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Non-monotonic Generation of Knowledge Paths for Context

Understanding

PEI-CHI LO and EE-PENG LIM, Singapore Management University, Singapore

Knowledge graphs can be used to enhance text search and access by augmenting textual content with rele-

vant background knowledge.While many large knowledge graphs are available, using them tomake semantic

connections between entities mentioned in the textual content remains to be a difficult task. In this work, we

therefore introduce contextual path generation (CPG), which refers to the task of generating knowledge paths,

contextual path, to explain the semantic connections between entities mentioned in textual documents with

given knowledge graph. To perform the CPG task well, one has to address its three challenges, namely, path

relevance, incomplete knowledge graph, and path well-formedness. This article designs a two-stage frame-

work comprised of the following: (1) a knowledge-enabled embedding matching and learning-to-rank with

multi-head self-attention context extractor to determine a set of context entities relevant to both the query

entities and context document, and (2) a non-monotonic path generation method with pretrained transformer to

generate high-quality contextual paths. Our experiment results on two real-world datasets show that our best

performing CPGmodel successfully recovers 84.13% of ground truth contextual paths, outperforming the con-

text window baselines. Finally, we demonstrate that the non-monotonic model generates more well-formed

paths compared to the monotonic counterpart.

CCS Concepts: • Information systems→ Retrieval tasks and goals;

Additional Key Words and Phrases: Information retrieval, knowledge graph, contextual path generation,

generation model
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1 INTRODUCTION

1.1 Background

A knowledge graph represents human knowledge in the form of semantic entities and relations
among these entities. In recent years, knowledge graphs have been applied to many information
system applications, including decision support systems (DSS) [24, 36, 41, 67], information
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1:2 P.-C. Lo and E.-P. Lim

retrieval (IR) [4, 17, 34, 62], question answering (QA) [49, 61], and recommendation
[8, 12, 57, 71] to help with deriving or explaining the results of these applications. Meanwhile,
industries and user communities are also developing large knowledge graphs for commercial
and public use. For example, Google’s knowledge graph, which contains hundreds of millions
of entities, is being used for improving the search of people, locations, and other interesting
objects.1 DBpedia is another knowledge graph constructed by the Wikipedia user community and
it contains at least 6 million entities [50].
To illustrate how one leverages a knowledge graph for information retrieval, we consider the

task of identifying fake news among a collection of news articles [19, 22]. In a recent MIS work on
fake news identification [19], the trustworthiness of each third party digital supply chain used by
online news websites has been determined to be a useful feature to predict if a given online news
article is fake. Another feature that aids fake news prediction is the checking of facts mentioned
in the news article. As a knowledge graph provides entities and relations possibly mentioned by
a news article, verifying the facts in a news article against knowledge graph entities and relations
is thus a good strategy to improve the fake news prediction accuracy. By performing the same
verification for a sampled collection of news articles from the same digital supply chain against
the knowledge graph, one may also calibrate the supply chain’s trustworthiness more accurately.
Once a fake news article is detected, one can provide warnings or interventions to help users make
appropriate judgments about the article content [7].
Despite the several useful knowledge graph applications, many existing knowledge graphs are

incomplete as they may not be up-to-date with the latest entities or relations [10, 65]. Hence,
many research projects on knowledge graph completion, i.e., identifying missing entities, entity
attributes, and relations, have been carried out lately [45, 52]. The earlier works in this domain
focus on predicting missing relations from observed entities and relations [5, 33]. However, such
methods fail to handle unseen entities, or paths of relations that semantically connect two entities
of a knowledge graph. As a result, some research works turn to knowledge graph completion with
input unstructured data such as text [44, 60]. As part of information systems research, there are
several research efforts focusing on knowledge extraction and construction [11, 51, 63]. Specifi-
cally, Gil et al. designed software systems to extract knowledge from different software artifacts
(e.g., purpose, features, information, deployment strategy) [20]. These methods learn to infer new
relations from input textual information, and use them to augment the knowledge graph. Still,
most of these works focus on extracting one-hop relations from text instead of paths made up of
entities and relations.

Example 1. Consider the news example in Figure 1(a) published at Wikinews on October 14,
2005. There are mentions of several entities including actors, novelists, films, companies, drama,
countries, and studios, which can be found in some knowledge graphs. For the two entities Daniel
Craig and Martin Campbell, the semantic connection underlying the co-occurrence of their men-
tions is that Daniel Craig starred in the movie Casino Royale directed by Martin Campbell, which
exists as a path in the knowledge graph:

eDaniel Craig
starring−−−−−−→ eCasino Royale

director−−−−−−→ eMartin Campbell,

where eDaniel Craig, eCasino Royale, and eMartin Campbell are the relevant entities in the knowledge graph,

and
starring−−−−−−→ and

director−−−−−−→ are the relevant relations.

1https://blog.google/products/search/introducing-knowledge-graph-things-not/
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Non-monotonic Generation of Knowledge Paths for Context Understanding 1:3

Fig. 1. Contextual path from an example Wikinews article.

For the above example, the existing methods that infer one-hop relations would fail to recover

the two relations eDaniel Craig
starring−−−−−−→ eCasino Royale and eCasino Royale

director−−−−−−→ eMartin Campbell, asCasino
Royale occurs very far from both Daniel Craig and Martin Campbell in the news text.

1.2 Problem Definition

In this article, we therefore aim to infer a path of relations from a piece of input text capturing
the semantic connection between two given entities. This inference is performed based on an
incomplete knowledge graph, and such an inferred path is called contextual path. For the example
shown in Figure 1(a), the two given entities areDaniel Craig andMartin Campbell and the input text
is the news article in Figure 1(a). The input knowledge graph is shown in Figure 1(a) and (b). The

contextual path inferred is eDaniel Craig
starring−−−−−−→ eCasino Royale

director−−−−−−→ eMartin Campbell. In this example,
the two relations in the contextual path happen to exist in the knowledge graph. In general, we
would also like to infer new relations for the knowledge graph when they are required to construct
contextual paths.
Suppose the contextual paths connecting between many different pairs of entities mentioned in

a collection of news articles are inferred or generated; the paths and their relations can support
many new interesting ways to search and browse the articles. For instance, one can easily search
news articles mentioning actors or actresses who star in Martin Campbell’s movies.
In the above example, we assume that text data such as news articles have their entity men-

tions extracted and linked to the corresponding entities of the given knowledge graph. Among the
methods that recognize such entity mentions, named entity recognition methods help to detect
person names, organization names, place names, and other names in textual content followed by
linking these entity mentions with entities of the knowledge graph (also known as entity link-
ing) [42, 43]. Entity linking methods perform the matching of mentions in textual content with
knowledge graph entities.
In this article, we therefore focus on addressing the following question: “how exactly do two

entities connect to each other given a textual content as the context?” Context is crucial in this

ACM Transactions on Management Information Systems, Vol. 15, No. 1, Article 1. Publication date: March 2024.



1:4 P.-C. Lo and E.-P. Lim

question as the same entities can be semantically connected differently in different contexts. To
answer the above question, we formulate the contextual path generation problem.

Definition 1 (Contextual Path Generation (CPG)). Given a textual document d and two entities
eh and et , which are mentioned in d , the CPG problem is to generate a path between eh and et that
provides the semantic connection between eh and et relevant to d using the entities and relation
edges from a given knowledge graph. We call the textual document and the resultant path the
context and contextual path, respectively.

Example 2. In the earlier example, the Wikinews article serves as a context. The path

eDaniel Craig
starring−−−−−−→ eCasino Royale

director−−−−−−→ eMartin Campbell depicts the contextual path as it accurately
explains how Daniel Craig is connected with Martin Campbell in this Wikinews.

Finding the contextual path is challenging for a number of reasons. First, instead of returning all
paths that connect eh and et , CPG has to determine the path that is most relevant to the context d ,
including the involvement of entities notmentioned in the context.We call this the “path relevance”
challenge. This challenge is largely caused by noisy and sparse data in the context, as well as
the implicit patterns of constructing relevant contextual paths. The former is caused by other
entities mentioned in the context but may not be relevant, and absence of entities not mentioned
in the context but may be relevant, which could be due to very little content in the context. The
latter refers to the expected pattern of contextual path for eh and et of specific types. For example,
a contextual path linking an actor entity with a director entity via a movie entity is certainly
more plausible than via a concert entity. Second, the given knowledge graph may not cover all
the required relation edges to form the contextual path. We call this the “incomplete knowledge
graph” challenge. Given an incomplete knowledge graph, we have to generate contextual paths
in CPG instead of constructing paths using observed relation edges. In the generation process, we
face the third challenge of ensuring the resultant paths to be of good quality. This is also known as
the “path well-formedness” challenge. Finally, as there are no prior works on CPG, we also need
to address the “data challenge” of constructing datasets for training and evaluating any proposed
CPG solution models.

