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mation across different inter-company relationship networks
also influence stock returns. Such inter-company relationship
networks could be based on explicit relationships, such as
observed co-occurrences in online news or businesses; or
based on implicit relationships inferred from different financial
time-series. Such relationship networks are often dynamic,
i.e. they evolve across time. Forecasting models that can
effectively capture such multimodal time-series information
and jointly model both dynamic explicit and implicit networks
can help address the aforementioned challenges and improve
forecasting accuracy.

Classical methods [4] commonly used for financial forecast-
ing are not designed for multitask multimodal settings, nor
network information. Deep learning architectures have been
applied to time-series forecasting [5], but are mostly designed
for unimodal numerical inputs and single forecasting tasks, and
do not capture inter-company relationships. Spatio-temporal
network models [6], [7] capture relationships between different
time-series but most of them are designed for static explicit
networks. Dynamic network models [8] are designed for
dynamic explicit networks. Such spatio-temporal and dynamic
network models are not designed for networks with nodes
having multimodal financial time-series attributes. Some works
adopt a multitask approach to forecast financial time-series for
trading [9]–[11], but do not model multimodal time-series and
dynamic network information.

Hence, in this paper, we propose the Dynamic Multimodal
Multitask Implicit Explicit (DynMIX) network model frame-
work, as shown in Figure 1. DynMIX captures multivariate and
multimodal time-series information, together with dynamic
explicit inter-company relationships. To address non-stationary
time-series distributions and inter-series correlations, DynMIX
learns temporal representations, and also discovers dynamic
implicit inter-company relationships that are paired with dy-
namic explicit networks as different views for dynamic self-
supervised learning (SSL) to align and regularize representa-
tions across different modalities and networks. DynMIX gen-
erates forecasts of means, volatilities, correlations of returns
of multiple stocks, as well as forecasts of multiple events
(i.e. multilabel prediction task) affecting multiple companies
over a future time horizon to support investment and risk
management decision-making. Our key contributions are as

Abstract—Many financial f orecasting d eep l earning w orks fo-
cus on the single task of predicting stock returns for trading with 
unimodal numerical inputs. Investment and risk management 
however involves multiple financial t asks -  f orecasts o f expected 
returns, risks and correlations of multiple stocks in portfolios, as 
well as important events affecting different stocks - to support 
decision making. Moreover, stock returns are influenced by large 
volumes of non-stationary time-series information from a variety 
of modalities and the propagation of such information across 
inter-company relationship networks. Such networks could be 
explicit - observed co-occurrences in online news; or implicit -
inferred from time-series information. Such networks are often 
dynamic, i.e. they evolve across time. Therefore, we propose 
the Dynamic Multimodal Multitask Implicit Explicit (DynMIX) 
network model, which pairs explicit and implicit networks across 
multiple modalities for a novel dynamic self-supervised learning 
approach to improve performance across multiple financial tasks. 
Our experiments show that DynMIX outperforms other state-of-
the-art models on multiple forecasting tasks, and investment and 
risk management applications.

Index Terms—Graph neural networks, transformers, attention 
mechanisms, time-series forecasting, networks, multimodality, 
embeddings, finance

I. INTRODUCTION

Many financial f orecasting d eep l earning w orks f ocus on
predicting stock returns to support stock trading decisions with
unimodal numerical inputs. To support investment and risk
management decisions in financial i nstitutions such as banks,
forecasts of the means, volatilities (risks) and correlations of
returns of multiple stocks (i.e. multiple variables) in portfolios
over future time horizons are required. Forecasting important
events that affect companies can also help investment and
risk managers understand market dynamics and support de-
cision making [1]. Hence, forecasting models need to support
a multitask multivariate setting, as illustrated by important
questions associated with different forecasting tasks shown in
Figure 1. These multitask multivariate forecasts can also be
utilized in important applications, such as portfolio allocation
and forecasting portfolio Value-at-Risk (VaR) [2]. Financial
forecasting is challenging due to the low signal-to-noise ratios
and non-stationary nature of financial t ime-series [ 3]. Stock
returns are influenced b y d ynamic t ime-series information
from multiple modalities, e.g., numerical prices, textual news,
categorical events information. Propagation of different infor-
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Fig. 1. Model Framework: DynMIX captures multivariate multimodal time-series information and dynamic explicit inter-company relationships as shown on
the left. DynMIX also discovers dynamic implicit inter-company relationships from different time-series information and pairs them with explicit networks
as different views for dynamic self-supervised learning (SSL) (details in Figure 3). DynMIX generates multiple financial forecasts to support investment and
risk management decision-making, as well as industry applications, as shown on the right.

follows:
• To our knowledge, DynMIX is the first model designed to

capture multivariate and multimodal time-series informa-
tion, as well as dynamic explicit and implicit relationship
networks for multiple financial forecasting tasks;

• DynMIX learns temporal representations, and also dis-
covers dynamic implicit relationship networks from mul-
timodal time-series and pairs them with dynamic explicit
networks as different views for a novel dynamic SSL ap-
proach to address non-stationary time-series distributions
and correlations;

• We demonstrate that DynMIX outperforms state-of-the-
art baselines on multiple forecasting tasks and real-world
investment and risk management applications, particu-
larly on volatility and correlation forecasting tasks, and
portfolio allocation and VaR applications.

II. RELATED WORK

Financial Time Series Forecasting: Classical methods [4]
that are commonly applied to financial time-series forecasting
are not designed for multimodal or network information. Deep
learning models utilized for time-series forecasting include
feed-forward networks [12], convolutional neural networks
[13] and recurrent neural networks (RNN) [14], [15]. A
review of these works can be found in [5]. Most of these
models [12], [16] focus on capturing and predicting numerical
information in a single-task setting, and are not designed for
unstructured textual information or multimodal information.
Time-series Transformer (TST) [17] is a recent model based
on the transformer encoder architecture designed for numerical
time-series information. TST does not model multimodal and
network information. Recent works have studied the use of
textual news information [18], [19] for financial forecasting.
FAST [18] uses Time-aware LSTMs [20] to encode textual
news information. Similar to TST, FAST also does not capture
multimodal nor network information.

