 0.1 for Citeulike-a

Interec weight decay = 10−4; τ ∈ {0.01, 0.02}; ϵ is studied in Section 4.3
corruption ratio ∈ {0.1, 0.3, 0.5} (for Interec-DAE variant)

γ ∈ {0.1, 0.2, 0.5, 1, 2, 5}; weight decay ∈ {0, 10−4, 10−6, 10−8}; learning rate in {0.001, 0.003, 0.004}
(for Interec-DirectAU variant)

For Interec, more extensive hyper-parameter analysis is presented in Section 4.3.

R (u),T (u) are the set of predicted items and test items of user u, respectively. 1[x] returns 1 if
x is true, otherwise is 0.

NDCG@K =
1

|U |
∑
u

DCG@K

IDCG@K
DCG@K =

K∑
r

2r el r − 1
loд2 (r + 1)

.

IDCG@K is the biggest possible value of DCG@K, obtained by treating sorted test set as a
length-K prediction. relr = 1 indicates relevance, otherwise is 0.

4.1 Recommendation Evaluation

Table 5 reports top-N recommendation performance. We have the following observations.

— Three variants of Interec, Interec-AE, Interec-DAE and Interec-DirectAU, enjoy sig-
nificantly better recommendation performance than all baselines four chosen datasets. This
supports our design of joint learning recommender and interpreter, i.e., the design of decoder
(Section 3.1) as well as the incorporation of interpreter (Section 3.1.2), do not sacrifice rec-
ommendation accuracy. Rather, this approach brings performance gain on chosen datasets.

— For autoencoder-based variants, the performance of Interec is based on the power of
recommender. Contrasting the numbers of Interec and those of AutoRec and CDAE, it can
be seen that the relative performance comparison between AutoRec and CDAE, reflects
similar comparison between Interec-AE and Interec-DAE. For example, on Cell Phones,
AutoRec is better than CDAE and Interec-AE is also better than Interec-DAE. Regarding
Interec-DirectAU, this also applies on Toys & Games and CDs & Vinyl and some specific
metrics on the other two datasets.

— Textual content is an important factor to improve recommendation performance on chosen
datasets. Firstly, this is evidenced by contrasting the numbers of AutoRec, CDAE, DirectAU
with those of Interec, which extends AutoRec, CDAE and DirectAU by incorporating
textual content informed by item representations (in decoder for autoencoder-based
variants) and interpreter. Secondly, our variants Interec-AE and Interec-DAE achieve
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Table 5. Recommendation Performance Comparison

Dataset Metric
Collaborative filtering Item-oriented Fashion User-oriented Fashion Interec

Auto-
Rec

CDAE
Neu-
MF

Light-
GCN

ENMF
Direct-
AU

CDL CVAE JSR GATE CDL CVAE JSR GATE AE DAE
Direct-
AU

Cell
Phones

H@20 8.55 8.40 6.99 9.43 8.20 9.65 9.52 8.73 8.79 7.37 9.58 8.43 9.14 8.17 10.57† 10.34 9.86

N@20 3.84 3.78 3.05 4.10 3.69 4.03 4.06 3.75 3.93 3.12 4.12 3.63 4.00 3.56 4.46† 4.35 4.10

H@50 14.34 13.89 11.79 15.58 13.36 16.54 15.80 14.37 14.77 12.67 15.76 14.23 15.05 14.02 17.78† 17.05 17.39

N@50 4.98 4.87 4.00 5.31 4.71 5.39 5.30 4.87 5.11 4.17 5.34 4.78 5.16 4.70 5.88† 5.68 5.58

Toys &
Games

H@20 6.80 6.86 6.03 7.25 6.72 7.39 7.15 7.01 6.99 5.49 7.16 6.87 6.69 5.36 9.35 9.24 9.49†
N@20 2.96 2.98 2.61 3.07 2.87 3.13 3.01 3.00 2.91 2.37 3.02 2.91 2.79 2.29 3.85 3.90 3.96†
H@50 11.13 11.08 9.87 11.99 10.66 12.30 11.66 11.44 11.25 8.98 11.78 11.35 11.10 9.02 15.39 15.38 15.41†
N@50 3.82 3.81 3.37 4.00 3.65 4.10 3.90 3.88 3.75 3.06 3.93 3.69 3.66 3.01 5.05 5.11 5.13†

