
StopGuess: A framework for public-key authenticated encryption with keyword search

Tao Xiang a, Zhongming Wang a, Biwen Chen a,b,∗, Xiaoguo Li c, Peng Wang d, Fei Chen e

a College of Computer Science, Chongqing University, Chongqing, 400044, China

b State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China

c School of Computing and Information Systems, Singapore Management University, Singapore, 188065, Singapore

d School of Intelligence Technology and Engineering, Chongqing University of Science and Technology, Chongqing,

400044, China

e College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China

Published in Computer Standards & Interfaces (2024) 88, 103805. DOI: 10.1016/j.csi.2023.103805

Abstract: Public key encryption with keyword search (PEKS) allows users to search on encrypted data without leaking the

keyword information from the ciphertexts. But it does not preserve keyword privacy within the trapdoors, because an

adversary (e.g., untrusted server) might launch inside keyword-guessing attacks (IKGA) to guess keywords from the

trapdoors. In recent years, public key authenticated encryption with keyword search (PAEKS) has become a promising

primitive to counter the IKGA. However, existing PAEKS schemes focus on the concrete construction of PAEKS, making

them unable to support modular construction, intuitive proof, or flexible extension. In this paper, our proposal called

“StopGuess” is the first elegant framework to achieve the above-mentioned features. StopGuess provides a general

solution to eliminate IKGA, and we can construct a bundle of PAEKS schemes from different cryptographic assumptions

under the framework. To show its feasibility, we present two generic constructions of PAEKS and their (pairing-based and

lattice-based) instantiations in a significantly simpler and more modular manner. Besides, without additional costs, we

extend PAEKS to achieve anonymity which preserves the identity of users; we integrate it with symmetric encryption to

support data retrieval functionality which makes it practical in resource-constrained applications.

Keywords: Searchable encryption, Keyword guessing attack, Anonymity, Trapdoor privacy, Keyword search

1. Introduction

Public key encryption with keyword search (PEKS) [1] is

a cryptographic primitive that allows a user to delegate

the search on encrypted data to a third party without data

leakage. Unlike searchable symmetric encryption [2],

PEKS allows multiple senders to generate ciphertext for

a receiver with one public key, which avoids complicated

key management in traditional symmetric encryption.

PEKS involves three parties: sender, receiver, and server.

Briefly, the sender and the receiver can generate a

ciphertext and a trapdoor corresponding to their

respective keywords, respectively. The server can

determine whether the ciphertext and the trapdoor were

derived from the same keyword.

Unfortunately, traditional PEKS [1] enforces ciphertext

indistinguishability but fails to achieve trapdoor

indistinguishability. Thus, it requires a secure channel for

receivers to transmit trapdoors to the server. Otherwise,

an adversary might launch the keyword-guessing attacks

(KGA) [3] to guess the keyword contained in the

trapdoors. The KGA is feasible because the keyword

space is limited by the word library such that the

adversary can guess the keyword using a brute-force

search. In detail, the KGA could happen in two cases, i.e.,

outside KGA OKGA) from an external adversary (e.g.,

eavesdropper) and inside KGA (IKGA) from an internal

adversary (e.g., untrusted server). Compared to an

external adversary, an internal adversary always has

stronger abilities. For example, the internal adversary can

directly access the trapdoors, but the external adversary

cannot. So the IKGA actually contains the OKGA.

To resolve the OKGA problem, current solutions can be

sorted into two categories according to the methodology:

First, enforcing trapdoor indistinguishability in PEKS,

e.g., building PEKS from function-private anonymous

identity-based encryption (IBE) [4], and then the

function-private property ensures the indistinguishability

of the trapdoor. Second, authenticating the server in the

test phase, as in the designated-tester PEKS (dPEKS)

scheme [5] that embeds server’s public key in the

trapdoor. However, since PEKS allows anyone to test

whether the ciphertext and trapdoor contain the same

keywords, an internal adversary (e.g., the server) could

guess the keyword contained in the trapdoor with the help

of the Test algorithm. Thus, while the above approaches

prevent information leakage about the keyword from the

trapdoor, they are still vulnerable to the IKGA.

Fig. 1. Illustration of contributions. Our contributions are denoted as bold lines and rectangles.
t

Table 1
Comparisons of PEKS schemes.

Schemes OKGA IKGA Extra Party Extra Comm.

BDOP-PEKS [1] ✗ ✗ ✗ ✗

dPEKS [5] ✓ ✗ ✗ ✗

Dual-server PEKS [7] ✓ ✓ ✓ ✗

Server-aided PEKS [6] ✓ ✓ ✗ ✓

PAEKS [11] ✓ ✓ ✗ ✗

OKGA: Secure against outside KGA; IKGA: Secure against inside KGA; Extra Party:
Require additional party; Extra Comm.: Require additional communication.

Subsequently, there have been many efforts to achieve IKGA-resistan
PEKS [6–10]. The insight in these schemes is to limit the power of
a single server by distributing the search ability to multiple parties.
However, these schemes either require additional parties [7,8] or addi-
tional communication [6], making them rather complicated. Therefore,
eliminating IKGA in the context of PEKS without additional parties or
communications became a new open problem. To address this problem,
public key authenticated encryption with keyword search (PAEKS) is
proposed by Huang et al. [11]. We compare PAEKS with prior works in
Table 1. In PAEKS, every ciphertext embeds a sender’s secret key in the
ciphertext. Thus, without the sender’s secret key, the inside adversary
fails to guess keywords from the trapdoor through the Test algorithm.

Since PAEKS was proposed, much work has been followed, from
improvements in security [12–14] to instantiations based on different
assumptions [11,15–19]. Despite achieving resistance to IKGA, these
schemes are still working on the construction and instantiation of
PAEKS, thus lacking a general description and intuitive understanding
of its security. Therefore, in this paper, we focus on the following
question:

Can we offer a general framework for PAEKS to provide an intuitive
understanding of its construction, security, and extensions while eliminating
IKGA?

1.1. Our contributions

We present an affirmative answer to this question. Our contributions
(also sketched in Fig. 1) are summarized as follows:

• We first present StopGuess for PAEKS to give a general solution to
eliminate IKGA. StopGuess is an abstraction of existing schemes
and just consists of two modules. Benefiting from StopGuess, the
construction of PAEKS is simplified to find proper implementa-
tions for the underlying modules. These constructions also feature
an intuitive security reduction due to the modular construction.

• To demonstrate the superiority of StopGuess, we present two
generic constructions of PAEKS with StopGuess. The basic con-
struction is built from PEKS and non-interactive key exchange
(NIKE), which covers all existing constructions through their
different instantiations. To further reduce the certificate costs, we
introduce a refined construction by reducing the key-pair needed.
Moreover, pairing-based and lattice-based instantiations of the
2

refined construction are presented to show the efficiency of the
proposed constructions.

• Profiting from StopGuess, we naturally extend PAEKS to support
further properties or features without additional assumptions on
the underlying modules. Considering the requirements of anony-
mous applications, we extend the security of PAEKS to anonymity
and prove that our refined construction is inherently anonymous.
Besides, our construction could easily be integrated with a sym-
metric encryption scheme to achieve efficient data retrieval on
large-scale data.

1.2. Related work

Since the widespread adoption of cloud services, there has been a
lot of work on searching for encrypted data [20–27]. One promising
technique for this topic is PEKS, but it suffers from keyword guessing
attack (KGA). The study of KGA in PEKS is initiated by Byun et al. [3].
Then, Jeong et al. [28] and Shao et al. [29] showed the impossibility
of constructing a PEKS scheme that is secure against a malicious server
under the conventional PEKS [1].

In a nutshell, the fundamental cause of the KGA is that an adversary
could generate ciphertext for arbitrary keywords, and then test it with
the trapdoor through the Test algorithm. Due to the limited space
of keywords, the adversary can guess the keyword contained in the
trapdoor by doing a brute-force search. There are two approaches to
block an adversary from performing such a search:

Restrict testing. The first approach is implemented by limiting the
test ability of the adversary. Based on the BDOP-PEKS, Rhee et al. [5]
add another test server to the system and designate the test ability to
the server. It ensures that an adversary cannot run the Test algorithm
without the secret key of the server. But the dPEKS only resists the
OKGA. To address the IKGA, Chen et al. proposed server-aided [6]
and dual-server PEKS [7]. Both two schemes divide the server into
two servers, i.e., keyword server and storage server; front server and
back server. Although the above two schemes eliminate the IKGA, they
require additional parties or communications.

Restrict encryption. The latter approach is implemented by lim-
iting the ability of ciphertext generation to the sender that owns the
secret key corresponding to the trapdoor, i.e., PAEKS. After Huang
et al. [11] first proposed PAEKS in 2017, Li et al. [16] and He et al. [15]
gives two constructions of PAEKS in identity-based and certificateless
setting, respectively. The most recent work is due to Liu et al. [18] and
Emura et al. [30], who proposed a generic construction using the word-
independent smooth projection hash function (WI-SPHF) and PEKS.
Additionally, for the security of PAEKS, Noroozi et al. [12] and Qin
et al. [13] improved the security model of [11] from single-user setting
to multi-user setting. Then, Qin et al. [14] further improved the security
model of PAEKS to fully ciphertext indistinguishability, which allows
an adversary to query any ciphertext-keywords of its choice.

In summary, [11,15,16] constructs PAEKS schemes in different
settings, but is limited to concrete constructions. On the other hand,
although [18,30] proposed generic constructions, they fail to cover the

t
r
t
t
p
d
s

Fig. 2. Ciphertext/Trapdoor generation under StopGuess.
a
o
s
s
a
P

o
a
{
t
𝑘

previous concrete constructions. Differing from these works, StopGuess
provides a general framework for PAEKS that covers the aforemen-
tioned constructions.

2. StopGuess: ready-to-eliminate KGA

Before presenting StopGuess, we first describe the building modules
of StopGuess on a high level. These modules are just an abstraction
of the required functionalities and properties; they will be instantiated
later in Section 3.

Shared key generation (SKG). This module is used to generate a key-
pair for users and a shared key between two parties, that is, any two
users could generate a shared key by using their own secret key and the
other party’s public key. For the security of the SKG, we need the shared
key to be indistinguishable from a random choice in the key-space,
which prevents an adversary from generating a shared key without the
corresponding secret key.

Private equality test (PET). The core functionality of PET is to test
whether a ciphertext C and a trapdoor 𝑇 are generated from the same
message. The procedure of test needs to be private, i.e., the information
about the message M contained in C or 𝑇 would not leak in the test
phase. And the algorithms to generate ciphertext and trapdoor should
be probabilistic. Otherwise, the KGA will be possible again.

