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School of Computing and Information Systems, Singapore Management University
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Abstract

Word in context (WiC) task aims to determine whether a
target word’s occurrences in two sentences share the same
sense. In this paper, we propose a Contrastive Learning
WiC (CLWiC) framework to improve the learning of sen-
tence/word representations and classification of target word
senses in the sentence pair when performing WiC on low-
resource languages. In representation learning, CLWiC trains
a pre-trained language model’s ability to cope with low-
resource languages using both unsupervised and supervised
contrastive learning. The WiC classifier learning further fine-
tunes the language model with WiC classification loss under
two classifier architecture options, SGBERT and WiSBERT,
which use single-encoder and dual-encoder for encoding a
WiC task instance respectively. We evaluate the models de-
veloped based on CLWiC framework on a new WiC dataset
constructed for Singlish, a low-resource English creole lan-
guage used in Singapore, as well as the standard English WiC
benchmark dataset. Our experiments show that CLWiC-based
models using both unsupervised and supervised contrastive
learning outperform those not using contrastive learning. This
performance difference is more substantial for the Singlish
dataset than for the English dataset. Unsupervised contrastive
learning appears to improve WiC performance more than su-
pervised one. Finally, we show that using joint learning strat-
egy, we can achieve the best WiC performance.

Introduction
In this paper, our research objective is to address the
WiC task for low-resource languages. The Word-in-Context
(WiC) task is to determine for a pair of sentences s1 and s2,
as well as a multi-sense target word w that appears in both
s1 and s2, if the senses of w triggered by the context in s1
and s2 are the same or not. In this binary classification task,
the input is a tuple (w, s1, s2) and the output is positive if
w’s occurrences in s1 and s2 share the same sense, and neg-
ative otherwise. WiC task can be seen as a special case of
word sense disambiguation (WSD) which is a harder classi-
fication task as WSD requires one of the senses (or synsets)

*This work was done when the author was with Singapore Man-
agement University.
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from a word sense database to be predicted for a target word
occurrence in a sentence (Edmonds and Cotton 2001; Mihal-
cea, Chklovski, and Kilgarriff 2004). In other words, WSD
requires a database covering the word senses of target words.
An example of such database is WordNet (Miller 1995)2,
which covers specific senses of a word and each sense is cap-
tured by a set of synonyms also known as a synset. As such
word sense databases are usually missing for low-resource
languages, it is appropriate for researchers to first address
the WiC task of such languages.

Low-resource languages are those that have little or no
data and knowledge resources for training their NLP sys-
tems. In this paper, we focus on Singlish a low-resource lan-
guage widely used in Singapore and Malaysia (Platt 1975).
Singlish is essentially a a variant of English heavily influ-
enced by other Asian languages such as Chinese, Malay,
Tamil and their dialects. As a result, a Singlish sentence
may contain both English and non-English words or phrases.
For illustration, the word shiok in the Singlish sentence “My
food is shiok!” is a malay word that refers to delicious or
wonderful. Despite its popularity in both online and offline
conversations among people in the Singapore and Malaysia
region, Singlish is not formally taught in schools and an au-
thoritative and up-to-date dictionary does not exist.

WiC for low-resource languages poses several challenges.
Firstly, other than the SuperGLUE framework which has
been used for rich-resource languages (Wang et al. 2019),
there is a lack of other WiC frameworks specifically de-
signed for low-resource languages. Secondly, without sense
databases, WiC models that require sense embedding mod-
els as part of the solution are no longer applicable (Pelev-
ina et al. 2016; Eyal et al. 2022). Finally, synonyms and
homonyms that exist in English also exist in low-resource
languages and they complicate the WiC task. For example
in Singlish, jialat and chia lat are different spellings of the
same Chinese dialect phrase chiàh-làt.

In the following, we summarize our technical contribu-
tions:

• We propose a Contrastive Learning WiC framework
(CLWiC) as an alternative to the current SuperGLUE
framework. CLWiC incorporates different contrastive
losses to fine-tune the language model for WiC task and

2https://wordnet.princeton.edu



the recognition of synonyms and homonyms, which ben-
efits the low-resource languages. We use Singlish as an
example low-resource language in this work.

