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Unsupervised Anomaly Detection in Medical
Images with a Memory-augmented Multi-level

Cross-attentional Masked Autoencoder

Yu Tian1, Guansong Pang5, Yuyuan Liu2, Chong Wang2, Yuanhong Chen2,
Fengbei Liu2, Rajvinder Singh3, Johan W Verjans2,3,4, Mengyu Wang1, and

Gustavo Carneiro6

1 Harvard Ophthalmology AI Lab, Harvard University.
2 Australian Institute for Machine Learning, University of Adelaide
3 Faculty of Health and Medical Sciences, University of Adelaide

4 South Australian Health and Medical Research Institute
5 Singapore Management University

6 Centre for Vision, Speech and Signal Processing, University of Surrey

Abstract. Unsupervised anomaly detection (UAD) aims to find anoma-
lous images by optimising a detector using a training set that contains
only normal images. UAD approaches can be based on reconstruction
methods, self-supervised approaches, and Imagenet pre-trained models.
Reconstruction methods, which detect anomalies from image reconstruc-
tion errors, are advantageous because they do not rely on the design of
problem-specific pretext tasks needed by self-supervised approaches, and
on the unreliable translation of models pre-trained from non-medical
datasets. However, reconstruction methods may fail because they can
have low reconstruction errors even for anomalous images. In this paper,
we introduce a new reconstruction-based UAD approach that addresses
this low-reconstruction error issue for anomalous images. Our UAD ap-
proach, the memory-augmented multi-level cross-attentional masked au-
toencoder (MemMC-MAE), is a transformer-based approach, consisting
of a novel memory-augmented self-attention operator for the encoder
and a new multi-level cross-attention operator for the decoder. MemMC-
MAE masks large parts of the input image during its reconstruction,
reducing the risk that it will produce low reconstruction errors because
anomalies are likely to be masked and cannot be reconstructed. How-
ever, when the anomaly is not masked, then the normal patterns stored
in the encoder’s memory combined with the decoder’s multi-level cross-
attention will constrain the accurate reconstruction of the anomaly. We
show that our method achieves SOTA anomaly detection and localisation
on colonoscopy, pneumonia, and covid-19 chest x-ray datasets.

Keywords: Pneumonia · Covid-19 · Colonoscopy · Unsupervised Learn-
ing · Anomaly Detection · Anomaly Segmentation · Vision Transformer

1 Introduction

Detecting and localising anomalous findings in medical images (e.g., polyps, ma-
lignant tissues, etc.) are of vital importance [1,4,7,12–15,17–19,27,29,30,32,34].
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Systems that can tackle these tasks are often formulated with a classifier trained
with large-scale datasets annotated by experts. Obtaining such annotation is of-
ten challenging in real-world clinical datasets because the amount of normal im-
ages from healthy patients tend to overwhelm the amount of anomalous images.
Hence, to alleviate the challenges of collecting anomalous images and learn-
ing from class-imbalanced training sets, the field has developed unsupervised
anomaly detection (UAD) models [3, 31] that are trained exclusively with nor-
mal images. Such UAD strategy benefits from the straightforward acquisition of
training sets containing only normal images and the potential generalisability to
unseen anomalies without collecting all possible anomalous sub-classes.

Current UAD methods learn a one-class classifier (OCC) using only nor-
mal/healthy training data, and detect anomalous/disease samples using the
learned OCC [3, 8, 11, 16, 22, 25, 26, 33, 36]. UAD methods can be divided into:
1) reconstruction methods, 2) self-supervised approaches, and 3) Imagenet pre-
trained models. Reconstruction methods [3,8,16,25,36] are trained to accurately
reconstruct normal images, exploring the assumption that the lack of anomalous
images in the training set will prevent a low error reconstruction of an test
image that contains an anomaly. However, this assumption is not met in gen-
eral because reconstruction methods are indeed able to successfully reconstruct
anomalous images, particularly when the anomaly is subtle. Self-supervised ap-
proaches [28,31,34] train models using contrastive learning, where pretext tasks
must be designed to emulate normal and anomalous image changes for each new
anomaly detection problem. Imagenet pre-trained models [5,24] produce features
to be used by OCC, but the translation of these models into medical image prob-
lems is not straightforward. Reconstruction methods are able to circumvent the
aforementioned challenges posed by self-supervised and Imagenet pre-trained
UAD methods, and they can be trained with a relatively small amount of nor-
mal samples. However, their viability depends on an acceptable mitigation of
the potentially low reconstruction error of anomalous test images.

