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Abstract—In recent years, Al research has showcased tremendous potential to impact positively
humanity and society. Although Al frequently outperforms humans in tasks related to
classification and pattern recognition, it continues to face challenges when dealing with complex
tasks such as intuitive decision-making, sense disambiguation, sarcasm detection, and narrative
understanding, as these require advanced kinds of reasoning, e.g., commonsense reasoning
and causal reasoning, which have not been emulated satisfactorily yet. To address these
shortcomings, we propose seven pillars that we believe represent the key hallmark features for
the future of Al, namely: Multidisciplinarity, Task Decomposition, Parallel Analogy, Symbol
Grounding, Similarity Measure, Intention Awareness, and Trustworthiness.

M IN 2022, the world was stunned by ChatGPT,
a chatbot that relies on a large language model
(LLM) built by means of generative pre-training
transformers (GPT). We do not deny the per-
formance capabilities of GPT-based LLMs: these
capabilities enable chatbots to generate detailed,
original, and plausible responses to prompts.
GPT-4 and other LLMs are pretrained on a large
dataset (self-supervised and at scale), before be-
ing adapted for a variety of downstream tasks
through fine-tuning. Pre-training is time-intensive
and never repeated, whereas fine-tuning is con-
ducted in a regular fashion.
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The behavior of GPT-based chatbots such as
ChatGPT and ChatGPT Plus arises through fine-
tuning. The performance capabilities of LLMs
have been attributed to at least two factors: pre-
training and scale [1]. Pretraining, an instance of
transfer learning in which LLMs use knowledge
acquired from one task (source) and transfer this
knowledge to another task (target), makes LLMs
possible. Scale, including better computer hard-
ware, the transformer architecture, the availability
of more and higher-quality training data, makes
LLMs powerful. Although these capabilities are
not insubstantial, they do not yet rise to the level
of natural language understanding [2], [3], [4].
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In addition, LLMs are prone to hallucination:
ChatGPT may produce linguistic responses that,
though syntactically and semantically fine and
credible-sounding, are ultimately incorrect [5].
Furthermore, we may distinguish between the
capabilities of LLMs (acquired through pretrain-
ing) and the behavior (affected by fine-tuning,
which happens after pretraining) of LLMs. Fine-
tuning can have unintended effects, including
behavioral drift on certain tasks. As discussed
in a recent study [6], in fact, ChatGPT seems
prone to the ‘short blanket dilemma’: while trying
to improve its accuracy on some tasks, OpenAl
researchers inadvertently made ChatGPT worse
for tasks which it previously excelled at.

Al research has slowly been drifting away
from what its forefathers envisioned back in the
1960s. Instead of evolving towards the emulation
of human intelligence, Al research has regressed
into the mimicking of intelligent behavior in the
past decade or so. The main goal of most tech
companies is not designing the building blocks
of intelligence but simply creating products that
existing and potential customers deem intelligent.
In this context, instead of labeling it as ‘artificial’
intelligence, it may be more apt to characterize
such research as ‘pareidoliac’ intelligence. This
term highlights the development of expert sys-
tems while raising questions about their claim to
possess genuine intelligence.

We feel there is a need for an Al refocus
on humanity, an Anti-Copernican revolution of
sorts: like Copernicus demoted humans from their
privileged spot at the center of the universe, in
fact, deep learning has removed humans from
the equation of learning. In traditional neural
networks, especially those with a shallow archi-
tecture (few hidden layers), humans were at the
center of the technological universe as they had
to carefully design the input features, select ap-
propriate hyperparameters, adjust learning rates,
etc. Instead, due to their increased complexity
and capacity to automatically learn features from
data, deep neural networks do not require manual
feature engineering and, hence, have effectively
removed humans from the loop of learning. While
this is good in terms of cost, time, and effective-
ness, it is bad for several other reasons, including
transparency, accountability, and bias.
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In the deep learning era, humans no longer
have control on how the learning process takes
place. To save on cost and time, we delegated the
important task of selecting which features are im-
portant for classification to deep neural networks.
These, however, are mathematical models with
no commonsense whatsoever: they do not know
how to properly choose features. For example,
in selecting candidates for a job opening, deep
neural networks may decide that gender is an
important feature to take into account simply
because more men are present in the training data
as positive samples.