• For the representation learning module of CLWiC,
our contrastive learning approach leverages on implicit
senses in the language content and trains the WiC model
without using external knowledge resources.

• For the classification module of CLWiC, we propose
two architectures, namely SGBERT and WiSBERT, by
adding a feature construction layer to the embedding rep-
resentations generated by the language model.

• To evaluate our CLWiC models, we construct a Singlish
WiC dataset and conduct our experiments on both this
dataset and the standard English WiC dataset. Our ex-
periments show that CLWiC-based models outperform
the baselines, and Singlish appears to benefit even more
when using the contrastive learning approach.

Related Works
Word-in-Context Task
Word-in-Context was first defined by Pilehvar and
Camacho-Collados (Pilehvar and Camacho-Collados 2019),
alongside with a benchmark expert-curated dataset. The
WiC benchmark dataset is included as a part of the Su-
perGLUE benchmark (Wang et al. 2019). The multilingual
WiC benchmark, XL-WiC, includes WiC tasks in 12 lan-
guages (Raganato et al. 2020). In this paper, we focus on
monolingual WiC task.

The previous works addresses WiC in a supervised man-
ner: it learns a classifier trained on the English WiC
dataset. Among them, T5 is the state-of-the-art with 76.9%
accuracy (Raffel et al. 2020). SemEq aligns definitions
of senses from different dictionaries, and learn contex-
tual sense embeddings based on the aggregated defini-
tion (Yao et al. 2021). SemEq-Large achieves 75.9% ac-
curacy. ARES which employs semi-supervised approach to
generate sense embeddings based on context achieves 72.2%
accuracy (Scarlini, Pasini, and Navigli 2020). SenseBERT,
which explicitly includes sense information during the train-
ing process, reports 72.1% accuracy (Levine et al. 2020).
With the external knowledge derived from knowledge bases,
KnowBERT achieves 70.9% accuracy on WiC benchmark
dataset (Peters et al. 2019). BERT and RoBERTa, which are
trained solely on masked language loss without external lex-
ical resources, achieve accuracy of 69.6 and 69.9% respec-
tively (Devlin et al. 2018; Liu et al. 2019).

Contrastive Learning
Contrastive learning (CL) aims to learn a mapping func-
tion that generates nearby representations for input data in-
stances that are similar, and far apart representations for dis-
parate data instances. The concept of CL was first introduced
by Hadsell et. al as a dimension reduction method (Had-
sell, Chopra, and LeCun 2006). Many people have subse-
quently incorporated CL in representation learning. Most of
the works stems from SimCLR, which is a self-supervised
CL framework for visual representation learning (Chen et al.

Figure 1: The Contrastive Learning WiC (CLWiC) Frame-
work

2020). SimCLR employs a stochastic data augmentation
module to generate pseudo “positive” samples that are very
similar to an original training data instance. It then optimizes
a CL loss that attracts the representation of the pseudo pos-
itive sample and that of the original training data instance,
while repelling the rest of the training data instances. Sub-
sequently, SupCon a supervised CL was proposed (Khosla
et al. 2020) to not only attracts training instances that has
the same label, but also repels those with different labels.
Further, Suresh and Ong proposed weighted supervised CL
loss that distinguishes simple negative instances from hard
negative instances by assigning higher weight to the lat-
ter (Suresh and Ong 2021).

In addition to visual representation learning, previous
works have shown that CL helps to generate more robust lan-
guage models. For instance, COCO-LM jointly learns cor-
rective language modeling which learns to recover the in-
put sentence from a corrupted one, and sequence contrastive
learning to bring corrupted sequences originated from the
same training sequence closer to one another (Meng et al.
2021). For label-aware CL with language model, Phrase-
BERT learns to fine-tune BERT to attract phrases and con-
text that are semantically similar while keeping the rest
apart (Wang, Thompson, and Iyyer 2021). Designed for
sentence paraphrase recognition task (Gao, Yao, and Chen
2021), SimCSE finds that the random dropout masks of
transformer-based language models act as simple yet effec-
tive data augmentation for unsupervised CL. Finally, Pair-
SupCon jointly optimizes instance discrimination and pair-
wise semantic reasoning loss to align positive sentence pairs
and repels negative pairs (Zhang et al. 2021).