Network Learning for Financial Time-Series: Graph neu-
ral networks (GNN) compose messages based on network
features, and propagate them to update the embeddings of
nodes and/or edges over multiple neural network layers [21].
Most GNNs are designed for static networks with static node
attributes. A few recent works [19], [22], [23] apply GNNs
to prediction tasks on financial time-series data involving pre-
defined static networks. Among the GNN models designed
for dynamic networks [24], [25], EvolveGCN [8] captures
dynamic networks by using a RNN to evolve GCN parameters.
However, EvolveGCN and these works are not designed for
networks with financial time-series node attributes. Spatio-
temporal network models [6], [7], [26], [27], primarily used
for traffic forecasting, can handle networks where the node
attributes are time-series but are designed for pre-defined
static networks. Some recent spatio-temporal network mod-
els [28] infer implicit relationships between time-series for
forecasting. MTGNN [29] uses a graph learning layer to
learn the underlying network, before applying interleaved
temporal convolution modules and graph convolution modules
to capture temporal and spatial dependencies. DYGAP [30]
utilizes attention mechanisms to learn network structures and
then applies diffusion convolutional recurrent neural networks
[6] with the learned networks as inputs for forecasting financial
returns. MTGNN, DYGAP and other works however assume
that a single set of relationships applies across the window
period, and are not designed for multimodal information
nor dynamic explicit and implicit networks. Existing self-
supervised learning (SSL) works focus on static networks in
unimodal and single task settings [31], [32]. To our knowledge,
DDGCL [33] is among the first to propose SSL for dynamic
networks, but assumes a smooth evolutionary process for data
points that are close in time which is not true for non-stationary
financial time-series whose variances can change sharply.
DDGCL is also not designed for multimodal information and
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multiple dynamic networks.

III. DYNAMIC MULTIMODAL MULTITASK IMPLICIT
EXPLICIT NETWORK MODEL

Let V denote a set of companies. We first define Xm
t =

[xm(t − K), ..., xm(t − 1)] ∈ R|V |×K×dm

, as a financial
time-series information of all companies over K time steps
[t−K, t− 1] from modality m (out of M modalities) which
could be numerical, textual, event or other type. For continuous
information such as numerical or encoded textual information,
the dimension dm represents the number of numerical time-
series or the encoding dimension for the textual information.
For categorical information such as events that are multi-
hot encoded, the dimension dm represents the number of
event-types. DynMIX first encodes Xm with a modality-
specific Gated Recurrent Unit (Encm) to obtain Hm

t =
[hm(t − K), ..., hm(t − 1)] ∈ R|V |×K×d where d is the
common dimension shared among all the modalities.

In the graph discovery step for each modality m, Dyn-
MIX discovers sequences of inter-company implicit relation-
ship networks and applies a sparsification step. This results
in inter-company implicit relationship networks Gm,imp

t =
[gm,imp(t − K), ..., gm,imp(t − 1)] ∈ R|V |×|V |×K for each
modality m. With an input series of inter-company explicit
relationship networks Gexp

t = [gexp(t − K), ..., gexp(t −
1)] ∈ R|V |×|V |×K , DynMIX uses the encoded representations
hm(t− k) of the companies’ time-series information at time-
step t − k and both the explicit and implicit networks,
gexp(t−K) and gm,imp(t−k), as inputs to a dynamic graph
encoding step to generate the companies’ explicit and implicit
network representations h̃m,exp(t − k) and h̃m,imp(t − k) of
dimensions d respectively.

In the attention-based sequential encoding step, the se-
quence of explicit and implicit network representations for
modality m, H̃m,exp

t = [h̃m,exp(t−K), · · · , h̃m,exp(t− 1)] ∈
R|V |×K×d and H̃m,imp

t = [h̃m,imp(t − K), · · · , h̃m,imp(t −
1)] ∈ R|V |×K×d, are combined with the temporal repre-
sentations Pt = [p(t − K), · · · , p(t − 1)] ∈ R|V |×K×d

learnt by a time vectorization module from the corre-
sponding timestamps Tt ∈ R|V |×K×dtime

in the window
based on the timestamps’ day, day of week, and week of
year, and projected to the same dimension d as the compa-
nies’ network representations. The temporal representations
Pt capture time-series patterns such as linear and non-linear
trends and periodicity, which enable the subsequent time-
sensitive attention-based sequential encoding of the sequence
of explicit and implicit network representations, resulting in
Zm,exp
t = [zm,exp(t − K), · · · , zm,exp(t − 1)] ∈ R|V |×K×d

and Zm,imp
t = [zm,imp(t − K), · · · , zm,imp(t − 1)] ∈

R|V |×K×d. Next, we apply a dynamic alignment and regu-
larization (DynAR) step to address non-stationary time-series
distributions and correlations with dynamic SSL. DynMIX
then uses attention mechanisms in the multimodal fusion
module to fuse the resultant explicit and implicit network
representations Zm,exp

t and Zm,imp
t for each of the modalities

m based on learnt importances. After fusing explicit and

implicit network representations across M modalities, we
obtain Zt = [z(t −K), · · · , z(t − 1)] ∈ R|V |×K×d. The last
hidden state z(t− 1) is used to generate both the backcast of
the financial price-related input data, and the forecasts of the
means, volatilities and correlations of financial returns over
the future horizon of L time-steps, i.e. means, volatilities and
correlations of Y returns

t = [yreturns(t), ..., yreturns(t + L)],
where yreturns(t) = (price(t) − price(t − 1))/price(t − 1)
is the percentage return at time step t, and price(t) is the
stock price at time step t. z(t−1) is also used to generate the
forecasts of important events in the future horizon of L time-
steps. Figures 2 and 3 provide an overview of the architecture
of DynMIX and the dynamic SSL approach respectively,
which we elaborate on below.