The issue is not only that deep nets may
accidentally choose unimportant or even wrong
features, but that we have no way of knowing
this because of their black-box nature. In other
words, not only humans have been taken out of
the picture but they have also been blindfolded.
For these reasons, we feel there is a need to bring
human-centered capabilities back at the center of
Al, e.g., by having human-in-the-loop or human-
in-command systems that ensure Al outputs and
reasoning steps are human-readable and human-
editable. To this end, we propose seven pillars
for the future of AI (Fig. 1), namely: Mul-
tidisciplinarity (Section 1), Task Decomposition
(Section II), Parallel Analogy (Section III), Sym-
bol Grounding (Section 1V), Similarity Measure
(Section V), Intention Awareness (Section VI),
and Trustworthiness (Section VII). The focus of
our ‘manifesto’ is on natural language process-
ing (NLP) but the same concepts can be easily
adapted to other Al domains such as computer vi-
sion, speech recognition, signal processing, mul-
timodal analysis, edge computing, and robotics.
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Figure 1. Seven Pillars for the future of Al.
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|. Multidisciplinarity

Due to the complex and multifaceted nature of
modern Al technologies and applications, Multi-
disciplinarity is of increasing importance for the
future of Al. The integration of knowledge from
disciplines like mathematics, semiotics, logic, lin-
guistics, psychology, sociology, and ethics allows
for a more holistic understanding of AI’s capa-
bilities and limitations. Mathematical principles
such as linear algebra, calculus, probability the-
ory, and optimization underpin the design of Al
algorithms. Maths alone, however, is not enough
for designing intelligent systems, because math-
ematical approaches excel at capturing predom-
inant linguistic patterns but often struggle with
addressing ‘long tail’ issues such as less common
or niche linguistic phenomena.

Disciplines like semiotics can help Al systems
understand the nuances of language, including
metaphors, idioms, sarcasm, and cultural refer-
ences, whether they fall within the more frequent
or rarer occurrences across the spectrum of ev-
eryday human language. Logic also plays a fun-
damental and enduring role in the development
and advancement of Al, as it provides a rigor-
ous framework for reasoning, problem-solving,
and knowledge representation. Word embeddings,
which essentially replace words with numbers,
have made most Al researchers forget about the
importance of linguistics. Concepts from syntax,
semantics, phonetics, and morphology (see Sec-
tion II), however, are crucial for interpreting the
intended meaning of natural language.

Psychology will play an essential role in
creating systems that enhance well-being, foster
human relationships, and provide meaningful and
empathetic interactions. By addressing issues re-
lated to inequality and cultural diversity, sociol-
ogy will guide Al development in ways that pro-
mote positive societal outcomes and responsible
innovation. The arts are also going to be key for
the future of Al as highlighted by recent STEAM
(STEM + Art) initiatives, in order to ‘humanize’
Al through computational creativity, cultural and
social understanding, and the enhancement of
Al usability [7]. Finally, ethics are paramount
to ensure that Al technologies are developed,
deployed, and used in ways that align with human
values and promote accountability [8].

Il. Task Decomposition

Like Multidisciplinarity, Task Decomposition
aims to better handle the complex and multi-
faceted nature of AI problems. It is a method
commonly used in psychology, instructional de-
sign, and project management to break down a
complex task or activity into its individual com-
ponents. Task Decomposition is also important for
NLP: no matter what kind of downstream task we
are handling, if we do not deconstruct it into its
constituent subtasks, we are practically forcing
our model to implicitly solve a lot of subtasks
it has never been trained for. The ‘sentiment
suitcase model’ [9], for example, lists 15 NLP
subtasks that need to be solved separately before
sentiment analysis can be accomplished (Fig. 2).

Firstly, a Syntactics Layer pre-processes text
so that informal and inflected expressions are
reduced to plain standard text [10]. This is done
through subtasks such as microtext normalization,
for refining and standardizing informal text, part-
of-speech (POS) tagging, for assigning grammat-
ical categories (such as nouns, verbs, adjectives,
and adverbs) to each word in a sentence, and
lemmatization, for reducing words to their base
or dictionary form (lemmas).

Secondly, a Semantics Layer deconstructs nor-
malized text into concepts, resolves references,
and filters out neutral content from the input [11].
This is done through subtasks such as word
sense disambiguation, for determining the correct
meaning of a word within a given context, named
entity recognition, for identifying and classifying
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Figure 2. The sentiment suitcase model [9].
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names of people, places, organizations, and dates,
and subjectivity detection, to distinguish between
factual information and subjective content.
Finally, the Pragmatics Layer extracts mean-
ing from both sentence structure and semantics
obtained from the previous layers. This is done
through subtasks such as personality recognition,
to infer traits, characteristics, preferences, and be-
havioral tendencies of the speaker, metaphor un-
derstanding, for interpreting figurative language
in text, and aspect extraction, for identifying and
extracting specific facets, features, or compo-
nents mentioned in text and, hence, enabling a
more fine-grained analysis. Only after handling
all these subtasks, which we humans take care
of almost subconsciously during reading or com-
munication, the downstream task, e.g., polarity
detection, can be effectively processed.