1.3 Research Objectives and Contributions

This article therefore aims to solve the novel CPG problem while addressing all the above chal-
lenges. We propose a general two-stage framework for solving CPG. We then use that to develop
solution models. In the following, we outline our research contributions:

— Our proposed two-stage framework is general for the purpose of creating different CPG so-
lution models. The framework consists of context extraction and CPG stages, each of which
can be implemented with different methods. In this article, we introduce two context extrac-
tion methods, one based on a classification approach and another based on a learning-to-
rank approach. Both methods are designed to extract relevant entities from the context and
knowledge graph so as to address the path relevance challenge.

—We also propose a non-monotonic CPG method for the CPG stage. This method is unique in
its ability to generate well-formed paths and to create new but relevant relation edges to ad-
dress the pathwell-formedness, path relevance, and incomplete knowledge graph challenges.
Unlike the usual monotonic approach where a path is constructed from one end, say eh , to
another end, say et , in a left-to-right manner, our non-monotonic based method is trained
to generate path elements in a flexible order that increases the accuracy of the generated
path. For instance, the monotonic approach to generate the contextual path in Example 1

ACM Transactions on Management Information Systems, Vol. 15, No. 1, Article 1. Publication date: March 2024.
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will generate eDaniel Craig
starring−−−−−−→ eCasino Royale before eCasino Royale

director−−−−−−→ eMartin Campbell. The
non-monotonic approach will be able to generate the two relation edges in any order.

— To address the data challenge, we construct two real-world datasets with ground truth con-
textual paths. We use these datasets to show that our best performing CPG solution model
recovers nearly 85% of ground truth contextual paths, which is 14.8% higher than the base-
line model. Our experiment also shows that the non-monotonic approach generates better-
formed and more accurate contextual paths than the monotonic approach. We also design
a synthetic dataset for evaluating the abilities of our best performing model in coping with
large data and relation edge inference as covered in Appendix A.

We organize the rest of this article as follows. We present our literature review in Section 2.
Section 3 covers our proposed Two-Stage framework and our proposed Non-Monotonic CPG
model. We construct the two real-world datasets and introduce the evaluation metrics specially
designed for CPG in Section 4. In Section 5, we cover the experiment setup and results/findings.
Finally, Section 7 concludes the article and outlines the future research directions.

2 RELATEDWORKS

In this section, we first survey the use of knowledge graphs in various types of information systems
and how they may benefit from contextual paths generated for a given context. As the CPG prob-
lem is also closely related to knowledge reasoning and conditional sequential generation problems,
we also examine works in these two areas.

2.1 Knowledge-enhanced Information Systems

Using knowledge graphs for enhancing information systems has been an active research area in
information systems [9, 16, 69]. The common goal of these works is to capture and employ existing
human knowledge to improve the functional features of information systems. For instance, Liu
et al. derived inter-company connections from relations of an enterprise knowledge graph and
utilized these connections to derive for a target company news sentiment features of connected
companies together with news sentiment features of the target company in order to predict the
target company’s stock movement [37]. Lim et al. proposed to improve the accuracy of adverse
drug reaction prediction by learning better vector representation of clinical concepts and relations
in a knowledge graph using the confidence weights assigned to them based on co-occurrence
and NLP patterns found in medical literature [30]. Xu et al. proposed to measure social proximity
between two company entities using the similarity between the embeddings of the two entities
in the knowledge graph [64]. CPG can be applied to the above company and medical domains
to return contextual paths between entities (e.g., companies or medical concepts) mentioned in
text collection (e.g., news articles and medical literature). These contextual paths can be used to
establish new inter-entity connections or to derive confidence weights between entities so as to
improve prediction accuracy or social proximity measurement.

2.2 Knowledge Reasoning

Finding a contextual path is somewhat similar to reasoning with knowledge graphs. The previous
knowledge reasoning works adopt a wide range of reasoning techniques, including logical rules [2,
26], Bayesianmodels [59], distributed representations [47, 55], neural networks [14, 25, 29, 32], and
reinforcement learning [13, 21, 28, 35].

Knowledge reasoning has been widely applied to knowledge graph–based question answer-

ing (QA). In QA, Asai et. al proposed a retriever-reader framework on the HotpotQA dataset that
reasons over Wikipedia using its graph structure [1]. While the HotpotQA dataset itself, however,

ACM Transactions on Management Information Systems, Vol. 15, No. 1, Article 1. Publication date: March 2024.



1:6 P.-C. Lo and E.-P. Lim

does not include a knowledge graph, it can be linked to the Wikipedia knowledge graph for ex-
plaining the questions’ answers. MetaQA traverses through a knowledge graph in order to retrieve
the answer to a given question [68]. Although the traversed path could explain the answer, the
QA task itself is not designed to evaluate the traversed path against a human judged explanation
path [31, 61]. By definition, traversed path can only be constructed with observed relations of the
knowledge graph. MHQA-GRN addresses reading comprehension QA by constructing a directed
acyclic graph from a knowledge graph for each passage of the query article and using its repre-
sentation as features to predict the answer [54]. Nevertheless, MHQA-GRN does not return a path
similar to contextual path. LEGO is a framework designed to find the answer entities for a given
question by alternating between generation of query tree and reasoning with latent space [49].
Starting from the question entities as the root, LEGO expands the query tree with extracted rela-
tions from the question. In the representation space, the projection of the relations form several
candidate answer spaces near the question entities. LEGO then finds the answer entities lying
within the intersection of the candidate answer spaces. In [73], researchers combined a convolu-
tional neural network for feature extraction with a recurrent neural network to predict the answer
entity given a query entity and a knowledge graph that covers different paths from the query en-
tity to candidate answer entities. CogKR conducts multi-hop reasoning over a knowledge graph
by iterating between an expansion module and a reasoning module to predict the answer entity
for a given query entity using a neighborhood knowledge subgraph [18].
In summary, we found that none of the above models considers context documents when select-

ing the knowledge paths leading to the answer entities. They also do not perform any evaluation
on the knowledge paths derived as a side result. Hence, our CPG work can contribute to existing
knowledge reasoning works by bridging these two research gaps.

2.3 Conditional Sequential Generation

Both the path relevance and the well-formedness challenges require us to generate well-formed
contextual paths relevant to the input context document and query entity pair. We can thus treat
CPG as a conditional sequence generation task with the context document and query entity pair
as the input condition.
Our survey found that most conditional sequential generation works focus on generating text

conditioned on a simple label such as tense, sentiment polarity, or formality of the text to be gen-
erated [15, 23, 53, 66]. They could not cope with the complex input condition of CPG that involves
entity and text data. Among the few recent works that consider text as input condition, BERT-
fused translation uses a pretrained encoder to first obtain the representation of text condition
before performing text generation [72]. KG-BART takes a set of concepts from a commonsense
knowledge graph as input and generates a piece of text covering these input concepts [39]. Other
related works include generating sentences conditioned on a text document following a given syn-
tax of an exemplar [27, 46]. So far, all these works focus on generating natural language sentences
instead of knowledge paths. To our knowledge, there is so far no research focusing on generating
knowledge paths with complex input conditions.
Unlike the above works, we propose to learn a pretrained model to generate knowledge paths

before fine-tuning it to generate conditional knowledge paths. Our research also focuses onmaking
the paths well-formed as well as semantically relevant to the query and context document.

3 PROPOSED FRAMEWORK AND CPG MODELS

In this section, we first describe our proposed two-stage framework. We then present the proposed
methods for the context extractor and contextual path generator modules of the framework that
form the different CPG solution models.

ACM Transactions on Management Information Systems, Vol. 15, No. 1, Article 1. Publication date: March 2024.
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Fig. 2. The two-stage framework for contextual path generation.

3.1 Two-Stage Framework

Before we present the framework, we give the definition of knowledge graph.We define the knowl-
edge graph G to be a tuple (E,L,R) where E denotes a set of entities, L denotes a set of relation
edges, andR denotes a set of relation labels or simply relations. Each relation edge (ei , rk , ej ) of L di-
rectly links entity ei to entity ej via a relation edge with label rk that can be found in R. We can also

denote the same edge by ei
rk−−→ ej . Notation wise, we use italic for entities (e.g., Biden) and boldface

(e.g., presidentof) for relations. For the purpose of establishing connections between entities, we
assume that each relation and its reverse can always be found in R. For example, for the knowledge

graph to capture Biden is the president of USA, R should contain both eBiden
presidentof−−−−−−−−−→ eUSA and

eUSA
presidentof−1−−−−−−−−−−−→ eBiden.

