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Abstract—To achieve the search over encrypted data in cloud
server, Searchable Encryption (SE) has attracted extensive atten-
tion from both academic and industrial fields. The existing Bloom
filter-based SE schemes can achieve similarity search, but will
generally incur high false positive rates, and even leak the privacy of
values in Bloom filters (BF). To solve the above problems, we first
propose a basic Privacy-preserving Bloom filter-based Keyword
Search scheme using the Circular Shift and Coalesce-Bloom Filter
(CSC-BF) and Symmetric-key Hidden Vector Encryption (SHVE)
technology (namely PBKS), which can achieve effective search
while protecting the values in BFs. Then, we design a new index
structure T-CSCBF utilizing the Twin Bloom Filter (TBF) tech-
nology. Based on this, we propose an improved scheme PBKS+,
which assigns a unique inclusion identifier to each position in each
BF with privacy protection. Formal security analysis proves that
our schemes are secure against Indistinguishability under Selective
Chosen-Plaintext Attack (IND-SCPA), and extensive experiments
using real-world datasets demonstrate that our schemes are feasible
in practice.

Index Terms—Searchable symmetric encryption, bloom filter-
based keyword search, circular shift and coalesce-bloom filter,
symmetric-key hidden vector encryption.

I. INTRODUCTION

W ITH the development of cloud computing, more and
more enterprises and individuals choose to outsourced

their data to the cloud server to reduce the local storage and
computing costs. To further avoid the privacy leakage, all data
should be encrypted before being outsourced to the cloud server.
However, this will prevent the cloud server from efficiently
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Fig. 1. The insecure and inaccurate of BF.

searching over encrypted data. Searchable Encryption (SE) has
attracted wide attention, which allows data users to search
ciphertext according to the query keyword. Among the index
structure in SE, the index structure of Bloom Filter (BF)-based
is efficient, which can achieve similarity search. Therefore, we
focus on the BF-based keyword search schemes [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. However, the
BF-based keyword search schemes still have some challenges.

Challenge 1. How to construct a BF-based index structure that
reduces the false positive rate and achieves efficient search: On
the one hand, in the existing BF-based keyword search schemes,
the different keywords may be mapped to the same position in
BF, which brings the problem of high false positive rates. As
shown in Fig. 1, BF only contains w1 and w2. However, in the
search phase, w3 will be mistakenly considered to be included
in the BF. On the other hand, in existing BF-based keyword
search schemes, each data needs to build a BF. All BFs need to
be traversed in the search phase. Therefore, as the number of
data increases, the search time will increase. In addition, if all
data is mapped to one BF, as the number of keywords increases
by K times, we need to increase the length of BF by the same
multipleK to keep the false positive rate unchanged [14], which
also increase the storage cost. At the same time, this operation
also does not achieve the efficient search because it is impossible
to determine which data the keyword is included in.

Challenge 2. How to provide privacy protection for the BF-
based index structure while supporting efficient search: BF can
conveniently implement efficient plaintext search. However, as
shown in Fig. 1, uploading the unencrypted BF to the cloud
server will directly leak the values of BF. Therefore, most of
the existing BF-based SE schemes [1], [2], [8] use the secure
k-Nearest Neighbors (kNN) [15] to encrypt BF, but the secure
kNN has been proved to not resistant to Know Plaintext Attacks
(KPA) [16]. The schemes [5], [9], [10] use the Twin Bloom
Filter (TBF) [10] to confuse the values in BF. However, as the
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number of searches increases, the cloud server will capture the
real values in BF according to statistical location information,
and TBF will cause double storage cost. The above schemes
can achieve efficient search, but cannot provide enough privacy
protection. The BF-based SE schemes [11], [12] use the tradi-
tional public-key encryption to achieve secure search, but it will
incur large search cost due to the bilinear pairing. For example,
the schemes [17], [18] use Homomorphic Encryption (HE) to
protect privacy, which will incur high storage and computation
costs.

As mentioned above, the existing BF-based SE schemes still
suffer from high false positive rates and costs regarding storage
and computation. Therefore, we first propose a basic Privacy-
preserving Bloom filter-based Keyword Search scheme using
the Circular Shift and Coalesce-Bloom Filter (CSC-BF) and
Symmetric-key Hidden Vector Encryption (SHVE) technology
(namely PBKS), which can achieve secure and efficient search
without high false positive rates. In the search phase, although
the values in BF are encrypted by SHVE, the values of the
positions that successfully match must be 1 in BF, otherwise 0.
Thus, as the number of searches increases, the values in BF will
still be leaked to the cloud server. Therefore, we design a new
index structure Twin-Circular Shift and Coalesce Bloom Filter
(T-CSCBF) to enhance PBKS scheme and propose a PBKS+
scheme, which assigns a unique inclusion identifier to each
position in each BF and ensures that the values in BF will not
be leaked after search. The main contributions of our work are
as follows:
� We propose a basic privacy-preserving Bloom filter-based

keyword search scheme PBKS using CSC-BF and SHVE.
Specifically, we store all keywords by CSC-BF. Then, we
encrypt CSC-BF by using SHVE to effectively realize
keyword search.

� To further protect the values in CSC-BF from being leaked
after search, we design a new index structure T-CSCBF
using TBF, which assigns the unique inclusion identifier to
each position in BF to break the association of inclusion
identifiers at different positions.

� We give the security analysis and performance analysis.
The security analysis proves that our PBKS schemes are
secure under Selective Chosen-Plaintext Attacks (SCPA).
The experiments on real datasets show that our PBKS
schemes are efficient in the search phase.

The rest of this paper is organized as follows. Section II
presents the related work. Section III reviews the preliminaries
involved in our schemes. Section IV gives the specific system
model & threat model, problem definition, scheme definition and
security model of the work. Section V describes two specific
schemes in detail. Sections VI and VII analyze the security
and performance of our proposed schemes, respectively. Sec-
tion VIII concludes this paper.

II. RELATED WORK

Searchable Encryption: SE can implement the search in
encrypted data without leaking privacy. Therefore, SE can be
used to search encrypted data outsourced to the cloud server.

Song et al. [19] proposes a searchable symmetric encryption
scheme for the first time, which opens the research in the SE
field. At present, according to different demands, researchers
have proposed various SE schemes. The schemes [20], [21],
[22] combine SE with the Attribute-Based Encryption (ABE).
ABE can be used to achieve fine-grained access control over
encrypted data without privacy leakages. The schemes [1],
[2], [5] subdivide the keywords, and use BF and Locality
Sensitive Hashing (LSH) to achieve fuzzy keyword search.
When a keyword is misspelled, fuzzy keyword search can
achieve search as accurately as possible. To prevent the ma-
licious cloud servers from returning incorrect search results
driven by evasive calculations or other interest incentives, the
schemes [1], [5], [23] realize the integrity verification of the
search results. In addition, the schemes [8], [24], [25] trans-
form two-dimensional spatial data into one-dimensional using
gray code, hilbert curve or curve fitting technique, and real-
ize double search of space and text at the same time. The
schemes [26], [27], [28] extract the feature vector of the image to
construct the index, and realize the search of the encrypted image
data.