CDs &
Vinyl

H@20 8.80 9.62 7.00 9.02 8.66 10.30 7.54 9.10 5.88 7.70 7.70 8.83 5.86 7.16 9.36 9.56 10.55†
N@20 3.71 4.12 2.92 3.83 3.65 4.39 3.17 3.81 2.40 3.25 3.25 3.75 2.38 3.01 3.97 4.10 4.52†
H@50 14.48 15.59 11.96 14.80 14.20 16.63 12.67 15.06 10.30 12.79 12.69 14.54 10.61 11.95 15.27 15.56 16.83†
N@50 4.84 5.30 3.90 4.97 4.75 5.65 4.18 4.99 3.27 4.25 4.23 4.88 3.32 3.95 5.14 5.29 5.76†

Cite-
ulike-a

H@20 19.78 25.94 20.47 23.07 20.33 27.48 20.10 21.11 19.94 23.23 20.24 20.93 19.75 22.55 24.94 28.47† 28.31

N@20 8.80 12.33 9.06 10.49 9.17 13.04 9.07 9.38 8.17 10.50 8.95 9.23 8.06 10.50 11.29 13.83† 13.39

H@50 31.34 37.70 32.46 35.56 31.85 40.63 32.46 33.53 32.74 35.27 32.59 33.18 32.82 33.39 38.10 41.01 41.40†
N@50 11.08 14.66 11.44 12.95 11.45 15.64 11.51 11.84 10.70 12.89 11.38 11.66 10.65 12.65 13.89 16.31† 15.98

Item-oriented fashion baselines equip textual content on item side while User-oriented fashion baselines incorporate texts
on user side. Among baseline models, the highest number is double underlined. Regarding our proposed variants, the

highest number is boldfaced, the first runner-up is boldfaced and underlined while the second runner-up is
underlined. † denotes statistical significance between the boldfaced and the double underlined on paired t-test with
p-value < 0.01. H@K and N@K stand for Hit Ratio at top K and Normalized Discounted Cummulative Gain at top K.
Number unit is percentage (%).

higher recommendation accuracy than LightGCN and CDL, despite AutoRec and CDAE,
which are the base of the recommenders, are worse than LightGCN and CDL. Similarly,
Interec-AE and Interec-DAE are also better than DirectAU in 3 out of 4 datasets given
that AutoRec and CDAE are worse than DirectAU. Thirdly, textual-aware recommendation
models CDL, CVAE and JSR, item-oriented or user-oriented fashion, generally works better
than collaborative filtering counterparts, e.g., AutoRec, NeuMF, ENMF. GATE does not
work well on Cell Phones and Toys & Games, which we conjecture that it stems from noisy
and very long text sequences that GATE processes.

— On CDs & Vinyl, the importance of textual content is model-dependent. While textual content
is helpful to improve AutoRec and DirectAU, it shows a slightly negative effect when
incorporating into CDAE. This suggests careful design and inspection when applying our
proposed approach on different recommenders.

— Among baselines, DirectAU stands out, achieving higher recommendation accuracy than
all other baselines w.r.t. chosen metrics on four datasets, except NDCG@20 on Cell Phone.
This is explained by the design of learning objective of DirectAU, which has been shown
to be powerful for collaborative filtering. Next, LightGCN generally performs well across
datasets. This is attributed to the high order connection modeling in LightGCN. While
there is a small gap between performance of CDAE and AutoRec on Cell Phones and
Toys & Games and CDs & Vinyl, this performance gap is much bigger on Citeulike-a.
We empirically found that cross entropy loss used when training CDAE helps to achieve
favorable performance on some specific datasets.
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Table 6. Recommendation Performance when Removing Interpreter and Vtext from Interec

Dataset Metric
Interec-AE Interec-DAE Interec-DirectAU

full
model

without
interpreter

without
Vtext

full
model

without
interpreter

without
Vtext

full
model

without
interpreter

without
Vtext

Cell
Phones

H@20 10.57 10.33 8.96 10.34 10.00 8.73 9.86 9.58 10.10
N@20 4.46 4.40 3.99 4.35 4.21 3.91 4.10 3.83 4.30
H@50 17.78 17.54 14.80 17.05 16.77 14.43 17.39 16.90 17.34
N@50 5.88 5.83 5.14 5.68 5.54 5.03 5.58 5.27 5.72

Toys &
Games

H@20 9.35 9.09 6.80 9.24 9.37 6.50 9.49 9.50 7.43
N@20 3.85 3.78 2.95 3.90 3.94 2.84 3.96 3.97 3.14
H@50 15.39 15.13 10.98 15.38 15.03 10.65 15.41 15.44 12.00
N@50 5.05 4.98 3.77 5.11 5.06 3.66 5.13 5.14 4.04