The input of CPG can be captured as a query q represented by (eh , et ,d ) where eh and et are
the input entities and d is the context document. The output of CPG is a path p represented as a
sequence of path elements denoted by 〈eq,1, rq,1, eq,2, rq,2, . . . ,rq, (nq−1),eq,nq 〉 where eq,1 = eh and
eq,nq = et . The path elements include the entities and relation labels involved in the path. We
assume that all entities and relation labels that are used in any path should be found in E and R,
respectively, i.e., ∀i, eq,i ∈ E and ∀k, rq,k ∈ L. Nevertheless, it is possible that some relation edges
of a path may not exist in the knowledge graph G as the latter is incomplete.

As shown in Figure 2, our proposed framework consists of a context extractor and a contextual
path generator. The former derives context entities E (q) = {e1, e2, . . . , e |E (q ) | } from the query q and
input knowledge graph G. Context entities are entities relevant to the query and they may be
mentioned in d . To enrich the sparse content of the context document, one should also select rele-
vant entities from the knowledge graph to be context entities thereby addressing part of the path
relevance challenge (as the remaining part is to be addressed by the contextual path generator).
The context entities together with the query are then provided to the contextual path generator

to construct the resultant contextual path(s) leveraging the interaction between context entities to
finally determine the relevant entities and relation edges and sequence them to form the resultant
path. In this process, new relation edges may be inferred to address the incomplete knowledge
graph challenge. We further propose a non-monotonic path generation process to ensure that the
resultant path is both semantically relevant and well-formed addressing the path relevance and
path well-formedness challenges, respectively.
The above non-monotonic path generation approach is novel and is different from the existing

single object-type monotonic sequence generation approach, considering that a knowledge path
is a type of sequence. Single object-type sequence generation is one that generates elements of
the same type, instead of entities and relation edges as alternating path elements. The monotonic
sequence generation is one that always generates elements from left to right only. Such generation
may fail to reach the tail entity et , and repeats the same path element(s). In this case, the generated
path is not well-formed. As non-well-formed paths are considered incorrect, our goal is thus to
design a generation model that always generates well-formed contextual paths.

ACM Transactions on Management Information Systems, Vol. 15, No. 1, Article 1. Publication date: March 2024.



1:8 P.-C. Lo and E.-P. Lim

3.2 Context Extractor

The context extractor takes a query q = (eh , et ,d ) and a knowledge graph G as input, and de-
cides the set of context entities E (q). Ideally, E (q) contains the set of entities for constructing the
correct contextual path. In this section, we propose two context extraction methods: Knowledge-

enabled Embedding Matching Model (KEMatch) and Learning-To-Rank with Multi-Head

Self-Attention Model (LTRMHSA). The former is based on binary classification, and the latter
is based on learning-to-rank on multi-head self-attention.
The two methods share a common Query-induced Entity Selector that derives a subset of

knowledge graph’s entities Er (q) = {e1, e2, . . . , emq
} as candidate entities using the query entities

eh and et wheremq = |Er (q) |.
Let Er (h) and Er (t ) be the sets of entities in the knowledge graph G that are reachable from eh

and et , respectively, in k-hops. The set of candidate entities is then obtained by Er (q) = Er (h) ∪
Er (t ). The remaining modules of KEMatch and LTRMHSA then select a subset of entities from
Er (q) to form the context entity set E (q).

3.2.1 KEMatch: Knowledge-enabled Embedding Matching. In KEMatch, we train a classifier to
decide whether a candidate entity is related to the context or not. Thus, we introduce a simple
binary classifier that takes an entity and the context as input, and outputs a probability between
0 and 1 that suggests the relatedness between the two inputs. Given Er (q) already derived by
the query-induced entity extractor, the classifier performs matching of every candidate entity e
from Er (q) with the vector representation of the query zq . We define this matching model by
fkem (ze , zq ) → {0, 1} where ze and zq denote the candidate entity representation and query
representation, respectively. The candidate entities are predicted with label 1 (or matching) if
they are deemed as semantically relevant, and label 0 (or non-matching) otherwise. Only the pre-
dicted matching entities will be returned as the set of context entities E (q). We denote the size of
E (q) bym.

KEMatch uses k-bert [38], a knowledge-enabled contextualized word embeddings, to derive zq
and ze . We introduce four different query representation schemes:

—Average Entity Representation: zq =
∑
e′∈E (d ) ze′
|E (d ) | , where E (d ) is the set of entities men-

tioned in context document d (which includes eh and et ), and the representation of an entity
e is defined by ze =

1
|W (e ) |

∑
w ∈W (e ) zw whereW (e ) denotes the words in the entity name of

e , and zw denotes the k-bert embedding of wordw . Note that E (d ) is not necessarily identical
to E (q) as not all entities in E (d ) are from G (q) and the latter may contain entities not in d .

—Mention Paragraph Representation: zq = ENC (pq ), where pq = ph +pt where ph and pt
are the paragraphs in d mentioning eh and et , respectively. ENC is an encoder that derives
a paragraph representation by averaging the k-bert embeddings of words in the paragraph.

— Title and Mention Paragraph Representations: This representation concatenates the
representations of the title and mention paragraphs denoted by p1 and pq, respectively. Title
paragraph p1 refers to the first paragraph in d . Hence, zq = [ENC (p1),ENC (pq )].

—Contextual Query Entity Representation. This scheme combines eh , et , and the context
document d as a sequence of word tokens for input to ENC . zq is then defined as the average
k-bert embedding of word tokens in eh , et , and d .

The matching model of KEMatch fkem is trained with a set of queries with their corresponding
positive and negative entity sets denoted by E (q)+ and E (q)−, respectively. For a query q, we use
p∗q to denote the ground truth contextual path. E (q)+ is then assigned the (positive) entities in

p∗q . To avoid false-negative entities, E (q)− is assigned with a set of hard negative entities sampled

ACM Transactions on Management Information Systems, Vol. 15, No. 1, Article 1. Publication date: March 2024.



Non-monotonic Generation of Knowledge Paths for Context Understanding 1:9

from entities with few or no common neighbor with entities of E (q)+ in the knowledge graph
G. That is, E (q)− = {e |e ∈ E (q) − E (q)+ and

∑
e ′ ∈E (q )+ co-occur(e, e ′) ≤ δ }, where co-occur(·)

is a function that returns the number of common neighbors of the two input entities and δ is a
threshold parameter. In this article, we use the averaged co-occur(·) between positive pairs in the
training set as δ , and choose E (q)− to be 10 times the size of E (q)+.
We learn the matching function fkem as a logistic regression classifier that takes zq and ze as

input, and outputs the prediction probability ŷ. In this article, we consider three input feature
combinations, namely, (i) concatenation [zq , ze ], (ii) Hadamard product zq � ze , and (iii) subtraction
zq − ze . Note that when zq = [ENC (p1),ENC (pq )], the Hadamard product and subtraction meth-
ods are not applicable due to dimension mismatch between zq and ze . fkem is learned with cross

entropy loss. Once fkem is learned, given a queryq, we select topnCXT entities inG (q)with highest
prediction probability as context entities Ê (q). In our experiment, we empirically set nCXT = 10.

3.2.2 LTRMHSA. While KEMatch is easy to train with low computation overheads, it suffers
from a major shortcoming of not considering how an entity determines the relevance of other
entities when it co-occurs with different entities. For instance, when the entity Ben Affleck (an
actor) is mentioned together with Rosamund Piker (an actress) in the context, the candidate movie
entity Gone Girl will become relevant and thus should be included in E (q), as they both starred
in this movie. On the other hand, when the entity Ben Affleck appears with Matt Damon (another
actor) in the context, another movie entity Good Will Hunting should be included in E (q) instead.
As a result, we propose LTRMHSA, an attention-based learning-to-rank model that considers the
interaction among candidate entities when determining their relevance. We adapt the MHSA from
Tu et al. [56], to model interaction among entities of Er (q), and propose aMHSA layer and Pairwise
Bi-Linear layer to select context entities.
As depicted in Figure 3, LTRMHSA also uses the query-induced entity selector to obtain Er (q).

It then concatenates all its entities with the context document d and encodes these pairs using
k-bert [38]. Each document-candidate entity pair (d, ei ) is first represented as a sequence of word
tokens started with a “[cls]” tag token followed by d’s word tokens, “[sep]” tag token, the word
tokens of ei ’s entity name, and “[sep]” tag token. The output representation of “[cls]” from k-bert
for each (d, ei ) pair, denoted by zcls,i , then summarizes the semantics of the context document d
and the corresponding entity ei . The MHSA layer takes the sequence ofmq output representations

zcls1 to zclsmq
and allows them to interact using multi-head self-attention:

Multihead (Q,K ,V ) = Concat (head1, . . . ,headn )W
0,

headh = Attention(QW
Q

h
,KW k

h ,VW
v
h ), h ∈ {1, . . . ,nh },

Attention(Qh ,Kh ,Vh ) = so f tmax �
�
QhK

T
h√

dk

�
�
Vh ,

(1)

where Q , K , and V aremq × dz matrices where dz is the dimensionality of zcls,i . Qh , Kh , and Vh
are mq × dk matrices where dk is the inner dimension of self-attention.W

Q

h
,W K

h
, andW V

h
are

learnable dz × dk projection matrices of the sequence of zcls,i ’s for different heads. For nh heads,
dk is determined by dz divided by nh . In this work, we set nh = 8,

A pairwise bi-linear learning-to-rank classifier fl tr then ranks all candidate entities by their
relevance to the query. We assume that a context entity should have more inter-entity interaction
with entities in E (q)+ (or entities in the ground truth contextual path p∗q ) than other entities. The

classifier fl tr (ei , ej ) → {0, 1} is therefore expected to return 1 if the entity ei is more relevant to
the context document d than entity ej , 0 otherwise.
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Fig. 3. Context extractors.