Bloom Filter-Based Searchable Encryption: Given n sets
S0, . . ., Sn−1, Multi-Set Multi-Membership Querying (MS-
MMQ) can answer which sets contain query element q. Cur-
rently, the more popular MS-MMQ solutions are BIGSI [14],
RAMBO [29] and Circular Shift and Coalesce-Bloom Filter
(CSC-BF) [30]. This three solutions are all implemented with
the help of BF. CSC-BF is improved on the BIGSI and RAMBO.
In one query of CSC-BF, the number of hash operations is
independent of the number of sets, which can achieve efficient
storage and computation. The set in MS-MMQ can be regarded
as the file, and then the elements in a set can be regarded as
the keywords contained in a file. By constructing a BF for each
file as the index, the MS-MMQ can implement keyword search.
The SE scheme that uses BF to achieve search is called Bloom
Filter-based Searchable Encryption (BF-based SE) scheme [1],
[2], [5], [11], [12], [13], which can achieve more efficient search
than other SE schemes because of the high efficiency of BF.
The schemes [1], [5] use n-gram and LSH to generate BF,
and use kNN to encrypt the BF to achieve fuzzy keyword
search. ESVSSE [13] uses a pseudo-random function to encrypt
keyword and generate trapdoor to initiate search. These schemes
suffer from the same problem as BIGSI. That is, when a large
number of ciphertext are outsourced in the cloud server, the
search efficiency will decrease because all ciphertexts have to
be traversed. In order to improve the search efficiency, Chen et
al. [2] used the inverted index and realizes fuzzy keyword search,
in which the number of keywords is much smaller than that of
ciphertexts. In addition, the above schemes have shortcomings
in protecting the values of BF, which will leak the privacy of BF
to the cloud server. The schemes [11], [12] use the public-key
encryption to protect the privacy of BF. However, in the search
phase, the bilinear pairing operation will incur high time cost.
Due to the large computation and storage costs caused by HE, the
schemes [17], [18] also face the problem of low search efficiency.

A comparative summary of PBKSs and the existing schemes
is presented in Table I.



TABLE I
COMPARISON BETWEEN PREVIOUS SCHEMES AND TWO PBKS SCHEMES

III. PRELIMINARIES

In this section, we review the relevant background knowledge
used in this paper, including Twin Bloom Filter (TBF) [10],
Circular Shift and Coalesce-Bloom Filter (CSC-BF) [30] and
Symmetric-key Hidden Vector Encryption (SHVE) [31].

A. Twin Bloom Filter

Twin Bloom Filter (TBF) [10] is an extension of the Bloom
Filter, which protects the privacy of the BF by obfuscating the
values in BF. TBF consists of two m-bit BFs side-by-side, and
any two cells in the same positions of two BFs are called a twin.
Each twin is divided into one chosen cell and one unchosen cell
containing 0 or 1, respectively. TBF contains four algorithms:
TBF.Setup, TBF.Initi, TBF.Insert and TBF.Check.
� TBF.Setup(1η, k)→ {Hkey,H}: Generate the keyed-hash

function family Hkey = {h1, . . ., hk+1} and a hash func-
tion H(x) = H(x)%2 with a range of [0, 1], where H is a
random oracle.

� TBF.Initi(m,Hkey,H, γ) → TBF: Calculate the
H(hk+1(i)⊕ γ) to determine which cell in each twin is
chosen, where γ is a random number and i ∈ {0,m− 1}.

� TBF.Insert(TBF, W, Hkey, H, γ)→ TBF: For each key-
wordw ∈W , let TBF[(hi(w)][H(hk+1(hi(w))⊕ γ)]= 1
and TBF[(hi(w)][1 - H(hk+1(hi(w))⊕ γ)] = 0.

� TBF.Check(TBF, w′, γ) → 0/1: Test whether
TBF[(hi(w

′)][H(hk+1(hi(w
′)) ⊕ γ)] = 1 for query

keyword w′. If the values of k chosen cells are 1, w′ is
included in TBF; otherwise, not included.

A TBF is correct if for all parameters η, k, m, γ, and any
keyword w ∈W , after running TBF.Setup(1η, k) → {Hkey,
H}, TBF.Initi(m, Hkey, H, γ) → TBF, TBF.Insert(TBF,W,
Hkey, H, γ)→ TBF, if w′ ∈W , then TBF.Check(TBF, w′, γ)
= 1, otherwise

Pr[TBF.Check(TBF, w′, γ) = 0]=1−neglTBF(m, k, |W |),

where the false positive rate of TBF is equal to that of tra-
ditional BF, i.e., neglTBF(m, k, |W |) = neglBF(m, k, |W |) ≈
(1− (1− 1

m )k|W |)k ≈ (1− e−k|W |/m)k. Fig. 2 shows an ex-
ample when m = 8 and k = 2. It can be seen that TBF not

Fig. 2. Example of TBF.

Fig. 3. The Insertion and Query of CSC-BF.

only obfuscates the insertion position but also achieves efficient
search.

B. Circular Shift and Coalesce-Bloom Filter

Based on the Bloom filter, Circular Shift and Coalesce-
Bloom Filter (CSC-BF) [30] can solve the problem of Multi-
Set Multi-Membership Querying (MS-MMQ), i.e., determining
which sets contain the query element for n sets S0, . . ., Sn−1.
The current methods for solving the MS-MMQ problem still
have some disadvantages, for example, BIGSI [14] suffers
from the low accuracy and RAMBO [29] has the low search
efficiency. However, CSC-BF can balance the accuracy and
efficiency. CSC-BF consists of r m-bit BFs and k independent
hash functions h0, . . ., hk−1. All bits of BFs are initialized to
0. CSC-BF contains two algorithms: CSC− BF.Insertion and
CSC− BF.Query.
� CSC-BF.Insertion: For each element (x, i) in set S =
{(x, i) : x ∈ Si, i ∈ [0, n−1]} in repetition Rej , j ∈ [0,
r−1], CSC-BF uses partition function gj to calculate par-
tition gj(i) ∈ [0, b−1] of Si. And then, CSC-BF computes
k hash values h0(x), . . ., hk−1(x). Finally, CSC-BF up-
dates the values at k positions (h0(x)%m+ gj(i))%m,...,
(hk−1(x)%m+ gj(i))%m in BF to 1. Fig. 3 shows an
example of the Insertion phase.