lll. Parallel Analogy

Similar to Multidisciplinarity and Task De-
composition, Parallel Analogy looks at Al prob-
lems in a multifaceted way. Engineers and com-
puter scientists have always been obsessed with
optimization. In the development of Al systems,
this translates into finding the ‘best’ knowledge
representation, the ‘best’ reasoning algorithm, the
‘best’ way of doing things. This, however, results
in only having one way of solving a problem.
Instead, several analogous representations of the
same problem should be maintained in parallel
while trying to solve it so that, when problem-
solving begins to fail while using one representa-
tion, the system can switch to one of the others.

Parallel Analogy, or ‘panalogy’ like the late
Marvin Minsky used to call it [12], is key to
solving highly complex AI problems, but also
simpler problems in which a change of perspec-
tive is required. In affective computing tasks, for
example, sometimes it is useful to see emotion
concepts from a semantic point of view, e.g., ‘joy’
and ‘sadness’ are similar because they are both
emotions, or a polarity point of view, e.g., ‘joy’
and ‘sadness’ are opposite because the former is
positive and the latter is negative [13]. Similarly,
we could say that words like ‘joyful’, ‘joyfully’,
‘enjoy’, and ‘enjoyment’ are similar because they
all share the same root word ‘joy’, but totally
different in a POS tagging sense (adjective versus
adverb versus verb versus noun, respectively).
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Figure 3. An example of ‘panalogy’ where the same
data is ‘redundantly’ represented as a knowledge
graph, as a matrix, and as embeddings [13].

For more general NLP tasks, it could be useful
to have the same data ‘redundantly’ represented
both as a knowledge graph and as embeddings
(Fig. 3). The knowledge graph could be more
useful for solving problems requiring Symbol
Grounding, e.g., answering questions like ‘what
is what?’ (see Section IV). Embeddings, instead,
could be more useful for Similarity Measure,
e.g., answering questions like ‘what is similar to
what?’ (see Section V).

IV. Symbol Grounding

Symbol Grounding is the central pillar of our
structure, being one of the fundamental chal-
lenges in the field of Al since its inception.
It deals with how symbols, which are abstract
representations, acquire meaning and connection
to the real world. In human cognition, we under-
stand the meanings of symbols through a process
known as ‘grounding’. When we see or hear a
word, for example, our brains associate it with
the sensory experiences and interactions we have
had with the objects or concepts that such a word
represents, thus providing a foundation for our
understanding of its meaning.

In the context of Al, the Symbol Grounding
problem arises because computers lack the in-
herent sensory experiences that humans possess.
They process symbols as strings of characters or
digital information without a direct connection to
the real world, raising the question of how they
can truly understand the meanings of symbols in
a way that is equivalent to human understanding.
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For instance, consider the word ‘apple’. Hu-
mans understand this word not just as a sequence
of letters, but as a fruit with certain sensory
qualities like color, taste, texture, and smell, all
of which are grounded in our experiences with
actual apples. Current Al systems are unable to
grasp the richness of meaning behind the word
‘apple’ without having those sensory experiences.
To solve this, we may have to take a step back
in order to move forward. Old-school (symbolic)
Al was better at Symbol Grounding but it was not
scalable nor flexible. New deep-learning-based
(subsymbolic) Al, instead, is very scalable and
flexible but it does not handle symbols. The best
of both worlds could be achieved through a hybrid
(neurosymbolic) Al that leverages the strengths of
both symbolic and subsymbolic models to over-
come their respective limitations and achieve a
more comprehensive understanding of the world.

In NLP research, this can be implemented in
several ways, e.g., by injecting external knowl-
edge into a deep neural neural network [14]
in the form of embeddings (Fig. 4). Another
recent neurosymbolic approach consists in a
three-step normalization process [15] that first
leverages linguistics to replace expressions like
shopping_for, bought, and purchasing
with their lemmas, e.g., shop_for, buy, and
purchase, respectively. Next, deep learning
models are used to cluster the resulting lem-
mas into primitives, e.g., BUY () 1is the cluster
representing shop_for, buy, and purchase

Final Representation @ @ 0

{Attention Scores
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Figure 4. An example of neurosymbolic Al where
(symbolic) commonsense knowledge is injected into
a (subsymbolic) graph convolutional network [14].

and the likes of them (where x is the direct
object acted upon by the primitive). Finally, logic
is used to ground such primitives, e.g., BUY is
defined in terms of GET and GIVE, which in turn
are specified in terms of other superprimitives
defining transfer of ownership.