CDs &
Vinyl

H@20 9.36 9.09 9.10 9.56 9.45 9.56 10.55 10.56 10.49
N@20 3.97 3.82 3.87 4.10 4.03 4.07 4.52 4.52 4.50
H@50 15.27 15.05 14.89 15.56 15.45 15.50 16.83 16.85 16.65
N@50 5.14 5.00 5.01 5.29 5.21 5.25 5.76 5.76 5.72

Cite
ulike-a

H@20 24.94 22.60 23.45 28.47 28.28 26.27 28.31 28.13 27.69
N@20 11.29 10.10 10.69 13.83 13.61 12.53 13.39 13.37 13.22
H@50 38.10 35.72 35.30 41.01 40.88 37.60 41.40 41.05 40.85
N@50 13.89 12.69 13.04 16.31 16.10 14.78 15.98 15.94 15.83

Unit of numbers is percentage (%).

In what follows, we further analyze the performance change w.r.t. the presence of Vtext and
interpreter in Table 6.

— For autoencoder-based variants, Interec-AE and Interec-DAE, on Cell Phones, Toys &
Games and Citeulike-a, a significant performance degradation is observed when Vtext is
not present. This suggests textual content is the key factor to resolve sparsity in order to
achieve better recommendation accuracy. On CDs & Vinyl where textual content is not an
important factor for user-item interactions, it is observed that textual content has slight
positive effect on Interec-AE and Interec-DAE.
For Interec-DirectAU, we observe the same trend on Toys & Games, CDs & Vinyl and
Citeulike-a. Interestingly, when removing Vtext on Cell Phone, we observe a slight increase
in model performance. This might stem from the learning objective of Interec-DirectAU,
where the normalized item textual representation does not align well with normalized collb-
orative filtering item representation.

—When removing interpreter from Interec-AE, we observe a small performance drop on Cell
Phones, Toys&Games, CDs&Vinyl and a significant degradation onCiteulike-a. This shows
that interpreter is able to generalize user representation to bring performance gain, partic-
ularly on Citeulike-a dataset. For Interec-DAE, we also observe the negative effect when
removing interpreter on the majority of datasets. A special case is on Toys & Games where
removing interpreter has positive effect on top 20 but negative effect on top 50 metrics. This
suggests that interpreter output helps to discover more relevant items to user but rank them
lower on the list. Regarding Interec-DirectAU, while interpreter has tiny influence on rec-
ommendation accuracy on Toys & Games and CDs & Vinyl, it is clearer that interpreter
boosts the recommendation performance on Cell Phones and Citeulike-a.

— Contrasting the numbers of Interec without Vtext in Table 6, meaning that the model in-
cludes interpreter, and those of AutoRec, CDAE and DirectAU in Table 5, we find that in-
terpreter actually brings performance gain without the presence of Vtext on Cell Phones
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and Citeulike-a, CDs and Vinyl. This is supporting evidence for the generalization brought
by interpreter on specific datasets. When both interpreter and Vtext present in our unified
Interec, the gap between Interec and AutoRec, CDAE and DirectAU is further enlarged,
showing that textual content is not only helpful for recommendation performance but also
beneficial for interpreter, i.e., assists interpreter to discover relevant words for higher recom-
mendation performance.

— The intuition behind interpreter is what follows. Existing works on interpretability, e.g.,
FLINT [48], often consider the tradeoff between accuracy and interpretability since these
models force the output of recommender (or predictor) close to that of interpreter. This design
is less effective as interpreter might not be good at performing target task of recommender.
To resolve, we design interpreter to predict the same target with recommender, which re-
inforces the ability of interpreter in performing target task (recommendation in our case).
Hence, interpreter is not only good at interpretability but also recommendation. Addition-
ally, our proposal of using key-value memory network generalizes user representation by
attending to words outside user’s interacted item content. These beyond user interacted text
words are able to retrieve relevant items that users are interested in yet have not interacted,
leading to better accuracy.

4.2 Interpretability Evaluation

For interpretability evaluation, we focus on Interec-AE as this variant works well across datasets
and to keep this article focused on interpretability evaluation. We closely follow [13] to design
interpretability evaluation. Two types of evaluation are applicable to our case, namely human-

grounded metric and functionally-grounded evaluation.