� CSC-BF.Query: For a query element q in repetition
Rej , j ∈ [0, r−1], CSC-BF computes k hash values
h0(q)%m,..., hk−1(q)%m. For each ht(q)%m, t ∈ [0,
k−1], CSC-BF checks the next b positions (ht(q)%m+
0)%m,..., (ht(q)%m+ b−1)%m to determine which par-
titions contain q. For positions that imply the existence of
q, CSC-BF takes the union of the sets contained in these
partitions to get the result Mj of repetition Rej . Finally,



LIANG et al.: PRIVACY-PRESERVING BLOOM FILTER-BASED KEYWORD SEARCH OVER LARGE ENCRYPTED CLOUD DATA

CSC-BF computes the intersection of r repetition results
M0, . . .,Mr−1 to obtain the final result Mq. Fig. 3 shows
an example of Query phase.

Fig. 3 shows the CSC-BF specific framework in the Insertion
and Query phases, where the CSC-BF is consisted of r 8-bit
BFs.

C. Symmetric-Key Hidden Vector Encryption

Symmetric-key Hidden Vector Encryption (SHVE) [31] is a
predicate encryption that supports conjunctive, equality, com-
parison, and subset queries of encrypted data.Σ represents a pre-
defined set of attributes, “ ∗ ” represents a wildcard and Σ∗ =
Σ ∪ {∗}. A SHVE consists of four algorithms: SHVE.Setup,
SHVE.KeyGen, SHVE.Enc and SHVE.Query.
� SHVE.Setup(λ)→ msk: On input a security parameter λ,

this algorithm outputs a master secret key msk and the
message space M:

� SHVE.KeyGen(msk, �v ∈ Σm
∗ ) → s: On input a predicate

vector �v and the master secret key msk, this algorithm
outputs a decryption key s.

� SHVE.Enc(msk, μ = “True′′, �x ∈ Σm) → c: On input a
message μ, an index vector �x and the master secret key
msk, this algorithm outputs the ciphertext c associated with
(�x, μ).

� SHVE.Query(s, c) = μ: On input a ciphertext c corre-
sponding to the index vector �x and a decryption key s
corresponding to the predicate vector �v, this algorithm
outputs the message μ, if P SHVE

�v (�x)=1.
In addition, a Symmetric-key Hidden Vector Encryption [31]

is correct if for all security parameters λ, all index vec-
tors �x ∈ Σm and predicate vectors �v ∈ Σm

∗ , after running
SHVE.Setup(λ) → msk, SHVE.KeyGen(msk, �v ∈ Σm

∗ ) → s,
SHVE.Enc(msk, μ = “True”, �x ∈ Σm) → c, if P SHVE

�v (�x)=1,
then SHVE.Query(s, c) = μ, otherwise

Pr[SHVE.Query(s, c) = 0] = 1− neglSHVE(λ).

Obviously, for each �v = (v1, . . ., vm) ∈ Σm
∗ and a �x =

(x1, . . ., xm) ∈ Σm, P SHVE
�v (�x) = 1 only if vi = xi or vi =

∗, otherwise 0.

IV. PROBLEM FORMULATION

In this section, we will give the system model & threat model,
problem definition, scheme definition and security model of
PBKS.

A. System Model & Threat Model

As shown in Fig. 4, PBKS mainly consists of three entities:
Data Owner (DO), Data User (DU) and Cloud Service Provider
(CSP). The role of each entity is as follows:
� Data owner: DO is responsible for generating keys for all

authorized DUs and sending them by a secure channel.
At the same time, DO generates the index for dataset, and
finally sends them to CSP. Note that this work only focuses
on the generation of encrypted indexes, and the generation
of encrypted data is beyond the scope of our discussion.

Fig. 4. The system model of PBKS.

� Data users: When an authorized DU needs to search, he or
she generates a trapdoor and sends it to CSP.

� Cloud service provider: CSP with powerful storage and
computing capabilities is responsible for storing massive
encrypted data outsourced by DO and responding to the
search requests from authorized DUs.

As shown in Fig. 4, PBKS consists of the following three
steps. First, DO shares the secret key with DU and builds the
index for the local data so that they can be searched after being
outsourced to CSP. Then, DO sends the encrypted data and
encrypted indexes to CSP (Step 1©). When an authorized DU
needs to perform a search, he or she needs to generate a trapdoor
for the query keyword, and then sends it to CSP to initiate one
search (Step 2©). After CSP receives one trapdoor sent by a DU,
CSP uses this trapdoor to search the encrypted indexes to obtain
the encrypted data containing the query keyword, and finally
returns the search result to the DU (Step 3©).

Threat Model: We assume that CSP is honest but curious.
CSP conducts the preset search protocol, but will try to infer the
specific content of the indexes and trapdoors in the search phase.
DO and DU are considered as fully trusted entities and do not
collude with CSP. It is worth noting that our proposed schemes
focus on the accurate and secure search of encrypted data, but do
not consider the protection of access pattern and search pattern.
In addition, the privacy protection of the data content can be
achieved by the traditional symmetric or public-key encryption
algorithm, which is beyond the scope of our discussion.

B. Problem Definition

Let D = {d0, . . ., dn−1} be a dataset owned by DO, where
the keyword set contained in each data di is represented as
Wi = {w0, w1, . . .}, and DO constructs BFs for D. Let Q =
{wq} denote a search request. In the BF-based keyword search
scheme, the more data are stored, the problems of high storage
cost, low search efficiency and high false positive rates are
inevitable. Shortening BF length can reduce storage cost, but will
increase false positive rate. Conversely, increasing BF length can
reduce false positive rate, but will increase storage cost. At the
same time, since the search needs to traverse all data, the search
efficiency will reduce as the number of stored data increases. In
addition, although the values in BF do not directly reflect the
content of keyword, it will reveal the positions with a value of
1 in BF to the cloud server. Therefore, we need to implement the



privacy-preserving Bloom filter-based efficient keyword search.
Now we give the definition of our scheme as follows:

Definition 1. (Privacy-Preserving Bloom Filter-based Effi-
cient Keyword Search). Given a dataset D = {d0, . . ., dn−1}
and a search request Q = {wq}, a privacy-preserving Bloom
filter-based keyword search is to retrieve a subset R =
{d1, d2, . . ., dh} from Enc(D) and Enc(Q), such that ∀di ∈
R,Wi

⋂
Q �= ∅, 1 ≤ i ≤ h. Note that this scheme uses a

Bloom filter structure to implement the search. Therefore, this
scheme suffers from the low false positive rate.

C. Scheme Definition

Based on the above system model, we describe the scheme
definition of PBKS as follows, which consists of five algorithms:
� Setup(1λ)→ msk: Given a security parameter λ, DO out-

puts the master key msk.
� KeyGen(1λ, msk)→ {PP, SK}: Given the security param-

eter λ and the master key msk, DO outputs the public
parameters PP and the secret key SK.

� IndexGen(D, PP, SK)→BFEnc: Given the datasetD, DO
first calls CSC− BF.Insertion to generate the Bloom filter
set BF = {BF0,..., BFr−1} of D, where r is the number
of Bloom filters. Then, DO calls SHVE.KeyGen to encrypt
BF and gets BFEnc = {BF0

Enc,..., BFr−1
Enc}. Finally, DO

sends BFEnc to CSP.
� TrapGen(w′, SK) → T: Given a query keyword w′, DU

calls SHVE.Enc to output the trapdoor T = {T0,..., Tk−1}
and initiates one search, where k is the number of hash
functions.