Graph Discovery: From the sequential encodings of the
time-series information Hm

t ∈ R|V |×K×d, the graph dis-
covery step discovers implicit relationship networks using
the dot-product attention mechanism [34]. Unlike MTGNN
[29], DYGAP [30] and other related works [28] which return
a single network for the window period of length K, our
graph discovery module returns multiple implicit relationship
networks gm,imp(t − k)’s, one for each time-step t − k.
Discovering multiple implicit networks allows DynMIX to
model the non-stationary nature of evolving inter-company
relationships and correlations. We first apply shared linear
layers to generate queries Qm,imp

t and keys Km,imp
t from the

hidden representations Hm
t : Qm,imp

t = LinearQ−NET (H
m
t );

Km,imp
t = LinearK−NET (H

m
t ). A |V | × |V | ×K attention

weight tensor AWm,imp
t can then be computed as the dot-

product of Qm,imp
t and Km,imp

t . To allow richer inter-series
interactions to be learnt across time-steps [35], we add a
learnable inner weight tensor W ∈ RK×d×d:

AWm,imp
t = tanh(

Qm,imp
t ·W · Km,imp⊺

t√
d

) (1)

To emphasize the the most important relationships at each
time-step, we apply a sparsification step, and take the top R
relational edges with the highest AWm,imp

t for each time-
step in [t − K,t − 1]. In this paper, we empirically set
R = 10% in our experiments, and consider other R settings
in our ablation study (see Section V). We then obtain a
sequence of sparse implicit inter-company relationship net-
works, one for each time-step in the window [t − K, t − 1].
Specifically, the implicit inter-company relationship network
is: gm,imp(t − k) = (V, em,imp(t − k), am,imp(t − k)) for
k ∈ {1, ...,K} where em,imp(t − k) represents the top-R
(vi, vj) edges with the largest AWm,imp

t [vi, vj , t−k]’s values
at time-step t−k, and am,imp(t−k) are either the AWm,imp

t

of the top R edges at time step t− k, or set to zero, i.e.,

am,imp(t− k)[vi, vj ]

=

{
AWm,imp

t [vi, vj , t− k] if (vi, vj) ∈ em,imp(t− k)

0 otherwise

(2)

We stack the sequence of am,imp(t − k)’s in Gm,imp
t to

obtain the corresponding weighted adjacency tensor Am,imp
t ∈

R|V |×|V |×K with Am,imp
t,ij ∈ RK representing the weighted



828

Fig. 2. Model Architecture: DynMIX captures time-series features from M different modalities (Xm
t ), e.g., numerical, textual, events; and dynamic explicit

networks (Gexp
t ). Each time-series feature of a modality m is encoded by a modality-specific encoder (Encm). The graph discovery step discovers dynamic

implicit networks for each modality (Gm,imp
t ). The dynamic graph encoding step encodes the implicit and explicit networks. The attention-based sequential

encoding step utilizes temporal representations Pt learnt from time-stamps Tt by a time vectorization module to encode the sequence of network and feature
representations in a time-sensitive manner. To dynamically align and regularize the explicit and implicit network representations to address non-stationary
time-series distributions and correlations, we apply the dynamic alignment and regularization (DynAR) step with dynamic SSL (details in Figure 3). The
resultant representations Zm,exp

t and Zm,imp
t for each modality m are then fused by the multimodal fusion module across M modalities, and used for

multiple forecasting tasks.

Fig. 3. Dynamic SSL. Dynamic implicit relationship networks discovered
from each modality m paired with dynamic explicit networks as different
views. The corresponding dynamic explicit and implicit network repre-
sentations Zm,exp

t and Zm,imp
t are aligned and regularized by utilizing

the following loss terms computed in the DynAR step: i) an invariance
alignment term, simm

t , which minimizes the distance between representations
of the same companies; ii) a covariance regularization term, covm,exp/imp

t ,
which de-correlates representations of different companies; and iii) variance
regularization terms, cvarm,exp/imp

t and tvar
m,exp/imp
t , which maintain

a dynamic level of variance in the representations across the company
dimension, i.e. companies A to E, and time dimension, i.e. t − K to t − 1
respectively.

relational edges between company vi and vj across the
window [t − K, t − 1] for modality m, i.e., Am,imp

t,ij =
[am,imp(t − K)[vi, vj ], · · · , am,imp(t − 1)[vi, vj ]]. We also
denote the weighted adjacency tensor for the explicit inter-
company relationship network Gexp

t as Aexp
t ∈ R|V |×|V |×K .

No sparsification step is applied so we retain all explicit inter-
company relationship information.

Dynamic Graph Encoding: Next, we utilize the sequen-
tial encodings of the time-series information Hm

t , and the
weighted adjacency tensors for the explicit and implicit inter-
company relationship networks, Aexp

t and Am,imp
t , as inputs to

separate weighted dynamic graph convolution steps to generate

the dynamic explicit and implicit network representations. For
a company vi, we compute its explicit network representations
for the modality m: H̃m,exp

t,i ∈ RK×d across time-steps in the
[t−K, t− 1] window by aggregating representations from its
neighbors Nt(vi) based on Aexp

t,ij as follows:

H̃m,exp
t,i =

∑
vj∈Nt(vi)

exp(Aexp
t,ij )∑

vj′∈Nt(vi)
exp(Aexp

t,ij′ )
·Hm

t,j (3)

We denote the explicit network representations for all com-
panies by H̃m,exp

t ∈ R|V |×K×d. We repeat the same steps
with Am,imp

t (in place of Aexp
t ) to obtain the implicit network

representations for all companies H̃m,imp
t ∈ R|V |×K×d. Other

GNN-variants can be utilized for this graph convolution step,
but we adopt this approach for computational efficiency as it
allows us to apply the graph convolution step across multiple
time-steps in parallel. Using other common GNNs did not
yield any improvement in performance.