StopGuess combines the above two modules to build PAEKS in a
modular and concise manner. The basic idea of StopGuess is to combine
a keyword and a shared key into one message, and then an equality test
on the message will authenticate the shared key and test the keyword
at the same time. In detail, the sender and the receiver first separately
generate a message which is a combination of the shared key and the
keyword, then they generate a ciphertext and a trapdoor, respectively,
based on their respective message. Finally, the PET module that runs
on the server determines whether the ciphertext and trapdoor contain
the same message. Since we already defined the underlying modules,
the rest of the problem is how to combine a keyword and a shared
key. A plausible solution is to take a hash function and program it
as a random oracle to ensure the consistency of StopGuess. Based on
the above modules, a general description of StopGuess is presented in
Fig. 2.

Implementations. To build a generic construction of PAEKS under
StopGuess, we only need to properly implement the underlying mod-
ules. It is easy to see how the SKG can be implemented using an NIKE
scheme. Then, for the PET, we have multi-choices. The classic PEKS
scheme (e.g., BDOP-PEKS) may be the preferred option, and it works
well in our basic generic construction and existing schemes. However,
constructions from PEKS and NIKE require the receiver to store two
key-pairs, which means that the system needs to maintain two certifi-
cate systems. We introduce a refined construction that achieves a single
receiver key-pair without additional costs to address this problem. The
comparison between our two constructions is presented in Table 2.

Security. An IKGA-resistant PEKS scheme requires both the cipher-
exts and trapdoors to be indistinguishable under IKGA. We focus on
ealizing the trapdoor indistinguishability, since the security of cipher-
exts already satisfies in a classic PEKS scheme. StopGuess achieves
he trapdoor indistinguishability through the shared key between two
arties, so its security directly follows the underlying modules. In
etail, the variant of keyword is pseudorandom for different inputs,
ince the shared key is pseudorandom and the hash function (pro-
3

grammed as a random oracle) prevents collusion from different inputs. i
Table 2
Comparisons between our constructions.

Schemes SKG PET Security Cert. Cost Anon. SKE-PAEKS

Basic NIKE PEKS fully CI + TI ×2 ✓* ✓

Refined PKEET CI + TI ×1 ✓ ✓

‘‘Anon.‘‘: anonymity. ‘‘Cert. Cost’’: means certificate cost that include costs in regis-
tration, communication and storage, etc.. ‘‘SKE-PAEKS‘‘: means integrated symmetric
encryption and PAEKS. ‘‘✓*’’: the anonymity of the scheme requires that the underlying
PEKS scheme be anonymous.

Then, the semantic security of PET ensures every ciphertext/trapdoor
is different even if they contain the same sender/receiver information
and keyword. Therefore, the generated ciphertext/trapdoor satisfies
indistinguishability in the multi-user setting.

Extensions. We explore the extension of StopGuess on anonymity
nd data retrieval capabilities, and get the following results: (i) Both
f our constructions achieve anonymity, which means that an adver-
ary cannot learn the generator from a ciphertext or trapdoor. More
pecifically, our refined construction achieves anonymity inherently
nd the basic construction achieves anonymity when the underlying
EKS is anonymous1; (ii) Based on the shared key from the SKG module,

both of our constructions can be easily integrated with a symmetric
encryption scheme to achieve data retrieval function without additional
assumptions or storage costs.

3. Preliminaries

In this section, we instantiate the above modules and introduce
definitions for the syntax and security of PAEKS for the remaining
sections.

Notations. Let 𝑥 ∈ 𝑋 be a variable. 𝑥 ←$𝑋 denotes the operation
f sampling 𝑥 randomly from 𝑋. 𝜆 denotes the security parameter in
ll definitions and constructions. A function 𝐹𝑘 ∶ {0, 1}∗ × {0, 1}∗ →

0, 1}∗ is pseudorandom, if for all 𝖯𝖯𝖳 distinguishers 𝐷, the equa-
ion |Pr

[

𝐷𝐹𝑘(.)(1𝜆) = 1
]

− Pr
[

𝐷𝑓 (.)(1𝜆) = 1
]

| ≤ 𝗇𝖾𝗀𝗅 (𝜆) holds, where
←$ {0, 1}𝜆 and 𝑓 is randomly chosen from a set of random functions.

3.1. Cryptographic primitives

Although many schemes allow generating a shared key between two
parties, we need the instantiation to be non-interactive. Therefore, non-
interactive key exchange (NIKE) becomes the preferred option. Besides,
we present two instantiations of the private equality test module,
namely public key encryption with keyword search (PEKS) and public
key encryption with equality test (PKEET). We recall their definitions
as follows:

3.1.1. Non-interactive key exchange (NIKE)
A NIKE scheme [32] allows any two users to generate a shared key

between them in a non-interactive way and consists of three algorithms:

• CommonSetup: on input of security parameter 𝜆, output a set of
public parameters  .

1 An anonymous PEKS scheme can be built from anonymous hierarchical
dentity-based encryption [31].

3

• KeyGen: on input of  and an identity 𝐼𝐷, output a pair of
public key and secret key (𝑝𝑘, 𝑠𝑘).

• SharedKey: on input of an identity 𝐼𝐷1 and its corresponding
secret key 𝑠𝑘1 along with another identity 𝐼𝐷2 and its corre-
sponding public key 𝑝𝑘2, output a shared key 𝑠ℎ𝑘 for the two
identities.

Correctness: We say a NIKE scheme is correct if for any two identities
𝐼𝐷1, 𝐼𝐷2 and corresponding key-pairs, the following equation holds:
𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷1, 𝑝𝑘1, 𝐼𝐷2, 𝑠𝑘2) = 𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷2, 𝑝𝑘2, 𝐼𝐷1, 𝑠𝑘1).

CKS-light Security: We say a NIKE scheme is CKS-light secure, if for
any 𝖯𝖯𝖳 adversary , the advantage of  holds in the game of CKS-light
satisfies: 𝖠𝖽𝗏CKS−light

 (𝜆) = |

|

|

Pr
[

𝑏 = 𝑏′
]

− 1
2
|

|

|

≤ 𝗇𝖾𝗀𝗅(𝜆), where the game is
defined in Appendix A.

.1.2. Public key encryption with keyword search (PEKS)
A public key encryption with keyword search [1] scheme PEKS =

(Setup, KeyGen, PEKS, Trapdoor, Test) consists of four algorithms:

• Setup: on input of security parameter 𝜆, output public parameters
 .

• KeyGen: on input of  , output a pair of keys (𝑝𝑘, 𝑠𝑘).
• PEKS: on input of a public key 𝑝𝑘 and a word 𝑤, output a

searchable ciphertext 𝐶 corresponding to 𝑤.
• Trapdoor: on input of a secret key 𝑠𝑘 and a word 𝑤′, output a

trapdoor 𝑇𝑤.
• Test: on input of the public key 𝑝𝑘, a searchable ciphertext 𝐶 =
𝖯𝖤𝖪𝖲(𝑝𝑘,𝑤) and a trapdoor 𝑇𝑤 = 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑝𝑘,𝑤′), output ‘1’ if
𝑤 = 𝑤′ and ‘0’ otherwise.

Correctness: For any ciphertext 𝐶 = 𝖯𝖤𝖪𝖲(𝑝𝑘,𝑤) and trapdoor
𝑇 = 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑠𝑘,𝑤′), if the keyword 𝑤 = 𝑤′, the probabilistic of
𝖯𝗋[𝖳𝖾𝗌𝗍(𝐶, 𝑇) = 1] is overwhelming.

3.1.3. Public key encryption with equality test (PKEET)
A PKEET [33] scheme allows anyone to check whether two ci-

phertexts encrypt the same message without information leakage and
consists of six algorithms:

• Setup: on input of security parameter 𝜆, output public parameters
 .

• KeyGen: on input of an identity 𝐼𝐷, output a pair of keys (𝑝𝑘, 𝑠𝑘).
• Enc: on input of 𝑝𝑘 and a message 𝑚, output a ciphertext 𝐶𝑇 .
• Dec: on input of the secret key 𝑠𝑘 and a ciphertext 𝐶𝑇 , output a

message 𝑚′ or ⊥.
• Trapdoor: on input of the secret key 𝑠𝑘, output a trapdoor 𝑡𝑑.
• Test: on input of two trapdoors and two ciphertexts for two

users respectively, output ‘1’ if two ciphertexts encrypt the same
message and ‘0’ otherwise.

Correctness: We say PKEET is correct if for any ciphertext and
trapdoor pairs (𝐶1 = 𝖤𝗇𝖼(𝑝𝑘1, 𝑚1), 𝑇1 = 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑠𝑘1)) and (𝐶2 =
𝖤𝗇𝖼(𝑝𝑘2, 𝑚2), 𝑇2 = 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑠𝑘2)), the equation holds:
{

𝖯𝗋[𝖳𝖾𝗌𝗍(𝐶1, 𝑇1, 𝐶2, 𝑇2) = 1] ≥ 1 − 𝗇𝖾𝗀𝗅(𝜆) , if 𝑚1 = 𝑚2

𝖯𝗋[𝖳𝖾𝗌𝗍(𝐶1, 𝑇1, 𝐶2, 𝑇2) = 1] ≤ 𝗇𝖾𝗀𝗅(𝜆) , otherwise.

4. Definitions

In this section, we present the definition and security model of
PAEKS. Besides, the system model of PAEKS is presented in Fig. 3.

4.1. Definitions of syntax

We now formally define a public key authenticated encryption with
keyword search (PAEKS) scheme. Differing to the definition from [11],
4

Fig. 3. System model of PAEKS.

the SkGen/RkGen algorithm in our definition requires an input of
identity. This difference facilitates StopGuess to cover instantiations of
PAEKS in both identity-based and public key settings. Note that, for a
public key system, identities are merely used to track the binding rela-
tionship between a user and a public key.2 Specifically, the algorithms
are defined as follows.

• Setup(1𝜆): on input of a security parameter 𝜆, generate public
parameters  . We assume that the public parameters will be
the input of the following algorithms implicitly.

• SkGen( , 𝐼𝐷𝑆): given a sender’s identity 𝐼𝐷𝑆 , generate a key-
pair (𝑝𝑘𝑆 , 𝑠𝑘𝑆) for the sender. The identity of the sender is as-
sumed to be included in the public key implicitly; so do the public
key of the receiver.

• RkGen( , 𝐼𝐷𝑅): given a receiver’s identity 𝐼𝐷𝑅, generate a
key-pair (𝑝𝑘𝑅, 𝑠𝑘𝑅) for the receiver.

• PAEKS(𝑤, 𝑠𝑘𝑆 , 𝑝𝑘𝑅): for a keyword 𝑤, a sender’s secret key 𝑠𝑘𝑆
and a receiver’s public key 𝑝𝑘𝑅, produce a searchable ciphertext
𝐶 for keyword 𝑤.

• Trapdoor(𝑤′, 𝑠𝑘𝑅, 𝑝𝑘𝑆): for a keyword 𝑤′, a receiver’s secret key
𝑠𝑘𝑅 and a sender’s public key 𝑝𝑘𝑆 , produce a trapdoor 𝑇𝑤′ for
keyword 𝑤′.