Proposed CLWiC Framework
CL-based Representation Learning
We show our Contrastive Learning WiC (CLWiC) frame-
work in Figure 1. The first module of CLWiC is the CL-
based representation learning module which is designed to
fine-tune a pre-trained language model such as BERT to gen-
erate better-aligned contextual sentence and word embed-
dings.



Figure 2: WiC Classifier Learning

We identify two specific goals for CL-based representa-
tion learning. Firstly, we want to teach the language model
to differentiate the senses of a Singlish word triggered by
different sentence contexts. Secondly, we want the language
model to generate sentence and word embeddings that yield
good WiC prediction accuracy. We introduce unsupervised
contrastive learning using a very large unlabeled dataset
and supervised contrastive learning using a small annotated
dataset to achieve the first and second goals respectively.

Word-in-Context Classifier Learning
The CLWiC framework includes a classifier that constructs
features from the contextual embeddings (e.g., BERT em-
beddings) for a pair of query sentences and target word, be-
fore the features are used to train a WiC classifier. During
training, both the BERT model and WiC classifier are fine-
tuned and trained respectively to optimize the WiC classifi-
cation loss (i.e., cross entropy loss). In this project, we pro-
pose two different WiC classification architectures, namely
SGBERT and WiSBERT.

SGBERT SGBERT architecture is derived from a contex-
tual embedding-based model originally proposed by Yu and
Ettinger (Yu and Ettinger 2020) to address paraphrase identi-
fication (PI). As shown in Figure 2(a), SGBERT first creates
a sequence of tokens for an input tuple (w, s1, s2) by having
the target word’s token(s) appended with word tokens of s1
and finally with word tokens of s2. SGBERT then utilises
a single BERT encoder to generate the representations rw,
rs1 ,and rs2 by averaging the BERT’s output embeddings
of tokens in w, s1 and s2 respectively. SGBERT then con-
catenates these three representations and trains a classifier
using representation features. The classifier learns to deter-
mine whether (w, s1, s2) is a positive or negative tuple by
optimizing the cross entropy loss.

WiSBERT While single-encoder is efficient, previous
works have found that using a dual-encoder structure to en-

code sentence separately is flexible and may improve perfor-
mance. We thus propose the WiSBERT model with a dual-
encoder structure. As shown in Figure 2(b), WiSBERT first
creates two sequences of tokens each involving the target
word tokens and a sentence’s word tokens. It then generates
the representations of the two occurrences of w (denoted by
rw1

and rw2
), s1 (denoted by rs1 ) and s2 (denoted by rs2 ).

Similar to SGBERT, WiSBERT then learns a classifier us-
ing features constructed with rs∗ ’s and rw∗ ’s by optimiz-
ing the cross entropy loss. While SGBERT combines the
target word and sentence representations by concatenation,
WiSBERT uses different feature combinations which will be
elaborated in the Experiments section.

Learning Strategies
As shown in Figure 1, the CLWiC Framework can perform
CL-based representation learning and classifier learning us-
ing either the two-phase learning strategy or joint learn-
ing strategy. These two strategies differ in the ways they
combine CL-based representation learning loss with WiC
classification loss functions in the optimization of model pa-
rameters.

Two-Phase Learning Strategy This strategy optimizes
the CL-based representation learning and classifier learning
as separate steps. In the first phase, we fine-tune an input
BERT language model with both unsupervised and super-
vised contrastive learning losses to obtain an intermediate
fine-tuned BERT. In this second phrase, the intermediate
fine-tuned BERT is used to generate word and sentence rep-
resentations for training the WiC classifier. The intermediate
BERT is further fine-tuned into CL-BERT as we optimize
the WiC classification loss so as to learn the WiC classifier.

Joint Learning Strategy This strategy jointly learns the
fully fine-tuned CL-BERT and the WiC classifier with the
combined contrastive learning losses and WiC classifica-
tion loss. Unlike the two-phase learning strategy, it does not
produces an intermediate BERT model fine-tuned by con-
trastive learning only. The joint learning strategy takes a
longer training time (about 7hrs in our experiments) but with
likely better trained final CL-BERT and WiC classifier.