4.2.1 Human-grounded Evaluation. The goal is to conduct a simpler experiment that maintains
the essence of target application [13], which is recommender system in this article. Since we lever-
age words as means of interpretation, the experiment should reflect how human comprehends a
user’s list of adopted items and match their comprehension with words. Therefore, we engage 10
participants, who are not the authors of this article and are not aware of the research objectives.
Among those, some have Computer Science (CS) background while others are non-CS major. In
this article, we refer participants as humanswho help us judge the quality of generatedwordswhile
users, without other specification, are from chosen datasets. We randomly select 20 users from 4
chosen datasets. For each user, we collect the list of their adopted items’ titles, which are short
sentences describing main content/feature of items. A set of 30 words, which are the outputs of
Interec-AE, GATE and JSR5, are coupled with each user’s associated list of titles. Each participant
would go through the list of titles and the set of generated words of each user. Participants would
choose any word(s) that they comprehend to understand the list of titles. We regard participants’
choices as ground truth and generated words from each model as prediction. Let Dд and Dp is the
list of ground truth words and predicted words for each user, respectively. Metrics are Precision
(PR), Recall (RE), and Mean Reciprocal Rank (MR).

PR =
|Dд ∩ Dp |
|Dp | ; RE =

|Dд ∩ Dp |
|Dд | ; MR =

1

|Dp |
∑
w ∈Dp

1[w ∈ Dд]

rankD
p
(w )
, (15)

inwhich |· | is the cardinality, rankL (w ) returns the rank of elementw in list L and1[x] returns 1 if x
is true, 0 otherwise. The reported numbers are calculated per participant, averaged over 20 samples,

5Thesemodels representmajor approaches in existing content-aware recommendationmodels, namely regularization (JSR),
attention mechanism (GATE) and memory network-based interpreter (ours).
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Table 7. Human-grounded Interpretability Evaluation

Metric Model
Participant

Avg.
1 2 3 4 5 6 7 8 9 10

PR
GATE 11.50 11.00 11.50 14.00 19.00 57.50 29.00 5.00 28.50 15.50 20.25
JSR 10.50 13.50 15.50 13.50 17.50 28.00 14.50 1.50 12.50 14.50 14.15

Interec 14.00 25.00† 23.50† 27.50† 32.50† 71.00† 34.00 6.00 28.50 23.00 28.50†

RE
GATE 49.58 34.08 38.42 27.93 36.03 45.33 47.96 50.00 54.60 56.54 44.05
JSR 42.08 44.92 45.75 30.76 36.40 23.83 24.42 15.00 24.67 33.19 32.10

Interec 54.58 76.08† 72.17† 68.24† 70.84† 57.93† 57.14 60.00 52.28 50.12 61.94†

MR
GATE 2.28 3.29 3.17 3.99 4.65 16.15 9.30 1.86 9.34 4.04 5.81
JSR 4.91 5.53 6.31 6.05 6.75 10.12 5.94 0.24 3.78 6.22 5.58

Interec 5.29 9.60† 8.70† 9.72† 10.90† 21.10† 10.57 1.68 7.97 7.49 9.30†

Reported numbers per participant are averaged over 20 samples. Bold numbers are the best results while the runner-up
is underlined. † denotes statistically significant w.r.t. to second best number on a paired t-test with p-value < 0.05. Unit
of reported numbers is percentage (%).

as shown in Table 7. Evidently, our proposed model outperforms GATE and JSR convincingly,
which is also the consensus among the majority of participants.

4.2.2 Functionally-grounded Evaluation. Since human-grounded evaluation is costly, we also
seek functionally-grounded evaluation. This method requires a formal definition of interpretability
as proxy for quality evaluation [13]. Since we characterize interpretability of user’s preferences
using words from items’ content, these words can be intuitively employed as means to retrieve
items that fit user’s needs. Hence, we formalize the proxy as a retrieval task, i.e., generated words
are used to form a query to retrieve items based on the similarity between query and items’ textual
content. Top items with highest similarity score are presented for each user.
The retrieval task involves query q, document D and retrieval function h. Query q consists

of 10 cognitive chunks, i.e., single words, generated by each model while textual description
of each item is treated as document D. For user-oriented CDL, CVAE and JSR, 10 words with
highest predicted scores from user’s text modeling component are taken to form q. These
words intuitively reflect user’s preferences since their predicted score is based on textual
representation, which is a regularization of user’s representation. For user-oriented GATE, q
is created from 10 words with highest attentive scores, following original article. For Interec,
we follow definition 3.1 to create q with k = 10. More values of k will be studied in Table 9.