We also introduce a score function S(·) to measure the relevance of the entity.

S(ei ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 i f ei can be found in p∗q
1 i f ei ∈ E (d )
0 otherwise.

(2)

For a given query q, the ground truth label yi, j assigned to fl tr (ei , ej ) is

yi, j =
⎧⎪⎨⎪⎩
1 i f S(ei ) > S(ej )

0 i f S(ei ) ≤ S(ej ). (3)

The Pairwise Bi-Linear layer of LTRMHSA fl tr is then optimized with binary cross entropy on the
ground truth yi, j and predicted label ŷi, j of (ei , ej ).

During the inference phase, we derive a relevance score Ŝ(ei ) to determine the relevance of ei to

q by gathering the pairwise prediction results of fl tr (ei , ej ) for ei , ej ∈ Er (q). Ŝ(ei ) = ∑mq

j=1 1(ŷi, j >

0.5) where 1(·) is an indicator function. Finally, we use a context entity selector to select the nCXT

entities with the highest Ŝ scores to construct E (q), similar to that in KEMatch. In this article, we
empirically use nCXT = 10.

3.3 CPG

CPG is responsible for generating a path pq given E (q) and for inferring missing relations when
needed. We propose a Non-Monotonic Contextual Path Generation with Pretrained Trans-

former (NMCPGT) method as shown in Figure 4. NMCPGT addresses the two limitations of
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Fig. 4. Pretraining and fine-tuning steps of non-monotonic contextual path generation with pretrained trans-

former (NMCPGT).

traditional monotonic generationmodels such as n-gram [3] or neural languagemodels [48] where
the order of element generation is always from left to right. The first limitation is the generation
of unfinished paths when the model generates a path that starts with eh but could not end with et .
The second limitation is the difficulty to leverage on both eh and et to determine the next element
to generate in the monotonic manner. Thus, in this article, we propose the non-monotonic path
generation model that substantially increases the odds of finished paths and is trained to generate
the more likely path elements using eh , et , and the other already generated path elements in each
generation step.
NMCPGT is obtained in two steps, namely, the pretraining and fine-tuning steps. In pretraining,

a pretrained path generation model is trained to be familiar with the knowledge graph’s entities
and relations and the ways entities of different types are connected with one another via relation
edges, and it is able to generate knowledge paths given an (eh , et ) pair. In fine-tuning, we further
train the model to include candidate entities E (q) as additional input and to return the contextual
path.

3.3.1 Pretraining of Non-monotonic Path Generation Model. Our non-monotonic path gener-
ation model learns to generate path elements in any order. Borrowing the idea from an earlier
work [6], we represent the generation order of all the path elements (i.e., entities and relations of
the contextual path) using a binary tree in which each tree node is either an entity/relation or an
“end” (or “E”) item. The model generates these elements in a top-down and left-to-right manner,
until the binary tree has “E” items generated for all the leaf nodes. Once the generation process is
completed, the generated contextual path is the sequence of path elements (excluding the “E” items)
determined by a Deep-first Search (DFS) traversal of generated path elements in the binary tree.
Consider the binary tree output example of our non-monotonic path generation module in

Figure 5(a). The generation order starts with the root node, followed by its left child node, and
then its right child node. The generation order numbers of the three nodes are thus assigned
1, 2, and 3 as shown in blue in the figure. Following that, the nodes to be generated next are
those at the third and fourth layers with generation order numbers assigned from 4 to 11. For
each node, we generate a path element or “E” item. As shown in Figure 5(a), we finally obtain a
contextual path from the binary tree by constructing a sequence of the path elements (exclud-
ing the “E” items) following the DFS order numbers shown in green. The generated path is

eMattDamon
almaMater−−−−−−−−−→ eHavardUniversity

state−−−−→ eMassachusetts.
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Fig. 5. Binary trees of non-monotonic generation: (a) A terminal binary tree that shows the generation steps

for a path (with generation order numbers and DFS order numbers shown in blue and green, respectively).

(b) Two binary trees with the same generated sequence.

Our non-monotonic path generation model is based on reinforcement learning. We letV be the
set of all entities and relations, i.e., V = E ∪ R. Let Y = (w1, . . . ,wN ) denote a sequence of path
elements wherewi ∈ V and Ṽ be {V ∪〈e〉}where 〈e〉 denotes the terminal or “E” item. LetD denote
the collection of Y ’s. The generation process is regarded as deterministically navigating a state

space S. A state s ∈ S corresponds to a binary tree of nodes from Ṽ . For instance, the example we
show in Figure 5(a) has an initial state s1=(Matt Damon), and a final state s11=(Matt Damon,〈e〉,MA,
. . ., State, . . ., 〈e〉). The subscript of state si is the generation order number. An action a is an

element of Ṽ that is chosen to be added to the tree for the next available generation order index.
As mentioned previously, when every leaf node in the binary tree is the terminal node 〈e〉, the
generation reaches the terminal state sT . T = 2N + 1 denotes the number of nodes (or states)
that exist in the terminal binary tree. We use τ (i ) to represent the generation order index of the
generated element with DFS order number = i , e.g., τ (10) = 3 in Figure 5(a).
The goal of the non-monotonic path generation model is to learn a policy π that imitates an

oracle policy π ∗ that always generates a knowledge graph path. A policy is a stochastic mapping
from states to actions. It decides for each generation order index which element or terminal symbol
to generate. When the binary tree is terminal, the entire path is determined by the sequence of

elements following the DFS order numbers. The probability of an action a ∈ Ṽ given a state s
under policy π is denoted as π (a |s ).
To ensure that we generate a path from eh to et , the policy is trained to generate eh , 〈e〉, et , and

〈e〉 for the states s1, s2, s3, and s5, respectively. That is, π (eh |s1)= π (〈e〉|s2)= π (et |s3) = π (〈e〉|s5) =
1.0.

Let U [T ] be the uniform distribution over all the states of a binary tree {1, . . . ,T } and dtπ be
the state distribution obtained from running π for t-many steps. When generating an element or
terminal symbol, the model updates the current learned policy π by comparing its predicted cost to
an observed cost-to-go estimated with states drawn from π in and actions from π out. In other words,
we train π to pick actions that minimize C (π ;π out, st ). C (π ;π out, st ) measures the loss incurred by
π against the cost-to-go estimates under π out for a given state st . The model then learns πout that
minimizes the following cost function:

EY∼DEt∼U [T ]Est∼d t
π in

[C (π ;π out, st )], (4)

where st is the state corresponding to the top-down traversal of the generated binary tree at step
t . This process finds a policy that performs on-par or better than the oracle policy π ∗ with access
to only states st .
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The non-monotonic generation model can be implemented with a LSTM units model, or with
transformer structure [58]. In this article, we build the model with the latter.

Oracle Policies.Given a partially generated target pathp = 〈w1, . . . ,wn〉 at state st corresponding
to the generation step t , we define Yt as the set of elements in p that can be generated for state st
for the non-monotonic generation model to be able to generate p eventually. An oracle policy is
defined as

π ∗ (a |st ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 i f a = 〈e〉 and Yt = 〈〉
P (a) i f a ∈ Yt
0 otherwise,

(5)

where P (a) is defined such that
∑

a∈Yt P (a) = 1. For every generation step t , the oracle policy
always generates valid action a (i.e., if a ∈ Yt ) with positive probabilities, invalid actions with
zero probabilities, and 〈e〉 when no other elements are required to be generated. We can design
different oracle policies by defining P (a) differently. Let д and h be the nearest left parent and
nearest right parent, respectively, of the tree node corresponding to step t based on the DFS order.
Let the actions generated at steps д and h be aд = wд and ah = wh , respectively. We now derive
Yt as follows:

Yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{wд+1, . . . ,wh−1} ∪ {〈e〉} if aд and ah are found

{w1, . . . ,wh−1} ∪ {〈e〉} if only ah is found

{wд+1, . . . ,wn } ∪ {〈e〉} if only aд is found.