CL-based Representation Learning
The principle of contrastive learning is to learn better repre-
sentations by attracting the representations of semantically
similar instances to be close to one another and repelling
those of semantically unrelated instances to be far from each
other (Hadsell, Chopra, and LeCun 2006). In this project, we
propose the use of both unsupervised and supervised CL to
fine-tune the given BERT model. The unsupervised CL is
conducted using a corpus of unlabeled sentences in unsu-
pervised CL dataset as shown in Figure 1. The supervised
CL is conducted using the WiC dataset consisting of a set
of (w, s1, s2) tuples and their labels (positive or negative).
A (w, s1, s2) tuple is positive if w occurrences in s1 and s2
share the same sense, and is negative otherwise. The above
two CL methods and their corresponding loss functions are
elaborated below.



Figure 3: Supervised Contrastive Learning

Unsupervised Contrastive Learning (unCL)
Let X denote the set of sentences in the unsupervised CL
dataset, and si be an anchor sentence from a training batch
of sentences denoted by Xb ⊂ X , and Xb = {s1, · · · , sK}.
We augment si to obtain a positive sample s+. We also sam-
ple negative samples s−j ’s from the rest of sentences in the
training batch Xb − {si}. Even with data augmentation, s+
is expected to be still similar to si compared to the negative
samples s ∈ Xb − {si}. Unsupervised CL therefore fine-
tunes the BERT model to bring positive sample s+ closer to
si and negative samples farther away.

Data Augmentation To generate s+, we may apply dif-
ferent data augmentation methods including input-level aug-
mentation (e.g., token masking, token deleting, token shuf-
fling, and others) and latent-level transformation (Bhat-
tacharjee, Karami, and Liu 2022). In this project, we adopt
the method proposed in SimCSE (Gao, Yao, and Chen 2021)
which applies random dropout mask of the language model
(say, BERT) to introduce some noise to the sentence repre-
sentation of si. When passing the anchor sentence si to the
pre-trained BERT model twice each with a different dropout
mask, two sentence representations are obtained. The first
sentence representation is used as the anchor sentence rep-
resentation and the second one is regarded as the represen-
tation of the augmented sentence s+, which actually does
not have its sentence form. This process ensures that si has
a representation different from that of s+ but still keeping
most of the anchor’s semantics.

Loss Function of Unsupervised Contrastive Learning
Let zi and z′i be the dropout masks randomly sampled for
anchor sentence si and its augmented sentence s+i . We de-
note the representations of si and s′1 by hi = f(si, zi),
and h′

i = f(si, z
′
i) respectively. The unsupervised con-

trastive learning strategy fine-tunes the language model f(·)
by optimizing the following unsupervised CL loss: LunCL

sent =

−
∑

si∈Xb
log

exp(hi·h′
i/τ)∑

sj∈Xb
exp(hi·h′

j/τ)
where τ is the tempera-

ture hyper-parameter. Larger τ scales down the dot-product
and reduces the emphasis on representation closeness.

In addition to sentence-level unsupervised CL, we pro-
pose a word-level unsupervised CL to help generate better
contextual word embeddings. From the same collection of
sentences, we pick a word from the sentence si as wi. The
collection of words from the sentence batch X is thus de-
noted by Xw

b = {wi1, · · · , wiK}. We can also introduce
another unsupervised contrastive loss function LunCL

word by re-
placing sentence representations in the above equation by
that of words.

Supervised Contrastive Learning (sCL)
Unlike unsupervised CL, supervised CL focuses on adapt-
ing a language model to WiC classification. Here, we pro-
pose word-word and word-sentence supervised CL options,
each with a different loss function. We do not include the
sentence-sentence supervised CL option because the mean-
ings of different sentences with the same target word sense
can still be very distinct.