Retrieval function is h(q,D) = aggw ∈Dmaxw ′ ∈q <ew
′
,ew>

|ew′ | · |ew | , w and w’ are words in document

D and query q, respectively. ew and ew
′
are embeddings of word w and w’. maxw ′ ∈q <ew

′
,ew>

|ew′ | · |ew |
follows Equation (2) in [27], which measures the semantic similarity between term w with
respect to short text q. By leveraging distributed vector representation [45], the vocabulary
mismatch problem is alleviated. agg is an aggregation function.6 Since our method and com-
petitors have different notions of word embeddings, we leverage Word2Vec in Gensim [49] to
obtain word embeddings. Therefore, the output of retrieval function is not biased towards any
competitors or Interec. We train Word2Vec for 500 epochs using corpus consisting of items’
textual descriptions with window size is 5, embedding dimension is 100, the number of negative
samples is 5.

6In our case, we consider sum and mean. We choose aggregation function based on the performance on validation set and
report numbers on test set.
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Table 8. Retrieval-based Functionally-grounded Interpretability Evaluation with k = 10,

i.e., Query Contains 10 Words

Dataset Metric
Model

CDL CVAE JSR GATE Interec-AE

Cell Phones

HR@20 32.57 23.06 39.50 31.27 42.49†
NDCG@20 11.88 7.49 15.63 11.88 17.04†
HR@50 66.30 52.98 70.83 62.80 72.09†

NDCG@50 18.52 13.36 21.82 18.08 22.89†

Toys & Games

HR@20 40.31 26.81 42.37 37.20 46.19†
NDCG@20 17.96 9.28 18.95 15.98 21.79†
HR@50 67.38 55.41 68.74 65.87 71.74†

NDCG@50 23.28 14.90 24.14 21.62 26.82†

CDs & Vinyl

HR@20 28.71 29.35 37.66 31.25 47.68†
NDCG@20 10.55 10.82 13.57 10.76 18.10†
HR@50 63.14 63.01 72.28 66.25 78.08†

NDCG@50 16.57 17.41 20.41 17.65 24.13†

Citeulike-a

HR@20 71.13 19.27 80.72 53.08 83.05†
NDCG@20 34.11 6.58 42.23 22.83 44.47†
HR@50 91.10 50.35 94.93 82.29 95.52†

NDCG@50 38.11 12.65 45.08 28.63 46.99†
The boldfaced and underlined are the highest and the runner-up across models. Statistically
significant numbers based on paired t-test are marked by † (p-value < 0.05). Unit of reported
number are percentage (%).

The results are reported in Table 8. Firstly, Interec performs competitively and obtains the best
performance on all datasets. This ascertains the role of a dedicated interpreter for generating highly
relevant words for user preferences interpretation. Additionally, high retrieval performance of our
model is attributed to the design of objective function in Section 3.3, i.e., the output of interpreter
participates in predicting the ground-truth rating of user. As such, the generatedwords are better at
describing user preferences than CDL, CVAE, JSR as these model do not explicitly align generated
words with actual user rating. Secondly, among baseline models, JSR performs consistently well,
better than CDL and CVAE on all datasets. This suggests that jointly modeling user interactions
and textual content is a better choice for interpretability than regularization approach in CDL and
CVAE, in which a tradeoff between recommendation and text reconstruction is carefully designed.
Thirdly, the performance of GATE, which is lower than ours, may stem from two reasons, one is

noise in text of Amazon datasets and the second is that GATE considers text in sequence, which is
very long when concatenating user’s adopted item texts. On Citeulike-a dataset, where textual con-
tent is less noisy, the performance of GATE is better. We further examine model performance in re-
trieval task w.r.t. various number of words in query in Table 9. Here, we report performance based
on HR@20. For other metrics, we observe the same trend. We have the following observations.
First, our proposed model achieves the best performance in retrieval task w.r.t. various number of
words in query. Second, increasing the number of words in query generally increases model per-
formance in retrieval task as we use more relevant words to user’s preferences. In conclusion, the
empirical evidence showcases the power of our interpreter in discovering human-comprehensible
attributes, i.e., words, to interpret user’s interests behind their interactions with items.
We argue that the described functionally-grounded evaluation already reflects fidelity, a widely

used interpretability evaluation [8, 48, 51]. Existing models [8, 48, 51] interpret model prediction
so they measure how good interpreter approximates black-box model’s prediction. Similarly, as
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Table 9. Retrieval-based Functionally-grounded Interpretability Evaluation with Varying

Number of Words k in theQuery

Dataset
Number of

words k

Model

CDL CVAE JSR GATE Interec-AE

Cell Phones

5 33.79 23.48 38.91 29.62 40.44†
10 32.57 23.06 39.50 31.27 42.49†
15 32.39 23.37 39.74 33.19 42.96†
20 32.17 23.71 39.97 33.96 43.24†

