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Abstract: Food computing has long been studied and deployed to several applications. Understanding a food image at the
instance level, including recognition, counting and segmentation, is essential to quantifying nutrition and calorie
consumption. Nevertheless, existing techniques are limited to either category-specific instance detection, which does not
reflect precisely the instance size at the pixel level, or category-agnostic instance segmentation, which is insufficient for dish
recognition. This paper presents a compact and fast multi-task network, namely FoodMask, for clustering-based food
instance counting, segmentation and recognition. The network learns a semantic space simultaneously encoding food
category distribution and instance height at pixel basis. While the former value addresses instance recognition, the latter
value provides prior knowledge for instance extraction. Besides, we integrate into the semantic space a pathway for class-
specific counting. With these three outputs, we propose a clustering algorithm to segment and recognize food instances at a
real-time speed. Empirical studies are made on three large-scale food datasets, including Mixed Dishes, UECFoodPixComp
and FoodSegl103, which cover Western, Chinese, Japanese and Indian cuisines. The proposed networks outperform

benchmarks in both terms of instance map quality and speed efficiency.

Keywords: Food counting, Food instance segmentation, Food recognition

1. Introduction

Instance counting, segmentation and recognition
are basic functions to understand visual world. While
human is able to perform these functions “in a glance”,
devising a neural network for them is a functionally
complex task. In the literature, these functions are
investigated and composed either loosely as a multi-task
learning problem [1] or tightly as a cascaded learning
problem [2]. For example, Mask R-CNN [1] and
CenterMask [3] are constructed posterior to the typical
object detection networks for instance segmentation.
Deep watershed [4] and SECB [5] couple together
semantic and instance segmentation networks for pixel
labelling. Terrace [6] and SibNet [7] train end-to-end
multi-task neural networks for simultaneous instance
counting and segmentation. HTC [2] and DSC [8]
interleave the semantic and instance mask generation
sequentially for progressive fine-tuning of results.
Despite excellent performances reported by these
approaches on various object datasets, it remains
challenging to strike a balance between speed,
segmentation and recognition accuracy in practice.

In general, using real-time detectors such as
Yolact++ [12] can vyield speedy and satisfactory
performance. Nevertheless, when applying to domain-
specific objects, such as curved text [13] and food [6], the
accuracy is suboptimal as reported in [7], [14]. This is
mainly due to reasons such as the complex shape and
structure of an object, which cannot be represented with a
generic regular box, resulting in sub-optimal performance

of general object detectors [15], [16]. Fig. 1 shows some
examples of food where different dishes and their
instances are crowdedly stacked. This causes the shape of
an instance to appear arbitrary due to occlusion and the
shape being distorted due to perspective difference. In the
literature, the problem is addressed by predicting the
centroids of instances and carefully pushing their
territories outward pixel-by-pixel until reaching the most
plausible boundary pixels [4], [5]. Such box-free
approaches are more robust to densely placed objects as
demonstrated in [6], [17] for curved text and multi-dish
food datasets. Nevertheless, these approaches are either
computationally slow (e.g., Deep watershed [4]) or
consider only class-agnostic instance segmentation
without classification (e.g., TextMountain [17], SibNet

[7D.

In this paper, we investigate a network
architecture peculiar to counting, segmentation and
recognition of food instances on a plate. Particularly, the
speed is targeted to be in real-time, processing at least 30
images per second. We envision such a network to be
used for personalized food logging in a free-living
environment and the batch processing of images for food
packaging and delivery. Fig. 2 shows a plot of speed
efficiency versus segmentation quality, which is split into
four divisions based on a benchmark of 30 frames-per-
second and 57% of panoptic quality [18]. FoodMask is
one of the few networks that
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Fig. 1. The challenges of food instance segmentation and recognition in Mixed Dishes [9], UECFood [10] and FoodSeg103 [11] datasets. The ground-truth food categories are

displayed alongside the images.

stays in the top-right division while the majority of the approaches are
in the lower-left division. Food-specific networks like Terrace [6] and
SibNet [7] manage to produce high panoptic quality but the speed is
slower than FoodMask proposed in this paper.

Fig. 1 shows the examples of dishes experimented with in this paper.
In Fig. la and 1b, the dishes are placed densely one after another.
The boundaries between dishes are fuzzy to separate even with human
eyes. These dishes are challenging to be recognized if seasoned with the
same sauce on top. Fig. 1c shows a meal with four dishes of different
shapes and sizes. One of them, “jiaozi”, is severed with multiple items.
In Fig. 1d, there are nine instances of “croquette” stacked beside a
portion of “green salad”. In Fig. 1e, the breakfast is composed of three
dishes, including two slices of bread. In Fig. 1f, there are two pieces
of “burger” with their ingredients partially visible. As shown in Fig. 1,
FoodMask segment and count food instances, while labelling them with
dish names.

The proposed FoodMask is a multi-task neural network with three
branches for counting, semantic segmentation and contour map gen-
eration (see Fig. 3), respectively. To reduce processing time as well
as memory consumption, these branches share a deconvolution sub-
network. As the creation of a food instance map which involves
pixel-level analysis is the most time-consuming component, FoodMask
smartly post-processes the predictions from the three branches without
parameter learning. In addition, pixel labelling is only performed
for the selected regions of a food image. These simplifications of
network design not only maintain similar segmentation quality as in
the more sophisticated domain-specific networks (e.g., Terrace [6] and
SibNet [7]), but also result in significant speedup during inference
time. To be specific, FoodMask accelerates the processing by deriving
the semantic and instance labels of a pixel in a rather simplified
way (Section 3.3) and enabling the selective clustering of instance
labels (Section 3.4) by inferring category-level instance counts. These
improvements do not only boost speed efficiency but also maintain high
segmentation performance.