Word-Word Supervised CL Under the word-word op-
tion, we extract a set of triplets (wl,w

+
l ,w

−
l )’s from the tu-

ples of WiC dataset. Each triplet (wl,w
+
l ,w

−
l ) is extracted

from a pair of WiC tuples (w, si, sj) and (w, si, sj′) which
share the same target word w and anchor sentence si. More-
over, (w, si, sj) and (w, si, sj′) are assigned with a positive
label and negative one respectively. We call the w’s occur-
rence in si the anchor word and denote it by wl. The occur-
rences of w in sj and sj′ are called the positive word and
negative word respectively, and are denoted by w+

l and w−
l

respectively. In word-word supervised CL, we want to bring
the representation of w+

l closer to that of wl, and push the
representation of w−

l away from wl.
Word-word supervised CL can be shown in Figure 3

which depicts an example triplet with an anchor word (in
black circle) and its positive word (in green circle) and neg-
ative word (in red circle). By bringing the representations of



anchor and positive words together and keeping that of an-
chor and negative words apart, supervised CL guides the lan-
guage model to generate contextualised representations con-
sidering word senses. In other words, same-sense words(i.e.,
synonyms) will be brought together in the vector space and
others will be kept away from each other.

Word-Sentence Supervised CL Under the word-sentence
option, we also extract a set of triplets (wl, s

+
l , s

−
l )’s from

the tuples of WiC dataset. Each triplet (wl, s
+
l , s

−
l ) is ex-

tracted from a pair of WiC tuples (w, si, sj) and (w, si, sj′)
similar to that for word-word supervised CL. The w’s occur-
rence in si is then the anchor word and denoted by wl. The
positive sentence s+l and negative sentence s−l of the anchor
word are sj and sj′ respectively. In word-sentence super-
vised CL, we want to bring the representation of s+l closer
to that of wl, and push the representation of s−l away from
that of wl as shown in Figure 3. Word-sentence supervised
CL is also illustrated in the lower part of Figure 3 where the
green and red triangles denote the representations of positive
and negative sentences respectively.

Loss Function of Supervised Contrastive Learning For
word-word supervised CL using a collection of word triplets
X tp

b = {(w1,w
+
1 ,w

−
1 ), · · · , (wK ,w+

K ,w−
K)}. Let hl =

f(wl) denote the language model f that generates the rep-
resentation hl of a word wl. Let h+

l = f(w+
l ) and h−

l =

f(w−
l ) denote the representations of w+

l and w−
l respec-

tively. The supervised contrastive learning fine-tunes the lan-
guage model by optimizing the following loss: LsCL

w2w =

−
∑

1≤l≤K log
exp(hl·h+

l /τ)∑K
j=1(exp(hl·h+

j )/τ+exp(hl·h−
j )/τ)

For word-sentence supervised CL loss LsCL
w2s, we replace

the hl, h+
l , h+

j and h−
j representations in the above equa-

tion by that of the anchor word, its positive sentence, other
positive sentence and other negative sentence respectively.

Experiments
Datasets
Through experiments, we aim to determine if WiC per-
formance can benefit from contrastive learning, especially
for Singlish compared with English. For unsupervised con-
trastive learning, we use the two unsupervised CL datasets
for Singlish WiC (sgWiC) and English WiC (enWiC) respec-
tively.
• sgWiC unsupervised CL dataset. For sgWiC, we sam-

pled one million tweets posted by Singapore users in
2020. This dataset, denoted by sgTweets, is used for
sentence-level unsupervised CL. We then determined
Singlish words in a subset of sgTweet sentences and con-
structed the sgTweets+SW dataset. We obtained 129,525
(Singlish word, tweet sentence) pairs for word-level un-
supervised CL.

• enWiC unsupservised CL dataset. For enWiC, we
use the 1M Wiki CL dataset provided by the Sim-
CSE work (Gao, Yao, and Chen 2021). We used this
dataset for sentence-level unsupervised CL. From the
Wiki Dataset, we randomly selected 130,000 sentences

Table 1: Dataset Statistics

Unsupervised CL Datasets Total

sgWiC sgTweets 1,000,000
sgTweets + SW 129,525

enWiC Wiki 1,000,000
Wiki + TG 130,000

Supervised CL Datasets #w2w SCL Tri. #w2s sCL Tri.
sgWiC 4,163 8,326
enWiC 6,066 12,132

WiC Datasets #Train #Dev #Test Total
sgWiC 3,500 388 275 4,163
enWiC 5,228 638 200 6,066

and sampled one word from each sentence as the tar-
get English word for word-level unsupervised CL. This
forms the Wiki+TG dataset.

We also include two WiC datasets for evaluating the sg-
WiC and enWiC performance or supervised constrastive
learning. We show the statistics of the datasets in Table 1.