Toys & Games

5 39.16 26.73 41.73 34.37 45.20†
10 40.31 26.81 42.37 37.20 46.19†
15 40.39 27.25 42.69 38.44 46.80†
20 40.41 27.30 42.87 39.28 47.20†

CDs & Vinyl

5 29.12 29.94 37.18 30.35 45.85†
10 28.71 29.35 37.66 31.25 47.68†
15 28.98 29.30 37.74 33.07 48.69†
20 28.99 29.16 37.79 34.28 49.47†

Citeulike-a

5 70.95 19.41 80.17 46.97 80.91†
10 71.13 19.27 80.72 53.08 83.05†
15 71.50 19.91 82.29 56.13 83.80†
20 71.47 20.10 82.45 57.93 83.79†

We report HR@20. The same trend applies for other metrics. The boldfaced and underlined are the
highest and the runner-up across models. Statistically significant numbers based on paired t-test
are marked by † (p-value < 0.05). Unit of reported number are percentage (%).

our target is to interpret user’s preferences, we measure the quality of generated words pertaining
to capturing user’s preferences through retrieving relevant items for user in a retrieval task.
We further examine the effect of architecture design on interpretability in Table 10. The key

observations are removingVtext or interpreter results in significantly degraded performance.Vtext

encourages zu to capture user’s preferences from textual signals, resulting in better interpretation
while training interpreter to predict user-item interactions reinforces it to choose words that well
capture user interests.

4.2.3 Qualitative Analysis of Interpretability. We present a qualitative analysis of Interec-AE,
GATE and JSR based on these models’ inferred words for user’s preferences interpretation in
Table 11. We show two users, namely 1873 and A1FT98A06ZE4EQ, and further list the titles of
items used in training phase in the first column, as well as the top-10 words generated considered
models. Top words with highest t f − id f score are included for contrasting.

— For these two users, some words produced by GATE are quite general words, e.g., unfor-
tunately, based or adds, which make it difficult to understand user preferences. Contrarily,
JSR’s and t f − id f ’s words are somewhat more relevant.

— In some cases Interec-AE identifies some relevantwords not discovered by JSR. For example,
Interec-AE discovers text and mining, which is one of the interests of the first user (1873).
For the second user (A1FT98A06ZE4EQ), it seems that she bought items to protect her phone.
Interec discovers related words, e.g., screen and protectors.

— Interec and JSR aremore generalizable than t f −id f by the ability to discovering preference
words beyond user’s adopted items’ texts, e.g., classification or matte.

We further show the generated words as word clouds in Figure 2 and 3. In these figures, the
bigger a word is, the higher its predicted score by Interec-AE is. Position and color are set
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Table 10. Retrieval-based Functionally-grounded Interpretability Evaluation when

Removing interpreter and Removing Vtext

Dataset Metric
Interec-AE

full model without interpreter without Vtext

Cell Phones

HR@20 42.49 37.70 18.72
NDCG@20 17.04 14.80 6.41
HR@50 72.09 67.19 48.55

NDCG@50 22.89 20.61 12.23

Toys & Games

HR@20 46.19 43.95 19.25
NDCG@20 21.79 20.00 6.69
HR@50 71.74 70.09 49.12

NDCG@50 26.82 25.15 12.52

CDs & Vinyl

HR@20 47.68 41.32 16.96
NDCG@20 18.10 14.91 5.58
HR@50 78.08 73.71 50.16

NDCG@50 24.13 21.32 12.05

Citeulike-a

HR@20 83.05 80.81 18.78
NDCG@20 44.47 41.45 6.56
HR@50 95.52 94.70 48.12

NDCG@50 46.99 44.25 12.28
Unit of reported number is percentage (%).

Table 11. Examples of Inferred Words for user in Citeulike-a Dataset (ID: 1873) in the First Row and user

(ID:A1FT98A06ZE4EQ) in Cell Phones Dataset in the Second Row

Titles of Adopted Items Interec JSR GATE Tf-idf

1. A Brief Survey of Web Data Extraction Tools
2. A Tutorial on Support Vector Machines for Pattern Recognition
3. Adaptive information extraction
4. Automatic web news extraction using tree edit distance
5. A Survey of Web Information Extraction Systems