In this paper, we introduce a new UAD reconstruction method, the Memory-
augmented Multi-level Cross-attention Masked Autoencoder (MemMC-MAE),
designed to address the low reconstruction error of anomalous test images.
MemMC-MAE is a transformer-based approach based on masked autoencoder
(MAE) [9] with of a novel memory-augmented self-attention encoder and a new
multi-level cross-attention decoder. MemMC-MAE masks large parts of the in-
put image during its reconstruction, and given that the likelihood of masking
out an anomalous region is large, then it is unlikely that it will accurately recon-
struct that anomalous region. However, there is still the risk that the anomaly
is not masked out, so in this case, the normal patterns stored in the encoder’s
memory combined with the correlation of multiple normal patterns in the im-
age, utilised by the decoder’s multi-level cross-attention can explicitly constrain
the accurate anomaly reconstruction to produce high reconstruction error (high
anomaly score). The encoder’s memory is also designed to address the MAE’s
long-range ’forgetting’ issue [20], which can be harmful for UAD due to the poor
reconstruction based on forgotten normality patterns and ’unwanted’ general-
isability to subtle anomalies during testing. Our contributions are summarised
as:
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Fig. 1: Top: overall MemMC-MAE framework. Yellow tokens indicate the un-
masked visible patches, and blue tokens indicate the masked patches. Our
memory-augmented transformer encoder only accepts the visible patches/tokens
as input, and its output tokens are combined with dummy masked
patches/tokens for the missing pixel reconstruction using our proposed multi-
level cross-attentional transformer decoder. Bottom-left: proposed memory-
augmented self-attention operator for the transformer encoder, and bottom-
right: proposed multi-level cross-attention operator for the transformer decoder.

– To the best of our knowledge, this is the first memory-based UAD method
that relies on MAE [9];

– A new memory-augmented self-attention operator for our MAE transformer
encoder to explicitly encode and memorise the normality patterns; and

– A novel decoder architecture that uses the learned multi-level memory-
augmented encoder information as prior features to a cross-attention op-
erator.

Our method achieves better anomaly detection and localisation accuracy than
most competing approaches on the UAD benchmarks using the public Hyper-
Kvasir colonoscopy dataset [2], pneumonia [10] and Covid-X [37] Chest X-ray
(CXR) dataset.

2 Method

2.1 Memory-augmented Multi-level Cross-attentional Masked
Autoencoder (MemMC-MAE)

Our MemMC-MAE, depicted in Fig. 1, is based on the masked autoencoder
(MAE) [9] that was recently developed for the pre-training of models to be used
in downstream computer vision tasks. MAE has an asymmetric architecture,
with a encoder that takes a small subset of the input image patches and a
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smaller/lighter decoder that reconstructs the original image based on the input
tokens from visible patches and dummy tokens from masked patches.

Our MemMC-MAE is trained with a normal image training set, denoted

by D = {xi}|D|
i=1, where x ∈ X ⊂ RH×W×R (H: height, W : width, R: num-

ber of colour channels). Our method first divides the input image x into non-

overlapping patches P = {pi}|P|
i=1, where p ∈ RĤ×Ŵ×R, with Ĥ << H and

Ŵ << W . We then randomly mask out 75% of the |P| patches, and the remain-

ing visible patches P(v) = {pv}|P
(v)|

v=1 (with |P(v)| = 0.25 × |P|) are used by the
MemMC-MAE to encode the normality patterns of those patches, and all |P(v)|
encoded visible patches and |P|− |P(v)| dummy masked patches are used as the
input of a new multi-level cross-attention decoder to reconstruct the image.