• Singlish-WiC Dataset (sgWiC). This WiC dataset is a
collection of (w, si, sj) tuples such that w is a Singlish
word, and si and sj are Singaporean tweet sentences that
contain w. The WiC labels of these tuples are crowd-
sourced from Singapore users. We collected a dataset of
4,163 tuples (2,081 positives and 2,082 negatives) and
split them into training, development, and testing data.
From these tuples, we construct 2,082 word-word-word
triplets for word-word supervised CL training, and an-
other 2,082 word-sentence-sentence triplets for word-
sentence supervised CL training.

• English-WiC Benchmark Dataset (enWiC). This
dataset consists of WiC data in English context and
has been downloaded from WiC:The Word-in-Context
Dataset published in NAACL’19 3 (Pilehvar and
Camacho-Collados 2019). This downloaded version of
WiC data covers the training data only for the WiC com-
petition 4. We thus sample 200 instances (100 positives
and 100 negatives) from the training set as our testing
data. The training data consists of 2,614 positives and
2,614 negatives. In total, there are 1,855 distinct words
in this dataset.

Model Comparison
In our experiment, we evaluate the performance of
different models developed based on the CLWiC
framework. To distinguish these different CLWiC-
based models, we introduce the following model nam-
ing convention: CLWiC(⟨classification architecture⟩,
⟨contrastive learning⟩, ⟨learning strategy⟩). Each model
is identified by its classification architecture, contrastive
learning, learning strategy and feature construction options
elaborated below.
3https://pilehvar.github.io/wic/
4https://competitions.codalab.org/competitions/20010



Classification architecture options Two classification ar-
chitectures mentioned in Section are:
• SB (or SGBERT): For SGBERT architecture, we take

the word and sentence representations from the language
model rw, rs1 , and rs2 , and concatenate them to form the
feature vector x = [rw, rs1 , rs2 ].

• WB (or WiSBERT): For WiSBERT architecture, we in-
clude a few different feature construction sub-options to
derive the output feature vector x from the word and sen-
tence representations (rs1 , rw1 , rs2 , rw2) returned by the
language model as shown in Figure 2. The feature con-
struction sub-options are:
WB[BAS] (Basic): xBAS = [r1s , r

2
s , r

1
w, r

2
w]

WB[HAD] (Hadamard Product): xHAD =
[r1s ⊙ r2s , r

1
w ⊙ r2w]

WB[DIFF] (Differentiation): xDIFF = [r1s − r2s , r
1
w − r2w]

WB[COS] (Cosine Similarity): xCOS =
[cos(r1s , r

2
s), cos(r

1
w · r2w)], where cos(·) is the co-

sine similarity measurement. Early experiment results
suggest that using cosine similarity features alone
leads to ill-optimization of the language model. As a
result, this feature will only be used together with other
features.
WB[ALL] (All): xALL = [xBAS, xHAD, xDIFF, xCOS]

For English WiC task, we use BERT-based-uncased5 for en-
WiC. For Singlish WiC task, we use SingBERT6 and fur-
ther fine-tuned it on 673,205 Singlish tweets as our base lan-
guage model for sgWiC..

Contrastive learning options The following contrastive
learning (CL) options can be used:
• noCL (Without using any contrastive learning loss): In

this case, only the WiC classification loss LWiC is used in
model training.

• unCL (Unsupervised contrastive learning only): In ad-
dition to WiC loss, we fine-tune the BERT model with
unsupervised contrastive loss LunCL. Three unsupervised
CL loss sub-options are available:
unCL[sent]: Sentence level unCL, i.e., LunCL = LunCL

sent)
unCL[word]: Word level unCL, i.e., LunCL = LunCL

word)
unCL[full]: Both sentence and word level unCL, i.e.,
LunCL = LunCL

sent + LunCL
word.

• sCL (Supervised Contrastive Learning only): In addi-
tion to WiC loss, we apply supervised contrastive loss
LsCL to fine-tune the model. There are three sCL options,
namely:
sCL[w2w]: Word-to-word sCL loss, i.e., LsCL = LsCL

w2w)
sCL[w2s]: Word-to-sentence sCL loss, i.e., LsCL =
LsCL
w2s)

sCL[full]: Full supervised CL loss, i.e., LsCL = LsCL
w2w +

LsCL
w2s.