(6)

In this article, we use an annealed coaching oracle that combines a uniform oracle and a
coaching oracle to address the problem of not exploring diverse sets of generation orders. The
uniform oracle treats all possible generation orders that lead to the target sequence as equally
likely, without preferring any specific set of orders. It gives uniform probabilities P (a) = 1/|V |
for all elements in the sequence. On the other hand, coaching oracle ensures no invalid action is
assigned by any probability. It prefers actions that are preferred by the current parametrized policy
and reinforces the selection by the current policy π if it is valid. In other words, π ∗

coaching
(a |s ) ∝

π ∗
uniform

(a |s )π (a |s ). The annealed coaching oracle can therefore be represented as π ∗
annealed

(a |s ) =
βπ ∗

uniform
(a |s ) + (1 − β )π ∗

coaching
(a |s ).

Cost Functions. Since the generation is non-monotonic, the generation order does not necessar-
ily match the DFS order, and hence there can be multiple terminal binary trees that share the same
generated sequence of path elements. For a desired sequence to be finally generated based on a par-
tially generated binary tree, we need to determine if the element to be generated could violate the
desired sequence. Therefore, we consider all entities and relations that can be generated as correct
generation. We show two valid binary trees of a sequence ABCD generated by the non-monotonic
generation model in Figure 5(b). When deciding the left child of D, any token that locates before
it in the sequence can lead to generation of a valid binary tree. For instance, C is chosen in the
left tree and the right tree chooses B. As a result, we consider B or C as correct generation when
computing the cross entropy. Any other tokens are considered incorrect, including the termination
node 〈e〉. We define the Cross Entropy Loss as follows:

C (π ;π out, st ) =

− �
�
∑
w ∈V +

yπ ,st log(pπ ,st ) + (1 − yπ ,st ) log(1 − pπ ,st )��
,

(7)
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Fig. 6. Illustration of non-monotonic path generation: (a) Serialize an input tree with DFS traversal; (b) Gen-

eration of a Contextual Path.

where V + denotes the set of entities/relations that are deemed correct at this timestep t . yπ ,st ∈
{0, 1} such that yπ ,st = 1 if the generation predicted by π in state st leads to a valid DFS tree, and
pπ ,st is the generation probability.

In our experiment, we generated 100,000 paths from the knowledge graph for the pretraining.
The paths are generated by first sampling e1 from the graph as the head entity of the path, followed

by sampling the next entity e2 connected to e1 with an edge e1
r1−−→ e2 and adding that to the path.

This process is repeated until we have sampled L edges, or stops with a chance of 20%. We will use
the first and last entities of the path as eh and et , respectively.

3.3.2 Fine-tuning Non-monotonic CPG. To direct the NMCPGT model to generate a path ac-
cording to a context, we fine-tune our pretrained path generation model with additional context
entities E (q).
The context entities are arbitrarily ordered and separated by spaces. They are then concate-

nated with the query entities before being given to the pretrained transformer. We then fine-tune
the transformer to return the correct contextual path. The fine-tuning step is very similar to that
of pretraining except that the pretraining step involves sampled paths instead of ground truth
contextual paths. The fine-tuning step is also different due to additional context entities. Its input
sequence is in the format of “[soc] e1 e2 ... e |E (q ) | [sep] eh [e] et [e] [eoc]” where [sep] is a special to-
ken separating the context entities and the initial tree. We illustrate the contextual path generation
process in Figure 6(b).
In the prediction phase, we construct an initial tree with eh and et as the first and last nodes

in the generation order leaving the left child of et missing. The serialized sequence of the initial
tree is then fed to the decoder as prefix in the format of “[soc] eh [e] et [e] [eoc]” where [soc]
and [eoc] are special tokens signaling the start and the end of the prefix, and [e] is the token for
the termination signal 〈e〉. The model then completes the binary tree and recovers the predicted
contextual path by traversing the tree in DFS order.

3.4 Tree Serialization

During both the pretraining and fine-tuning phases, we need to feed the initial generation state
represented as a binary tree to the transformer for training. Since the transformer can only gener-
ate a sequence of objects, it is trained to decode or generate the sequence of actions that represents
the serialized binary tree of the training path. We serialize a path by traversing it in a top-down,
left-to-right manner. The serialization process is shown in Figure 6(a). For each timestep t , the
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Table 1. Dataset Statistics

Wikinews Dataset

Wiki-film Wiki-music

# context documents 40 40
# entities mentioned 563 471
# (eh , et ) entity pairs 1,396 1,237

Knowledge Graph

# entities 59,173 44,886
# relations 651 513

Ground Truth Contextual Paths

Avg./Max. path length 3.87/6 3.62/6
# unique path entities 563 471
# unique path relations 139 108

transformer decoder generates (or predicts) the next action of binary tree, which is in turn used
as input to the transformer decoder for generating the next action. This repetitive process ends
when the binary tree is terminal.

4 DATASET AND EVALUATION METRICS

4.1 Collection of Wikinews Datasets

In the absence of suitable datasets, we constructed two datasets, Wiki-film and Wiki-music, each
consisting of 40 Wikinews articles as context documents. We then identify 563 and 471 entities
mentioned in these two sets of context documents, respectively, which can be found in a knowledge
graph extracted from DBpedia.2 In the DBpedia knowledge graph, each entity corresponds to an
article in Wikipedia. Every attribute within the infobox of the article that refers to another article
is extracted as a relation edge linking the entity of the first article to the entity corresponding to
the second article. The attribute label in the infobox is used as the relation label. To derive the
set of (eh , et ) entity pairs, we identify 1,396 and 1,237 entity pairs from the context documents
of the Wiki-film and Wiki-music datasets such that both entities of each pair can be found in a
context document with paths connecting them in the knowledge graph. The detailed statistics of
the datasets are shown in the second and third columns of Table 1.
We crowdsourced the ground truth contextual path for each (eh , et ) entity pair using AMTwork-

ers annotating the path using a custom-developed web-based annotation interface. To make the
annotation reasonable tomost annotators, we limit the contextual paths to have amaximum length
of six. At the end of crowdsourcing, we derive one ground truth contextual path for each (eh , et )
pair with majority agreement.3

4.2 Evaluation Metrics

To measure the CPG performance, we divide the (eh , et ) entity pairs of each dataset into five
folds. Each fold takes a turn to be used for testing while the remaining four folds are used for
model training. We repeat this process five times and report the averaged performance across five
folds in the experiment. We measure the model performance using three types of metrics, namely,
(a) percentage of recovered ground truth paths; (b) averaged pairwise similarity; and (c) normalized
graph edit distance.

2https://wiki.dbpedia.org
3Due to space constraints, we will elaborate the annotation process in an addendum upon publication.
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Percentage of recovered ground truth paths (%Path Recovered). This metric measures
the proportion of generated paths that are identical to the ground truth path. In this metric, the
similarity between the generated and ground truth paths is not considered.
Average pairwise similarity (AVG PW Sim). This metric shows how much a generated path

overlaps with the ground truth contextual path. Given a path p generated by the model, we com-
pute its pairwise similarity with the ground truth path p∗ by

s(p,p∗) =
{E (p) ∪ L(p)} ∩ {E (p∗) ∪ L(p∗)}
{E (p) ∪ L(p)} ∪ {E (p∗) ∪ L(p∗)} , (8)

where E (p) and L(p) represent the set of entities and relation labels existing in p, respectively. We
then compute the average pairwise similarity for all the generated paths. While this metric can
effectively determine how close the generated path is to ground truth, it does not consider the
ordering of the entities and relations. Moreover, it does not take into consideration the semantic
relatedness between the two paths. The next normalized graph edit distance metric thus addresses
these limitations.
Normalized Graph Edit Distance (NGEO). The Graph Edit Distance (GEO) is a metric

originally designed to measure the similarity of two graphs by counting the number of operations
needed to transform one graph to another [70]. We adapt it to measure the similarity between a
generated element sequence q and the ground truth element sequence q∗. In this work, we report
the normalized GEO:

NGEO (q,q∗) =min

(
GEO (q,q∗)
|q∗ | , 1

)
, (9)

where |q∗ | is the length of the ground truth sequence. From the full path (e1, r1, . . . , rL−1, eL), we de-
rive an entity sequence where only entities are included in a path (e1, .., eL), and a relation sequence
(r1, . . . , rL−1) defined in a similar manner. We denote the NGEO for relation and entity sequences
as NGEO(E) and NGEO(R), respectively.
LetOP (q,q∗) be the sequence of edit operations for converting the former to the latter. The GEO

metric is defined by

GEO (q,q∗) =
∑

(opj ,tj ,t ′j )∈OP (q,q∗ )
copj (tj , t

′
j ). (10)

There are six operations defined: entity insertion, entity deletion, entity substitution, relation
insertion, relation deletion, and relation substitution. The semantic cost of an operation is defined
by entity type or relation label distance determined by the ontology structure underlying the en-
tities and relation labels. GEO makes use of the ontology structure of the knowledge graph to
determine the semantic similarity between entities and relations. Let t (or r ) and t ′ (or r ′) be the
inserted entity’s type (or inserted relation label) and the deleted entity’s type (or deleted relation
label), respectively. t0 and r0 are the root entity and relation, respectively, in the knowledge ontol-
ogy. For each operation op performed on a path, the semantic cost cop (·) incurred is defined below:

Entity Insertion: cvi (t ) = dist (t , t0),

Entity Deletion: cvd (t
′) = dist (t ′, t0),

Entity Substitution: cvs (t , t
′) = dist (t , t ′),

Relation Insertion: cr i (r ) = dist (r , r0),

Relation Deletion: crd (r
′) = dist (r ′, r0),

Relation Substitution: cr s (r , r
′) = dist (r , r ′).