Attention-based Sequential Encoding: Inspired by [36],
[37], which proposed general frameworks for learning tempo-
ral representations, we introduce a time vectorization module
within DynMIX that is shared across the different modalities.
The time vectorization module takes as input the time-stamps
from the time steps in [t−K, t− 1] and learns their temporal
representations. The input time-stamps are represented as
Tt ∈ R|V |×K×dtime

where dtime denotes the number of
dimensions required for capturing the day of week, week
and month of year of a time-stamp. The temporal represen-
tations learnt by the time vectorization module is denoted
by Pt ∈ R|V |×K×d. Functional forms are combined with
learnable weights to adaptively learn and combine periodic
and non-periodic components within the multivariate financial
time-series. This could also be viewed as a time-sensitive
version of positional encodings used in transformers that only
deal with sequential positions of word tokens [34]. For each
component, we apply linear layers and selected activation
functions to Tt. For DynMIX, the empirically chosen com-
ponents are: Φ1 = Linear(Tt); Φ2 = cos(Linear(Tt));
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Φ3 = Sigmoid(Linear(Tt)); Φ4 = Softplus(Linear(Tt)),
which enable the model to extract linear and non-linear
trends, as well as seasonality-based temporal patterns. We
then concatenate these components and project them: Pt =
Linear([Φ1||Φ2||Φ3||Φ4]). In the subsequent attention-based
sequential encoding step [34], we first add the learnt tem-
poral representations Pt to the dynamic explicit network
representations H̃m,exp

t , and then apply linear layers shared
across different modalities to generate the queries, keys and
values - Q̃m,exp

t = LinearQ(H̃
m,exp
t + Pt), K̃m,exp

t =
LinearK(H̃m,exp

t + Pt), Ṽm,exp
t = LinearV (H̃

m,exp
t + Pt),

We then apply scaled dot-product attention:

H̃′m,exp
t = softmax(

Q̃m,exp
t · K̃m,exp⊺

t√
d

)Ṽm,exp
t (4)

followed by a residual connection with layer normal-
ization (LayerNorm), and finally a feed-forward network
(FFN) shared across different modalities: Zm,exp

t =
FFN(LayerNorm(H̃ ′m,exp

t + H̃m,exp
t ). The output of this

step is hence Zm,exp
t ∈ R|V |×K×d. We repeat the same steps

with the dynamic implicit network representations H̃m,imp
t to

obtain Zm,imp
t ∈ R|V |×K×d.

Dynamic Self-Supervised Learning: To align and regu-
larize the diverse representations across financial time-series
information from multiple modalities and dynamic networks
in an adaptive manner, we propose a novel dynamic SSL ap-
proach inspired by [38]. [38] proposes three loss terms: (a) an
invariance alignment term that minimizes the distance between
the same images in different views; (b) a covariance regular-
ization term that de-correlates the representations of different
images; and (c) a variance regularization term that maintains
a minimum level of variation across batches of representations
so they do not collapse to a mode. Our proposed approach,
as shown in Figure 3, is however distinct in a number of
ways: (i) Instead of utilizing representations encoded from
two views of the same batch of images that are augmented
differently, our approach does not require augmentations as
we have two views for each modality naturally formed by
pairing the dynamic explicit network representations Zm,exp

t

with the dynamic implicit network representations Zm,imp
t for

each modality m; (ii) the variance term is computed across
companies and time-steps instead of batches of images to
allow the representations to be sensitive to differences in
variances across companies and time-steps; and (iii) instead
of a fixed target for the variance term, we adopt a dynamic
target, computed based on the standard deviation of actual
returns across companies and time-steps, which allows the
variances in the representations to adapt to changes in time-
series regimes. For the DynAR step, for each time-step t− k
and modality m, we first define the invariance simm(t − k)
between Zm,exp

t and Zm,imp
t as the mean-squared Euclidean

distance between each pair of |V | explicit and implicit network
representation vectors:

simm(t− k) =
1

|V |
∑
v∈V

∥zm,exp
v (t− k)− zm,imp

v (t− k)∥22 (5)

Summed across all time-steps in [t − K, t − 1], the total
invariance loss term is simm

t . Next, for each time-step t − k
and modality m, the covariance matrix for each of the views
is defined as:

Cm,c(t−k) =
1

|V | − 1

∑
v∈V

(zm,c
v (t−k)−z̄m,c(t−k))(zm,c

v (t−k)−z̄m,c(t−k))⊺

(6)
where c ∈ {exp, imp}, and z̄m,c(t−k) = 1

|V |
∑

v∈V zm,c
v (t−

k). We take the sum of the off-diagonals and scale them by
the dimension of the representation d:

covm,c(t− k) =
1

d

∑
vi ̸=vj

[Cm,c(t− k)]2vi,vj (7)

Summed across all time-steps in [t − K, t − 1], and c ∈
{exp, imp}, the total covariance loss term is covmt . Finally,
the variance regularization term has two components that
take into account variances across companies and time-steps
in an adaptive manner to address the non-stationary nature
of financial time-series distributions. This is achieved by
using the variances of returns across company nodes γη and
time-steps γτ as dynamic target levels of variances for the
representations. While returns and representation values are
different quantities, they can be utilized together as the scale
of values of representations (due to normalization) and γη/γτ
based on returns (a relative quantity) are similar, and as the aim
is to introduce a relative level of variance for regularization
to prevent over-fitting and mode collapse. For each time-step
t − k, modality m and view c, the variance loss term across
the company node dimension is defined as:

cvarm,c(t− k) =
1

d

∑
f∈d

max(0, γη(t− k)− Sη(z
m,c
f , ϵ)(t− k)) (8)

where:

Sη(z
m,c
f , ϵ)(t− k) =

√
1

|V |
∑
v∈V

(zm,c
v,f (t− k)− z̄m,c

f (t− k))2 + ϵ (9)

γη(t− k) =

√
1

|V |
∑
v∈V

(xreturns
v (t− k)− x̄returns(t− k))2 (10)

and x̄returns(t− k) = 1
|V |

∑
v∈V xreturns

v (t− k). ϵ is a small
scalar preventing numerical instabilities. Summed across all
time-steps in [t−K, t− 1] and c ∈ {exp, imp}, the variance
loss term across the company dimension is cvarmt . For each
company v, modality m and view c, the variance loss term
across the time dimension is defined as:

tvarm,c
v,t =

1

d

∑
f∈d

max(0, γτ,v − Sτ,v(z
m,c
v,f , ϵ)) (11)

where:

Sτ,v(z
m,c
v,f , ϵ) =

√√√√ 1

|K|

K∑
k=1

(zm,c
v,f (t− k)− z̄m,c

v,f )2 + ϵ (12)

γτ,v =

√√√√ 1

|K|

K∑
k=1

(xreturns
v (t− k)− x̄returns

v )2 (13)

and z̄m,c
v,f = 1

|K|
∑K

k=1 z
m,c
v,f (t − k), x̄returns

v =
1

|K|
∑K

k=1 x
returns
v (t − k). Summed across all companies V
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and c ∈ {exp, imp}, the variance loss term across the time
dimension is tvarmt . Hence, for each modality m, we obtain
Lm
DynAR = λsimm

t + ωcovmt + ν(cvarmt + tvarmt ), where λ,
ω and ν are hyper-parameters. Across M modalities, the loss
computed by the DynAR step is LDynAR.

Multimodal Fusion: To learn the importance of different
modalities, we use attention-based fusion to fuse the aligned
and regularized Zm,exp

t and Zm,imp
t across M modalities.

A non-linear transformation is applied to the representations
to obtain scalars sm,exp

t = W (1)tanh(W (0)Zm,exp
t + b) and

sm,imp
t = W (1)tanh(W (0)Zm,imp

t + b), where W (0) and
W (1) are learnable weight matrices and b is the bias vector.
Parameters are shared across modalities, as well as explicit and
implicit networks. We normalize the scalars with a softmax
function to obtain the weights βm,exp

t and βm,imp
t , which are

used to fuse representations across modalities and networks:

βm,exp
t =

exp(sm,exp
t )∑

1≤m≤M exp(sm,exp
t )

(14)

βm,imp
t =

exp(sm,imp
t )∑

1≤m≤M exp(sm,imp
t )

(15)

Zt =
∑

1≤m≤M

βm,exp
t Zm,exp

t +
∑

1≤m≤M

βm,imp
t Zm,imp

t (16)

The output of this step is Zt = [z(t − K), ..., z(t − 1)] ∈
R|V |×K×d. We use the last hidden state in the sequence, i.e
z(t− 1), for the forecasting step.

Forecasting and Loss Functions: In the forecasting step,
we use fully connected layers to generate the backcast of
the numerical price-related input data (say, modality p) and
forecasts of the means and volatilities of company stock
returns over the selected horizon period L, as well as forecasts
of events across the selected horizon period L normalized with
a softmax operation:

X̂p
t = BC(z(t− 1)) (17)

Ŷ returns
mean,t = FCM (z(t− 1)) (18)

Ŷ returns
vol,t = FCV (z(t− 1)) (19)

Ŷ events
t = softmaxe∈devents (FCE(z(t− 1))) (20)

where devents, the dimension of event information, represents
the number of event-types, and the softmax operation normal-
izes the output of FCE across the event dimension. While
DynMIX can backcast time-series information from multiple
modalities, we backcast numerical price-related information
as most of the multiple tasks in this paper focus on forecasts
of numerical targets. To forecast correlations of company
stock returns over the horizon period L, we use the weights
from the linear layers in the graph discovery step: Qcorr,t =
LinearQ−NET (z(t−1)), Kcorr,t = LinearK−NET (z(t−1)).
This allows what was learnt when discovering the dynamic
implicit inter-company relationships to be leveraged for cor-
relation forecasts:

Ŷ returns
corr,t = FCC(tanh(

Qcorr,t · K⊺
corr,t√

d
)) (21)

The ground-truth labels for means, volatilities and correlations
of returns in the horizon L, i.e. Y returns

mean,t , Y returns
vol,t and

Y returns
corr,t respectively, are computed following [39]. We use

the frequency distribution of the events in the horizon of L
time-steps as the ground-truth event labels for training, defined
as:

Y events
t = softmaxe∈devents

L∑
l=0

yevents(t+ l) (22)

We compute the loss between the forecasts and the respective
ground-truths with root mean squared loss (RMSE), and use
the total loss (including the loss from the DynAR step LDynAR

defined earlier) as the training objective:

Ltotal = LDynAR + Lbackcast(X
p
t , X̂

p
t )

+ Lmean(Y
returns
mean,t , Ŷ returns

mean,t ) + Lvol(Y
returns
vol,t , Ŷ returns

vol,t )

+ Lcorr(Y
returns
corr,t , Ŷ returns

corr,t ) + Levent(Y
events
t , Ŷ events

t )
(23)

IV. EXPERIMENTS

Datasets: We conduct experiments with four datasets, com-
prising textual information of online news articles from two
financial news portals, numerical information of daily stock
market price-related information of companies listed on two
stock markets, as well as dynamic explicit inter-company
relationship networks of these companies and time-series of
events. The frequency of all information is daily and spans
Apr. 2015 to Dec. 2019.

Online news data. The two online news article sources
are: i) Investing (IN)1; and ii) Benzinga (BE)2 which cov-
ers news articles drawn from a wide range of mainstream
providers, analysts and blogs. Following [19], we use a pre-
trained Wikipedia2Vec [40] embedding model to pre-encode
textual news to capture the rich knowledge present within the
Wikipedia knowledge base as it offers a relatively compact
representation with dimension of 100, while giving reasonably
good performance compared to other pre-trained encoders. The
representation of each news article is the average of embed-
dings of words in each news article for each day generated
with the pre-trained Wikipedia2Vec embedding model. Other
approaches for encoding will be explored in future work.

Company’s numerical data. We collected daily stock
market price-related information - returns, opening, closing,
low & high prices, trading volumes, volume-weighted average
prices, shares outstanding - of the two stock markets - NYSE
(NY) and NASDAQ (NA) - from the Center for Research in
Security Prices. We filter out companies or stocks that are not
traded in the respective time periods and whose stock symbols
are not mentioned in any articles for the respective news article
sources.