• Test(𝐶, 𝑇𝑤′): given a ciphertext 𝐶 = 𝖯𝖠𝖤𝖪𝖲(𝑤, 𝑠𝑘𝑆 , 𝑝𝑘𝑅) and
trapdoor 𝑇𝑤 = 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑤′, 𝑠𝑘𝑅, 𝑝𝑘𝑆), output ‘1’ if 𝑤 = 𝑤′ and
‘0’ otherwise.

Correctness. For any ciphertext 𝐶 = 𝖯𝖠𝖤𝖪𝖲(𝑤, 𝑠𝑘𝑆 , 𝑝𝑘𝑅) and trap-
door 𝑇 = 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑤′, 𝑠𝑘𝑅, 𝑝𝑘𝑆), a PAEKS scheme is correct if
𝖯𝗋[𝖳𝖾𝗌𝗍(𝐶, 𝑇) = 1] ≥ 1 − 𝗇𝖾𝗀𝗅(𝜆) holds, when 𝑤 = 𝑤′.

4.2. Definitions of security

The security of PAEKS involves two parts, i.e., ciphertext security
and trapdoor security. We first define the security of the ciphertext by
fully ciphertext indistinguishability (fully CI). As for the security of the
trapdoor, we use trapdoor indistinguishability (TI) which is similar to
the definition in [12]. Both fully CI-security and TI-security are defined
in the multi-user setting.

Actually, the fully CI-security and the TI-security are defined in the
same manner. By replacing the challenge ciphertext in Game GfCI

 ,(1
𝜆)

with trapdoor, we can immediately obtain the TI-security game from
the fully CI-security game.

Definition 1 (Fully CI-Security). A PAEKS scheme  satisfies fully
ciphertext indistinguishability if the advantage of any PPT adversary

2 In the rest of this paper, all the definitions, security models, and
constructions are in the public key setting.

𝖯

5

i

Fig. 4. The fully ciphertext indistinguishability and trapdoor indistinguishability for a PAEKS scheme  and an adversary  = (1 ,2). The oracles are defined as 𝐶 (⋅, ⋅) ∶=
𝖠𝖤𝖪𝖲(⋅, 𝑠𝑘𝑆 , ⋅), 𝑇 (⋅, ⋅) ∶= 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(⋅, 𝑠𝑘𝑅 , ⋅). The difference between the two games is underlined.
)

,

Table 3
Difference between CI-Security and fully CI-Security.

Model Ciphertext security

Ciphertext Oracle Trapdoor oracle

CI (𝑝𝑘,𝑤) ≠ (𝑝𝑘𝑅 , 𝑤∗
𝑏) (𝑝𝑘,𝑤) ≠ (𝑝𝑘𝑆 , 𝑤∗

𝑏)
fully-CI (𝑝𝑘,𝑤) = (⋆,⋆) (𝑝𝑘,𝑤) ≠ (𝑝𝑘𝑆 , 𝑤∗

𝑏)

⋆: Arbitrary choice.

 = (1,2) in breaking the fully CI-security game satisfies the equa-
tion 𝖠𝖽𝗏fCI (𝜆) =

|

|

|

|

Pr
[

GfCI
 ,(1

𝜆) = 1
]

− 1
2

|

|

|

|

≤ 𝗇𝖾𝗀𝗅 (𝜆), where the game is
depicted in Fig. 4.

To prevent trivial wins for the adversary , it is restricted to making
queries about (𝑝𝑘𝑆 , 𝑤∗

0) and (𝑝𝑘𝑆 , 𝑤∗
1) to the trapdoor oracle. Otherwise,

the ciphertext can be distinguished trivially.

Definition 2 (TI-Security). A PAEKS scheme  satisfies trapdoor indis-
tinguishability if the advantage of PPT adversary  = (1,2) in break-
ing the TI-security game satisfies 𝖠𝖽𝗏TI (𝜆) =

|

|

|

|

Pr
[

GTI
 ,(1

𝜆) = 1
]

− 1
2

|

|

|

|

≤
𝗇𝖾𝗀𝗅(𝜆), where the security game is depicted in Fig. 4.

Similar to the restriction in the above game, the adversary  is
restricted to making queries about (𝑤∗

𝑏 , 𝑝𝑘𝑅) to the ciphertext oracle
and (𝑤∗

𝑏 , 𝑝𝑘𝑆) to the trapdoor oracle, where 𝑏 ∈ {0, 1}.
The definition of ciphertext indistinguishability security (CI-Security

is identical to that of fully CI-security, as shown in Table 3, except that
the adversary cannot issue queries about the challenge keyword to the
ciphertext oracle.

Definition 3 (CI-Security). A PAEKS scheme satisfies ciphertext indis-
tinguishability if the advantage of any PPT adversary  in breaking the
CI-security game is negligible in 𝜆.

5. Constructions

In this section, we present a basic generic construction of PAEKS,
followed by a refined generic construction.

.1. Our basic generic construction

We first implement SKG and PET by NIKE and PEKS, and present
the basic construction from these two implementations below. In the
basic construction, the keyword that inputs into the PEKS algorithm
s replaced by a hash of the keyword and a shared key. Therefore, the
5

Test algorithm would test keyword and authenticate the identity at the
same time. The proposed generic construction consists of the following
algorithms:

• Setup(1𝜆): on input of a security parameter 𝜆, generate pub-
lic parameters through  ← NIKE.𝖢𝗈𝗆𝗆𝗈𝗇𝖲𝖾𝗍𝗎𝗉(1𝜆) and
 ← PEKS.𝖲𝖾𝗍𝗎𝗉(1𝜆). Choose a hash function 𝐻 ∶ 𝑤𝑜𝑟𝑑 ×
𝑠ℎ𝑎𝑟𝑒 → 𝑤𝑜𝑟𝑑 , where 𝑠ℎ𝑎𝑟𝑒 and 𝑤𝑜𝑟𝑑 denote the space
of shared key and keyword, respectively. Output the public pa-
rameters  = (𝑁𝐼𝐾𝐸 , 𝑃𝐸𝐾𝑆 ,𝐻).

• SkGen(𝐼𝐷𝑆): on input of an identity 𝐼𝐷𝑆 , generate a key-pair
(𝑝𝑘𝑆 , 𝑠𝑘𝑆) ← NIKE.𝖪𝖾𝗒𝖦𝖾𝗇( , 𝐼𝐷𝑆) and output the key-pair.

• RkGen(𝐼𝐷𝑅): on input of an identity 𝐼𝐷𝑅, generate two key-pairs
as (𝑝𝑘𝑅, 𝑠𝑘𝑅) ← NIKE.𝖪𝖾𝗒𝖦𝖾𝗇( , 𝐼𝐷𝑅) and (𝑝𝑘𝑃𝐸𝐾𝑆 , 𝑠𝑘𝑃𝐸𝐾𝑆) ←
PEKS.𝖪𝖾𝗒𝖦𝖾𝗇( , 𝐼𝐷𝑅). Output the key-pairs as (𝑝𝑘𝑅, 𝑠𝑘𝑅, 𝑝𝑘𝑃𝐸𝐾𝑆
𝑠𝑘𝑃𝐸𝐾𝑆).

• PAEKS(𝑤, 𝑝𝑘𝑃𝐸𝐾𝑆 , 𝑠𝑘𝑆 , 𝑝𝑘𝑅): on input of a keyword 𝑤, a PEKS
public key 𝑝𝑘𝑃𝐸𝐾𝑆 , a sender’s secret key 𝑠𝑘𝑆 and a receiver’s
public key 𝑝𝑘𝑅, run as follows:

– Compute a shared key 𝑠ℎ𝑘 = NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷𝑅, 𝑝𝑘𝑅, 𝐼𝐷𝑆 ,
𝑠𝑘𝑆) between the sender 𝑆 and the receiver 𝑅, and generate
a variant of keyword 𝑘𝑤 = 𝐻(𝑤, 𝑠ℎ𝑘).

– Compute the searchable ciphertext 𝐶 = PEKS.𝖯𝖤𝖪𝖲(𝑝𝑘𝑃𝐸𝐾𝑆 ,
𝑘𝑤), and then output the ciphertext.

• Trapdoor(𝑤′, 𝑠𝑘𝑃𝐸𝐾𝑆 , 𝑠𝑘𝑅, 𝑝𝑘𝑆): on input of a keyword 𝑤′, a PEKS
secret key 𝑠𝑘𝑃𝐸𝐾𝑆 , a sender’s public key 𝑝𝑘𝑆 and a receiver’s
secret key 𝑠𝑘𝑅, run as follows:

– Compute the shared key 𝑠ℎ𝑘′ = NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷𝑆 , 𝑝𝑘𝑆 ,
𝐼𝐷𝑅, 𝑠𝑘𝑅) and generate the variant of keyword 𝑘𝑤′ =
𝐻(𝑤′, 𝑠ℎ𝑘′).

– Compute a trapdoor 𝑇 = PEKS.𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑠𝑘𝑃𝐸𝐾𝑆 , 𝑘𝑤′) and
then output the trapdoor.

• Test(𝐶, 𝑇): on input of a ciphertext 𝐶 = PEKS.𝖯𝖤𝖪𝖲(𝑝𝑘𝑃𝐸𝐾𝑆 , 𝑘𝑤)
and a trapdoor 𝑇 = PEKS.𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑠𝑘𝑃𝐸𝐾𝑆 , 𝑘𝑤′), run as follows:

– Compute 𝑏 ← PEKS.𝖳𝖾𝗌𝗍(𝐶, 𝑇), and output 𝑏 as the result.

∗ 𝑏 = 1: if 𝑘𝑤 = 𝑘𝑤′, that is, the keyword and identities
contained in both the ciphertext 𝐶 and trapdoor 𝑇
match each other.

∗ 𝑏 = 0: otherwise.