� Search(BFEnc, T)→R: CSP uses the trapdoor T to search
the encrypted index BFEnc and obtains the search result
R. CSP returnsR to the DU.

Correctness: Let Search(D, w′)→R′ be the plaintext search
result of the query keyword w′ on the dataset D. The PBKS is
correct for all index BFEnc output by IndexGen, all trapdoor T
output by TrapGen, if Search(D,w′)→R′ and Search(BFEnc,
T)→R, thenR′ =R.

D. Security Model

In this subsection, we give the security definition of PBKS.
Since PBKS implements encryption using SHVE, we widely
and consistently subsume the traditional security definitions
for SHVE in the indistinguishability setting. The adversary A
should not learn anything about the dataset and search content
beyond some explicit leaks in leakage function L.

Definition 2: (IND-SCPA Secure for PBKS) Let
∏

= (Setup,
KeyGen, IndexGen, TrapGen, Search) be a PBKS scheme
over security parameter λ. The security game between a chal-
lenger C and an adversary A is defined as follows:
� Init: The adversary A submits two distinct search requests
Q0 and Q1.

� Setup: The challengerC runs KeyGen(1λ, msk) to get {PP,
SK}, note that SK should be kept private.

� Phase 1: The adversary A adaptively initiates a number of
requests:

TABLE II
NOTATION DESCRIPTIONS IN PBKS

Index. On the j-th index request, the adversary A out-
puts a dataset Dj . The challenger C gets BFEnc ←
IndexGen(Dj , PP, SK) and sends it to A, note that L(Dj ,
Q0) = L(Dj , Q1).
Trapdoor: On the j-th trapdoor request, the adversary A
outputs a search request Qj . The challenger C gets TQj

←
TrapGen(Qj , SK) and responds the trapdoor TQj

to A.
� Challenge: With Q0 and Q1 selected in Init, the challenger
C randomly chooses a bit b ∈ {0, 1}, and gets TQb

→
TrapGen(Qb, SK). Finally, C sends TQb

to adversary A.
� Guess: The adversary A takes a guess b′ of b.
We say that

∏
is secure against Selective Chosen-Plaintext

Attack (SCPA) if for any Probabilistic Polynomial Time (PPT)
adversary A in the above game, it has at most a negligible
advantage

AdvIND−SCPA
PBKS,A (1λ) = |Pr[b == b′]− 1/2| ≤ negl(λ).

In addition, our PBKS+ scheme can really hide the 0 or 1
values in BF by changing the inclusion identifier, which is not
considered in other schemes.

V. PROPOSED PBKS FRAMEWORKS

In this section, we first present a efficient Bloom filter-based
keyword search scheme based on CSC-BF and SHVE, namely
PBKS. Then, we design a new index structure called T-CSCBF
and propose an improved scheme based on PBKS to achieve
higher security. Some notations used in this paper are shown in
Table II.

A. PBKS: Basic Scheme

Main Idea: As mentioned in Section I, Bloom filter-based key-
word search schemes suffer from some challenges, such as high
false positive rates and inefficiency. To achieve keyword search
on encrypted dataset, we take advantage of a new Bloom filter
structure: CSC-BF, which can achieve efficient and low false
positive rate search. We map all keywordsW to Bloom filter: BF
← CSC− BF.Insertion(W ). However, unencrypted CSC-BF
will directly reveal the values in BF. There are many candidate
methods to protect BF security, such as secure kNN, public-key
encryption and HE. However, the above methods are not efficient
or secure enough. Thus, we adopt a more efficient and secure
algorithm: SHVE. We encrypt all position in BF: BFEnc ←
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Algorithm 1: Details of IndexGen in PBKS.

SHVE.KeyGen(BF). Then, given a query keyword w′, we locate
the query positions inBFEnc: loc←BF.Query(w′), and encrypt
the query positions to get the trapdoor: T ← SHVE.Enc(loc).
Finally, the search phase is to match BFEnc and T in the query
positions, which is performed by SHVE.Query. Therefore, we
construct an efficient PBKS scheme.

Scheme Details: According to the above idea, we describe the
details of PBKS as follows.

Setup(1λ)→ {msk}: Given the security parameter λ, DO runs
SHVE.Setup to get the master secret key msk.

KeyGen(1λ, msk)→PP, {SK}: Given the security parameterλ,
DO generates r partition hash functions G= {g0, . . ., gr−1}, gi :
{0, 1}∗ → {0, 1}b to classify data and a hash function family H
= {h0, . . ., hk−1}, hi : {0, 1}∗ → {0, 1}m to map keywords. In
addition, DO randomly generates a pseudorandom function F0:
{0, 1}k × {0, 1}∗ → {0, 1}∗. Then, DO chooses an IND-CPA
secure symmetric encryption algorithm (Sym.Enc, Sym.Dec).
Finally, DO outputs the public parameters PP and the secret
key SK of DO as follows. Then, DO shares the hash function
family H with DU through a secret channel as the secret key of
DU.

PP = {(Sym.Enc, Sym.Dec), F0}, SK = {H,G}.
IndexGen(D, PP, SK) → {BFEnc}: For the outsourced

dataset D = {d0, . . ., dn−1} and the keyword set W =
{w1, w2, . . .}, DO generates the index of D by Algorithm 1,
which can be divided into following steps:

Fig. 5. Example of IndexGen in PBKS.

� Partition: Let’s take one repetition as an example. DO
initializes a m-bit Bloom filter BF with all zeros, and
then classifies n data in D using a partition hash function
g(x): the j-th data dj is divided into the g(j)-th partition
Pg(j). Accordingly, the keywords contained in dj are also
classified as keywords contained in Pg(j). Finally, DO gets
the set S = {(w, i), i ∈ [0, b−1]}, indicating w ∈ Pi. DO
repeats the partition r times in this way. It is worth noting
that the partition hash function used for each repetition is
different, i.e., {gt(x), t ∈ [0, r−1]}. Thus, r all-zero m-bit
Bloom filters {BF0,..., BFr−1} and their corresponding
partitions {S0, . . .,Sr−1} are obtained.

� Insertion: Let’s take one repetition (one Bloom filter BF)
as an example. For each pair (w, j) contained in S, the
hash function family H = {h0, . . ., hk−1} and offset j are
used to get the k positions loct, t ∈ [0, k−1] of w, and
the values of the corresponding positions in BF[loct] are
set to 1. The above operation is repeated until all elements
in S are inserted into BF. DO uses this method to get the
Bloom filter set BF = {BF0,..., BFr−1} that completes all
insertions.