Dynamic explicit network and event data. We obtain dy-
namic explicit inter-company relationship networks and time-
series of events from the Global Database of Events, Language

1Subset extracted from https://www.kaggle.com/gennadiyr/us-equities-
news-data

2Subset extracted from https://www.kaggle.com/miguelaenlle/
massive-stock-news-analysis-db-for-nlpbacktests
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and Tone (GDELT) Global Knowledge Graphs (GKG) [41].
GDELT is a research collaboration that monitors newspapers
of 65 different languages globally and is updated every 15
minutes, resulting in around 2.5TB of data annually [41].
GKG processes GDELT data and extracts entities such as
organizations and events [42]. We retrieve GKG data via
BigQuery from the public GKG dataset on the Google Cloud
Platform. To extract inter-company relationship networks and
obtain time-series of events associated with each company
from GKG, we build a look-up table of stock symbols of
companies in NY and NA with variations of their names; and
use Levenshtein Distance [43] to calculate similarities between
the different names of organizations in the GKG dataset with
the names in the look-up table, and tag the GKG record with
the corresponding stock symbol if the similarity score is above
a threshold of 0.75, determined empirically. The relatively high
threshold of 0.75 allows us to reduce the noisiness of the
processed dataset and obtain samples that have been tagged
at high confidence levels. The dynamic explicit inter-company
relationship networks are constructed based on co-occurrences
of tagged companies in GKG records, aggregated on a daily
basis. The time-series of events associated with each tagged
company is also aggregated on a daily basis and transformed
into a multi-hot vector, representing the daily frequencies of
events for each company. Examples of events extracted from
GKG include ECON IPO and HEALTH PANDEMIC, which
represent the company being affected by an economic-related
initial public offer listing event, or a health-related pandemic
event respectively. The four datasets obtained by combining
IN and BE online news data with companies’ stock data from
NYSE (NY) and NASDAQ (NA) with the dynamic explicit
networks and events from GKG are shown in Table I. We
adopt a sliding window approach [44] to extract input features
in the window [t − K, t − 1] and returns-related labels, i.e.
ground-truth means, volatilities and correlations of returns,
as well as event labels, in the horizon [t, t + L]. We obtain
1196 data samples (or time steps) for each dataset, and divide
them into non-overlapping training/validation/testing sets in
the ratios 0.7/0.15/0.15.

Tasks and Metrics: We compare DynMIX with baselines
on four predictive tasks: forecasting of i) means, ii) volatilities,
iii) correlations of stock price percentage returns; and iv)
events over the horizon L. We use RMSE, mean absolute
error (MAE) and symmetric mean absolute percentage er-
ror (SMAPE) as metrics for forecasts of means, volatilities
and correlations [45]. RMSE and MAE are common scale-
dependent metrics used to evaluate forecasting performance
with RMSE being more sensitive to outliers than MAE.
SMAPE is a commonly used scale-independent metric that
gives equal importance to both under- and over-forecasts
required in this evaluation context. For forecasts of events,
we use Normalized Discounted Cumulative Gain (NDCG), a
metric used for evaluating ranking quality, to compare the
forecasted event labels ranked by the output values after
the softmax operation (i.e. ordered based on the output of
Equation 20) with the ground-truth event labels ranked by the

frequency of the events in the horizon period (i.e. ordered
based on the output of Equation 22). We choose NDCG as
analysts are interested in more important events that rank
higher based on frequencies. Other metrics such as F1 do
not distinguish between importances of different events, e.g.,
between an event that occurred once or 20 times.

Baselines and Settings: We compare DynMIX against
a GRU model, and the following state-of-the-art baselines
(see Section II): TST [17], a transformer encoder designed
for time-series information; FAST [18] that captures textual
information with Time-Aware LSTMs [20]; MTGNN [29]
and DYGAP [30] that learn implicit networks from time-
series data; and EvolveGCN-H and EvolveGCN-O [8], two
variants of a dynamic network model. FAST and DYGAP
were designed for financial time-series. For all baselines, we
concatenate numerical price-related, textual news-related, and
categorical event information as inputs for a fair comparison,
and add fully-connected layers to all baselines to forecast
means, volatilities and correlations of stock price percentage
returns, as well as forecast events. We set the window period
K=20 days; and horizon period L=10. K=20 corresponds
to a trading month, and L=10 days corresponds to a global
regulatory requirement for VaR computations, which we exam-
ine in an application (see Section VI). Dimensions of hidden
representations are fixed at 64 across all models. We follow
[38] and set both λ and ν to 25, and ω to 1. An Adam optimizer
with a learning rate of 1e-3 and a cosine annealing scheduler
are used. Models are implemented in Pytorch and trained for
50 epochs. The DynMIX model has 9e5 parameters and takes
10-20 minutes per training epoch on a 3.60GHz AMD Ryzen
7 Windows desktop with NVIDIA RTX 3090 GPU and 64GB
RAM.

Results: Tables II and III set out the results of the fore-
casting experiments on the IN and BE datasets. Across all
tasks and datasets, DynMIX out-performs baselines for most
metrics. For the task of forecasting means, the performance
differences between DynMIX and baselines is clearer for the
larger BE datasets than the IN datasets. Among baselines,
TST and MTGNN designed for time-series information show
relatively better performance. On the tasks of forecasting
volatilities and correlations, the differences in performance
between DynMIX and baselines are clearer as compared with
forecasting means across all datasets. There is also greater
dispersion and variation in performances across baselines,
which indicates the greater difficulty of these tasks due to
non-stationary time-series distributions and inter-series cor-
relations, and demonstrates the usefulness of DynMIX’s key
features - learning temporal representations, discovery of im-
plicit networks and dynamic SSL. On the task of forecasting
events, DynMIX also out-performs most baselines across most
datasets, and we also observe greater dispersion and variation
in performances of baselines on this task.

V. ABLATION STUDIES

Table IV shows the results of the ablation studies for Dyn-
MIX on the IN-NY dataset. We observe similar sensitivities for
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TABLE I
DATASET OVERVIEW. FOR NUM. EDGES, AVG. EDGE WEIGHTS OF EXPLICIT NETWORKS, AND EVENT DENSITY, I.E. NUM. OF EVENT LABELS PER

COMPANY PER LABEL TYPE, WE SHOW AVG. AND STD. DEVIATIONS ACROSS 1196 DAILY NETWORK SNAPSHOTS/DAYS.