(11)
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When a semantic operation is performed, the semantic distance is defined as the co-topic dis-
tance dist (t1.t2) (or dist (r1, r2)) of the two ontological types t1 and t2 (or relation labels r1 and r2)
in a knowledge graph ontology:

dist (t1, t2) = 1 − |S (t1) ∩ S (t2) ||S (t1) ∪ S (t2) |, (12)

where S (ti ) is the set of supertypes of ti in the ontology. For example, given an ontology consisting
of supertype-subtype relations, {Agent→ Person, Person→ Artist, Artist→ Actor, and Person→
MovieDirector}, the distance between Actor and MovieDirector is 1 − 2

5 =
3
5 .

5 EXPERIMENT RESULTS

To compare the effectiveness of our proposed models and baselines, we design a series of experi-
ments to measure the correctness of their generated paths. As our framework consists of context
extractor and non-monotonic contextual path generator, we first evaluate the former before ana-
lyzing the overall contextual path generation performance on our two Wikinews datasets. Addi-
tionally, we complete a series of experiments on a synthetic dataset to show the scalability of our
dataset, and the ability to infer missing relations of the knowledge graph. We cover the detail of
how we generate the synthetic dataset and the experiment result in Appendix A.

5.1 Effectiveness of Context Extractor Methods

Our first set of experiments evaluates the effectiveness of context extraction models returning
the ground truth contextual path entities as context entities for a set of queries. Other than our
proposed context extractor methods KEMatch and LTRMHSA, we also include a context window
baseline method described below.

—Context window baseline. We introduce a context extractor baseline method to compare
against our proposed KEMatch and LTRMHSAmethods. In this baseline method, we extract
the entities mentioned in the text surrounding eh and that in the text surrounding et within a
distance of cw word tokens in context documentd . In this article, we empirically use cw = 20.

—KEMatch. KEMatch prunes the query-induced entities graph with a classifier, and keeps
only the top nCXT entities with highest prediction probability as context entities. As de-
scribed in Section 3, we experiment with three different methods of query representation
zq , namely, (1) average entity representation, (2) mention paragraph representation, (3) title
and mention paragraph representation, and (4) contextual query entity representation. We also
propose three feature combination schemes to combine zq and ze , the representation of en-
tity e from G (q): (a) concatenation +, (b) Hadamard product �, and (c) subtraction −, and an
additional (d) all, which concatenates (a), (b), and (c) together as features. The parameters
k = 2, δ = 4, and nCXT = 10 are chosen based on grid search.

— LTRMHSA.We employ a learning-to-rank with multi-head self-attention model to extract
the most context-relevant entities as context entities. We set nCXT = 10 to stay consistent
with KEMatch.

We use a pretrained DBpedia k-bert model as the context encoder [38]. The model uses the
following configuration: L = 12, A = 12, H = 768.
We measure the performance of context entity extraction by precision and recall defined by

Precision=
|E (q )∩E∗ (q ) |
|E (q ) | and Recall=

|E (q )∩E∗ (q ) |
|E∗ (q ) | , respectively. E (q) denotes the set of context

entities extracted by the extractor and E∗ (q) is the set of ground truth context entities. We utilize
the negative sampling process described under Section 3 and conduct 10-fold cross validation. As
we have consistent observations on Wiki-film and Wiki-music and due to limitations in space,
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Table 2. Performance in Context Entity Extraction (Wiki-Film)

Context Extractor Feature Precall Recall

Combinations

Context Window 68.4 62.3

KEMatch

AVG Entity Rep.

+ 73.5 70.9
� 75.6 73.8
− 72.9 70.1
all 72.1 69.3

Mention
Paragraph Rep.

+ 75.4 73.2
� 80.1 77.6
− 72.7 71.6
all 71.5 69.8

Title + Mention
Paragraph Rep.

+ 69.20 65.4

Cxt. Query
Entity Rep.

+ 74.7 72.3
� 81.3 78.9
− 72.5 71.7
all 71.9 70.4

LTRMHSA 85.9 83.1

we only show the experiment result of the Wiki-film dataset in Table 2. In this comparison, we
additionally include the context window baseline.
LTRMHSA, which considers inter-entity interaction, yields the best precision (85.9%) and recall

(83.1%). KEMatch using contextual query entity representation with the Hadamard product feature
combination option, returns the next best precision (81.3%) and recall (78.9%). This is followed
by KEMatch using mention paragraph representation also with the Hadamard product feature
combination option. These results suggest that the contextualized query entity representation is
the best option for KEMatch. Finally, the context window baseline is the worst-performing method
as it does not involve the knowledge graph entities.
Among the other KEMatch variants, average entity representation performs better than title and

mention paragraph representation, possibly due to the latter’s high feature dimensionality. We ob-
serve features with a high coefficient have been assigned to both p1 and pq . This observation
supports our hypothesis that the title paragraph contains useful information about the contextual
relationship between the query entities. Finally, among the different feature representations, the
Hadamard product achieves the best performance, followed by concatenation and subtraction. Al-
though all three of these feature representations show decent predictive results, combining them
together does not result in better performance due to high feature dimension.
While Table 2 shows that LTRMHSA enjoys higher accuracy than all of the KEMatch variants,

the former involves a computational complexity ofO (m2
q ) comparedwith KEMatch’sO (mq ).When

mq is large, the computational overhead of LTRMHSA could be significantly higher, which ad-
versely affects the time needed for generating a contextual path. As a result, one should take into
consideration the tradeoff between performance and execution time when deciding which context
extractor to use together with NMCPGT in practice.

5.2 Performance in CPG

Next, we conduct experiments to evaluate the models’ performance in generating the contextual
paths. We compare our proposed models combining NMCPGT with different context extractor op-
tions, namely, KEMatch and its variants, LTRMHSA, context window entities, and random context
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Table 3. Path Generation Performance on Wiki-Film and Wiki-Music Datasets

Dataset Wiki-Film Wiki-Music
Feat.

Comb.
%Recov

AVG

PW Sim

NGEO(E),

NGEO(R)
%Recov

AVG

PW Sim

NGEO(E),

NGEO(R)

NCNMPG 19.7 0.44 0.29, 0.24 20.32 0.46 0.29, 0.23

N
M
C
P
G
T

Random Context 62.33 0.59 0.26, 0.22 60.15 0.58 0.27, 0.22
Context Window 73.27 0.75 0.2, 0.19 75.22 0.74 0.21, 0.2

KEMatch
AVG Ent Rep.

+ 76.76 0.83 0.17, 0.16 78.13 0.81 0.17, 0.15
� 78.14 0.84 0.17, 0.16 78.92 0.81 0.17, 0.15
− 71.11 0.78 0.19, 0.18 70.37 0.80 0.2, 0.18
all 73.2 0.79 0.18, 0.17 74.52 0.78 0.18, 0.16

KEMatch
Mention Para. Rep.

+ 77.41 0.86 0.17, 0.15 76.49 0.85 0.17, 0.16
� 80.13 0.87 0.16, 0.15 80.41 0.87 0.16, 0.16
− 73.29 0.81 0.18, 0.18 72.48 0.82 0.19, 0.18
all 74.19 0.81 0.18, 0.17 74.07 0.83 0.19, 0.18

KEMatch
Title + Mention Para. Rep.

+ 72.28 0.78 0.18, 0.16 71.78 0.77 0.19, 0.16

KEMatch
Cxt. Query Ent Rep.