� Encryption: Let’s take one repetition (one Bloom filter
BF) as an example. DO uses SHVE.KeyGen to encrypt
the Bloom filter BF obtained by CSC-BF. For each value
BF[j] in BF, DO calculates the encrypted values dj0 and
dj1, j ∈ [0, m−1] to generate BFEnc. Because the position
j and the secret keyαj are different, �dj and �dj′ are different
when BF[j] = BF[j′]. Similarly, DO repeats and gets the
encrypted Bloom filter set BFEnc = {BF0

Enc,..., BFr−1
Enc}.

Finally, BFEnc is sent to the cloud server as index.
Example: Suppose m = 8, k = 1, r = 2 and b = 2.

There are two 8-bit all-zero Bloom filters {BF0, BF1},
one hash function {h}, and three data D = {d0, d1, d2},
where d0 = {w3}, d1 = {w1}, d2 = {w2}. From r = 2
and b = 2, we can know that there are two repetitions
{Re0, Re1} and two partitions {P0, P1}, respectively. Let’s
take the repetition Re0 as an example to introduce the
IndexGen phase in Fig. 5. We first classify D by g0(x):
g0(0) = g0(1) = 0, g0(2) = 1, that is, d0 and d1 are classified
as P0 and d2 is classified as P1, i.e., P0 = {w1, w3}, P1 =
{w2} and S0 = {(w1, g0(1)), (w2, g0(2)), (w3, g0(0))} =
{(w1, 0), (w2, 1), (w3, 0)}. Next, for each item (wi, j) ∈ S0,
we calculate loct = (h(wi)%8 + j)%8 by h to obtain 1, 4,
6, respectively. Then, we change the values of corresponding
positions in BF0 to 1 and finally get the BF0 of repetition



Algorithm 2: Details of Search in PBKS.

Re0. With the same method, the Bloom filter BF1 of repetition
Re1 is obtained and the Insertion phase is completed. Finally,
SHVE.KeyGen is used to encrypt the {BF0, BF1} to get the
index.

TrapGen(w′, SK) → {T}: For each query keyword w′, DU
first calculates the corresponding position ht(w

′) of w′ in the
Bloom filter by H, where t ∈ [0, k− 1]. For each ht(w

′), DU
uses SHVE.Enc to generate Tt as follows:

Tt = {ht(w
′), c0 = F0(msk, 1||ht(w

′)), . . .,

cb−1 = F0(msk, 1||ht(w
′) + b− 1)}.

In this way, DU gets the trapdoor T = {T0, T1, . . ., Tk−1},
where k is the number of hash functions in H.

Search(BFEnc, T) → {R}: After receiving the trapdoor
T = {T0, T1, . . ., Tk−1}, CSP checks which data contains the
query keyword in T through Algorithm 2. Take one BFi

Enc

as an example, where i ∈ [0, r−1]. CSP searches each Tt =
{ht(w

′), c0, . . ., cb−1}, t ∈ [0, k−1]. First of all, CSP uses
ht(w

′) to locate the corresponding positions BFi
Enc[ht(w

′) +
j], j ∈[0, b−1], and then uses SHVE.Query to match. CSP
computes K ′j and μ′. If μ′ = 0λ+logλ, it indicates the cj and
BFi

Enc[ht(w
′) + j] are matched successfully for hash function

ht. Correspondingly, if cj and BFi
Enc[ht(w

′) + j], t ∈ [0, k−1]
all can match successfully for all, it means that the query
keyword in cj is included in the j-th partition. In this way, the
candidate resultRi of one Bloom filter BFi

Enc is obtained, where
i ∈ [0, r−1]. Similarly, r candidate results R = {R0, . . ., Rr−1}
can be obtained. Finally, the search result R can be obtained
by performing set intersection operation on these r candidate
results.

Remark: As shown in Section V-A, PBKS can achieve ef-
ficient BF-based keyword search on encrypted data, and also
achieve the privacy protection by encrypting the values of BF.

Fig. 6. The main idea of PBKS+.

However, PBKS still have some shortcomings in terms of secu-
rity. In the Search phase, since BF is encrypted by SHVE, the
cloud server cannot know the values of BF. However, when one
query position is successfully matched, CSP will assume that
the value of BF at this position is 1 due to the fixed rules of
Bloom filter, which still leaks the privacy of BF.

B. PBKS+: Extended Scheme

Main Idea: To solve the privacy leakage problem in the basic
PBKS scheme, we can change the inclusion identifiers at differ-
ent positions in BF. TBF can obfuscate the mapped position of
the keyword, but will incur the double storage cost. To change the
inclusion identifier and avoid double storage cost, we generate
the binary vectors inspired by TBF and perform XOR operations
with BF to construct a new index structure T-CSCBF. Then,
given a query keyword w′, we compute the inclusion identifiers
for all query positions and then perform match. Note that, like
PBKS, index and trapdoor are encrypted by SHVE.KeyGen and
SHVE.Enc, respectively. On the basis of the PBKS, only the
KeyGen, IndexGen and TrapGen algorithms need to be changed,
and the contents of Setup and Search remain the same. As shown
in Fig. 6, we construct an PBKS+ scheme, which can achieve
privacy-preserving and efficient Bloom filter-based keyword
search.

Scheme Details: According to the above idea, we only de-
scribe in detail the KeyGen, IndexGen and TrapGen algorithms
of PBKS+ as follows.

KeyGen(1λ, msk) → PP, {SK}: In the KeyGen of the PBKS
scheme, we have obtained PP = {(Sym.Enc, Sym.Dec), F0}
and SK = {H, G}. On this basis, DO uses a pseudo-random
function H: {0, 1}∗ → {0, 1}∗ to obtain a hash function H(x),
where H(x) = H(x)%2. Additionally, DO generates r random
numbers γ = {γ0,..., γr−1}. Finally, DO gets the new public
parameters PP and the new secret key SK of DO as follows.
Then, DO shares the hash function family H with DU through a
secret channel as the secret key of DU.

PP = {(Sym.Enc, Sym.Dec), F0,H}, SK = {H,G,γ}.
IndexGen(D, PP, SK)→ {BFEnc}: For the outsourced dataset
D = {d0, . . ., dn−1} and keyword set W = {w1, w2, . . .}, DO
generates r Bloom filters BF = {BF0,..., BFr−1} according to
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Algorithm 3: Details of IndexGen.Change in PBKS+.

Fig. 7. Example of Change in PBKS+.

Partition and Insertion of IndexGen algorithm in PBKS scheme.
On this basis, we add a step Change to change the inclusion
identifier that is represented as 0 or 1 in each position of BF,
where the special details are given in Algorithm 3.
� Change: Let’s take one repetition (one Bloom filter BF)

as an example. The Bloom filter BF obtained by CSC-
BF will be changed by TBF.Initi. For the j-th position in
BF, DO calculates C[j] = H(j ⊕ γ) to obtain an m-bit
binary vector C, where C[j] directly denotes the inclusion
identifier in BF[j]. For example, C[j] = 0 means that 0
is the inclusion identifier in BF[j]. Then, we invert the
value at each position in C to get C ′, i.e., C ′[j] directly
denotes the exclusion identifier in BF[j]. Afterwards, DO
calculates BFnew = BF⊕C ′. In the same way, we can get
the new Bloom filter set BFnew = {BFnew

0 ,..., BFnew
r−1 }.