IN-NY IN-NA BE-NY BE-NA
Num. articles 189,917 1,295,491
Num. stocks 336 371 1,693 1,705
Num. edges 2,212±1,574 1,217±387 4,913±2,887 3,973±1,749
Avg. edge weights 3,547±2,911 3,901±2,218 1,537±1,386 1,541±1,448
Num. event types 2,177 2,135 2,182 2,186
Event density 0.45±0.16 0.33±0.13 0.09±0.03 0.09±0.03

TABLE II
MEAN, VOLATILITY, CORRELATION FORECAST RESULTS. LOWER BETTER FOR ALL METRICS. BEST MODEL(S) IN BOLD; SECOND-BEST MODEL(S)

UNDERLINED FOR THIS AND SUBSEQUENT TABLES.

IN-NY IN-NA BE-NY BE-NA
RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

Mean Forecasts
GRU 0.0744 0.0144 1.4579 0.0356 0.0175 1.4801 0.1341 0.0343 1.4357 0.6119 0.0851 1.4587
TST 0.0742 0.0140 1.3844 0.0335 0.0155 1.3631 0.1286 0.0251 1.3139 0.5373 0.0637 1.5380
FAST 0.0742 0.0141 1.3511 0.0362 0.0164 1.7424 0.1464 0.0260 1.3403 0.6358 0.0673 1.3801
MTGNN 0.0712 0.0139 1.3002 0.0314 0.0149 1.4843 0.1386 0.0338 1.5168 0.4844 0.0609 1.3218
DYGAP 0.0723 0.0146 1.4430 0.0353 0.0157 1.4074 0.1430 0.0263 1.4411 0.6361 0.0670 1.3520
EVOLVEGCN-H 0.0743 0.0143 1.5058 0.0394 0.0176 1.3273 0.1470 0.0288 1.3540 0.6444 0.0823 1.4600
EVOLVEGCN-O 0.0750 0.0153 1.4372 0.0354 0.0158 1.2921 0.1453 0.0268 1.3679 0.6325 0.0726 1.4014
DYNMIX 0.0539 0.0111 1.1693 0.0244 0.0128 1.2080 0.1058 0.0194 1.2391 0.4164 0.0471 1.2337

Volatility Forecasts
GRU 0.2331 0.0507 0.6244 0.1188 0.0599 0.6384 0.4181 0.1049 1.1047 1.9152 0.2418 0.9816
TST 0.2330 0.0483 0.5578 0.1109 0.0559 0.6046 0.3974 0.0894 0.7063 1.7047 0.2133 0.8463
FAST 0.2332 0.0485 0.5595 0.1244 0.0605 0.6338 0.4688 0.0990 0.7521 1.9993 0.2316 0.7935
MTGNN 0.2011 0.0529 0.6206 0.1077 0.0565 0.6178 0.4122 0.0919 0.7488 1.5066 0.2023 0.7860
DYGAP 0.2224 0.0497 0.5475 0.1234 0.0606 0.6359 0.4542 0.0928 0.7028 2.0003 0.2410 0.8589
EVOLVEGCN-H 0.2331 0.0485 0.5602 0.1253 0.0619 0.6470 0.4688 0.1012 0.7670 2.0097 0.2547 0.8832
EVOLVEGCN-O 0.2328 0.0491 0.5831 0.1246 0.0607 0.6370 0.4656 0.1010 0.7646 1.9970 0.2419 0.8616
DYNMIX 0.1491 0.0410 0.5483 0.0870 0.0510 0.6086 0.3284 0.0763 0.7011 1.2956 0.1667 0.7227

Correlation Forecasts
GRU 0.5361 0.4671 1.5484 0.5163 0.4425 1.4072 0.5341 0.4600 1.4455 0.5180 0.4416 1.4193
TST 0.5145 0.4498 1.4646 0.5069 0.4400 1.4802 0.5235 0.4540 1.4553 0.5099 0.4374 1.4661
FAST 0.5087 0.4414 1.3395 0.5099 0.4394 1.4239 0.5246 0.4546 1.4533 0.5112 0.4380 1.4374
MTGNN 0.5215 0.4558 1.5012 0.5167 0.4438 1.4078 0.5288 0.4576 1.4505 0.5268 0.4398 1.5195
DYGAP 0.5415 0.4562 1.4074 0.5074 0.4362 1.4192 0.5125 0.4443 1.4460 0.5060 0.4346 1.4738
EVOLVEGCN-H 0.5104 0.4448 1.3996 0.5058 0.4390 1.4681 0.5192 0.4520 1.4842 0.5270 0.4426 1.5217
EVOLVEGCN-O 0.5118 0.4466 1.4194 0.5064 0.4390 1.4564 0.5228 0.4536 1.4592 0.5033 0.4348 1.5197
DYNMIX 0.4272 0.3551 1.0844 0.4515 0.3810 1.2256 0.4898 0.4173 1.3042 0.4848 0.4095 1.3461

TABLE III
EVENT FORECAST RESULTS (NDCG). HIGHER BETTER.

IN-NY IN-NA BE-NY BE-NA
GRU 0.5909 0.3336 0.3091 0.2336
TST 0.5705 0.3513 0.2870 0.2179
FAST 0.6106 0.3549 0.3074 0.2246
MTGNN 0.5907 0.3710 0.2911 0.2317
DYGAP 0.6113 0.3485 0.3069 0.2126
EVOLVEGCN-H 0.4757 0.2743 0.2136 0.1542
EVOLVEGCN-O 0.5717 0.3512 0.2904 0.2193
DYNMIX 0.6182 0.3626 0.3163 0.2474

the other datasets. Omitting the novel dynamic SSL approach
(w/o. dynamic SSL), i.e. excluding implicit networks as the
second view and the DynAR step, leads to a substantial drop

in performance across all four tasks. When we set γη/γτ to
a fixed value of 1 per [38] instead of using a dynamic target
based on returns variances (w/o. dynamic var. target), we
also observe a clear decline in performance across all four
tasks. When we vary the degree of sparsification by setting
R=50% instead of 10% (R=50%), we see significant variations
in performance, indicating the importance of dynamic implicit
network information. Not utilizing the temporal representation
generated by the time vectorization module in the attention-
based sequential encoding step (w/o. time vect.) leads to a
greater drop in performance on forecasting means than other
tasks. In general, we observe the key features of DynMIX
working together to achieve the best performance on the
multiple tasks.
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TABLE IV
ABLATION STUDIES ON IN-NY DATASET. LOWER BETTER FOR RMSE,

MAE, SMAPE, HIGHER BETTER FOR NDCG.