65 FoodMask

SibNet++
Terrace++
Watershed
CR-Net
FCOS

Mask R-CNN
CenterMask
Yolact++
HTC

DsC
Mask2Former
YOLOvE
Fastinst
PolarMask
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Fig. 2. FoodMask strikes a good balance between segmentation quality and speed, and
outperforms the existing approaches. Experiments are conducted on three multi-dish
food datasets: Mixed Dishes [9], UECFood [10] and FoodSeg103 [11]. The displayed
speed is averaged over all the testing images in these three datasets. The size of an
input image is 256 x 256.

The rest of this paper is organized as follows. Section 2 discusses
related works for instance counting, segmentation and recognition.
Section 3 details the architecture of the proposed network for Food-
Mask. In addition, an instance labelling algorithm is proposed for rapid
post-processing of FoodMask predictions to generate an instance map.
Section 4 describes three large-scale food datasets and two metrics
to evaluate recognition performances at the instance and pixel levels.
Section 5 presents empirical findings to justify the performance of
FoodMask in striking a good balance between speed and accuracy.
Finally, Section 6 concludes this paper.
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Fig. 3. FoodMask: A multi-task neural architecture for instance counting, segmentation and recognition. The output is an instance map that labels the food category and instance

of every pixel in an input image.
2. Related works
2.1. Instance counting

Instance counting is generally performed by regression methods
such as with Convolutional Neural Network (CNN) [19,20] that pre-
dicts a floating point number indicating the number of object instances
in an image. These techniques have evolved from image-level [19]
to region-level counting [20] that integrates the category distribution
of counts estimated over regions. While being effective and simple in
design for providing a glance at object distributions and their counts,
the regression-based techniques are not capable of grounding the esti-
mations with localized instances. This limitation inevitably hinders the
analysis of instance shape and size which is useful for tasks such as food
portion size estimation [21]. The techniques used in crowd counting
are effective by labelling object positions as points and generating
density maps to summarize object counts. While being highly successful
in counting small and uniform objects, such as human head [22]
and fish [23], these techniques cannot provide object shape in pixel-
level accuracy. More explicit ways of counting are investigated by
localizing the object instances with bounding boxes [9] and masks
of arbitrary shapes [7], which directly provide category-wise instance
counts. These approaches are generally more sophisticated and com-
putationally expensive for requiring exhaustive evaluation of object
proposals [16], semantic segmentation [3], pixel-level connectivity
analysis and clustering [7] for instance segmentation.

2.2. Proposal-based instance segmentation

Object detection networks, such as Faster R-CNN [15] and FCOS
[16], are employed to enclose instances with bounding boxes for count-
ing. These networks have been extended for food instance localization
by addressing the specific challenges in the food domain. To explore
the co-occurrence of dishes observed on a plate, CR-Net [9] proposes a
relation module on top of Faster R-CNN to exploit such relationship for
refinement of multi-dish categorization. As food images are susceptible
to visual variations due to environmental change (e.g., lighting condi-
tion, viewing angle, cooking method), a domain adaptation network is
also investigated in [24]. Owing to the bounding box representation,
this line of approaches is not able to delineate the instance shapes
which are wildly different across different dish categories. As a result,
the bounding boxes detected on a plate can be highly occluded with
overlapping regions.

Instance segmentation is more feasible in separating the food in-
stances of arbitrary shapes. The approaches include Mask R-CNN [1]
and CenterMask [3], which extend object detection techniques by
performing semantic segmentation to craft the shape of an instance in
a bounding box. A more popular approach is by Yolact++ [12], which

detects object proposals and generates instance masks simultaneously
with high efficiency. More sophisticated, but also more computation-
ally expensive, approaches involve progressive refinement of instance
localization. These include CD-Net [25] which employs graph convolu-
tional network and the cascading networks (e.g., HTC [2], DSC [8])
which interleave bounding box regression and mask prediction for
performance boosting. In addition, Mask encoding [26] presents a
technique for mask representation at high resolution, ensuring high-
quality mask reconstruction while minimizing computational overhead.
More recently, Mask2Former [27], a transformer-based universal image
segmentation architecture, replaces the cross-attention with masked
attention in the transformer decoder. Mask2Former [27] uses the learn-
able query features to provide region proposals, improving training
efficiency [28] and model generalization to different image segmenta-
tion tasks. A faster version is proposed in FastInst [29], which leverages
instance activation-guided queries to achieve comparable results with
high efficiency using transformer decoder (versus a cascade of trans-
formers of multi-scale processing in [27]). Unilnst [30] proposes to
learn a re-ranking map at image scale where the value for each map
pixel is the quality score of the corresponding instance segmentation
candidate. As the score is pixel-based, it suffers from the potential risk
of over-segmentation on multi-part instances.

2.3. Proposal-free instance segmentation

Despite superior performance demonstrated for the general object
detection and segmentation such as on COCO dataset [31], most of
these approaches are incompetent in the settings specific for the object
domains such as vehicle [32], text [13] and food [6]. To be resilient
to instances of varying shapes that are densely placed in a complex
setting, a general approach is to learn a multi-contour map to per-
form varying granularities of segmentation over different regions of
an instance. Specifically, starting from a seed map, which depicts the
instance centroids, pixel-level region growing is carried out from seeds
to push the border of an instance based on various visual cues. For
example, Deep Watershed [4] performs pixel labelling by predicting the
direction of a pixel which points to the nearest instance boundary to
generate a 16-level instance-wise watershed energy map for segmenta-
tion. PSENet [14] learns to progressively expand the shape and size
of an object instance across different scales of an image. SECB [5],
TextMountain [17] and SibNet [7] first predict the seed map and then
grow the seeds (instance centroids) with pixel connectivity analysis,
by various neural architectures for predicting pixel offset vectors [5],
centre-direction [17] and sibling relation [7]. Terrace [6] performs
end-to-end learning of the multi-layer contour map with attention for
instance counting and with weights for robust instance labelling.