Note that γ used in C of different BFnew is different to
eliminate the correlation between different BFnew. Finally,
DO encrypts BFnew to get BFEnc = {BF0

Enc,..., BFr−1
Enc}

and sends it to CSP.
Example: Suppose the 8-bit Bloom filter BF generated by

CSC-BF is 11000010. Correspondingly, the vector C represent-
ing the inclusion relationship calculated by C[i] = H(i⊕ γ),
i ∈ [0, 7] is 01011010, then C ′ = 10100101. Therefore, the new
Bloom filter BFnew that has been Change can be obtained as
01100111. Fig. 7 shows an example of the Change in IndexGen.

TrapGen(w′, SK) → {T}: Similar to TrapGen in PBKS, for
a query keyword w′, DU first calculates the corresponding
position ht(w

′) in BF through H, where t ∈ [0, k-1]. Then, DU
needs to calculate the inclusion identifier in each query position
for i-th BFi, where i ∈ [0, r-1]. For each ht(w

′), t ∈ [0, k-1],
DU calculates

Ci[0] = H((ht(w
′) + 0)⊕ γi), . . .,

Ci[b− 1] = H((ht(w
′) + b− 1)⊕ γi),

and

T i
t = {ht(w

′), ci0 = F0(msk,Ci[0]||ht(w
′)), . . .,

cib−1 = F0(msk,Ci[b− 1]||ht(w
′) + b− 1)}.

In this way, DU gets trapdoor T = {T i
t }i∈[0,r−1],t∈[0,k−1],

where k is the number of hash functions and r is the number of
repetitions in the scheme.

Finally, similar to Search in PBKS, CSP uses the received
T to search BFEnc. Note that, unlike PBKS, different BFnew

i

matches different T i
t , where i ∈ [0, r-1].

Remark: PBKS+ can realize privacy-preserving BF-based
keyword search. However, since CSC-BF maps all keywords of
the dataset to the r Bloom filters and the identifier information
of each data is introduced in keyword insertion phase, this
makes PBKS+ unable to use the method that multiply the index
and trapdoor, in traditional Bloom filter-based search scheme,
to achieve multi-keyword search. At the same time, since the
hash values of different query keyword are different in PBKS+,
it is impossible to realize multiple keyword searches at the
same time. Therefore, PBKS+ can only achieve single keyword
search, which affects search efficiency and user experience.

VI. CORRECTNESS AND SECURITY ANALYSIS

In this section, we first prove the correctness of PBKS+. Then,
the security of PBKS is analyzed.

A. Correctness Analysis

In this subsection, we verify the correctness of Index-
Gen.Change in PBKS+.

Theorem 1: For a m-bit Bloom filter BF and a m-bit binary
vector C, BFnew = BF⊕C ′, where C[i] denotes the inclusion
identifier of BF[i]. BFnew is a new Bloom filter obtained by
reassigning each bit according to the new inclusion identifier
redefined by C.

Proof: We can know that 1 means inclusion and 0 means
exclusion in traditional BF. That is, there are only two possible
values 0 or 1 in BF[i], i ∈ [0, m-1]. In addition, it can be known
from the definition of C that C[i] means inclusion, and C ′[i]
means exclusion in BF[i]. That is, when C[i] = 1, 1 means
inclusion, 0 means exclusion in BF[i]. Conversely, whenC ′[i]=
1, 1 means exclusion, 0 means included in BF[i]. Thus, there are
also two possible values 0 or 1 in C ′[i], i ∈ [0, m-1]. Therefore,
there are only four possible cases for BF[i] and C ′[i]. Next, we
will prove by case that when BF[i]= 1, i.e., BF[i] contains some
keywords, and then BFnew[i] also contains some keywords,
where BFnew[i] = BF[i] ⊕C ′[i], and the opposite is also true.
� When BF[i] = 1 and C ′[i] = 1, BFnew[i] = BF[i] ⊕ C ′[i]
= 0. BF[i] = 1 means that BF[i] contains some keywords.
In addition, it can be seen from C ′[i] = 1 that BFnew[i] =
0 also means that BFnew[i] contains some keywords.

� When BF[i] = 1 and C ′[i] = 0, BFnew[i] = BF[i]⊕ C ′[i]
= 1. BF[i] = 1 means that BF[i] contains some keywords.
In addition, it can be seen from C ′[i] = 0 that BFnew[i] =
1 also means that BFnew[i] contains some keywords.



� When BF[i] = 0 and C ′[i] = 1, BFnew[i] = BF[i]⊕ C ′[i]
= 1. BF[i] = 0 means that BF[i] does not contain any
keyword. In addition, it can be seen from C ′[i] = 1 that
BFnew[i] = 1 also means that BFnew[i] does not contain
any keyword.

� When BF[i] = 0 and C ′[i] = 0, BFnew[i] = BF[i]⊕ C ′[i]
= 0. BF[i] = 0 means that BF[i] does not contain any
keyword. In addition, it can be seen from C ′[i] = 0 that
BFnew[i] = 0 also means that BFnew[i] does not contain
any keyword.

As can be seen from the above, Theorem 1 was estab-
lished in all four cases. Therefore, the correctness of PBKS+ is
proved. �

In term of the false positive rate, the false positive rates of
three MS-MMQ solutions introduced in the Section I: BIGSI,
RAMBO and CSC-BF are:

δBIGSI =
∑

i∈{0,...,n−1}\Mq

neglBF(m, k, |Si|),

δRAMBO ≤ n

(
1− (1− neglBF(m, k, |P |))

(
1− 1

b

)v)r

,

δCSC−BF≤
(
1−
(
1−neglBF

(
m, k,

n−1∑
i=0

|Si|
))(

1− 1

b

)v
)r

,

where neglBF(m, k, |S|) ≈ (1 − (1 − 1
m )k|S|)k ≈ (1−

e−k|S|/m)k, n is the number of data, m is the length of each
bloom filter, k is the number of hash functions, b is the number
of partitions, r is the number of repetitions, P is a partition in
RAMBO, Si is the keyword set of the i-th data, Mq is the data
containing the query element q, and v = |Mq|.

It can be seen that when the query q is fixed, the false
positive rate of BIGSI δBIGSI is fixed. However, the false
positive rate of RAMBO δRAMBO and CSC-BF δCSC−BF

can be adjusted according to the values of b and r. Because
neglBF(m, k,

∑n−1
i=0 |Si|) ≤ 1, i.e., δRAMBO and δCSC−BF

will decrease as b and r increase. In addition, according
to the false positive rate equation of BF, we can know
neglBF(m, k,

∑n−1
i=0 |Si|) ≥ neglBF(m, k, |Si|). However, we

can increase b to keep it in equilibrium. Therefore, we can
achieve the low false positive rate of δCSC−BF by increasing
b and r.