• fullCL (Full contrastive learning): We fine-tune the
BERT model using both full unsupervised CL loss,
LunCL = LunCL

sent + LunCL
word, and full supervised CL loss,

LsCL = LsCL
w2w + LsCL

w2s.
5https://huggingface.co/bert-base-uncased
6https://huggingface.co/zanelim/singbert

Learning Strategy options We compare the two learning
strategy options mentioned in Section :
• 2PL (Two-Phase Learning Strategy): This strategy has

been explained in Section . We include two fine-tuning
sub-options for training of language model in Phase 2
(WiC classifier training), namely:
2PL[static]: Here, we do not fine-tune the language
model further in Phase 2 with the WiC classification loss
LWiC in Phase 2.
2PL[fine-tuning]: For this sub-option, the language
model is fine-tuned in Phase 2 with the WiC classifica-
tion loss function.

• JL (Joint Learning Strategy): We fine-tune the language
model and train the WiC classifier jointly by optimiz-
ing both the contrastive loss and WiC classification, i.e.,
L = λ(LCL) + (1 − λ)LWiC. λ is a hyperparameter that
controls how much the CL loss contributes to the overall
optimization. We empirically use λ = 0.5 in the experi-
ments.

Based on the above model naming conven-
tion, the SuperGLUE model is equivalent to the
CLWiC(SB,noCL,2PL[static]) model. Other non-CL
based models are CLWiC(WB[·],noCL,·)’s.

Results and Discussion
Tables 2 and 3 show the word-in-context accuracy for the sg-
WiC and enWiC datasets respectively. The overall best per-
formance is boldfaced, and the best performance without
CL is underlined.

We first make several observations from the sgWiC ex-
periment results in Table 2. The best performing model is
CLWiC(WB[ALL], fullCL, JL) with 70.2% accuracy, fol-
lowed by 68.5% from CLWiC(WB[DIFF], fullCL, JL).
For Singlish WiC task, it is clear that SuperGLUE frame-
work does not perform as well as our proposed CLWiC
framework. WiSBERT classification architecture using all
features, full contrastive learning and joint learning strategy
all contribute well to the sgWiC task. CLWiC(WB[ALL],
fullCL, JL) is also far better than the 56% accuracy
of state-of-the-art SuperGLUE model CLWiC(SB, noCL,
2PL[static]) which could not cope with sgWiC dataset well.

Contrastive learning using unsupervised CL with
unCL[full] option, or supervised CL with sCL[full] option
generally outperforms the methods not using contrastive
learning. When combining both unsupervised and super-
vised CL together (i.e., fullCL option), the improvement
is usually substantial. For example, CLWiC(WB[ALL],
fullCL, 2PL[FT]) achieves 12% improvement in accuracy
over non-contrastive learning method using WiSBERT with
ALL feature option.

Among the models using full contrastive learning (i.e.,
fullCL), those using the joint learning option is generally
better than those using 2-phase learning. Between unCL and
sCL options, unCL appears to contribute more to the accu-
racy improvement. This could be due to the availability of
large datasets for unsupervised CL. Under unsupervised CL,
it is however unclear whether sentence- or word-level unCL



Table 2: Performance on sgWiC Dataset (Accuracy)

CL using 2PL CL using JL
2PL unCL sCL unCL sCLnoCL
[*] sent word full w2w w2s full

full
CL full full

full
CL

ALL 0.575 0.629 0.592 0.631 0.615 0.581 0.613 0.645 0.671 0.625 0.702‡

BAS 0.622 0.593 0.620 0.625 0.556 0.577 0.587 0.630 0.629 0.604 0.630
DIFF 0.629 0.582 0.607 0.614 0.615 0.604 0.632 0.629 0.647 0.634 0.685

W
iS

B
E

R
T

HAD 0.509

FT

0.599 0.601 0.612 0.524 0.548 0.566 0.615 0.614 0.572 0.613
ALL 0.549 0.592 0.587 0.587 0.567 0.555 0.570 0.591
BAS 0.549 0.596 0.573 0.596 0.527 0.523 0.532 0.562 Not Applicable†