Most of the approaches (e.g., PSENet [14], SibNet [7], and Ter-
race [6]) perform class-agnostic instance segmentation. In other words,
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the category of an instance will not be predicted. Deep watershed [4]
and SECB [5], on the other hand, take the semantic map as input and
perform instance segmentation for each semantic mask. The result is
highly dependent on the quality of a semantic map. As these approaches
have two network branches for semantic and instance segmentations,
respectively, the computational cost and memory consumption is gen-
erally higher, for example, due to training of two deconvolution layers
for up-sampling of feature maps [4] and storing of full-resolution seed
maps for individual semantic mask [5]. In this paper, we propose
FoodMask, a simple, efficient and yet effective neural architecture that
seamlessly combines counting, semantic segmentation and contour map
generation for instance labelling. The training of FoodMask is less
time involved for learning only the parameters of shared deconvolution
layers for different tasks and applying simple operators (e.g., max and
sum) for semantic map and contour map generation. During testing,
FoodMask is also efficient by skipping unnecessary processing in in-
stance labelling and concentrating only on the regions with multiple
instances for segmentation. All these result in at least a double speedup
in terms of frames per second than any of the existing approaches in
the literature.

In the literature, as FoodMask, these are also class-specific instance
segmentation methods. The examples include single-shot instance seg-
mentation (SSAP) [33], PolarMask [34] and PolarMask++ [35]. SSAP
[33] learns the instance relation of neighbouring pixels within a win-
dow size over different image scales. As the instance extraction al-
gorithm is implemented iteratively through multiple scales of feature
maps, this method is computationally expensive. PolarMask [34] and
PolarMask++ [35] model an instance by a centre mass with 9-16
pixels and a fixed number of rays from the centre of mass to the
object boundary. As an instance can only be depicted with a polygon
composed of 72 rays (or boundary points), the segmentation is not
fine-grained, which is insufficient to extract food items of arbitrary
shape.

3. Food mask

Fig. 3 shows the architecture of FoodMask, which is composed of
three branches for instance counting, segmentation, and recognition.
The shared backbone of these branches is a Feature Pyramid Network
(FPN) [36] that processes an input image of size H x W with con-
volutions at multiple scales of resolution. The resulting features at
different scales are encoded into a (C + 1) x H /4 x W /4 feature map of
C + 1 channels for semantic segmentation [37]. Each channel labels
the pixels belonging to one of C food categories being considered.
An additional channel is encoded for the labelling of background or
non-food pixels. The feature map is leveraged by the counting task to
produce a distribution of counts indicating the number of instances
per category in an image. Meanwhile, deconvolution is performed to
up-sample the feature map by four times via bilinear interpolation
to obtain a semantic space, denoted as IF, of the original image size,
i.e., (C+1)x H x W. The semantic space serves as input for the tasks
of semantic and instance segmentation, which produce semantic and
instance labels, respectively, for every pixel in an image.

3.1. Food counting

Counting produces a vector t € RC to enumerate category-wise
instances. We design a simple convolution network with three down-
sampling stages to transform each channel of the FPN output, i.e., (C+
1)x H /4 x W /4, to a feature map at 1/8 scale. Each stage consists of a
3 x 3 convolution, batch norm, ReLU, and 2x bilinear down-sampling.
The convolutional module is followed by an average pooling to output
a single floating value. By repeating this process for all the C channels,
the vector ¢ of length C is formed, where each value ¢, ¢ € [1,C],
reflects the number of instances enumerated for a food category. Denote
t,. and 7, . as the predicted and actual counts of a category c in the
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nth image sample, we employ the mean square error loss function to
optimize the counting sub-network as following:

N C s
_ Zn:| Zc:|(tn,c - tn,c)2

NC
where N is the total number of training samples.

Ly (@)

3.2. Semantic segmentation

We follow [37] which proposes to use FPN as a backbone and learn
a semantic space IF that encodes the category distribution at every
pixel. Specifically, denote F € RC*! as a vector positioning at pixel
(Hp, Wy) along the channel dimension of IF. The vector F captures the
category distribution of a pixel, where its element F, for food category
¢ has the following three properties:

(1) The probability for a category c*:

eFC*
Pc* = C—F (2)
ZL‘:O e«

(2) The classification decision for ¢* is subjected to:

¢* =argmax F, 3
c€[0,C]
(3) The semantic loss function is a negative log-likelihood on the
ground-truth category ¢:

Ly =—log(P;) 4

Based on Eq. (4), cross-entropy loss is measured by summing the
semantic losses over H xW pixels of the N training samples, as follows:

N yF
Le= Zn 21—‘ Ln,F
==t ="
NHW

It is worth noting that the semantic vector F enjoys the char-
acteristic of scale invariance. Specifically, the aforementioned three
properties are not affected by the global scaling of value across all
vector elements F,. For example, by adding a constant value x, the
probability distribution of a category remains the same:

()

eX+Fc* ( )
P. = = = =P. 6
- Zf:o exthe Zf:o exefe ZcC:o efe ‘
This scale-invariant characteristic will be leveraged for the estimation
of the instance height map, which will be further elaborated in the next
section.

exch* eFv*

3.3. Food instance height map

Different from semantic segmentation, the instance height map aims
to label individual food instances. With reference to Fig. 4, the pixels
in the four pieces of fried fish are separately labelled. Separating food
instances of the same food category, nevertheless, is challenging as
these instances share similar visual appearance. Similar to the Terrace
model [6], we model the pixels in an instance based on their spatial dis-
tances to the instance border. Specifically, the pixels centrally located
in an instance will have higher values while the pixels closer to the
border will have lower values. This forms a “height” map intuitively
depicting different levels of challenge in labelling, where pixels closer
to the border will have higher uncertainty in labelling decisions. As
shown in Fig. 4, the height map visualizes peaks corresponding to
centroid regions of different instances, which are served as “seeds” to
be leveraged by the labelling algorithm (Section 3.4) for region growing
of their respective instances.