6.
Relational Learning of Pattern - Match Rules for
Information Extraction

7. BoosTexter: A Boosting - based System for Text Categorization
8. Pattern Recognition and Machine Learning
(Information Science and Statistics)

learning
machine
mining
web

extraction
text

training
classification
semantic

recognition

learning
web

semantic
training
machine
extraction

task
search
tasks

classification

calculus
good
effort
shallow
hope

structures
correctly
article

unfortunately
based

extraction
ie
web
data

learning
dimension

text
machine

categorization
pattern

1. Generiks TM iPhone 4&4S ANTI - FINGERPRINT/ANTI -
GLARE Screen Protectors
2. Generiks TM iPhone 4 / 4S *CLEAR* Screen Protectors
3. Snap - on Rubber Coated Case for Apple iPhone 4 4S 4GS 4G
AT&T / Verizon, Pink / Black
4. Deluxe AT&T Verizon White For Iphone 4 4S 4G
Case Cover with Kickstand
5. 3d Hello Kitty Pink Ribbon Case / cover / protector
Fits All Models of Iphone 4 & 4s
6. Leegoal Lightweight Hybrid Bumper Skin Back Case Cover
for iPhone 5 5G Pink

apple
iphone
kitty
anti
glare
pink
hello
screen

protectors
matte

iphone
amp
apple
pink
hot

verizon
white
sprint
back
stand

adds
trademarks
protected
phone
easy
keeps

accessory
endorsed
controls
iphone

iphone
pink

protectors
cover
name
deluxe
verizon
at&t
g

ribbon

Underlined words are outside user’s adopted items’ texts.

randomly. It is clear that human can easily understand user’s interest topic in each word cloud.
This analysis, based on a few examples, is not meant to be a formal comparison per se. Rather, it
helps to illustrate some of the qualitative differences that underlie the quantitative comparison of
interpretability presented in the previous tables.

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 6, Article 108. Publication date: November 2023.



108:22 N.-T. Tran and H. W. Lauw

Fig. 2. Inferred words for users on Citeulike-a dataset. Each word cloud represents topic of interest for one

user. Best viewed in color.

Fig. 3. Inferred words for users on Cell Phones dataset. Each word cloud represents topic of interest for one

user. Best viewed in color.

Fig. 4. Visualization of activated words produced by our proposed model on Cell Phone dataset. Each row

represents a randomly selected user. In each row, we visualize top 10 words with highest activated scores

of a user. Scores are normalized between 0 and 1 to ease the visualization. Each column represents a word

in vocabulary. It is clear that each user has her own set of top activated words, showing that our proposed

model produces diverse interpretation of user’s preferences.

4.2.4 Diversity of Interpretability. To verify that our proposed approach achieves diversity of
interpretability, we visualize the activated word scores of randomly selected users in Figure 4. We
observe that each user has her own activated word score pattern. Concretely, for each user, top
words with highest score are different from a user to one another. This ascertains our model’s
ability to produce diverse set of words to interpret user’s preferences.

4.3 Architecture and Hyper-Parameter Analysis

We investigate the impacts of architecture and hyper-parameters on recommendation and inter-
pretability objectives of Interec-AE, which achieves competitive performance on four chosen
datasets. Table 12 reports recommendation accuracy and functionally-grounded evaluation of
interpretability.
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Table 12. Results in our Ablation Analysis

Dataset Metric
Interpretability Recommendation

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Cell Phones

HR@20 42.49 39.89 23.81 42.56 30.57 10.57 10.39 10.66 10.40 10.33
NDCG@20 17.04 15.84 8.66 16.99 11.61 4.46 4.45 4.52 4.44 4.43
HR@50 72.09 69.36 54.07 72.03 61.71 17.78 17.68 17.96 17.53 17.52

NDCG@50 22.89 21.65 14.58 22.82 17.73 5.88 5.89 5.96 5.84 5.85

Toys & Games

HR@20 46.19 44.67 27.93 46.36 31.21 9.35 9.09 9.24 8.76 8.38
NDCG@20 21.79 20.56 10.69 21.69 12.66 3.85 3.78 3.84 3.70 3.56
HR@50 71.74 70.50 58.43 71.61 60.70 15.39 15.23 15.05 14.69 13.97

NDCG@50 26.82 25.64 16.67 26.67 18.44 5.05 4.99 4.99 4.88 4.67

CDs & Vinyl

HR@20 47.68 43.55 17.64 47.33 19.77 9.36 9.15 9.33 9.33 9.26
NDCG@20 18.10 15.95 5.76 17.96 6.44 3.97 3.86 3.97 3.97 3.95
HR@50 78.08 75.33 51.47 78.00 54.50 15.27 15.11 15.36 15.24 15.20

NDCG@50 24.13 22.25 12.35 24.05 13.22 5.14 5.03 5.17 5.13 5.12

Citeulike-a

HR@20 83.05 82.40 36.28 82.57 47.86 24.94 23.75 24.93 24.96 25.17
NDCG@20 44.47 43.20 15.05 44.10 21.92 11.29 10.67 11.30 11.41 11.40
HR@50 95.52 9534 65.83 95.49 74.49 38.10 36.76 38.07 37.56 37.63

NDCG@50 46.99 45.80 20.86 46.71 27.18 13.89 13.24 13.91 13.90 13.87

Each column from (2) - (5) is a variant of Interec-AE. (1) Interec-AE. (2): sigmoid (in Equation (6)) is replaced by
standard softmax. (3): fine tuning K. (4): fine tuning Vtext . (5): fine tuning both K and Vtext (fine tuning mean that we
allow update K and Vtext in the second stage in Algorithm 1). Unit of reported number is percentage (%).