The training of MemMC-MAE is based on the minimisation of the mean
squared error (MSE) loss between the input and reconstructed images at the
pixels of the masked patches of the training images. The approach is evaluated

on a testing set T = {(x, y,m)i}|T |
i=1, where y ∈ Y = {normal, anomalous},

and m ∈ M ⊂ {0, 1}H×W×1 denotes the segmentation mask of the lesion in
the image x. When testing, we also mask 75% of the image and the patch-wise
reconstruction error indicates anomaly localisation, and the mean reconstruction
error of all patches is used to detect image-wise anomaly. Below we provide
details on the major contributions of MemMC-MAE, which are the memory-
augmented transformer encoder that stores the long-term normality patterns
of the training samples, and the new multi-level cross-attentional transformer
decoder to leverage the correlation of features from the encoder to reconstruct
the missing normal pixels.

Memory-augmented Transformer Encoder (Fig. 1 - bottom left) We
modify the encoder from the transformer with our a novel memory-augmented
self-attention, by extending the keys and values of the self-attention operation
with learnable memory matrices that store normality patterns, which are up-
dated via back-propagation. To this end, the proposed self-attention (SA) mod-
ule for layer l ∈ {0, ..., L− 1} is defined as:

X(l+1) = fSA

(
W

(l)
Q X(l), [W

(l)
K X(l),M

(l)
K ], [W

(l)
V X(l),M

(l)
V ]

)
, (1)

where X(0) is the encoder input matrix containing |P(v)| patch tokens formed
from the visible image patches transformed through the linear projection W(0),
with |P(v)| being the number of visible tokens/patches, X(l),X(l+1) are the input

and output of layer l, W
(l)
Q ,W

(l)
K ,W

(l)
V are the linear projections of the encoder’s

layer l for query, key and value of the self-attention operator, respectively, and

M
(l)
K ,M

(l)
V are the layer l learnable memory matrices that are concatenated with

WKX(l) and WV X
(l) using the operator [., .]. The self-attention operator fSA(.)

follows the standard ViT [6] and transformer [35], which computes a weighted
sum of value vectors according to the cosine similarity distribution between query
and key. Such memory-augmented self-attention aims to store normal patterns
that are not encoded in the feature X(l), forcing the decoder to reconstruct
anomalous input patches into normal output patches during testing.
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Multi-level Cross-Attention Transformer Decoder (Fig. 1 - bottom
right). Our transformer decoder computes the cross-attention operation using
the outputs from all encoder layers and the decoder layer output from the self-
attention operator (see Fig. 1 - Bottom right). More formally, the layer d ∈
{0, ..., D − 1} of our decoder outputs

Y(d+1) =

L∑
l=1

α(d,l) × fSA

(
fSA(Y

(d),Y(d),Y(d)),W
(d)
K X(l),W

(d)
V X(l)

)
, (2)

where Y(d) and Y(d+1) represent the input and output of the decoder layer d
containing |P| tokens (i.e., |P(v)| tokens from the visible patches of the encoder
and |P|−|P(v)| dummy tokens from the masked patches),X(l) denotes the output

from encoder layer l−1, andW
(d)
K ,W

(d)
V are the linear projections of the layer d of

the decoder for the key and value of the self-attention operator, respectively. Note
that all |P| input tokens for the decoder are attached with positional embeddings.
The multi-level cross-attention results in (2) are fused together with a weighted
sum operation using the weight α(l,d), which is computed based on a linear
projection layer and sigmoid function to control the weight of different layers’
cross-attention results, as in

α(d,l) = σ
(
W(d,l)

α

([
fSA(Y

(d),Y(d),Y(d)),Y(d+1)
]))

, (3)

where σ(.) is the sigmoid function, and W
(d,l)
α denotes a learnable weight matrix.

Such fusion mechanism enforces the correlation of multiple normal patterns in
the image present at different levels of encoding information to contribute at
different decoding layers by adjusting their relative importance using the self-
attention output from fSA(.) and cross-attention output Y(d+1).

2.2 Anomaly Detection and Segmentation

We compute the anomaly score [3] with multi-scale structural similarity (MS-
SSIM) [38]. The anomaly scores are pooled from 10 different random seeds for
masking image patches with a fixed 75% masking ratio, which enables a more
robust anomaly detection and localisation. The anomaly localisation mask is ob-
tained by computing the mean MS-SSIM scores for all patches, and the anomaly
detection relies on the mean MS-SSIM scores from the patches [3].