Denote ¥ € R#*W as the ground-truth food instance height map
which will be constructed as follows. On every pixel of an image,
we assign a distance value, denoted as D, ,, indicating the minimum
number of pixels being traversed from the current pixel position (h, w)
to a pixel belonging to background or a different instance of food. We
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Fig. 4. An example illustrating the instance labelling algorithm. The top-left block shows the semantic maps of individual categories with their predicted counts. Together with
a contour map, which is converted from the height map, the semantic maps of these categories are either “rejected”, “accepted”, or “clustered” to produce an instance map. In
this example, there are four pieces of fried fish being labelled as instances. Please refer to Algorithm 1 for the details of the corresponding steps labelled in this figure.

consider the radius of an instance, R;, as the maximum distance value
among all its pixels, as follows:

R; = D 7
1 (hn;%él how @

The ground-truth height of a pixel f/h’w is a normalized distance value
in the range of [0,1] by:
D h,w

R, (3

Yh,w =

By doing this, all instances have similar values of height at their peaks
that facilitate the subsequence step of instance labelling.

Instead of constructing a new deconvolution network, instance
labelling shares the semantic space, I, with the semantic segmentation
module for the learning of height map. A height map is derived by
simply pooling the feature map along the channel direction, as follows:

C
=2 Frue ©
c=1

An advantage of this design is computational efficiency, where
the formation of a height map does not require disparate learning of
deconvolution layers from the semantic segmentation module. Capital-
izing on the scale invariance of semantic space, as stated in Eq. (6),
learning to scale the semantic vector, I, ,, to reflect the height of a
pixel at location (h,w) will not alter the original result of semantic
segmentation. In other words, the network is trained to scale I,
such that the sum of all elements in F; , reflects the height of a
pixel, while IF;, , . still captures the probability belonging to a category
after normalization (Eq. (2)). To this end, the pixel-wise mean square
error loss function is employed to penalize the difference between the
predicted and ground-truth height maps:

Z Zh Z (nhw_

NHW

Overall, the loss function of the multi-task FoodMask is formulated
as:

2
nhu)

Ly = (10)

L=2rLy+AgLg+AyLy an

where i, Ag and Ay are trade-off hyper-parameters (see Fig. 4).
3.4. Instance extraction and labelling

There are various ways to leverage the per-category counting distri-
bution, per-pixel probability distribution of categories and the image-
level height map. For speed efficiency, we consider a pruning strategy
which rapidly scrapes away noisy food instances while performing

Algorithm 1 Instance labelling algorithm .

Require: binarized version of semantic map: .S, vector of per-category
count: 7, normalized version of height map: Y, number of food
categories: C

Ensure: Multi-instance map: I

1: function INsTANGELABELLING(S, ¢, Y, C)
2: Step-1: Convert Y into a contour map Y of different levels from
1to K+1:

Y « K+1 where%<7§1

-Yekwherek—;;s?s% and k < K

Step-2: Iterate over every food category ¢ € [1,Cl:

« Step-2a: If 1, > 0.5: I, « S,

« Step-2b: If 7, > 1.5: construct a contour map Y specifically

for category c:

Noahn w

Y,, ifS =1
Yh,w — hw i h,w,c (12)
0 if S =0
8: Perform clustering algorithm [6] on Y
9: Map the resulting instance map on I,

10: return I
11: end function

on-demand instance labelling. Specifically, we use per-category count
distribution as a prior to determining whether to prune, keep or decom-
pose the regions of pixels with the same category in a semantic map
into separate instances. For a category with its count equal to zero,
no instance will be generated while the corresponding region will be
labelled as “background” in the instance map. If the value of count is
equal to one, no instance labelling will be performed for that category,
and instead, the entire region of the category in the semantic map will
be copied over for the instance map. Only when the value of count is
equal to or larger than two, the corresponding region in a semantic map
will be decomposed into disjoint regions of different labels where each
corresponds to a standalone instance. This strategy is more efficient
than other options, such as performing instance labelling for every food
category, as will be demonstrated in the experiments.

Algorithm 1 presents the instance labelling algorithm. In Step-1,
the height map is converted into a contour map as in other proposal-
free algorithms [4,6,14]. The contour map facilitates region growth by
dividing a height map into different levels of amplitude (or watershed),
such that a region can be expanded efficiently in a level-wise rather
than pixel-wise manner. The associated issue, nevertheless, is the num-
ber of levels required for region growing, which is a trade-off between
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Table 1
Statistics on three food datasets: Mixed Dishes [9], UECFood [10], and FoodSegl103
[11].

Mixed Dishes [9] UECFood [10] FoodSeg103 [11]

Dish category 103 102 63
Instance 31,556 22,224 24,918
Training images 7416 9000 4983
Testing images 1838 1000 2135

the accurate localization of peaks for growing and the precise probing
of instance boundaries, as discussed in [6]. For example, having an
excessive number of levels is potentially helpful in depicting complex
shapes but unnecessarily complicates the learning of a contour map and
the post-processing step in instance labelling. In the implementation,
the number of contour levels is empirically set as K + 1. The highest
(K+1)th level contour covers the pixels whose values are in the range of
(%, 1]. The remaining pixels are uniformly grouped into different levels,

with the kth level contour covering the pixels with values (%, %J
and the lowest level contour includes all zero-height pixels. Unlike the
equal-thickness contours used in other methods [4,6,14], preserving a
larger innermost contour (50% in our case) speeds up labelling the
next step. In Step-2, instance labelling is carried out by referring to
the per-category count distribution. As count is a continuous number,
a rounding operation is performed to gate the decision as shown in
Algorithm 1. Only food categories with a count equal to or greater than
two will be further processed by Step-2b. Specifically, the clustering
of pixels will be performed for instance labelling in Step-2b. While
there are various algorithms that can be directly applied for clustering,
such as energy cut [4] and scale expansion [14], the algorithm used
in Terrace model [6] is adopted due to its efficiency and superior
performance in terms of panoptic quality [18] on food datasets.