Sigmoid vs. Softmax in Equation (6). Column (2) in Table 12 shows that if we use softmax in
place of sigmoid (Equation (6)), on retrieval we observe a 1%–3% drop on Amazon subsets, larger
than those on Citeulike-a. Similarly for recommendation. Empirically interpreter equipped with
sigmoid is more effective than standard softmax for our case.
Effects of ϵ . Recall that ϵ controls the conciseness of interpretability. We vary ϵ in Equation (8)

and report model performance in Figure 5. Generally, we observe that for recommendation objec-
tive, there is a consistency between 4 datasets that the optimal value of ϵ falls in range [0.5 − 0.7],
which supports our claim that ϵ is between 0 and 1. Regarding interpretability objective, on Cell
Phones and CDs & Vinyl dataset, the value of ϵ is consistent with the one in recommendation. On
Toys & Games and Citeulike-a dataset, retrieval performance peaks when the value of ϵ is around
0.1 and 0.2, respectively. Overall, the results support our hypothesis in Section 3.2 that ϵ is between
0 and 1.
Fixing vs. Updating K and Vtext in the second stage training in Algorithm 1. We first

fine-tune K and keep others as default choice. Next, we freeze K and fine-tune Vtext . Finally, we
fine-tune both K and Vtext . The results of these experiments are shown on columns (3)–(5) on
Table 12. Generally, fine-tuning one or both of the embeddings results in degraded performance.
We intuit that these embeddings bring with them useful independent textual signals that would
be overridden by collaborative filtering signals if floated.
As analyzed in previous sections, the performance of Interec is based on that of recommender.

Therefore, in future application of our proposed architecture, one should pay attention and care-
fully choose the values for above mentioned designs and hyper-parameter choices w.r.t. the choice
of recommender.
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Fig. 5. Results on 4 datasets with various values of ϵ . Blue lines represent HR@20 in recommendation task

while red lines represent HR@20 on retrieval-based functionally-grounded evaluation of interpretability.

Fig. 6. Runtime analysis (seconds/epoch) of all models on Cell Phone dataset and CDs & Vinyl dataset. All

models are trained with batch size 256. Reported numbers are averaged over 10 runs.

Run Time Analysis.We briefly discuss the run time of Interec-AE vis-a-vis the user-oriented
textual-aware baselines. Figure 6 reports the number of seconds taken to run a single epoch in the
examined models. Firstly, on small dataset, Cell Phones, the running time of Interec-AE is close to
those of CDL and CVAE and nearly half of GATE. Recall that GATE requires extra time to process
neighbor information. Secondly, on large dataset, CDs & Vinyl, Interec-AE maintains its time
efficiency while an extra time is required in CDL and CVAE since these models store explicitly
a huge number of user representations. GATE performs similarly to CDL and faster than CVAE.
Lastly, on both dataset, JSR is not time-efficient due to negative sampling, which increases the
number of ratings and the running time.

5 CONCLUSION

We propose Interec, a novel unified architecture for joint learning a neural recommender and
an interpreter. Our work adopts a new angle to existing content-aware recommendation models
by employing textual content for user’s preferences interpretation besides sparsity alleviation. In
particular, our model provides local interpretability of user’s preferences underlying her adoptions
in terms of human comprehensible attributes described by natural language words. The means
of doing so is a dedicated interpreter which relies on user representation from recommender.
A key-value memory network is used to implement interpreter, leading to a generalized user
representation by discovering words going beyond user’s interacted items’ contents.
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There are several research directions for futurework to further build upon Interec. The first one
is the investigation of the proposed architecture considering multi-interest recommender, which
represents a user by multiple embedding vectors. Second, organizing textual content into a struc-
ture, e.g., topic modeling, and leveraging structured units for interpretation of user’s preferences.
Last but not least, other type of side information, e.g., knowledge graph, could be worth exploring
to gain better insights into user’s preferences underlying their item adoptions.
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