B. Security Analysis

In this subsection, according to the security definition in
Section IV-D, we first prove that PBKS is semantic security
against IND-SCPA. And then, we prove that the 0 or 1 value of
the BF is not revealed in the Search phase.

Theorem 2: Our PBKS scheme is IND-SCPA secure if SHVE
is IND-SCPA secure.

Proof: The index and trapdoor of our PBKS are encrypted by
SHVE, thus, the security of PBKS depends on the security of
SHVE. Specifically, the proof is as follows:
� Init: The adversary A submits two distinct search requests
Q1 and Q2.

� Setup: The challenger C runs KeyGen(1λ, msk) to get the
public parameters PP and the secret key SK, while keeping
SK private.

� Phase 1: The adversary A adaptively submits a number of
requests:
Index: The adversaryA outputs the datasetDj for the j-th
index request. The challenger C runs IndexGen(Dj , PP,
SK) and gets BFEnc: Note that L(Dj , Q0) = L(Dj , Q1),
where L denotes the leak function of PBKS.
Trapdoor: The adversary A outputs the search request
Qj for the j-th trapdoor request. The challenger C runs
TrapGen(Qj , SK) and gets a trapdoor TQj

. Finally, C
responses with TQj

to A:
� Challenge: According to the Q0, Q1 selected in Init, the

challenger C randomly chooses a bit b ∈ {0, 1}, and runs
TrapGen(Qb, SK) to get TQb

. Finally, TQb
is sent to A.

� Guess: The adversary A takes a guess b′ of b.
Since SHVE is used to encrypt in our PBKS, the indistin-

guishability of index and trapdoor of our PBKS is directly
derived from the indistinguishability of SHVE. The security
game of our PBKS is essentially simulated by q instances of
SHVE, where q indicates the number of SHVE instances in the
game. Therefore, as long as the adversary A′ can distinguish
between two SHVE encrypted values,A can distinguish indexes
and trapdoors in PBKS, which can be expressed as:

AdvIND−SCPA
PBKS,A (1λ) ≤ AdvIND−SCPA

SHVE,A′ (1λ) ≤ q · negl(λ).

As can be seen from the above, the IND-SCPA secure of PBKS
is proved. Note that since both PBKS and PBKS+ are encrypted
by SHVE, their security proofs are the same.

Theorem 3: In the PBKS+ scheme, the 0 or 1 value at each
position of each BF is semantically secure, if H(x) is a pseudo-
random hash function.

Proof: In the traditional BF, 1 means that the position contains
some keywords, and 0 means not contains. Because the data user
will only search the position of the 1 in the BF, that is, only when
this position is 1 in the BF, the data user’s search condition will
be satisfied. Even if BF is encrypted, once one position is suc-
cessfully matched, it will directly reveal that this position must
be 1 in the BF. PBKS+ can prevent such information leakage. In
IndexGen.Change algorithm of PBKS+, a pseudorandom hash
function H(x) is used to operate on all positions in the BF.
At the same time, in order to eliminate the correlation between
different BFs, different random values γ are used for different
BFs in H(x⊕ γ). The inclusion identifier at different position
in different BFs is changed by H(x⊕ γ). In this way, even if
the index and trapdoor are successfully matched at one position,
CSP also cannot know the real value at this position in BF. Thus,
the privacy of the real value in BF is protected. �

VII. PERFORMANCE ANALYSIS

In this section, we analyze the performance of PBKS by
comparing PBKS, PBKS+ and VFSA [5] in theoretical and
experimental aspects, respectively.
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TABLE III
THEORETICAL COMPUTATION COST ANALYSIS: A COMPARATIVE SUMMARY

A. Theoretical Analysis

In order to analyze the computational cost of PBKS, PBKS+
and comparison scheme VFSA, we first introduce some time-
consuming operations in these schemes, such as: graph-based
keyword partition algorithm in VFSA, SHVE.KeyGen algo-
rithm,SHVE.Enc algorithm,SHVE.Query algorithm, hash oper-
ation in PBKS. Let TGKP , TSHVE.KeyGen, TSHVE.Enc, TSHVE.Query

and THash denote the corresponding time complexity, respec-
tively.

We present the computation cost of PBKS, PBKS+ and
VFSA [5] schemes in Table III. In IndexGen, PBKS first uses
CSC-BF to construct the BFs, and then uses SHVE.KeyGen
to encrypt the value at each BF position, which costs rnT
Hash +

∑n
i=1 |fi| THash and T SHVE.KeyGen, respectively. The

cost of Partition is rn THash, and the cost of Insertion is∑n
i=1 |fi|T Hash. In PBKS+, since it is necessary to change the

inclusion identifier of each position in BF, the cost of Change is
mr THash. In TrapGen, PBKS first calculates the hash values
of the query positions, and then encrypts the query positions.
Since k hash functions are involved in the scheme, the above
operation needs to be repeatedk times. Therefore, the costs of the
above two operations are kT Hash and k TSHVE.Enc, respectively.
In PBKS+, since the random number γ used by each BF is
different in the Change operation, the trapdoor of different BF is
different. Therefore, the costs of the two operations mentioned
above are kr(b+ 1)T Hash and kr TSHVE.Enc, respectively. In
Search, the costs of PBKS and PBKS+ are the same. The cloud
server first matches the query positions, and then performs the
union operation on the results obtained by the same BF. Finally,
the cloud server performs a intersection operation on r different
results to obtain the final result, which costs krTSHVE.Query, rU⋃

and I⋂, respectively.

B. Experimental Tests

We conduct experiments on an Ubuntu 20.04 Server with
2.90 GHz × 64 Intel Xeon(R) Gold 6266R CPU by using C++.
We randomly select 1500 data from the NSF Research Awards
Abstracts 1990-2003 dataset as the test dataset. The number of
hash functions used in the experiments is 3.

1) Experimental of Bloom Filter: We first explain why we
choose CSC-BF to build the Bloom filter. At present, there are
three main methods to solve the MS-MMQ problem, namely
BIGSI, RAMBO and CSC-BF. BIGSI needs to construct one
Bloom filter for each data. And n · k hash operations need to

be performed in the Query phase. RAMBO needs to construct
r · b BFs. And r · b · k hash operations need to be performed
in the Query phase. Different from the previous two methods,
CSC-BF needs to construct r BFs. Only r · k hash operations
need to be performed in the Query phase. Below, we analyze the
effects of the number of data and the number of repetitions on
the Insertion and Query times of the three MS-MMQ methods.