Correctness. The correctness of this construction is demonstrated as
follows: If NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷𝑆 , 𝑝𝑘𝑆 , 𝐼𝐷𝑅, 𝑠𝑘𝑅) = NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷𝑅,
𝑝𝑘𝑅, 𝐼𝐷𝑆 , 𝑠𝑘𝑆) and 𝑤 = 𝑤′, then we have PAEKS.𝖳𝖾𝗌𝗍(𝐶, 𝑇) =

PEKS.𝖳𝖾𝗌𝗍(𝐶, 𝑇) = 1 with overwhelming probability.

a

P
p
i
s

L
t

P
a
a
t
p

L
s

P
𝖦

t
t
k
o

c
s
a
c
𝗇

c

T
s
s

P
r
t

i
p
r
H
N
t
s
a
p
w
w

5

k
c
w
T
o

i
o
(
o
s
t
t

t
i
c

T
s
o

T
s
o

6

c

6

s
K

p

Theorem 1 (Fully CI-Security). Our PAEKS satisfies fully CI-security if the
NIKE scheme is CKS-light secure in corrupt key registration (CKR) setting
nd the PEKS scheme is semantic secure.

roof Sketch. We prove the above statement by two lemmas. First, we
rove the variant of keyword satisfies CI-security in Lemma 1. Then,
n Lemma 2, we prove the semantic security of the underlying PEKS
cheme could boost the CI-security to fully CI-security.

emma 1. If the NIKE scheme is CKS-light secure in CKR setting, then
he variant of keyword 𝑘𝑤 satisfies CI-security.

roof Sketch. This proof is based on contradictions. Suppose an
dversary  could break the game GCI

 ,(𝜆) with a non-negligible
dvantage. Then we could construct an adversary  which could break
he game GCKS−light

 , (𝜆) with a non-negligible advantage. The complete
roof can be found in Appendix B.

emma 2. If the variant of keyword is CI-secure and the PEKS is semantic
ecure, then the above PAEKS scheme satisfies fully CI-security.

roof Sketch. We prove this lemma using a game hop from 𝖦𝖺𝗆𝖾0 to
𝖺𝗆𝖾1. We detail the two games as follows:
𝖦𝖺𝗆𝖾0: The first game is identical to the game of CI-security. In

his game, the ciphertext is generated by PAEKS with the input of
he variant of keyword. Since we already prove that the variant of
eyword satisfies CI-security in Lemma 1, we have that the advantage
f adversary in breaking this game satisfies 𝖠𝖽𝗏

Game0
 (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆).

𝖦𝖺𝗆𝖾1: This game is identical to 𝖦𝖺𝗆𝖾0 except that the adversary 
an query ciphertext-keyword for the challenge keyword. The semantic
ecurity of the PEKS scheme guarantees that the adversary cannot get
ny knowledge about the challenge keyword from prior queries for the
hallenge keyword. Therefore, we have |

|

|

𝖠𝖽𝗏
Game1
 (𝜆) − 𝖠𝖽𝗏

Game0
 (𝜆)||

|

≤
𝖾𝗀𝗅(𝜆). The details of the proof can be found in Appendix C.

Finally, with the above games, we have 𝖠𝖽𝗏
Game1
 (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆), which

ompletes the proof.

heorem 2 (TI-Security). Our PAEKS satisfies TI-security if the NIKE
cheme is CKS-light secure in CKR setting and the PEKS scheme is semantic
ecure.

roof Sketch. The security can be proved in the same way as Theo-
em 1, except that the requirement for the PEKS algorithm now relates
o the Trapdoor algorithm.

Discussions. While the above construction is secure against IKGA,
t is inefficient in practice, since each receiver needs to maintain two
ublic-key certificates. A naive solution for improving its efficiency is to
euse the key-pair of the underlying NIKE scheme in the PEKS scheme.
owever, the key reuse solution requires that the key-pair of the
IKE scheme and the PEKS scheme have the same form, thus limiting

he instantiation of the construction. Besides, it could undermine the
ecurity guarantees of the PAEKS scheme. For example, [11] generates
shared secret through DH-NIKE, and then reuses the sender’s key-

air to generate ciphertexts, which allows an adversary to easily check
hether two ciphertexts contain the same keyword and results in a
eak security in ciphertext indistinguishability.

.2. Our refined generic construction

The refined generic construction implements PET and SKG by public
ey encryption with equality test (PKEET) and NIKE. Unlike the basic
onstruction, a receiver only stores one key-pair in this construction,
hich reduces the certificate cost on receivers to one instead of two.
his is because the key-pair of PKEET is generated only at the time
f use, and thus does not need to be retained. However, due to the
6

s

ncompatibility of the ciphertext test and indistinguishability, PKEET
nly achieves weak indistinguishability under chosen ciphertext attacks
W-IND-CCA2) [33] and cannot achieve semantic security. Therefore,
ur refined construction only considers the CI-security and the TI-
ecurity. That means, in its instantiations, although all ciphertexts with
he same message are different, the server can distinguish them through
he Test algorithm.

• 𝖲𝖾𝗍𝗎𝗉(1𝜆): on input of a security parameter 𝜆, generate pub-
lic parameters by running 𝑃𝐾𝐸𝐸𝑇 ← PKEET.𝖲𝖾𝗍𝗎𝗉(1𝜆) and
𝑁𝐼𝐾𝐸 ← NIKE.𝖢𝗈𝗆𝗆𝗈𝗇𝖲𝖾𝗍𝗎𝗉(1𝜆). Then choose hash function
𝐻 ∶ {0, 1}𝑛 →  and output the public parameters  =
(𝑁𝐼𝐾𝐸 ,𝑃𝐾𝐸𝐸𝑇 ,𝐻).

• 𝖲𝗄𝖦𝖾𝗇/𝖱𝗄𝖦𝖾𝗇(𝐼𝐷): on input of an identity 𝐼𝐷, generate a key-pair
(𝑝𝑘, 𝑠𝑘) by running NIKE.𝖪𝖾𝗒𝖦𝖾𝗇(𝐼𝐷).

• 𝖯𝖠𝖤𝖪𝖲(𝑤, 𝑠𝑘𝑆 , 𝑝𝑘𝑅): on input of a keyword 𝑤, a sender’s secret
key 𝑠𝑘𝑆 and a receiver’s public key 𝑝𝑘𝑅, run as follows:

– Compute a shared key 𝑠ℎ𝑘 = NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷𝑅, 𝑝𝑘𝑅, 𝐼𝐷𝑆 ,
𝑠𝑘𝑆) and generate a variant of keyword 𝑘𝑤 = 𝐻(𝑤, 𝑠ℎ𝑘).

– Generate a PKEET key-pair (𝑝𝑘𝐸𝑛𝑐 , 𝑠𝑘𝐸𝑛𝑐) ← PKEET.𝖪𝖾𝗒𝖦𝖾𝗇
(𝐼𝐷𝑆). Then, compute ciphertext 𝑐𝑡𝑆 = PKEET.𝖤𝗇𝖼(𝑝𝑘𝐸𝑛𝑐 , 𝑘𝑤)
and trapdoor 𝑡𝑑𝑆 = PKEET.𝖳𝖽(𝑠𝑘𝐸𝑛𝑐). Output the searchable
ciphertext 𝐶 = (𝑐𝑡𝑆 , 𝑡𝑑𝑆) for keyword 𝑘𝑤.

• 𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑤′, 𝑠𝑘𝑅, 𝑝𝑘𝑆): on input of a keyword 𝑤′, a sender’s public
key 𝑝𝑘𝑆 and a receiver’s secret key 𝑠𝑘𝑅, run as follows:

– Compute the shared key 𝑠ℎ𝑘′ = NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒(𝐼𝐷𝑆 , 𝑝𝑘𝑆 ,
𝐼𝐷𝑅, 𝑠𝑘𝑅) and generate a variant of keyword 𝑘𝑤′ = 𝐻(𝑤′,
𝑠ℎ𝑘′).

– Generate a PKEET key-pair (𝑝𝑘𝑇𝑑 , 𝑠𝑘𝑇𝑑) ← PKEET.𝖪𝖾𝗒𝖦𝖾𝗇
(𝐼𝐷𝑅). Then, compute ciphertext 𝑐𝑡𝑅 = PKEET.𝖤𝗇𝖼(𝑝𝑘𝑇𝑑 , 𝑘𝑤′)
and trapdoor 𝑡𝑑𝑅 = PKEET.𝖳𝖽(𝑠𝑘𝑇𝑑). Output the trapdoor
𝑇 = (𝑐𝑡𝑅, 𝑡𝑑𝑅) for keyword 𝑘𝑤′.

• 𝖳𝖾𝗌𝗍(𝐶, 𝑇): on input of a ciphertext 𝐶 = (𝑐𝑡𝑆 , 𝑡𝑑𝑆) and a trapdoor
𝑇 = (𝑐𝑡𝑅, 𝑡𝑑𝑅), compute 𝑏 = PKEET.𝖳𝖾𝗌𝗍(𝑐𝑡𝑆 , 𝑐𝑡𝑅, 𝑡𝑑𝑆 , 𝑡𝑑𝑅) and
output 𝑏 as the result.

The correctness of the above construction follows the correctness of
he underlying schemes. The security analysis of the above construction
s similar to the proof of Theorem 1. Therefore, we omit the details to
onserve space.

heorem 3 (CI-Security). Our PAEKS satisfies CI-security if the NIKE
cheme is CKS-light secure in CKR setting and the Enc and Td algorithm
f the PKEET scheme is W-IND-CCA2 secure.

heorem 4 (TI-Security). Our PAEKS satisfies TI-security if the NIKE
cheme is CKS-light secure in CKR setting and the Enc and Td algorithm
f the PKEET scheme is W-IND-CCA2 secure.

. Instantiations

In this section, we present instantiations of our basic and refined
onstructions.

.1. Instantiation of basic construction

Our basic construction can be instantiated by a variety of NIKE
chemes and PEKS schemes, such as DH-NIKE [34], SOK-IB-NIKE [35],
V-PAKE3 [36] and BDOP-PEKS [1]. By combining these instantiations,

3 Actually, the one-round PAKE scheme requires a password as input; by
utting the password into the public parameter, it can be used as an NIKE
cheme.

c
t
f
t
t
a
a

T

Table 4
Related work comparisons.

Schemes Setting NIKE PEKS

QCZZ21 [14] Public-key  − [34]  −  [1]LHS+19 [16] ID-based  −  − [35]
LTT+22 [18] –  −  [36] 

we can construct existing schemes of PAEKS [14,16,18]. So we do not
actually instantiate our basic construction here, but present how our
basic construction covers the existing schemes in Table 4.

Obliviously, there are other PAEKS schemes that do not appear
in Table 4. We omit these schemes since they do not satisfy fully
CI [11–13,15,17] or employ designated-user setting [30].

6.2. Instantiation of refined construction

We first instantiate our refined construction by Diffie–Hellman
NIKE [34] and the pairing-based PKEET scheme in [33] as below. In
addition, we present a lattice-based instantiation in Appendix D to
demonstrate the flexibility of our construction.

• Setup(1𝜆): given a security parameter 𝜆, choose two cyclic groups
G, G𝑇 with prime order 𝑞 and generator 𝑔, and bilinear map
𝑒 ∶ G × G → G𝑇 . Select hash function 𝐻 ∶ {0, 1}∗ → {0, 1}𝜆,
𝐻1 ∶ {0, 1}∗ → G. Finally output public parameters as  =
(G,G𝑇 , 𝑞, 𝑔, 𝑒,𝐻,𝐻1).

• SkGen(𝐼𝐷𝑆): choose 𝑥 ←$Z𝑞 and generate a key-pair (𝑝𝑘𝑆 , 𝑠𝑘𝑆) =
(𝑔𝑥, 𝑥).

• RkGen(𝐼𝐷𝑅): choose 𝑦 ←$Z𝑞 and generate a key-pair (𝑝𝑘𝑅, 𝑠𝑘𝑅) =
(𝑔𝑦, 𝑦).