4. Experimental setup
4.1. Datasets

The experiments are conducted on three food datasets Mixed Dishes
[9], UECFood-PixComp (UECFood) [10] and FoodSegl03 [11] with
statistics listed on Table 1.

Mixed Dishes images are collected from six canteens in a university.
Each image contains a mixture of several dishes densely put together on
a plate. Excluding “rice”, this dataset has 102 major categories and 81
minor categories. A major category has more than 50 food instances in
the training examples. Meanwhile, the minor categories are all grouped
into a category called “others” due to insufficient training instances.
With the assistance of a graphical annotation tool namely VIA [38],
we manage to sketch a polygon line tightly surrounding the instance
boundary.

UECFood dataset collects 10,000 images of Japanese food, covering
102 categories. Most images depict a daily meal which consists of one
or several dishes presented on a bowl, plate, cup or canteen tray. Being
composed of various ingredients, a dish in UECFood is rich in visual
appearance. As UECFood provides only semantic maps, we also provide
polygon labels to generate instance maps for all the images.

FoodSeg103 dataset includes around 7000 images covering 103
ingredient categories. The photos are mostly close-up shots to better
capture fine-grained ingredient details. Compared to Mixed Dish and
UECFood, this dataset covers a large range of cuisines, such as Chinese,
Indian and Western dishes, and a variety of meal types, such as break-
fast, snack, drink, fruit and nut. However, the dataset is constructed for
ingredient-based semantic segmentation. Ingredients such as “almond”
(in “mixed nuts” dish) and “shiitake” (in “mushroom” dish) are overly
fine-grained to be treated as dish categories and further segmented into
instances. Hence, we merge the ingredient labels into 63 dish categories
and provide polygons to label the instances of these categories. To this
end, all images in the three datasets are prepared with polygon-based
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instance masks where each mask has both the instance and semantic
labels.

4.2. Evaluation metrics

Instance level. We evaluate the performance of instance recog-
nition and counting based on the number of true, false and missing
predicted instances. For the object-proposal techniques, a bounding box
is considered as true positive (TP) if it is correctly classified and its
Intersection over Union (IoU) with the ground-truth box is larger than
0.5. Otherwise, a detected bounding box is treated as a false positive
(FP) while an undetected ground-truth box is regarded as a false neg-
ative (FN). Similar measures are used for the proposal-free approaches
except that IoU is computed based on the generated and ground-truth
instance maps. We use the same measure for the regression-based
counting, except that the predicted counts are rounded and then com-
pared against the ground-truth per-category counts. Note that IoU is not
measured in this case since only image-level counts are predicted by the
regression approach. Finally, F1 evaluates the overall performance:

N
TP
Fl=+Y .l L 1 13)
N 2 ITPl, + 3IFPl, + 3|FNI,

where N is the total number of testing images, |T P|,, | FP|, and |FN|,
are respectively the number of true positives, false positives, and false
negatives in the nth image.

Pixel level. The instance-level segmentation is measured by Panop-
tic Quality (PQ) [18], which is similar to Eq. (13) except that the
numerator is evaluated with IoU. Formally, the PQ of an image is
measured as:

Zppere 10UM.g)
ITP|+3|FP|+1|FN|
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where p and ¢ denote the predicted true positive instance and the
corresponding ground-truth instance, respectively. We also apply PQ
for measuring the goodness-of-fit between predicted and ground-truth
bounding boxes. It is expected that the PQ score measured on the
bounding box level could not precisely reflect the goodness in capturing
the irregular shape of an instance. Fig. 5 depicts an example showing
the F1 and PQ scores measured on two different units, i.e., region
and box, predicted by FoodMask and CR-Net [24], respectively. While
both the instance segmentation and object detection approaches could
show a similar level of performance in terms of F1 and PQ scores, it
should be noted that pixel-level labelling is more accurate, for example,
in delineating the elongated shape of “chilli okra”. A bounding box
could include as much as more than 50% of pixels irrelevant to a food
category or instance.

4.3. Network training

We employed ResNet-50 [39] pre-trained on ImageNet [40] as the
backbone of FoodMask. During training, we empirically set the hyper
parameters Ay = Ag = Ay = 1 (Eq. (11)). The model was trained on a
batch size of 16 on one GPU of GeForce GTX 1080 Ti. The learning rate
started from 2 x 10~* and reduced 10% after every 32 epochs. The loss
function converged after 512 epochs. In addition, we set the number of
levels in a contour map as (K + 1) =9.

5. Experimental results
5.1. Ablation studies

5.1.1. Various options for FoodMask implementation

The three different branches in FoodMask allow three different ways
of deriving instance masks. The ablation studies aim to investigate
the effectiveness of the pruning strategy adopted by FoodMask. We
investigate three different options, as follows:
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Prediction

(a) output: instance masks
TP: chilli okra, loU = 86%
TP: long beans, loU = 92%

(b) object detection

D>

FP: potato slices

FN: mixed pork & tofu
F1=66.67%

PQ =59.33%

(b) output: bounding boxes
TP: chilli okra, IoU = 82%
TP: long beans, loU = 94%

FP: steamed bread
FN: mixed pork & tofu
F1=66.67%

PQ = 58.67%

Fig. 5. An example illustrates the measurement of performances for instance segmentation and object detection, respectively, on the region and box levels, using F1 and PQ

(panoptic quality).