Fig. 8(a) and (b) show the time cost in Insertion and Query
phases of the three methods as the number of data increases
form 500 to 2000. And let r = 5, b = 100, where r is the
number of repetitions in RAMBO and CSC-BF, b is the number
of partitions in RAMBO and CSC-BF. As can be seen, on the
one hand, CSC-BF spends the least time in Query phase because
the number of hash operations that needs to be calculated is less
than the other two methods, and BIGSI spends the most time.
On the other hand, since each keyword needs to be inserted r
times repeatedly to improve accuracy in CSC-BF, the Insertion
phase takes more time than BIGSI but less than RAMBO, and
BIGSI spends the least time. Fig. 8(c) and (d) show the time
of three methods in Insertion and Query phases as the number
of repetitions increases form 3 to 6, where n = 1000, b = 100.
Same as Fig. 8(a) and (b), due to the different number of hash
operations, CSC-BF spends the least time in Query phase and
spends more time in Insertion phase.

As can be seen from Fig. 8, the Insertion time and Query
time of BIGSI do not change with r, but increase with n. In
addition, the Insertion time and Query time of CSC-BF and
RAMBO increase with r. Therefore, in order to improve the
search efficiency, we choose CSC-BF to build Bloom filter.

2) Experimental of Related Scheme: To illustrate the feasi-
bility of PBKS and PBKS+, we compare them with VFMS [5].
Different from PBKS and PBKS+, VFMS uses the traditional
BIGSI method to construct BF to implement search and uses
Twin Bloom Filter to protect BF privacy.

Fig. 9(a) and 9(b) show the variety of IndexGen time as the
number of data and the total length of the BF, respectively. Note
that the curve of VFMS varies refer to the left Y -axis, and the
curves of PBKS and PBKS+ vary refer to the right Y -axis in
these two figures. In Fig. 9(a), we can see that the IndexGen time
of three schemes increases with the number of data. At the same
time, since PBKS+ needs to calculate the inclusion identifiers
for different BFs, it takes more time in the IndexGen phase than
PBKS. In Fig. 9(b), we can see that the IndexGen time for PBKS,
PBKS+ and VFMS increases with the BF length. Because the
longer the BF, the longer time for encrypting index. At the same
time, PBKS+ still requires more IndexGen time than PBKS.



Fig. 8. Time cost analysis of three Bloom filter methods.

Fig. 9. Practical performance analysis.

Note that for the fair comparison, in Fig. 9(b), (d) and (g), we
unify the total lengths of BFs in the three schemes.

In Fig. 9(d), we present the trapdoor generation time for differ-
ent numbers of BF lengths in the Trapdoor phase. It can be seen
that the Trapdoor times of the three schemes are independent
of m. In addition, since different BFs need to use different
random values γ, the Trapdoor time of PBKS+ is significantly
longer than that of PBKS. Meanwhile, since we use the SHVE
algorithm to improve security, the Trapdoor time of PBKS+ is
higher than that of VFMS.

In Fig. 9(f) and (g), we show the time cost in Search phase
as the number of data and the total length of the BF increase,
respectively. In Fig. 9(f), it can be seen that the Search time
of VFMS increases with the number of data. Although the
operations performed in the Search phase of PBKS and PBKS+
schemes are independent of the number of data, the time cost
of PBKS and PBKS+ in Search phase also increases with the

number of data, because the time cost for the union and inter-
section operations increases as the number of data increases. In
addition, as the number of data increases, PBKS and PBKS+
gradually dominate. It can be seen in Fig. 9(g) that the Search
time of VFMS is independent of the BF length. However, as the
time costs of union and intersection operations decrease with the
increase of BF length, the time costs of PBKS and PBKS+ will
also decrease gradually. In addition, the time costs of PBKS and
PBKS+ are equal and significantly less than VFMS’s.

In addition, in Fig. 9(c), (e) and (h), we show the time costs
in different phases of PBKS and PBKS+ with the increase of
the number of repetitions r. It can be seen that, as r increases,
the number of keyword insertions increases multiply, so the
IndexGen time increases accordingly. In addition, in IndexGen
phase, PBKS+ has the Change stage that PBKS does not have,
PBKS+ takes longer time than PBKS. In Trapdoor phase, PBKS
uses the same trapdoor for different BFs, so the Trapdoor time
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TABLE IV
TIME COSTS OF PBKS AND PBKS+ IN EACH PHASE VARYING WITH THE

NUMBER OF REPETITIONS (n = 1500, b = 100, THE TOTAL LENGTH OF BFS IS

1350000)

TABLE V
TIME COSTS OF PBKS AND PBKS+ IN EACH PHASE VARYING WITH THE

NUMBER OF DATA (r = 5, b = 1000, m = 400000)

is constant. However, PBKS+ needs to generate r different
trapdoors for r different BFs, so the Trapdoor time gradually
increases. In Search phase, PBKS and PBKS+ need to search all
BFs, so the Search time also increases linearly, and PBKS and
PBKS+ take the same amount of time.

In Fig. 9(c), (e) and (h), the total length of BF increases with
the increase of repetitions r. That is, the length of single BF m
is constant, and the total length of BF is m× r. To demonstrate
the variety of time cost at each phase when r increases but the
total BF length is constant, Table IV compares the time costs of
PBKS and PBKS+ in Insertion, Trapdoor and Search phases,
where the length of a single BF is equal to the total length of
BF divided by r. It can be seen that PBKS+ takes longer time
than PBKS in the Insertion phase. However, the both schemes
spend the same time cost in the Search phase. Moreover, the
time cost of PBKS in Trapdoor phase is not affected by r, but
the time cost of PBKS+ in Trapdoor phase increases with r. In
addition, to demonstrate the efficiency of our PBKS and PBKS+
schemes in each phase under the context of large cloud data,
Table V shows the time cost of each phase when the number
of data increases from 20000 to 100000. It can be seen that
when n=100000, PBKS+ spends 9.062 s, 0.0268 s and 0.5215 s
in Insertion, Trapdoor and Search phase, respectively, which is
obviously acceptable to the data users.

Fig. 10 shows the search accuracies of the three schemes as
the number of repetitions and partitions increases. It can be seen
that the search accuracy of PBKS and PBKS+ increases as r and
b increase and the search accuracy of VFMS is constant, because
the Bloom filters used in PBKS and PBKS+ are CSC-BF and
the Bloom filter used in VFMS is BIGSI. Finally, the search
accuracies of PBKS and PBKS+ can reach more than 90%.

Fig. 10. Search accuracy analysis.

VIII. CONCLUSION

In this paper, we proposed two privacy-preserving Bloom
filter-based keyword search schemes over large encrypted cloud
data. First, CSC-BF is used to store the keywords of all data
and implement the search simultaneously. Then, we use SHVE
to encrypt CSC-BF and propose the basic PBKS scheme. In
addition, inspired by TBF, a new index structure T-CSCBF is
constructed to further protect the BF value of the basic PBKS
scheme. We rigorously analyze the security of our schemes
under IND-SCPA. Finally, performance analysis shows that our
schemes can achieve efficient keyword search.
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