• PAEKS(𝑤, 𝑠𝑘𝑆 , 𝑝𝑘𝑅): given a keyword 𝑤, secret key 𝑠𝑘𝑆 and pub-
lic key 𝑝𝑘𝑅, generate a shared key as 𝑠ℎ𝑘 = 𝐻(𝐼𝐷𝑆‖𝐼𝐷𝑅‖𝑝𝑘

𝑠𝑘𝑆
𝑅).

Then, generate ciphertext as 𝐶 = (𝐶1, 𝐶2) = (𝑔𝑟𝑐 ,𝐻1(𝑤, 𝑠ℎ𝑘)𝑟𝑐),
where 𝑟𝑐 ←$Z𝑞 . Finally, output the ciphertext.

• Trapdoor(𝑤′, 𝑠𝑘𝑅, 𝑝𝑘𝑆): given a keyword 𝑤′, secret key 𝑠𝑘𝑅 and
public key 𝑝𝑘𝑆 , the algorithm is the same as the PAEKS algo-
rithm. Output the trapdoor as 𝑇 = (𝑇1, 𝑇2) = (𝑔𝑟𝑡 ,𝐻1(𝑤′, 𝑠ℎ𝑘′)𝑟𝑡),
where 𝑠ℎ𝑘′ = 𝐻(𝐼𝐷𝑆‖𝐼𝐷𝑅‖𝑝𝑘

𝑠𝑘𝑅
𝑆).

• Test(𝐶, 𝑇): given a ciphertext 𝐶 and trapdoor 𝑇 , compute the
equation 𝑒(𝐶1, 𝑇2) = 𝑒(𝑇1, 𝐶2) and output ‘1’ if it holds. Otherwise,
output ‘0’.

Correctness and Security. Following from the underlying PKEET and
DH-NIKE, the correctness and security of the above PAEKS scheme can
be easily proven. Details are omitted to conserve space.

6.3. Comparison and evaluation

We first provide a theoretical analysis of the efficiency and size of
our instantiation (Section 6.2); we compare it with BDOP-PEKS [37],
QCH+20 [13], and QCZZ21 [14]. As shown in Table 5, compared to
BDOP-PEKS, other PAEKS schemes achieve IKGA-resistant with slightly
higher costs. Compared to the other two schemes, our instantiation
reduces the certificate cost from two to one, and achieves anonymity
without additional assumption (See in Section 7). Note that we ignore
the costs of the general hash function in the efficiency analysis.

Additionally, to evaluate the performance of our scheme in practice,
we implement the above schemes in C based on the PBC library [38],
where the elliptic curve is generated by the Type-A parameters. The
hash function that maps string to group element uses the hash func-
tion in the PBC library, and the general hash function uses SHA-256.
The experiments are conducted on a PC with an Intel Core i5-8500
CPU@3.00 GHz and 8 GB of RAM. As shown in Fig. 5, our scheme has
similar efficiency with other schemes in encryption. The trapdoor and
test algorithms in our scheme consume more time than other schemes,
but our scheme has lower costs for certification and the running time
of the two algorithms is still low in practice.
7

f

Table 5
Computation and communication efficiency comparison.

Schemes Efficiency Size

RkGen Encryption Trapdoor Test RK (sk|pk) Ciphertext Trapdoor

BDOP04 [1] E 2E+P+H E+H P Z𝑝|G G+H G
QCH+20 [13] E 3E+P+H 2E+H P Z𝑝|G G+H G
QCZZ21 [14] 2E 3E+P+H 2E+H P 2Z𝑝|2G G+H G
Section 6.2 E 3E+H 3E+H 2P Z𝑝|G 2G 2G

P: Bilinear pairing; E: Exponentiation in the group; H: Hash function that maps a string
to a group element.
G: Ordinary elliptic group element; H: General hash function output.

7. Extensions

We present two extensions of PAEKS, i.e., anonymous PAEKS and
integrated symmetric encryption and PAEKS (shorted as SKE-PAEKS).

7.1. Anonymous PAEKS

Anonymous PAEKS is a generalization of a PAEKS scheme in which
the identities of both parties are hidden. We extend PAEKS to anony-
mous PAEKS, due to the importance of anonymity in both theoretical
research and real-world applications. For example, Bellare et al. [37]
proposed the concept of anonymity in public key encryption; anony-
mous bulletin board is another notable application. The syntax of
anonymous PAEKS is the same as PAEKS, but different in security.

Security. Compared to Definitions 1 and 2, the definition of anony-
mous PAEKS adds protection to the privacy of users’ identities, which
ensures an adversary cannot guess the identities of both parties from
the ciphertexts or the trapdoors. Corresponding to the identity privacy,
the security games of anonymous PAEKS add the identities and two
key generation oracles (SkGen and RkGen) to the challenge and the
query phase, respectively. This additional part in the game allows the
adversary to query key-pairs for any identities except the challenge
identities, and challenge any identities as it wants. Besides, to prevent
trivial wins, the adversary is restricted to queries on the secret key of
the challenge identities; another restriction is the same as discussed in
Definition 1.

Construction. Cryptographic schemes always require additional
omponents or assumptions to achieve anonymity. But in our construc-
ion, both parties’ identities are hidden in the shared key whose security
ollows the security of NIKE. So, the anonymity of the refined construc-
ion is inherent in the anonymity of the underlying NIKE. Although
he basic construction is also constructed from NIKE, its anonymity
dditionally requires the instantiation of the underlying PEKS to be
nonymous due to its key-pair of PEKS.

heorem 5 (Anonymous PAEKS). If a PAEKS scheme is constructed under
StopGuess (and the underlying PEKS scheme is anonymous), then it satisfies
anonymity.

The above theorem actually covers both our basic and refined
constructions. The anonymity of the basic construction is easy to get
from the proof of the refined construction and the anonymity of the
underlying PEKS scheme. Therefore, we only sketch the proof for the
anonymity of the refined construction as follows:

Proof Sketch. The proof is divided into three cases covering different
choices of keywords and public keys contained in the challenge. For
each case, we prove that the advantage of the adversary is negligible.

Case 1. The keywords are different. Then the security can be
reduced to the fully-CI security, and the proof is the same as Theorem 1.

Case 2. The keywords are the same, but the public keys are dif-

erent. In this case, the challenge can be transformed into a challenge

Fig. 5. Comparison of performance with other PAEKS schemes.
Fig. 6. Generation of a ciphertext in SKE-PAEKS.
to the pseudorandomness of the shared key. Therefore, the advan-
tage of the adversary is identical to the advantage in breaking the
pseudorandomness of NIKE, which is negligible.

Case 3. Both keywords and public keys are the same. This case is
nonsense because there is no difference in challenge ciphertext whether
b equals ‘0’ or ‘1’.

7.2. Integrated SKE and PAEKS

PAEKS only provides the functionality of keyword searching. How-
ever, as pointed out by the aforementioned work [1], a PEKS scheme is
meaningless without a public key encryption (PKE) scheme to provide
a data retrieval function. This problem inspires a series of researches on
integrated PKE and PEKS (PKE-PEKS) [39]. But, due to the efficiency
gap between PKE and symmetric encryption (SKE), we integrate SKE
and PAEKS to improve efficiency.

Construction. Existing schemes are often complicated when sup-
porting data retrieval due to security requirements. In contrast, we
could construct a SKE-PAEKS scheme more concisely and more effi-
ciently by reusing the shared key; because our proposed constructions
of PAEKS rely on a shared key between the sender and the receiver.
That is, in the SKE-PAEKS scheme, both parties first separately generate
a shared key  between them through an NIKE scheme. Then the
sender encrypts messages and keywords with the  through SKE
and PAEKS, respectively. For the receiver, the same shared key is used
in both the search and decryption phases. We present the generation of
a ciphertext of SKE-PAEKS as in Fig. 6.

Security and Anonymity. The joint chosen plaintext attack (CPA)-
security of our SKE-PAEKS scheme is easy to prove based on the
security of the underlying schemes. Furthermore, the anonymity of
SKE and PAEKS has been established in [40] and the discussion in
the last section, respectively. Combining them, we could have that the
SKE-PAEKS scheme built from our construction satisfies anonymity.

8. Conclusion

In this paper, we have proposed StopGuess which provides an ele-
gant solution to eliminating IKGA and features modular construction,
intuitive proof, and flexible extensions. Under StopGuess, we modularly
construct two generic constructions with intuitive security analysis.
By instantiating with existing public-key building blocks, StopGuess
is practical efficient. We also extend StopGuess to anonymous PAEKS
8

and SKE-PAEKS to make it more useful. In the future, one work is
to extend the proposed construction in multi-keyword setting, which
supplements the proposed construction in the single-keyword setting.
Another future work is to support fine-grained access control policy in
multi-user environments.

CRediT authorship contribution statement

Tao Xiang: Writing – review & editing, Supervision. Zhongming
Wang: Writing – original draft, Experiment, Formal analysis. Biwen
Chen: Methodology, Formal analysis. Xiaoguo Li: Formal analysis,
Methodology. Peng Wang: Methodology. Fei Chen: Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China under Grants 62102050, U20A20176,62072062, the Nat-
ural Science Foundation of Chongqing, China, under Grants
cstc2022ycjh-bgzxm0031 and CSTB2022NSCQMSX0582, Sichuan Sci-
ence and Technology Program, China under Grant 2021YFQ0056,
CCF-AFSG Research Fund, China under Grant CCF-AFSG RF20220009,
the Science and Technology Research Program of Chongqing Municipal
Education Commission, China under Grant KJQN202201520.

Appendix A. CKS-light Game

The CKS-light game is defined between adversary  and challenger
 as follows:

• Setup: The challenger  takes input of security parameter 𝜆 and
runs NIKE.𝖢𝗈𝗆𝗆𝗈𝗇𝖲𝖾𝗍𝗎𝗉 to generate public parameters  . Then

it gives  to the adversary.

A

P
𝜖

d
k

S

𝑝
Q

C

r
(
r
Q
G
I
t

t
s

i
q
w
b
S
𝖠

o
p

A

t
a
i

• Query Phase: The adversary adaptively issues queries and the
challenger  answers ’s queries as follows (Note that in the CKS-
light security,  can only query Register Honest ID twice and
Test once):

– Register Honest ID: Given an identity 𝐼𝐷,  runs
NIKE.𝖪𝖾𝗒𝖦𝖾𝗇 to generate a key-pair (𝑝𝑘, 𝑠𝑘) and records the
tuple (ℎ𝑜𝑛𝑒𝑠𝑡, 𝐼𝐷, 𝑝𝑘, 𝑠𝑘). Then  returns 𝑝𝑘 to .

– Register Corrupt ID: Given an identity 𝐼𝐷 and a public key
𝑝𝑘,  records the tuple (𝑐𝑜𝑟𝑟𝑢𝑝𝑡, 𝐼𝐷, 𝑝𝑘,⟂).