Table 2

Ablation studies comparing the performances across different options of implementation
for FoodMask on Mixed Dishes (MD), UEC and FoodSeg103 (FS) datasets. The speed
performance (Frames Per Second) is also reported for three options of implementation.

Option Instance level (F1 (%)) Pixel level (PQ (%)) FPS
MD UEC FS MD UEC FS

FoodMask A 85.85 72.28 5824 63.89 59.19 48.70 16.54

FoodMask B 86.34 72.85 60.03 66.06 63.49 54.78 18.32

FoodMask C 87.02 7291 60.81 66.99 61.35 5238 38.85

Counting-only 86.01 70.91 58.59 NA NA NA -

» Option A: Similar to Algorithm 1, except that the count distri-
bution is not leveraged as a prior in Step-2 to selectively perform
instance labelling. In other words, instance labelling is performed
for all the food categories in Step-2b. This option is similar to the
strategy used in Deep Watershed [4] and SECB [5].

Option B: Similar to Option A, except that the instance labelling
algorithm [6] is performed directly on the contour map pro-
duced in Step-1, instead of on the semantic-projected contour map
generated by Eq. (12). In other words, the Step-2 of Algorithm
1 is not performed. The semantic label of an instance is then
determined by the majority voting of pixels. More specifically,
each pixel votes for the food category that it belongs to based
on the semantic map, and the entire region is then labelled to the
majority vote.

Option C is the pruning strategy used by FoodMask, as detailed
in Algorithm 1.

Table 2 compares the performances of FoodMask variants under
different implementation options. We also include the counting-only
performance, i.e., the result of per-category counting based on the
counting branch of FoodMask as a reference for comparison. Option-
A tends to produce more false instances when the semantic maps
are error-prone, resulting in an instance map with small erroneous
regions. Option-B is effective in getting rid of these regions by directly
performing pixel-level clustering on the contour maps rather than the
individual masks of a semantic map. Consequently, option-B exhibits
higher F1 and PQ performances consistently across all three datasets.
By the pruning strategy, option-C also manages to eliminate most of
the small erroneous regions on a semantic map, with a higher F1
performance than option-B. However, due to the simple strategy of
labelling these regions as background in the instance map, the IoU
between the predicted and ground-truth instances also become lower.
Compared to option-B, this results in lower PQ performance on the UEC
and FoodSeg datasets.

In general, performing pixel-level clustering directly and globally
on the contour maps yields better-quality of instance maps in terms
of PQ. Nevertheless, without per-category counting distribution and

Table 3
The effect of varying the trade-off parameters in the FoodMask loss function (Eq. (11))
to the instance segmentation performance (PQ (%)) on three food datasets.

Loss weights Mixed Dishes UEC FoodSeg103
Ar =10 66.12 58.19 50.59
Ag =10 65.49 55.75 49.02
Ay =10 66.98 61.26 52.17
standard 66.99 61.35 52.38

semantic map as the priors, more missed and false instances are pro-
duced (i.e., lower F1) by option-B than option-C. Compared to count-
ing prediction and semantic map generation, instance map formation
which involves pixel-level clustering is more computationally expen-
sive. Option-C has the advantage of skipping unnecessary clustering
on regions where the predicted counts are insignificant. Despite its
simplicity, this pruning strategy speeds up option-C by more than
double by processing 38.85 images per second, compared to 16.54 and
18.32 images by options A and B, respectively. Although imperfect, the
counting branch still performs reasonably well with F1 performance
close to or even better than that of option-A in some datasets, which
provides reliable prior for the pruning strategy.

Fig. 6 shows three examples contrasting these options. In Fig. 6a,
the predicted counts and semantic masks are near-accurate, and all
three options yield almost equally good performance. Similarly, in
Fig. 6b, the counts and masks are almost perfect, nevertheless, the
instance labelling algorithm generates an additional instance due to
the fuzziness texture of scrambled egg. By leveraging the prior, option-
C indeed avoids performing pixel-level clustering and results in better
performance than other implementation options. In Fig. 6¢, a seman-
tic mask is falsely predicted, which negatively impacts the instance
map generated by option-A. By the insignificant count predicted on
the wrongly labelled semantic mask, option-C also avoids performing
clustering on the masked region. Nevertheless, by labelling the pixels
on the mask as the background, the produced instance map has lower
PQ than option-B, which performs clustering globally on the counter
map of the entire image to produce a better quality instance map.

5.1.2. Weight settings for loss function

In the experiment, the three parameters of Eq. (11) are set to be
equal value, i.e., Ay = Ag = 4y = 1. This setting is considered
“standard” for equally weighting the importance of counting, semantic,
and height map generation. To study the impact of parameter weight-
ing, we contrast this standard setting by assigning a higher weight to
one of the parameters and repeating the experiment three times. The
results are shown in Table 3. Basically, overemphasizing any of the
three components of counting, semantic segmentation, and instance
height map generation, the performance will be negatively impacted.
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Table 4

The performances of FoodMask with ResNet50 [39] backbone pretrained on different datasets.
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Option Instance level (F1 (%)) Pixel level (PQ (%))
Mixed Dishes UEC FoodSeg103 Mixed Dishes UEC FoodSeg103
Scratch 76.43 41.01 38.07 57.8 32.42 30.30
ImageNet [40] 87.02 72.91 60.81 66.99 61.35 52.38
Food-101 [41] 87.27 72.85 61.37 67.01 61.45 52.43
Food2K [42] 87.57 73.09 61.40 67.44 61.51 52.91
Semantic Semantic Semantic
Input Ground-truth Mask & Count  Mask & Count  Mask & Count  Height Map Option A Option B Option € Legends

(b)

Fig. 6. Three examples illustrating the intermediate results of FoodMask, including counting prediction, semantic segmentation and instance map generation.