� 81.2 0.87 0.15, 0.15 82.89 0.88 0.16, 0.15

LTRMHSA 84.13 0.89 0.14, 0.14 85.37 0.91 0.14, 0.14

entities. The random context entities method randomly selects nCXT entities fromG (q) as the con-
text entities. We set nCXT = 10, which is consistent with the nCXT for KEMatch and LTRMHSA.
For simplicity, we name ourmodels by “NMCPGT+〈context extractormethod〉” where the 〈context
extractor method〉 options are Random Context, Context Window, KEMatch, and LTRMHSA.
To evaluate the importance of the context document, we additionally include a non-contextual

non-monotonic path generation (NCNMPG) baseline that generates the contextual path from
path generator that only takes eh and et as input, without any knowledge of the context document.
In other words, this model does not use any context entities as condition, and only relies on the
pretrained transformer when generating paths.
For the path generation, we only include the annealed coaching oracle π ∗

annealed
as it has been

shown to outperform the uniform and coaching oracles in [6]. The model is optimized with cross
entropy loss. The non-monotonic path generator uses a four-layer transformer structure with four
attention heads, hidden dimension of 256, and feed-forward dimension of 1,024. Adam optimizer
is used with the initial learning rate of 10−5. The model is trained with 100 epochs. After the 50
burn-in epochs, β is linearly annealed from 1.0 by 0.01 in each epoch. The implementation of all
neural structures is based on Pytorch.
We report the % ground truth recovered (%Recov), averaged pairwise similarity (AVGPWSim),

NGEO(E), andNGEO(R) of the generated contextual paths by differentmodels in Table 3.We have
similar observations based on the experiments on the two real-world datasets. The CPG perfor-
mance is also consistent with the results in Table 2. The model NMCPGT+LTRMHSA outperforms
other models for all metrics, followed by NMCPGT+KEMatch with context query entity represen-
tation and mention paragraph representation. Among the NMCPGT+KEMatch model variants, the
Hadamard product is the best feature combination method while subtraction is the worst. The sim-
ple baselines that do not extract context entities, including Non-Contextualized Generation and
Random Context baseline, perform the worst. This indicates the importance of a good context
extractor—the better we extract context entities, the more accurate the generated contextual paths
will be. In the following, we use two case examples to illustrate the difference between the different
models.
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Table 4. Non-monotonic (Non-M) and Monotonic (M) Generation

%Unf %Recov
AVG

PW Sim
NGEO(E),NGEO(R)

π ∗
annealed

(Non-Monotonic)
0 84.13 0.89 0.14, 0.14

π ∗L-R
(Monotonic)

29.73 42.85 0.73 0.19, 0.16

Case example 1.Consider the query entitiesZacharias Kunuk and Inuit in the following context
from Wiki-film:

“Produced by an Igloolik, Nunavut company, the film is titled The Journals of Knud Rass-
musen, and co-directed by Zacharias Kunuk of Igloolik and Norman Cohn of Montreal.
The company received critical acclaim for their first film, Atanarjuat, ... The film portrays
the pressures on traditional Inuit culture....”4

The ground truth contextual path is eKunuk
director−−−−−−→ eTheJournalOfKnudRasmussen

pageLink−−−−−−−→ eInuit,
which is successfully generated by both NMCPGT+LTRMHSA and NMCPGT+KEMatch with con-
text query entity representation. NMCPGT+KEMatch with mention paragraph representation, on

the other hand, generates eKunuk
producer−−−−−−−→ eTheJournalOfKnudRasmussen

pageLink−−−−−−−→ eInuit. Although this is
not a ground truth path, it is semantically correct asKunuk is the co-founder of the production com-
pany Igloolik, Nunavut company. Both NMCPGT+context window and NMCPGT+KEMatch with

AVG entity representation extractors generate eKunuk
director−−−−−−→ eAtanarjuat

pageLink−−−−−−−→ eInuit, which sug-
gests the generation of path is affected by entities within the context document. Finally, the non-
contextualized generation and NMCPGT+random context baseline generates the shortest path be-

tween the query entities in knowledge graph: eKunuk
pageLink−−−−−−−→ eInuit.

Case example 2. Consider query entities James Bond and Pinewood Studio in the following
context from Wiki-film:

“Firefighters have confirmed that the large James Bond sound stage at Pinewood Stu-

dios has been destroyed by fire... where filming for Casino Royale, the latest Bond movie,
has been completed... Pinewood, which was created in 1935, was the filming ground for
Dr No, the first ever James Bond movie in 1962.” 5

Both NMCPGT+LTRMHSA and NMCPGT+KEMatch with context query entity representation

generate eJamesBond
isSeriesOf−−−−−−−−→ eDr.No

pageLink−−−−−−−→ ePinewoodStudio, which is different from the ground

truth path eJamesBond
isSeriesOf−−−−−−−−→ eCasinoRoyale

pageLink−−−−−−−→ ePinewoodStudio. Nevertheless, the path is con-
sidered semantically correct as the event carried by both paths exists in the context document. NM-
CPGT+KEMatch with mention paragraph representation successfully generates the ground truth
path as it only focuses on the paragraph in which Casino Royale is mentioned. It is not affected by
the mention of Dr. No.

5.3 Comparison between Non-monotonic and Monotonic Path Generation

In this section, we compare our non-monotonic path generator NMCPGT+LTRMHSA with a left-
to-right counterpart by evaluating them on the Wiki-film dataset. As discussed in Section 3.3, we

4https://en.wikinews.org/wiki/Film_from_Nunavut_in_Canada%27s_north\_to_open_TIFF
5https://en.wikinews.org/wiki/James_Bond_set_at_Pinewood_Studios\_destroyed_by_fire
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choose to use a non-monotonic generationmodel because left-to-right generationmodels are likely
to generate unfinished paths.
To conduct this experiment, we replace π ∗

annealed
of NMCPGT by a Left-to-Right Oracle π ∗L-R ,

which always assigns probability of 1 to the leftmost to-be-generated path element of the sequence.
As suggested in [6], π ∗L-R results in maximum likelihood learning of an autoregressive sequence
model, whichmakes the generation process identical to neural sequencemodels such as GPT-2 [48].
We use the same input sequence, “[soc] e1 e2 ... e |E (q ) | [sep] eh [e] et [e] [eoc]”, for fine-tuning the non-
monotonic and monotonic models. In this experiment, we include a new metric representing the
percentage of %unfinished path in the result (%Unf) to evaluate the model’s ability to complete
the path. We define an unfinished path as one that starts with eh but could not end with et within
LMAX = 6 relation edges. Note that the generated paths, finished or not, may involve inferred
relation edges. We report the experiment result on theWiki-film dataset for NMCPGT+LTRMHSA
in Table 4. Since NMCPGT+LTRMHSA is required to generate path elements between eh and et ,
it has %Unf = 0. The monotonic model, however, sees 29.73% of the generated paths unfinished.
With fewer finished paths, the %path recovered of the monotonic model is also substantially less
than NMCPGT+LTRMHSA.
While the monotonic model performs badly in well-formed path generation, it achieves decent

average pairwise similarity and NGEO results. This suggests that the monotonic model generates
entities and relation labels that are still relevant to the context with the help of LTRMHSA context
extractor. For instance, for the query with entities (eBrokeback Mountain, eMel Gibson) and the following
context document:

“...Ledger starred in the 2005 movie Brokeback Mountain where he was nominated for
the Academy Award and the Golden Globe Award for Best Actor. He also starred in the
2000 movie The Patriot withMel Gibson...” 6

The ground truth contextual path of this query should be eBrokebackMountain

starring−−−−−−→
eLedger

starring−−−−−−→ eThePatriot
starring−−−−−−→ eGibson. The non-monotonic model using π ∗

annealed
generates the

ground truth path perfectly. On the other hand, the monotonic model using π ∗L-R generates a path

that is unfinished: eBrokebackMountain

subject−−−−−−→ eAcademyAward

subject−−−−−−→ eAcademyAwardForBestActor

subject−−−−−−→
eLedger

starring−−−−−−→ eThePatriot
pageLink−−−−−−−→ eLedger. Nevertheless, the generated path is still very relevant to

the context. In fact, if we do not force the model to stop at the length of 6, it will eventually reach
eMel Gibson at the 8th hop. This example explains why we obtain relatively high pairwise similarity
and NGEO for the monotonic model.