3 Experiments and Results

Datasets and Evaluation Measures: Three disease screening datasets are
used in our experiments. We test anomaly detection on the CXR images of
the pneumonia chest X-ray dataset [10] and Covid-X dataset [37], and both
anomaly detection and localisation on the colonoscopy images of the Hyper-
Kvasir dataset [2]. The publicly available pneumonia chest X-ray dataset [10],
consisting of normal and pneumonia-affected images, was obtained from a total
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Methods Publication Pneumonia Covid-X Hyper-Kvasir

DAE [21] ICANN’11 0.599 0.557 0.705
OCGAN [23] CVPR’18 0.703 0.612 0.813

F-anoGAN [25] IPMI’17 0.755 0.669 0.907
ADGAN [16] ISBI’19 0.627 0.659 0.913
MS-SSIM [3] AAAI’22 0.695 0.634 0.917
PANDA [24] CVPR’21 0.657 0.629 0.937
PaDiM [5] ICPR’21 0.663 0.614 0.923

IGD [3] AAAI’22 0.734 0.699 0.939
CCD+IGD* [31] MICCAI’21 0.775 0.746 0.972

Ours 0.879 0.917 0.972

Table 1: Anomaly detection AUC test results on Pneumonia and Covid-X
Chest X-ray datasets and Hyper-Kvasir colonoscopy dataset. CCD+IGD* [31]
requires at least 2×longer training time than other approaches in the table be-
cause of a two-stage self-supervised pre-training and fine-tuning.

of 6,480 patients. In accordance with [39], we structured the anomaly detec-
tion dataset such that the training set encompasses 1,349 normal images, and
the testing set comprises 234 normal and 390 pneumonia images. Each chest
X-ray image has been resized to the standardized dimensions of 256 × 256 pix-
els. Covid-X [37] has a training set with 1,670 Covid-19 positive and 13,794
Covid-19 negative CXR images, but we only use the 13,794 Covid-19 negative
CXR images for training. The test set contains 400 CXR images, consisting
of 200 positive and 200 negative images, each image with size 299 × 299 pix-
els. Hyper-Kvasir is a large-scale public gastrointestinal dataset. The images
were collected from the gastroscopy and colonoscopy procedures from Baerum
Hospital in Norway, and were annotated by experienced medical practitioners.
The dataset contains 110,079 images from unhealthy and healthy patients, out
of which, 10,662 are labelled. Following [31], 2,100 normal images are selected,
from which we use 1,600 for training and 500 for testing. The testing set also
contains 1,000 anomalous images with their segmentation masks. Detection is
assessed with area under the ROC curve (AUC), and localisation is evaluated
with intersection over union (IoU).

Implementation Details For the transformer, we follow ViT-B [6, 9] for de-
signing the encoder and decoder, consisting of stacks of transformer blocks. In-
spired by U-Net [40] for medical segmentation, we add residual connections to
transfer information from earlier to later blocks for both the encoder and decoder.
Each encoder block contains a memory-augmented self-attention block and an
MLP block with LayerNorm (LN). Each decoder block contains a multi-level
cross-attention block and an MLP block with LayerNorm (LN). We also adopt
a linear projection layer after the encoder to match the different width between
encoder and decoder [9]. We add positional embeddings (with the sine-cosine
version) to both the encoder and decoder input tokens. RandomResizedCrop
is used for data augmentation during training. Our method is trained for 2000
epochs in an end-to-end manner using the Adam optimiser with a weight decay
of 0.05 and a batch size of 256. The learning rate is set to 1.5e-3. In the begin-
ning, we warm up the training process for 5 epochs. The method is implemented
in PyTorch and runs on an NVIDIA 3090 GPU. The overall training time is
around 22 hours, and the mean inference time takes 0.21s per image.
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GTPredImage Image GTPred

Fig. 2: Segmentation results of our proposed method on Hyper-Kvasir [2], with
our predictions (Pred) and ground truth annotations (GT).

GTReconMasked Masked GTRecon Masked GTRecon

Fig. 3: Reconstruction of testing images from Covid-X (Top) and Hyper-Kvasir
(Bottom). For each triplet, we show the masked image (left), our MemMC-MAE
reconstruction (middle), and the ground-truth (right). Normal testing images
are marked with green boxes, and anomalous ones are marked with red boxes.