RMSE MAE SMAPE
Mean Forecasts

w/o. dynamic SSL 0.0579 0.0124 1.1719
w/o dynamic var. target 0.0569 0.0121 1.1782
R=50% 0.0558 0.0121 1.1789
w/o. time vect. 0.0562 0.0121 1.1759
DynMIX 0.0539 0.0111 1.1693

Volatility Forecasts
w/o. dynamic SSL 0.1527 0.0422 0.5544
w/o dynamic var. target 0.1511 0.0420 0.5532
R=50% 0.1501 0.0415 0.5503
w/o. time vect. 0.1495 0.0419 0.5586
DynMIX 0.1491 0.0410 0.5483

Correlation Forecasts
w/o. dynamic SSL 0.4973 0.4302 1.3785
w/o dynamic var. target 0.4399 0.3685 1.1225
R=50% 0.4304 0.3590 1.0983
w/o. time vect. 0.4280 0.3562 1.0948
DynMIX 0.4272 0.3551 1.0844

NDCG
Event Forecasts

w/o. dynamic SSL 0.6059
w/o dynamic var. target 0.5617
R=50% 0.5565
w/o. time vect. 0.5861
DynMIX 0.6182

TABLE V
APP. HIGHER BETTER FOR R; LOWER BETTER FOR % BR.

IN-NY IN-NA
R % Br. R % Br.

GRU 0.04 34.4% 1.20 2.2%
TST 0.05 22.8% 0.32 2.2%
FAST 0.03 15.6% 0.55 2.8%
MTGNN 0.67 4.4% 0.33 8.9%
DYGAP 0.41 6.7% 0.61 3.9%
EVOLVEGCN-H 0.01 13.9% 0.06 13.9%
EVOLVEGCN-O 0.06 15.6% 0.32 5.0%
DYNMIX 2.47 3.9% 3.31 1.1%

VI. APPLICATIONS

Following the methodology in [2], [46], we utilize the
model forecasts for two applications to evaluate the quality of
DynMIX’s forecasts against the baselines. Portfolio allocation
seeks to optimize the proportion of capital invested in each
stock within a portfolio, by finding an optimal set of allocation
weights W that determine how much capital to invest in
each stock, so that portfolio returns can be maximized while
minimizing portfolio risk. In this paper, we adopt the risk
aversion formulation [46] of the mean-variance risk minimiza-
tion model by [47] for portfolio allocation. The key inputs to
the mean-variance risk minimization model are the means and
co-variances of returns. Under the classical approach, which
we use as a naive approach in this section, means and co-
variances are computed using historical returns. We use the
resultant allocation weights Wnaive to construct a portfolio

of stocks, and compute the risk-adjusted portfolio returns
Enaive as the realized portfolio returns divided by realized
portfolio volatility. For DynMIX and baselines, we use model
forecasts to compute the means and co-variances as inputs
to the mean-variance risk minimization model. Similarly, we
use the resultant allocation weights Wforecast to construct a
portfolio of stocks and compute the risk-adjusted portfolio
returns Eforecast as the realized portfolio returns divided
by realized portfolio volatility. Actual returns of a portfolio
of stocks depend on the time-series and time periods under
consideration. Hence, for better comparability, we evaluate the
performance of DynMIX and baselines relative to the naive
approach by computing the ratio R = Eforecast/Enaive. We
compute the averages of R across the testing set (sampled per
Section IV). The second application VaR [2] is a key measure
of risk used in financial institutions. VaR measures the loss
that an institution may face in the pre-defined horizon with
a probability of p%, e.g., if the 10 day 95% VaR is $1m, it
means that there is a 5% probability of losses exceeding $1m
over a 10 day horizon. Whenever the realized portfolio loss
exceeds the forecasted VaR, we call it a VaR breach. We use
the model forecasts to compute 10 day 95% VaR forecasts
at the portfolio-level, and evaluate model performances based
on percentage VaR breaches (% Br.), i.e. the percentage of
losses in the testing set that led to VaR breaches. Models
that are able to make accurate forecasts of VaR should have
lower % Br. We conduct and report experiments on the IN-
NY and IN-NA datasets with fewer stocks than the BE-NY
and BE-NA datasets (as shown in Table I), as a smaller pool
of potential stocks usually presents a greater challenge for
these two applications by limiting potential returns and risk
diversification. As shown in Table V, on the portfolio allo-
cation application, portfolios constructed using the forecasts
from DynMIX achieve better relative performance (R) for
both datasets. Similarly, on the VaR application, DynMIX
also out-performs the baselines, with lower percentage VaR
breaches (% Br.). For both applications, we observe significant
variance in performance for the baselines, with a number of
baselines performing worse than the naive approach (R < 1),
or high levels of percentage VaR breaches, demonstrating the
difficulty of these applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose DynMIX, a novel model that cap-
tures multimodal financial time-series information and pairs
discovered dynamic implicit inter-company relationship net-
works with dynamic explicit inter-company relationship net-
works as different views for a novel dynamic SSL task. Based
on extensive experiments conducted on real-world datasets, we
show that DynMIX outperforms baselines on forecasting tasks
and important real-world financial applications. DynMIX can
be applied to information from other modalities (e.g., audio of
company earnings calls), and other types of dynamic network
information (e.g., inter-company transaction networks). Future
work could also explore extending DynMIX for heterogeneous
networks.
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