0.05
—— Mixed Dishes
— UEC

— FoodSeglo3

Change in Panoptic Quality (%)
o

=0.01

5 7 9 11 13 15 17 19

Number of contour levels (K+1)

Fig. 7. The change of PQ scores compared to K + 1 = 3 over different number of
contour levels in Algorithm 1. Note that the origin is set to (3, —0.01) for the ease of
visualization.

For PQ, which assesses pixel-level segmentation quality, overweighting
Ar (counting) or Ag (semantic segmentation) will likely degrade the
performance as indicated by the results on the UEC and FoodSeg103
datasets.

5.1.3. Number of contour levels

In Algorithm 1, the number of contour levels, K + 1, is set to be the
value of 9 to compromise the tradeoff between modelling efficiency and
localization precision. Fig. 7 shows the effect of this parameter across
different ranges of value. In general, the change of K + 1 value results
in 0.03% of performance fluctuation. Practically, setting the range of
values within [5,9] is a good compromise between speed and accuracy
although K + 1 = 17 appears to be an optimal value in the experiment.

5.1.4. Network backbone

We contrast the performances of backbone models pre-trained on
the general-purpose dataset (ImageNet [40]) and the food-specific
datasets (Food-101 [41], Food2K [42]). ImageNet [40] comprises a
vast collection of over 100,000 object categories, with an average of
1000 labelled images per category. In contrast, Food-101 consists of
101 food categories, each accompanied by 1000 images. Food2K is a

large dataset with 2000 categories and over 1 million images. Table 4
presents the performances of FoodMask using backbones pre-trained on
these datasets. Note that these pre-trained models are further fine-tuned
using our food datasets. In Table 4, “scratch” refers to the model trained
using one of our datasets from scratch without using a pretrained
model. The results show that using pre-trained models can improve
significantly a model trained from scratch. Furthermore, the models
pre-trained on food-specific datasets exhibit better performance than
the model pre-trained with the general-purpose dataset.

5.2. Performance comparison

We compare FoodMask (option C) to four major branches of ap-
proaches, i.e., regression counting (without localization), object de-
tection (with bounding box), proposal-based and proposal-free in-
stance segmentation. For counting, we compare subitizing [43], single-
task [20] and multi-task counting. Subitizing [43] practices a divide
and conquer strategy which learns to generate a grid map where each
grid cell predicts a fraction of instance for every food category. A more
straightforward approach is by training a regression-based CNN for the
single-task of counting [20]. The CNN can be extended for multiple-
task counting by having an additional branch for semantic or instance
segmentation. In the experiment, we implement the single-task count-
ing using the same architecture as the multi-label recognition model
in [20]. The multi-task counting is implemented similarly based on
the two-branch architecture for counting and semantic segmentations
in FoodMask. Object detection techniques (CR-Net [9], FCOS [16])
localize instances with bounding boxes. Using Faster R-CNN [15] which
is a two-stage detector, CR-Net [9] models the co-occurrence of dishes
on a plate with a context graph for category prediction. FCOS [16] is
a one-stage object detector, aiming to perform faster by the removal of
Regional Proposal Network in [15] and better by learning a centre-ness
mask to suppress low-quality detections. Proposal-based instance seg-
mentation methods (Mask R-CNN [1], CenterMask [3], Yolact++ [12],
YOLOv8 [44], HTC [2], DSC [8]) extend object detection to per-
form instance segmentation. Mask R-CNN [1] and CenterMask [3]
add segmentation sub-networks to Faster R-CNN [15] and FCOS [16]
respectively. HTC [2] and DSC [8] further introduce cascade modules
for progressive refinement of instance segmentation. Yolact++ [12]
proposes a fast non-maximum suppression algorithm, along with the
mask re-scoring and deformable convolution networks, for real-time
instance segmentation. Mask2Former [27] is a universal architecture to
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Table 5
Performance comparison across four major branches of approaches of instance-level counting and pixel-level segmentation on Mixed Dishes (MD), UEC and FoodSeg103 (FS) datasets.

Method Instance level (F1 (%)) Pixel level (PQ (%))
MD UEC FS MD UEC FS
Single-task [20] 83.36 63.43 54.89 NA NA NA
Regression counting Subitizing [43] 80.11 58.36 53.49 NA NA NA
Multi-task 86.01 70.91 58.59 NA NA NA
Object detection CR-Net [24] 81.97 64.24 56.99 61.93 49.95 43.28
) FCOS [16] 79.61 66.30 51.40 59.60 52.64 41.30
Mask R-CNN [1] 80.41 65.28 53.18 60.30 52.35 43.54
CenterMask [3] 80.78 68.42 53.83 60.87 54.22 44.67
Proposal-based Yolact++ [12] 81.86 70.45 57.25 58.63 55.60 44.16
instance HTC [2] 80.92 63.28 53.38 61.22 53.22 44.11
segmentation DSC [8] 81.15 65.06 54.56 61.77 53.41 46.94
YOLOVS [44] 82.06 61.37 49.78 63.04 51.02 43.65
Mask2Former [27] 83.65 70.54 60.03 64.06 59.61 47.77
FastInst [29] 83.57 69.05 59.17 64.07 58.26 48.66
Watershed [4] 82.80 70.35 56.26 61.97 56.66 46.35
Proposal-free PolarMask [34] 71.53 59.45 40.89 51.05 40.27 30.17
instance Terrace++ [6] 86.04 71.91 60.13 65.70 62.84 54.32
segmentation SibNet++ [7] 85.91 72.06 59.38 66.60 63.86 54.95
FoodMask 87.02 72.91 60.81 66.99 61.35 52.38

achieve SOTA performance in major image segmentation tasks (panop-
tic, instance and semantic) on four popular datasets. For proposal-free
approaches, the comparison is made against Terrace [6] and SibNet [7].
Nevertheless, as category prediction is not considered, we re-implement
both models with a multi-tasking architecture. Specifically, a second
branch for semantic segmentation is added to the original architecture.
An instance map is generated by pixel-wise majority voting of semantic
category for the classification of an instance mask, i.e., the option-
B implementation discussed in the previous section. We name these
approaches Terrace++ and SibNet++, respectively.