Evaluation on Anomaly Detection on Chest X-ray and Colonoscopy
We compare our method with nine competing UAD approaches: DAE [21], OC-
GAN [23], f-anogan [25], ADGAN [16], MS-SSIM autoencoder [3], PANDA [24],
PaDiM [5], CCD [31] and IGD [3]. We apply the same experimental setup (i.e.,
image pre-processing, training strategy, evaluation methods) to these methods
above as the one for our approach for fair comparison. The quantitative compar-
ison results for anomaly detection are shown in Table 1 for Pneumonia, Covid-
X, and Hyper-Kvasir benchmarks. Our MemMC-MAE achieves the best AUC
results on three datasets with 87.9%, 91.7% and 97.2%, respectively. On pneu-
monia chest x-ray dataset, our model surpasses the previous SOTA approaches
by a minimum 10.4% AUC and a maximum 28% AUC. On Covid-X, our result
outperforms all competing methods by a large margin with an improvement of
17.1% over the second best approach. For Hyper-Kvasir, our result is on par with
the best result in the field produced by CCD+IGD [31], which has a training
time 2× longer than our approach.

Evaluation on Anomaly Localisation on Colonoscopy We compare our
anomaly localisation results on Table 3 with four recently proposed UAD base-
lines: IGD [3], PaDiM [5], CCD [31] and CAVGA-Ru [36]. The results of these
methods on Table 3 are from [31]. Following [31], we randomly sample five groups
of 100 anomalous images from the test set and compute the mean segmentation
IoU. The proposed MemMC-MAE surpasses IGD, PaDiM, CAVGA-Ru and CCD
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MAE Mem-Enc MC-Dec AUC - Covid AUC - Hyper

✓ 0.799 0.915
✓ ✓ 0.862 0.956
✓ ✓ ✓ 0.917 0.972

Table 2: Ablation study on Covid-X of
the encoder’s memory-augmented operator
(Mem-Enc) and the decoder’s multi-level
cross-attention (MC-Dec).

Methods Localisation - IoU

IGD [3] 0.276
PaDiM [5] 0.341

CAVGA-Ru [36] 0.349
CCD + IGD [31] 0.372

Ours 0.419

Table 3: Anomaly localisation: Mean IoU
test results on Hyper-Kvasir on 5 groups of
100 images.

by a minimum of 4.7% and a maximum of 14.3% IoU, illustrating the effective-
ness of our model in localising anomalous tissues.

Visualisation of predicted segmentation. The visualisation of polyp seg-
mentation results of MemMC-MAE on Hyper-Kvasir [2] is shown in Fig. 2. Notice
that our model can accurately segment colon polyps of various sizes and shapes.

Visualisation of Reconstructed Images Figure 3 shows the reconstructions
produced by MemMC-MAE on Covid-X (Top) and Hyper-Kvasir (Bottom) test-
ing images. Notice that our method can effectively reconstruct the anomalous im-
ages with polyps/covid as normal images by automatically removing the polyps
or blurring the anomalous regions, leading to larger reconstruction errors for
those anomalies. The normal images are accurately reconstructed with smaller
reconstruction errors than the anomalous images.

Ablation Study Tab. 2 shows the contribution of each component of our pro-
posed method on Covid-X and Hyper-Kvasir testing set. The baseline MAE [9]
achieves 79.9% and 91.5% AUC on the two datasets, respectively. Our method
obtains a significant performance gain by adding the memory-augmented self-
attention operator to the transformer encoder (Mem-Enc). Adding the proposed
multi-level cross-attention operator into the decoder (MC-Dec) further boosts
the performance on both datasets.

4 Conclusion

We proposed a new UAD reconstruction method, called MemMC-MAE, for
anomaly detection and localisation in medical images, which to the best of our
knowledge, is the first memory-based UAD method using MAE. MemMC-MAE
introduced a novel memory-augmented self-attention operator for the MAE en-
coder and a new multi-level cross-attention for the MAE decoder to address the
large reconstruction error of anomalous images that plague UAD reconstruction
methods. The resulting anomaly detector showed SOTA anomaly detection and
localisation accuracy on three public medical datasets. Despite the remarkable
performance, the results can potentially improve if we use MemMC-MAE as a
pre-training approach for other UAD methods, which we plan to explore in the
future.
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