6 DISCUSSION

Our proposed two-stage CPG framework consisting of context extractor and contextual path gen-
erator is unique in knowledge graph reasoning research. It allows context entities relevant to a
query to be used as input to contextual path generator to control the path generated by the latter.
Moreover, the path generator outputs a relevant and well-formed contextual path using a non-
monotonic path generation approach. To our best knowledge, such an approach has not been
attempted in previous works. In the following, we discuss the potential impact this article may
have on knowledge reasoning research and applications.
In the research aspect, this article represents an early work to address the emerging problem

of inferring new relation edges or facts for a knowledge graph from input textual data. When

6https://en.wikinews.org/wiki/Australian_actor_Heath_Ledger_found_dead\_in_New_York_City
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combined with information retrieval research, CPG can offer useful explanations to the content
found in search results. This paves the foundational work for future research in information re-
trieval with explainable AI. From the technical standpoint, the NMCPGT is also a research break-
through as it combines the strengths of efficient relation edge inference, well-formed CPG, and
efficient path generation together in a model. Most of the previous works that use a knowledge
graph to reason (e.g., MHQA-GRN [54] and LEGO [49]) generate knowledge paths by traversing
the knowledge graph. Such methods suffer from missing knowledge graph relation edges, long
relation edge inference times, and poorly formed paths. In contrast, our pretrained transformer
method for knowledge path generation is more versatile, and can be easily fine-tuned for many
different tasks. It may subsequently evolve into a large pretrained generative model for complex
reasoning and as a problem solving tool.
In the practical aspect, CPG overlays a context document with contextual paths. This enhances

content understanding as both the known and inferred relation edges of contextual paths between
entities can be highlighted to the readers. For instance, a content analysis system could process
documents with CPG and obtain contextual paths of entity pairs mentioned in the documents. The
users can therefore access these contextual paths and entity descriptions provided by the knowl-
edge graph as additional background information about the entity pairs, and to acquire a more
complete contextual knowledge about the document content for knowledge-enhanced informa-
tion retrieval tasks.
Finally, it is possible to automatically enrich a knowledge graph with CPG. As discussed in

Section 2, knowledge graphs can be incomplete and outdated, which is a common limitation faced
by many knowledge graph–based applications. CPG can help to address this by inferring new re-
lation edges from a large enough set of documents mentioning the knowledge graph entities. This
can be especially helpful for information systems that require up-to-date information to deliver
the best outcomes, e.g., decision-making systems, competitive intelligence analytics systems, and
so forth.

7 CONCLUSION

In this article, we aim to enhance the understanding of textual documents by deriving knowledge
paths among the mentions of entities. To address the challenges in path generation, we proposed a
two-stage CPG framework that can handle (i) noisy context information, (ii) missing relation edges
in knowledge graphs, and (iii) generate well-formed paths. We propose novel context entity ex-
traction methods and develop non-monotonic generation with pretraining to overcome the above
challenges. For context entity extraction, we introduce knowledge-enabled embedding matching
and learning-to-rank with multi-head self-attention methods. The latter yields higher accuracy
than the former. For CPG, we propose NMCPGT, which is capable of generating contextual paths
that resemble an oracle policy. Our experiments demonstrate that our proposed framework yielded
the best accuracy, surpassing previous state-of-the-art methods.
Due to the high cost of annotation efforts, we only conducted experiments on small real datasets

built with Wikinews articles. However, with more datasets annotated in the future, we will be able
to conduct experiments on larger real datasets to producemore comprehensive results and findings.
Moreover, the current work assumes that only one ground truth contextual path exists between
a query entity pair, which may not hold in a real-world scenario. Therefore, we plan to further
refine both the datasets and experiment design to address this limitation in our follow-up works.
There are several other interesting future directions for CPG research. First, CPG can be adapted

to other research tasks in different types of knowledge graph–enhanced information systems. For
example, in a recommendation system, we can extend CPG to recommend items by constructing a
path out of the user’s product purchase and browsing history. In search engine research, one can
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also conduct design novel methods to summarize search results using contextual paths. Secondly,
CPG can be viewed as an interesting means to derive new relation edges not found in the exist-
ing knowledge graphs. For this to work at scale, we require many context documents of the same
knowledge domain to be provided. It should also be compared and evaluated against other knowl-
edge completion methods. Thirdly, CPG research can be extended to find contextual subgraphs (in-
stead of contextual paths) connecting a set of input entities in a context document. The generated
subgraphs will be more easily used in downstream applications. Finally, it is worthwhile to explore
how to create a large pretrained knowledge path model using the proposed NMCPGT.With recent
advancements in large pretrained language models, we hope that a large pretrained knowledge
path model can be developed to generate high-quality and accurate paths across different knowl-
edge domains. We hypothesize that such pretrained large knowledge path models will have better
generation and reasoning abilities, which can make them useful in many downstream applications.

APPENDIX A

A EXPERIMENTS ON SYNTHETIC DATASET

In this section, we explore the scalability of our proposed framework using a large-scale synthetic
dataset. We use the synthetic dataset from [40], and show the statistics of the dataset in Table 5.
This large-scale dataset overcomes the limitation of real-world datasets that are usually small due
to the high data construction cost. We show the experiment results of our CPG models on the
synthetic dataset, which focus on evaluating howwell our proposed CPGmodels cope with a large
dataset. Finally, we inspect our models’ ability to infer new relation edges given an incomplete
knowledge graph.

Table 5. Synthetic Dataset Statistics

Synthetic Dataset

# context documents 2,000
# entities mentioned 19,173
# entity pairs 5,000
AVG/MAX ground truth path length 4/6

Knowledge Graph

# entities 59,173
# relations 651

Ground Truth Paths

AVG path length 4
# unique path entities 19,173
# unique path relations 648

A.1 Coping with Large Dataset

We conduct the evaluation of selected models and baselines with the synthetic dataset, as shown in
Table 6. The results are generally consistent with those in the Wiki-film and Wiki-music datasets.
However, we observe that the performance results of all models are poorer in the synthetic dataset.
For example, the % Path Recovered of NMCPGT+LTRMHSA is about 10% less than that of the
same model on Wiki-music. This may be due to the additional noises introduced to the contextual
documents and paths when constructing the synthetic dataset.
As the synthetic dataset is significantly larger, we also examine the efficiency of our proposed

model. We conduct the experiments on a Tesla V100 GPU server with 32 GB memory. With 4,000
training instances, the training process costs 1 h 20 min 34 sec. The generation of contextual path
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Table 6. Path Generation Performance on Synthetic Dataset

Dataset Synthetic
Feature

Combination
%Recov

AVG

PW Sim
NGEO(E), NGEO(R)

NCNMPG 16.2 0.32 0.32, 0.25

N
M
C
P
G
T

Random Context 55.43 0.47 0.29, 0.23
Context Window 61.83 0.56 0.25, 0.22

KEMatch
AVG Ent Rep.

+ 63.46 0.68 0.25, 0.22
� 64.27 0.68 0.24, 0.2
− 57.2 0.55 0.27, 0.23
all 62.35 0.64 0.25, 0.22

KEMatch
Mention Para. Rep.

+ 63.59 0.65 0.25, 0.21
� 73.66 0.71 0.21, 0.18
− 58.74 0.53 0.26, 0.21
all 61.57 0.58 0.26, 0.21

KEMatch
Title + Mention Para. Rep.

+ 60.91 0.58 0.27, 0.21

KEMatch
Cxt. Query Ent Rep.

� 75.37 0.74 0.18, 0.17

LTRMHSA 75.92 0.76 0.17, 0.16

Table 7. Inferring Missing Relations using NMCPGT+LTRMHSA

k %Recov
AVG PW

Sim
NGEO(E),NGEO(R) %E−

CP

%E−
CP

Recov

0
(Full KG)

84.13 0.89 0.14, 0.14 - -

10 80.22 0.86 0.15, 0.14 5.37 65.92
30 65.23 0.71 0.19, 0,17 19.31 57.23
50 47.37 0.59 0.24, 0.23 38.45 40.85

E−CP: Removed edges that exist in the ground truth contextual path.

for a test query requires around 0.86 second. This result shows the ability of our two-stage model
in handling large datasets.

A.2 Inferring New Relation Edges

To evaluate the models’ abilities to infer edges that are not observed in the current knowledge
graph, we randomly drop k% of the edges from the knowledge graph of the synthetic dataset. We
report the performance of MNCPGT+LTRMHSA only, our best performing model, in Table 7. In
addition to % path recovered (%Recov), AVG pairwise similarity (AVG PW Sim), and normalized
graph edit distance (NGEO), we also report %E−CP Recov, which represents the percentage of
ground truth path edges that are recovered.
The results show that as k increases, our model performs poorer by all metrics. When k is

small (e.g., k = 10), the model successfully recovers 65.92% of the ground truth contextual path
edges that are removed from the knowledge graph. When k = 50, the %Recov performance drops
significantly to 47.37% but the model still recovers 40.85% of removed ground truth edges. Empiri-
cally, we also observe that NMCPGT+LTRMHSA is more likely to recover edges between entities
that are logically or semantically related. For instance, we find that a movie m is inferred to be

made in country c (i.e., em
country−−−−−−→ eFrance ) if it mostly stars actors and actresses from c . As a
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result, the model successfully recovers eTop Gun

country−−−−−−→ eUnited States, and eAmour(film)

country−−−−−−→ eFrance.

On the other hand, the model fails to recover edges like eRidley Scott

producer−−−−−−−→ eAmerican Gangster(film),

eCrimson Tide

starring−−−−−−→ eViggo Mortensen, and eClint Eastwood
artist−−−−→ eBar Room Buddies. These are edges with

specific semantics and thus more difficult to infer.
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