– Corrupt Reveal: Given two identities 𝐼𝐷1, 𝐼𝐷2 that sat-
isfies at least one of the two identities was registered as
honest,  runs NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒 and returns the shared key
to .

– Test: Given two identities 𝐼𝐷1, 𝐼𝐷2 that both of them were
registered as honest,  randomly choose 𝑏 ← {0, 1}. If 𝑏 = 0,
 runs NIKE.𝖲𝗁𝖺𝗋𝖾𝖽𝖪𝖾𝗒 and returns the shared key to .
Otherwise,  randomly chooses a key and returns to .

• Challenge:  finally outputs 𝑏′ ∈ {0, 1} as its guess.

ppendix B. Proof of Lemma 1

roof. Supposed  is an attack algorithm that has advantage 𝖠𝖽𝗏CI (𝜆) ≥
1 in breaking the Game GCI

 ,(1
𝜆) of CI-security. Then we construct

an algorithm  that breaking the security of NIKE with advantage
𝖠𝖽𝗏CKS−light

 (𝜆) ≥ 𝜖1
2 .  simulates Game GCI

 ,(1
𝜆) and interacts with 

as follows:
Setup phase. The algorithm  first receives public parameter 𝑁𝐼𝐾𝐸
from the challenger . And then it registers 𝐼𝐷𝑆 and 𝐼𝐷𝑅 as hon-
est users to  and receives 𝑝𝑘𝑆 , 𝑝𝑘𝑅 as response. Finally,  returns
(𝑁𝐼𝐾𝐸 , 𝑝𝑘𝑆 , 𝑝𝑘𝑅) to .
Query phase 1.  answer ’s queries as follows:

• Hash queries. In this queries,  maintains a list 𝐻 of tuple
⟨𝑤, 𝑠ℎ𝑘, ℎ⟩. When  supplies a query on keyword and shared key
(𝑤𝑖, 𝑠ℎ𝑘𝑖), the algorithm  first checks the list 𝐻 . If the query
already appears on the list,  returns value from 𝐻 . Otherwise,
it randomly choose ℎ𝑖 ← 𝑤𝑜𝑟𝑑 and adds the tuple ⟨𝑤𝑖, 𝑠ℎ𝑘𝑖, ℎ𝑖⟩
to the list. Then it returns the tuple to .

• Ciphertext-keyword queries.  supplies a keyword 𝑤𝑖 and a
receiver’s public key 𝑝𝑘𝑅𝑖

.  registers (𝐼𝐷𝑅𝑖, 𝑝𝑘𝑅𝑖) to  as a
corrupt user, makes reveal query of (𝐼𝐷𝑆 , 𝐼𝐷𝑅𝑖) to  and receives
𝑠ℎ𝑘𝑖 as response. Then  returns 𝐶𝑖 = 𝑘𝑤𝑖 to , where 𝑘𝑤𝑖 =
𝐻(𝑤𝑖, 𝑠ℎ𝑘𝑖).

• Trapdoor-keyword queries.  supplies a keyword 𝑤𝑖 and a
sender’s public key 𝑝𝑘𝑆𝑖

.  registers (𝐼𝐷𝑆𝑖, 𝑝𝑘𝑆𝑖) to  as a corrupt
user, makes reveal query of (𝐼𝐷𝑆𝑖, 𝐼𝐷𝑅) to  and receives 𝑠ℎ𝑘𝑖 as
response. Then  returns 𝑇𝑖 = 𝑘𝑤𝑖 to , where 𝑘𝑤𝑖 = 𝐻(𝑤𝑖, 𝑠ℎ𝑘𝑖).

Challenge.  supplies a pair of keywords (𝑤∗
0 , 𝑤

∗
1) as its challenge. 

makes test queries on (𝐼𝐷𝑆 , 𝐼𝐷𝑅) to  and receives 𝑠ℎ𝑘∗ as response.
Then  computes 𝑘𝑤∗ = 𝐻(𝑤∗

𝑏 , 𝑠ℎ𝑘
∗) and returns 𝐶∗ = 𝑘𝑤∗ as the

challenge ciphertext to , where 𝑏 ←$ {0, 1}.
Query phase 2.  answer ’s queries as the same as phase 1.
Guess phase. Eventually,  supplies 𝑏′ as its guess to Game GCI

 ,(1
𝜆).

If 𝑏 = 𝑏′, then  returns 𝑏̂ = 0 as guess to . Otherwise,  returns 𝑏̂ = 1
to .

Since 𝑠ℎ𝑘𝑖 is the response from  and 𝑘𝑤𝑖 is generated as a real
game, the response to  are perfectly simulated by . Therefore, there
is no abort in the simulation.

Consider the response 𝑠ℎ𝑘∗ from  in the challenge phase which
can be either a real key or a random bit string. If 𝑠ℎ𝑘∗ is a real key,
’s view in the Game GCI

 ,(1
𝜆) is identical to a real game. Thus the

advantage 𝖠𝖽𝗏CKS−light
 (𝜆) is equal to the advantage 𝖠𝖽𝗏CI (𝜆). Else if 𝑠ℎ𝑘∗

is a random bit string, ’s probability in guessing 𝑏 is 1/2. Thus, in this
case, the advantage 𝖠𝖽𝗏CKS−light

 (𝜆) = 0.
Hence, from the above discussion, we have B breaks the game of

CKS-light in advantage 𝜖1 , which completes the proof.
9

2

Appendix C. Proof of 𝗚𝗮𝗺𝗲𝟏 in Lemma 2

Proof. Supposed  is an attack algorithm that has advantage 𝖠𝖽𝗏fCI (𝜆) ≥
𝜖1 in breaking the game of fully CI-security. Then we construct an
algorithm  that breaks the semantic security of the PEKS scheme
with advantage 𝖠𝖽𝗏ss (𝜆) ≥ (𝑞𝑐𝑘 ⋅ 𝜖1)∕|𝑤𝑜𝑟𝑑 |, where 𝑞𝑐𝑘 and 𝑤𝑜𝑟𝑑
enote the number of ciphertext-keyword queries and the space of
eyword respectively.  simulates Game GfCI

 ,(1
𝜆) and interacts with

as follows:
etup phase. The algorithm  receives public parameter  from the

challenger , registers 𝐼𝐷𝑆 , 𝐼𝐷𝑅 as honest users to  and receives 𝑝𝑘𝑆 ,
𝑘𝑅 as response. Finally,  returns ( , 𝑝𝑘𝑃𝐸𝐾𝑆 , 𝑝𝑘𝑆 , 𝑝𝑘𝑅) to .
uery phase 1.  answers ’s queries as follows:

• Hash queries. This query is the same as in the proof of Lemma 1.
• Ciphertext-keyword queries.  supplies a keyword 𝑤𝑖 and a

receiver’s public key (𝑝𝑘𝑅𝑖
, 𝑝𝑘𝑃𝐸𝐾𝑆𝑖).  registers (𝐼𝐷𝑅𝑖, 𝑝𝑘𝑅𝑖) to

 as a corrupt user, makes reveal query of (𝐼𝐷𝑆 , 𝐼𝐷𝑅𝑖) to  and
receives 𝑠ℎ𝑘𝑖 as response. Then  computes 𝐶𝑖 = 𝑃𝐸𝐾𝑆.𝖯𝖤𝖪𝖲
(𝑘𝑤𝑖, 𝑝𝑘𝑃𝐸𝐾𝑆𝑖) and returns 𝐶𝑖 to , where 𝑘𝑤𝑖 = 𝐻(𝑤𝑖, 𝑠ℎ𝑘𝑖).

• Trapdoor-keyword queries.  supplies a keyword 𝑤𝑖 and a
sender’s public key 𝑝𝑘𝑆𝑖

.  registers (𝐼𝐷𝑆𝑖, 𝑝𝑘𝑆𝑖) to  as a corrupt
user, makes reveal query of (𝐼𝐷𝑆𝑖, 𝐼𝐷𝑅) to  and receives 𝑠ℎ𝑘𝑖 as
response. Then  computes 𝑇𝑖 = 𝑃𝐸𝐾𝑆.𝖳𝗋𝖺𝗉𝖽𝗈𝗈𝗋(𝑘𝑤𝑖, 𝑠𝑘𝑃𝐸𝐾𝑆𝑖)
and returns 𝑇𝑖 to , where 𝑘𝑤𝑖 = 𝐻(𝑤𝑖, 𝑠ℎ𝑘𝑖).

hallenge.  supplies a pair of keywords (𝑤∗
0 , 𝑤

∗
1) as its challenge.

first makes test queries on (𝐼𝐷𝑆 , 𝐼𝐷𝑅) to  and receives 𝑠ℎ𝑘∗ as
esponse. Then it computes 𝑘𝑤∗ = 𝐻(𝑤∗

𝑏 , 𝑠ℎ𝑘
∗) and 𝐶∗ = 𝑃𝐸𝐾𝑆.𝖯𝖤𝖪𝖲

𝑘𝑤∗
𝑖 , 𝑝𝑘𝑃𝐸𝐾𝑆), where 𝑏 ←$ {0, 1} and 𝑘𝑤∗ = 𝐻(𝑤∗

𝑏 , 𝑠ℎ𝑘
∗). Finally, 

eturns 𝐶∗ to .
uery phase 2.  answers ’s queries in the same way as phase 1.
uess phase. Eventually,  supplies 𝑏′ as its guess to Game GCI

 ,(1
𝜆).

f 𝑏 = 𝑏′, then  returns 𝑏̂ = 0 as guess to ; otherwise,  returns 𝑏̂ = 1
o .

Similar to the proof in Lemma 1, it is easy to see that the response
o  is perfectly simulated by . Therefore, there is no abort in the
imulation.

Next, in the challenge phase, the challenge keyword can be divided
nto two cases through the different choices of . First, 𝑤∗

𝑏 is not
ueried in the query phase, then this game is identical to 𝖦𝖺𝗆𝖾0. Thus,
e have 𝖠𝖽𝗏CI (𝜆) = 𝖠𝖽𝗏fCI (𝜆) which is negligible. Second, 𝑤∗

𝑏 is queried
efore, the advantage 𝖠𝖽𝗏ss (𝜆) is identical to the advantage 𝖠𝖽𝗏fCI (𝜆).
ince the probability of this case occurring is at least 𝑞𝑐𝑘∕||, we have
𝖽𝗏ss (𝜆) ≥ (𝑞𝑐𝑘 ⋅ 𝜖1)∕||.

From the above discussions, we have  breaks the semantic security
f the PEKS scheme in non-negligible advantage. This completes the
roof.

ppendix D. Lattice-based instantiation

Due to the impossibility of (ring) LWE-based NIKE [41], we build
he lattice-based instantiation from the one-round PAKE scheme in [42]
nd the PKEET scheme in [43]. Before describing the details of the
nstantiation, we first introduce some underlying notations.

•  and  are a ring and a subset of × of invertible elements
respectively.