Table 5 lists the result comparison. Among the four branches of
approaches, proposal-free approaches consistently outperform all other
methods across three different datasets. Despite the superior perfor-
mances reported by three other branches of approaches on the general
object datasets, the result of locating food instances densely placed on
a plate is generally imperfect. Their performances on food datasets are
similar but with some variations depending on evaluation measures.
For example, Yolact++ and DSC perform better at instance-level (F1)
and pixel-level evaluation (PQ), respectively. Mask2Former [27] has
the best F1 and PQ measures among other proposal-based approaches
in three food datasets, and it also performs better than Deep Watershed.
And FastInst [29], a lightweight version of Mask2Former, has also
achieved comparable measures. Note that multi-task counting is indeed
a strong baseline although it is not capable of performing instance
localization. Among the proposal-free approaches, except Deep Water-
shed, FoodMask performs particularly well on the Mixed Dishes dataset
in both F1 and PQ measures. Compared to Terrace++ and SibNet++,
FoodMask generally shows better F1 but lower PQ performance. This
is mainly due to the pruning strategy that selectively performs instance
labelling on some regions of an image. As discussed in the ablation
studies, the option-B implementation as adopted by two other models
generates higher quality instance maps but with more false and missed
instances compared to FoodMask.

Fig. 8 shows examples contrasting the results of different approa-
ches. The example in Fig. 8a shows a typical example with multiple
dishes being fuzzily put on a plate. While all the methods can segment
the dishes out quite correctly, only FoodMask and SibNet++ can predict
all the categories correctly. In Fig. 8b, the SibNet++ correctly spots
two instances at the area of “kang kong” and “tomato egg” (marked
in yeallow and red colours), but the boundary detection is not as
good as FoodMask. As seen in Fig. 8c, FoodMask shows the ability of
counting both small and large instances where SibNet fails to detect
three smaller objects of “jiaozi”. Fig. 8d shows an example where both
object detection and proposal-based approaches fail to separate the two

Table 6
The average speed performance of different approaches on food datasets.
Method Remark FPS
CR-Net [24] 6.52
FCOS [16] 7.48
Mask R-CNN [1] 5.05
CenterMask [3] 5.58
Object Yolact++ [12] fast NMS 18.19
proposal HTC [2] cascade 3.04
DSC [8] cascade 2.74
YOLOVS [44] 31.78
Mask2Former [27] 7.47
FastInst [29] 30.03
Watershed [4] 14.37
Pixel PolarMask [34] 8.48
clustering Terrace [6]++ B 18.81
SibNet [7]++ B 19.22
FoodMask 38.85

instances of “chicken leg” on a plate. By pixel-level clustering, proposal-
free approaches are more resilience to the situations when the instances
of a dish category occludes or are placed near to each other.

5.3. Speed efficiency

We compare the speed of FoodMask to other approaches, as listed
in Table 6. For simplicity, we group these approaches as “mask-based*
and “pixel clustering”. The former encloses an instance in a mask
or bounding box, while the latter segments instances by clustering
of pixels. In general, the mask-based approaches are computation-ally
slower due to additional time incurred in predicting masks. Even with
careful optimization, such as Yolact++ [12], the speed can only reach
up to about 18 frames per second (FPS). Each additional step, such
as the exploitation of cascade modules by HTC [2] and DSC [8] for
progressive refinement, will result in even slower processing time.
Without mask generation, the speed of pixel clustering approaches are
at least as fast as Yolact++ [12]. FastInst [29] achieves very impressive
speed at about 30 FPS. This due to the lightweight pixel decoder and
instance activation-guided queries which enable it to perform compara-
ble segmentation performance on one layer transformer decoder only.
With an additional pruning mechanism, FoodMask can easily push the
speed to more than 38 FPS. With a reliable food counting branch in
FoodMask, almost 95% of dishes in Mixed Dishes and 80% of dishes
in UEC and FoodSegl103 are rapidly skipped by FoodMask to avoid
unnecessary pixel clustering.
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Fig. 8. Instance counting and segmentation results on various datasets.

6. Conclusion

We have presented FoodMask, a multi-task network architecture,
for real-time recognition of food instances. Experimental studies on
Mixed Dishes, UECFoodPixComp and FoodSegl03, verify the recog-
nition effectiveness of FoodMask over other branches of approaches,
including counting-based object detection and instance segmentation
methods. FoodMask attains not only high recognition accuracy at both
instance and pixel levels but also impressive real-time processing speed.
This paper, additionally, also contributes instance-level labels on Mixed
Dishes, UECFoodPixComp and FoodSeg103 for future research on food
recognition.

FoodMask is designed to be a proposal-free class-specific instance
segmentation model functioning on a close set of food categories known
during training time. One inherent issue is that counting and seman-
tic segmentation are not class-agnostic, which potentially limits the
extension of FoodMask for open-vocabulary food segmentation and
recognition. Extension of FoodMask for open-vocabulary settings, such
as by leveraging Large Language Model (LLM), will be our future
direction.
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