DIFF 0.535 0.593 0.601 0.602 0.527 0.531 0.535 0.584

W
iS

B
E

R
T

HAD 0.567

ST

0.623 0.633 0.627 0.573 0.569 0.583 0.627
SGBERT 0.575 FT 0.622 0.613 0.625 0.567 0.571 0.577 0.613 0.629 0.584 0.643
SGBERT 0.560 ST 0.585 0.577 0.588 0.578 0.575 0.578 0.591 Not Applicable
* 2PL[FT] and 2PL[ST] refers to BERT model fine-tuning and static sub-options respectively for 2-Phase Learning strategy.
† BERT model is always fine-tuned under joint learning strategy.

Table 3: Performance on English WiC Dataset (Accuracy)

CL using 2PL CL using JL
2PL unCL sCL unCL sCLnoCL
[*] sent word full w2w w2s full

full
CL full full

full
CL

ALL 0.645 0.660 0.650 0.680 0.645 0.645 0.675 0.695 0.695 0.680 0.705
BAS 0.630 0.630 0.630 0.630 0.635 0.625 0.625 0.660 0.645 0.630 0.670
DIFF 0.645 0.660 0.650 0.660 0.650 0.650 0.645 0.685 0.670 0.645 0.690

W
iS

B
E

R
T

HAD 0.600

FT

0.600 0.605 0.605 0.595 0.590 0.595 0.610 0.615 0.595 0.620
SGBERT 0.735 FT 0.740 0.740 0.750 0.725 0.720 0.735 0.760 0.750 0.740 0.775

is better. Similarly, we do not see any clear performance dif-
ference between w2w and w2s options under supervised CL.

Models using 2-Phase learning with fine-tuning consis-
tently outperform their corresponding static ones. For exam-
ple, CLWiC(WB[ALL], fullCL, 2PL[fine-tuning]) outper-
forms CLWiC(WB[ALL], fullCL, 2PL[static]). We there-
fore leave out the latter for the English WiC experiments.

Finally, For feature comparison, we focus on models us-
ing WiSBERT with full contrastive learning and joint learn-
ing strategy. The best feature option is ALL followed by
DIFF. For static WiC models, HAD is the best feature option
followed by ALL. We believe this inconsistent observation
could be attributed to the small sized sgWiC dataset.

As shown in Table 3, for English WiC, we conclude that
the best performing model is CLWiC(SB, fullCL, JL) with
77.5% accuracy. This model also outperforms the Super-
GLUE model denoted by CLWiC(SB, noCL, 2PL[static])
which has an accuracy of 73.5%. This result shows that con-
trastive learning also effectively improves the results of en-
WiC task. Interestingly, SGBERT outperforms WiSBERT
across all model options. The opposite finding was observed
in the sgWiC results. The better performance of SGBERT
could be explained by the enWiC task being easier than sg-
WiC. For example in sgWiC, the same Singlish word could
have different spellings. Again, models using unsupervised
CL outperforms those using supervised CL models as ob-
served in Singlish results.

Conclusion and Future Works

In this paper, we propose a contrastive learning WiC
(CLWiC) framework to address Word-in-Context task in-
volving low-resource languages. We propose both unsu-
pervised (unCL) and supervised contrastive learning (sCL)
to fine-tune pre-trained language models (e.g., BERT) for
matching word senses. Our experiments on both Singlish
and English WiC datasets shows the contrastive learning
based models with both unCL and sCL losses, trained to-
gether with WiC classification loss, outperform the existing
baseline model. These results suggest that contrastive learn-
ing can help to improve WiC task for both low resource and
rich resource languages. Our results demonstrate that even
unlabeled low-resource language data can be used in unsu-
pervised contrastive learning to achieve better WiC results.

To further improve the WiC performance, one future re-
search direction is to improve the generalisability of these
CL-based models. With new words and phrases emerging
in low-resource languages, it is important to study how
these models can be extended to handle WiC tasks with un-
seen words. As models trained on larger and more diverse
datasets often have better generalisability, we plan to manu-
ally annotate more datasets as well as to construct semi- or
fully-automated annotated datasets to develop more accurate
CL-based WiC models for low-resource languages.
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