• {𝐺 = 𝐼𝑛 ⊗ 𝑔⊤} ∈ Z𝑛×𝑛𝑘
𝑞 is a gadget matrix [44], where 𝑔 =

[1, 2,… , 2𝑘−1] ∈ Z𝑘
𝑞 .

• 𝖤𝗇𝖼𝗈𝖽𝖾(𝜇) = 𝜇 ⋅ (0,… , 0,
⌈

𝑞
2

⌉

)⊤ is an encode function, where 𝜇 ∈
{0, 1} and 𝖤𝗇𝖼𝗈𝖽𝖾(𝜇) ∈ Z𝑚

𝑞 .
• 𝑃 (𝑥) =

⌊

2𝑥
𝑞

⌋

mod 2 is a deterministic rounding function [36].

• ℎ is an injective ring homomorphism ℎ ∶  → Z𝑛×𝑚.
𝑞

• 𝑑𝑆 ∈ Z𝑡
𝑞 is a vector, where 𝑑𝑆,𝑗 ∈ Z𝑞 denotes the 𝑗th element of

it. And the same is true for 𝑑𝑅.

The algorithms of the lattice-based instantiation are detailed as
follows:

• Setup(1𝜆): given a security parameter 𝜆, randomly choose an 𝐾-
bit string 𝗆 = 𝗆1𝗆2 …𝗆𝐾 ← {0, 1}𝐾 , 𝑢 ←  and 𝑉 ∈ Z𝑛×𝑡

𝑞 . Select
𝑛×𝑚 matrices 𝐴1, 𝐴2,… , 𝐴𝑙, 𝐵 ∈ Z𝑛×𝑚

𝑞 and 𝐴0 ← Z𝑛×𝑚′
𝑞 . Set matrix

𝐴 = [𝐴0| − 𝐴0𝑄], where 𝑄 ← 𝐷𝑚′×𝑚′′

Z,𝜎 and 𝑚 = 𝑚′ + 𝑚′′. Choose
hash functions 𝐻 ∶ {0, 1}∗ → {0, 1}𝑡, 𝐻1 ∶ {0, 1}∗ → {−1, 1}𝑙 and
output public parameters  = (𝐴,𝐴1,… , 𝐴𝑙 , 𝐵, 𝑉 ,𝐻 , 𝐻1, 𝗆, 𝑢).

• SkGen(𝐼𝐷𝑆): given identity 𝐼𝐷𝑆 , randomly choose 𝑘𝑆 ← 𝐷𝑚
Z,𝜎 ,

𝑠𝑆,𝑖 ← Z𝑛
𝑞 and 𝑒𝑆,𝑖 ← 𝛹

𝑚
𝛼 . Compute vector 𝑝𝑆 = 𝐴𝑢 ⋅ 𝑘𝑆 and

𝑐𝑆,𝑖 = 𝐴⊤
𝑢 𝑠𝑆,𝑖 + 𝑒𝑆,𝑖 + 𝖤𝗇𝖼𝗈𝖽𝖾(𝗆𝑖) mod 𝑞, where matrix 𝐴𝑢 = [𝐴0|−

𝐴0𝑄 + ℎ(𝑢)𝐺] ∈ Z𝑛×𝑚
𝑞 . Output a key-pair as (𝑝𝑘𝑆 = (𝑝𝑆 , {𝑐𝑆,𝑖}𝐾𝑖=1),

𝑠𝑘𝑆 = (𝑘𝑆 , {𝑠𝑆,𝑖}𝐾𝑖=1)).
• RkGen(𝐼𝐷𝑅): given identity 𝐼𝐷𝑅, the RkGen algorithm is the

same as SkGen. It outputs the key-pair as (𝑝𝑘𝑅 = (𝑝𝑅, {𝑐𝑅,𝑖}𝐾𝑖=1),
𝑠𝑘𝑅 = (𝑘𝑅, {𝑠𝑅,𝑖}𝐾𝑖=1)).

• PAEKS(𝑤, 𝑠𝑘𝑆 , 𝑝𝑘𝑅): given keyword 𝑤, secret key 𝑠𝑘𝑆 and public
key 𝑝𝑘𝑅, proceed as follows:

– For 𝑖 = 1, 2,… , 𝐾, compute 𝑦𝑆,𝑖 = ℎ𝑆,𝑖 ⋅ 𝑝𝑆,𝑖, where ℎ𝑆,𝑖 ←
𝑃 (𝑐⊤𝑅,𝑖 ⋅ 𝑘𝑆 (mod 𝑞)) and 𝑝𝑆,𝑖 ← 𝑃 (𝑠⊤𝑆,𝑖 ⋅ 𝑝𝑅(mod 𝑞)). Set 𝐾-
bit string 𝑦𝑆 = 𝑦𝑆,1𝑦𝑆,2 … 𝑦𝑆,𝐾 ∈ {0, 1}𝐾 and compute the
variant of keyword 𝑘𝑤 = 𝐻(𝑤, 𝑦𝑆). Randomly choose 𝑠1 ←

Z𝑛
𝑞 , 𝑥1 ← 𝛹

𝑡
𝛼 , and compute 𝐶1 = 𝑉 ⊤𝑠1 + 𝑥1 + 𝑘𝑤

⌊

𝑞
2

⌋

∈ Z𝑡
𝑞 .

– Use the TrapGen algorithm to generate matrix 𝐴′ with
trapdoor 𝑇𝐴′ as (𝐴′, 𝑇𝐴′) ← 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(𝑞, 𝑛). Compute 𝐹 =
(𝐴′

|𝐵+
∑

𝑏𝑖𝐴𝑖) and 𝐽 =
∑

𝑏𝑖𝐽𝑖, where 𝑏 = 𝐻1(𝐶1) ∈ {−1, 1}𝑙
and 𝐽𝑖 ∈ {−1, 1}𝑚×𝑚. Randomly choose 𝑦1 ∈ 𝛹

𝑚
𝛼 and set

𝑧1 = 𝐽⊤𝑦1. Compute 𝐶2 = 𝐹⊤𝑠1 + [𝑦⊤1 |𝑧
⊤
1]

⊤ ∈ Z2𝑚
𝑞 . Finally,

output 𝐶𝑡 = (𝐶1, 𝐶2, 𝐶3 = 𝐴′, 𝑡𝑑𝑆 = 𝑇𝐴′).

• Trapdoor(𝑤, 𝑠𝑘𝑅, 𝑝𝑘𝑆): the Trapdoor algorithm is the same as
the PAEKS algorithm except the value of the input; we omit the
details. It outputs trapdoor 𝑇𝑑 = (𝑇1, 𝑇2, 𝑇3, 𝑡𝑑𝑅).

• Test(𝐶𝑡, 𝑇 𝑑): given ciphertext 𝐶𝑡 and trapdoor 𝑇𝑑, proceed as
follows:

– Compute 𝑒𝑆 = 𝖲𝖺𝗆𝗉𝗅𝖾𝖫𝖾𝖿𝗍(𝐶3, 𝐵 +
∑

𝑏𝑆,𝑖𝐴𝑖, 𝑡𝑑𝑆 , 𝑉 , 𝜎) and
𝑑𝑆 = 𝐶1 − 𝑒⊤𝑆 ⋅ 𝐶2 ∈ Z𝑡

𝑞 , where 𝑏𝑆 = 𝐻1(𝐶1) = (𝑏𝑆,1 … 𝑏𝑆,𝑙).
– Compute 𝑒𝑅 = 𝖲𝖺𝗆𝗉𝗅𝖾𝖫𝖾𝖿𝗍(𝑇3, 𝐵 +

∑

𝑏𝑅,𝑖𝐴𝑖, 𝑡𝑑𝑅, 𝑉 , 𝜎) and
𝑑𝑅 = 𝑇1 − 𝑒⊤𝑅 ⋅ 𝑇2 ∈ Z𝑡

𝑞 , where 𝑏𝑅 = 𝐻1(𝑇1) = (𝑏𝑅,1 … 𝑏𝑅,𝑙).
– For 𝑗 = 1, 2,… , 𝑡, compare 𝑑𝑆,𝑗 with

⌊

𝑞
2

⌋

. Output ℎ𝑆,𝑗 = 1 if
they are close; otherwise, output ℎ𝑆,𝑗 = 0. Similarly, follow
the same procedure to generate ℎ𝑅 according to 𝑑𝑅.

– Output ‘1’ if ℎ𝑆 = ℎ𝑅 and ‘0’ otherwise.

Correctness. If the one-round PAKE scheme and the PKEET scheme are
correct, then our lattice-based instantiation is correct.

Theorem 6 (Security). If the one-round PAKE scheme is secure and the
PKEET scheme is W-IND-CCA2 secure, then the above PAEKS is CI-secure
and TI-secure.

Since our lattice-based instantiation is an implementation of the
refined construction in StopGuess, its security follows the refine con-
struction. The security of the refined construction relies on the security
underlying PAKE and PKEET scheme. The procedure of reduction is
similar to Theorems 3 and 4.

References

[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption
with keyword search, in: C. Cachin, J.L. Camenisch (Eds.), EUROCRYPT 2004,
Springer, Berlin, Heidelberg, 2004, pp. 506–522.
10
[2] D.X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted
data, in: Proceeding 2000 IEEE Symposium on Security and Privacy. S P 2000,
2000, pp. 44–55.

[3] J.W. Byun, H.S. Rhee, H.-A. Park, D.H. Lee, Off-line keyword guessing attacks on
recent keyword search schemes over encrypted data, in: W. Jonker, M. Petković
(Eds.), Secure Data Management, Springer, Berlin, Heidelberg, 2006, pp. 75–83.

[4] D. Boneh, A. Raghunathan, G. Segev, Function-private identity-based encryption:
Hiding the function in functional encryption, in: R. Canetti, J.A. Garay (Eds.),
CRYPTO 2013, in: LNCS, 8043, Springer, 2013, pp. 461–478.

[5] H.S. Rhee, J.H. Park, W. Susilo, D.H. Lee, Improved searchable public key
encryption with designated tester, in: W. Li, W. Susilo, U.K. Tupakula, R.
Safavi-Naini, V. Varadharajan (Eds.), ASIACCS 2009, ACM, 2009, pp. 376–379.

[6] R. Chen, Y. Mu, G. Yang, F. Guo, X. Huang, X. Wang, Y. Wang, Server-aided
public key encryption with keyword search, IEEE Trans. Inf. Forensics Secur. 11
(12) (2016) 2833–2842.

[7] R. Chen, Y. Mu, G. Yang, F. Guo, X. Wang, Dual-server public-key encryption
with keyword search for secure cloud storage, IEEE Trans. Inf. Forensics Secur.
11 (4) (2016) 789–798.

[8] P. Jiang, Y. Mu, F. Guo, Q.-Y. Wen, Private keyword-search for database systems
against insider attacks, J. Comput. Sci. Tech. 32 (3) (2017) 599–617.

[9] J. Li, M. Wang, Y. Lu, Y. Zhang, H. Wang, ABKS-SKGA: Attribute-based keyword
search secure against keyword guessing attack, Comput. Stand. Interfaces 74
(2021) 103471.

[10] Y. Miao, Q. Tong, R.H. Deng, K.-K.R. Choo, X. Liu, H. Li, Verifiable searchable
encryption framework against insider keyword-guessing attack in cloud storage,
IEEE Trans. Cloud Comput. 10 (2) (2022) 835–848.

[11] Q. Huang, H. Li, An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks, Inform. Sci. 403–404 (2017) 1–14.

[12] M. Noroozi, Z. Eslami, Public key authenticated encryption with keyword search:
Revisited, IET Inf. Secur. 13 (4) (2019) 336–342.

[13] B. Qin, Y. Chen, Q. Huang, X. Liu, D. Zheng, Public-key authenticated encryption
with keyword search revisited: Security model and constructions, Inform. Sci. 516
(2020) 515–528.

[14] B. Qin, H. Cui, X. Zheng, D. Zheng, Improved security model for public-key
authenticated encryption with keyword search, in: Q. Huang, Y. Yu (Eds.),
ProvSec, Springer International Publishing, Cham, 2021, pp. 19–38.

[15] D. He, M. Ma, S. Zeadally, N. Kumar, K. Liang, Certificateless public key
authenticated encryption with keyword search for industrial internet of things,
IEEE Trans. Ind. Inform. 14 (8) (2018) 3618–3627.

[16] H. Li, Q. Huang, J. Shen, G. Yang, W. Susilo, Designated-server identity-based
authenticated encryption with keyword search for encrypted emails, Inform. Sci.
481 (2019) 330–343.

[17] Q. Fan, D. He, J. Chen, C. Peng, L. Wang, Isoga: An isogeny-based quantum-resist
searchable encryption scheme against keyword guessing attacks, IEEE Syst. J.
(2022) 1–12.

[18] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, Y.-C. Chen, Public-key authenticated
encryption with keyword search: Cryptanalysis, enhanced security, and quantum-
resistant instantiation, in: Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, ASIA CCS ’22, 2022, pp. 423–436.

[19] V.B. Chenam, S.T. Ali, A designated cloud server-based multi-user certificateless
public key authenticated encryption with conjunctive keyword search against
IKGA, Comput. Stand. Interfaces 81 (2022) 103603.

[20] W. Zhang, B. Qin, X. Dong, A. Tian, Public-key encryption with bidirectional key-
word search and its application to encrypted emails, Comput. Stand. Interfaces
78 (2021) 103542.

[21] W. Li, L. Xu, Y. Wen, F. Zhang, Conjunctive multi-key searchable encryption
with attribute-based access control for EHR systems, Comput. Stand. Interfaces
82 (2022) 103606.

[22] H. Wang, Y. Li, W. Susilo, D.H. Duong, F. Luo, A fast and flexible attribute-
based searchable encryption scheme supporting multi-search mechanism in cloud
computing, Comput. Stand. Interfaces 82 (2022) 103635.

[23] M. Miao, Y. Wang, J. Wang, X. Huang, Verifiable database supporting keyword
searches with forward security, Comput. Stand. Interfaces 77 (2021) 103491.

[24] C. Ge, Z. Liu, J. Xia, L. Fang, Revocable identity-based broadcast proxy re-
encryption for data sharing in clouds, IEEE Trans. Dependable Secure Comput.
18 (3) (2019) 1214–1226.

[25] C. Ge, W. Susilo, Z. Liu, J. Xia, P. Szalachowski, L. Fang, Secure keyword
search and data sharing mechanism for cloud computing, IEEE Trans. Dependable
Secure Comput. 18 (6) (2020) 2787–2800.

[26] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia, L. Fang, Revocable attribute-based
encryption with data integrity in clouds, IEEE Trans. Dependable Secure Comput.
19 (5) (2021) 2864–2872.

[27] C. Ge, Z. Liu, W. Susilo, L. Fang, H. Wang, Attribute-based encryption with
reliable outsourced decryption in cloud computing using smart contract, IEEE
Trans. Dependable Secure Comput. (2023).

[28] I.R. Jeong, J.O. Kwon, D. Hong, D.H. Lee, Constructing PEKS schemes secure
against keyword guessing attacks is possible? Comput. Commun. 32 (2) (2009)
394–396.

[29] Z.-Y. Shao, B. Yang, On security against the server in designated tester public key
encryption with keyword search, Inform. Process. Lett. 115 (12) (2015) 957–961.

http://refhub.elsevier.com/S0920-5489(23)00086-7/sb1
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb1
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb1
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb1
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb1
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb2
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb2
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb2
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb2
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb2
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb3
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb3
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb3
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb3
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb3
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb4
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb4
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb4
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb4
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb4
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb5
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb5
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb5
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb5
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb5
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb6
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb6
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb6
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb6
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb6
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb7
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb7
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb7
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb7
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb7
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb8
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb8
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb8
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb9
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb9
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb9
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb9
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb9
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb10
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb10
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb10
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb10
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb10
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb11
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb11
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb11
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb12
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb12
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb12
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb13
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb13
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb13
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb13
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb13
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb14
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb14
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb14
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb14
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb14
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb15
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb15
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb15
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb15
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb15
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb16
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb16
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb16
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb16
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb16
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb17
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb17
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb17
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb17
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb17
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb18
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb18
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb18
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb18
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb18
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb18
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb18
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb19
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb19
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb19
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb19
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb19
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb20
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb20
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb20
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb20
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb20
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb21
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb21
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb21
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb21
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb21
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb22
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb22
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb22
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb22
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb22
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb23
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb23
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb23
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb24
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb24
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb24
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb24
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb24
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb25
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb25
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb25
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb25
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb25
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb26
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb26
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb26
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb26
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb26
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb27
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb27
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb27
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb27
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb27
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb28
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb28
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb28
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb28
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb28
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb29
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb29
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb29

[30] K. Emura, Generic construction of public-key authenticated encryption with
keyword search revisited: Stronger security and efficient construction, in: Pro-
ceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop, APKC ’22,
2022, pp. 39–49.

[31] X. Boyen, B. Waters, Anonymous hierarchical identity-based encryption (without
random oracles), in: C. Dwork (Ed.), Advances in Cryptology - CRYPTO 2006,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 290–307.

[32] E.S.V. Freire, D. Hofheinz, E. Kiltz, K.G. Paterson, Non-interactive key exchange,
in: K. Kurosawa, G. Hanaoka (Eds.), PKC 2013, in: LNCS, vol. 7778, Springer,
2013, pp. 254–271.

[33] G. Yang, C.H. Tan, Q. Huang, D.S. Wong, Probabilistic public key encryption with
equality test, in: J. Pieprzyk (Ed.), CT-RSA 2010, in: LNCS, vol. 5985, Springer,
2010, pp. 119–131.

[34] W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans. Inform.
Theory 22 (6) (1976) 644–654.

[35] R. Sakai, K. Ohgishi, M. Kasahara, Cryptosystems based on pairings, in: The 2000
Symposium on Cryptography and Information Security, Vol. 45, Japan, 2000, pp.
26–28.

[36] J. Katz, V. Vaikuntanathan, Round-optimal password-based authenticated key
exchange, in: Y. Ishai (Ed.), Theory of Cryptography, Springer, Berlin, Heidelberg,
2011, pp. 293–310.
11
[37] M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval, Key-privacy in public-key
encryption, in: C. Boyd (Ed.), ASIACRYPT 2001, Springer, Berlin, Heidelberg,
2001, pp. 566–582.

[38] B. Lynn, et al., The pairing-based cryptography library, 2006, Internet: crypto.
stanford. edu/pbc/[Mar. 27, 2013]. https://crypto.stanford.edu/pbc/.

[39] Y. Chen, J. Zhang, D. Lin, Z. Zhang, Generic constructions of integrated PKE and
PEKS, Des. Codes Cryptogr. 78 (2) (2016) 493–526.

[40] F. Banfi, U. Maurer, Anonymous symmetric-key communication, in: C. Galdi, V.
Kolesnikov (Eds.), SCN 2020, in: LNCS, vol. 12238, Springer, 2020, pp. 471–491.

[41] S. Guo, P. Kamath, A. Rosen, K. Sotiraki, Limits on the efficiency of (ring)
LWE-Based non-interactive key exchange, J. Cryptol. 35 (1) (2022) 1.

[42] Z. Li, D. Wang, Achieving one-round password-based authenticated key exchange
over lattices, IEEE Trans. Serv. Comput. 15 (1) (2022) 308–321.

[43] D.H. Duong, K. Fukushima, S. Kiyomoto, P.S. Roy, W. Susilo, A lattice-based
public key encryption with equality test in standard model, in: J. Jang-Jaccard,
F. Guo (Eds.), ACISP 2019, in: LNCS, vol. 11547, Springer, 2019, pp. 138–155.

[44] D. Micciancio, C. Peikert, Trapdoors for lattices: Simpler, tighter, faster, smaller,
in: D. Pointcheval, T. Johansson (Eds.), EUROCRYPT 2012, in: LNCS, vol. 7237,
Springer, 2012, pp. 700–718.

http://refhub.elsevier.com/S0920-5489(23)00086-7/sb30
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb30
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb30
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb30
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb30
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb30
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb30
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb31
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb31
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb31
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb31
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb31
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb32
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb32
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb32
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb32
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb32
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb33
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb33
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb33
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb33
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb33
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb34
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb34
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb34
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb35
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb35
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb35
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb35
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb35
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb36
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb36
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb36
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb36
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb36
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb37
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb37
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb37
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb37
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb37
https://crypto.stanford.edu/pbc/
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb39
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb39
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb39
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb40
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb40
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb40
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb41
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb41
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb41
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb42
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb42
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb42
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb43
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb43
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb43
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb43
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb43
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb44
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb44
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb44
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb44
http://refhub.elsevier.com/S0920-5489(23)00086-7/sb44

	StopGuess: A framework for public-key authenticated encryption with keyword search
	Introduction
	Our Contributions
	Related Work

	StopGuess: ready-to-eliminate KGA
	Preliminaries
	Cryptographic Primitives
	Non-Interactive Key Exchange (NIKE)
	Public key Encryption with Keyword Search (PEKS)
	Public Key Encryption with Equality Test (PKEET)

	Definitions
	Definitions of Syntax
	Definitions of Security

	Constructions
	Our Basic Generic Construction
	Our Refined Generic Construction

	Instantiations
	Instantiation of Basic Construction
	Instantiation of Refined Construction
	Comparison and Evaluation

	Extensions
	Anonymous PAEKS
	Integrated SKE and PAEKS

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. CKS-light Game
	Appendix B. Proof of Lemma 1
	Appendix C. Proof of Game1 in Lemma 2
	Appendix D. Lattice-based Instantiation
	References