In robotics, some researchers have empha-
sized the importance of physical embodiment and
sensorimotor experiences in the development of
intelligent systems. Such approaches, which go
under the name of Embodied Al, are promising
but they are still limited to very basic sensory ex-
periences such as object manipulation. A similar
approach can be taken in virtual worlds or in the
metaverse, where Al could learn social common-
sense, based on how people interact, and some
sort of physical or spatial commonsense, such as
gravity or the fact that you cannot go through
walls. Additionally, an Al system could generate
real-time virtual simulations to better perform
causal reasoning and narrative understanding by
grouding words into virtual objects and actions
on the fly.

V. Similarity Measure

Because we have no better way of performing
grounding, in computer science we use embed-
dings to represent data, e.g., text, audio, images,
and videos, as vectors or data points in a multi-
dimensional space. This mapping is learned from
large amounts of data during a training process
and it is usually focused on just one kind of
similarity (usually semantic similarity based on
word co-occurrence frequency). In order to enable
Parallel Analogy (see Section III), we need to
generate different representations for the same
data based on different kinds of similarities.

Another problem is that we are still using very
basic metrics to quantify the similarity between
pairs of embeddings and, hence, perform clas-
sification. All such similarity metrics, e.g., Jac-
card coefficient, Euclidean distance, and cosine
similarity, blindly calculate distances in a multi-
dimensional vector space without considering its
topology. In the future, we need to adopt more
topology-aware methods for calculating similarity
in multi-dimensional vector spaces, e.g., Maha-
lanobis, Minkowski or Wasserstein distances and
principal path methods [16].

IEEE Intelligent Systems 38(6)



These kernel methods are designed to dis-
cover smooth paths between objects in space by
traversing a series of waypoints. One of their
standout features is their ability to seek paths
that pass through high-probability regions of the
space, effectively navigating through geodesics
influenced by the probability distribution of the
sampled data. These methods also emulate the
cognitive process where thinking involves transi-
tioning from one concept to another while travers-
ing regions of space with a high likelihood of
encountering related concepts.

VL. Intention Awareness

Intention Awareness plays a crucial role in
communication, as it enables individuals to an-
ticipate and interpret the actions and behaviors of
others, leading to more effective and empathetic
interactions. Current Al models provide one-fits-
all solutions without taking into account user
beliefs, goals and preferences. Theory of mind
should always be applied to better understand
user’s actions and queries. When this is not
possible, user profiling in the form of persona
or personality detection should be employed to
generate more relevant actions or answers [17].

For the same reason, AI should also have
enough commonsense knowledge, including a
model of fundamental human beliefs, desires, and
intentions, in order to minimize miscommuni-
cation and avoid unintended consequences (e.g.,
apocalyptic scenarios like accidentally wiping out
humanity in the attempt to solve climate change).
In other words, future Al systems should always
try to understand what users are doing and why
they are doing it. For instance, recent hybrid
frameworks have tried to improve human-robot
interaction by modeling Intention Awareness in
terms of motivational and affective processes
based on conceptual dependency theory [18].

Finally, recent attempts to augment the human
decision-making process, especially in dynamic
and time-sensitive scenarios such as military com-
mand and control, game theory, home automa-
tion, and swarm robotics, have focused primar-
ily on environmental details such as positions,
orientations, and other characteristics of objects
and actors of an operating environment (situa-
tion awareness). However, a significant factor in
such environments is the intentions of the actors
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involved [19]. While creating systems that can
shoulder a greater portion of this decision-making
burden is a computationally intensive task, per-
formance advances in modern computer hardware
bring us closer to this goal.

VII. Trustworthiness

Last but not least, Trustworthiness is a key
pillar that measures the degree to which Al sys-
tems, models, and algorithms can be relied upon
to perform as intended, make accurate and ethical
decisions, and avoid harmful consequences. It is
a concept closely related to Intention Awareness
(see Section VI), but also explainability and in-
terpretability. Explainability allows an AI model
to generate descriptions of its decision-making
processes in order to enable the user to make
informed modifications to the outputs or even to
the model itself in a human-in-the-loop fashion.
Interpretability, in turn, enables users to under-
stand the inner workings of an Al model, e.g., by
identifying which input features have the most
impact on its output or by assessing how changes
in input variables affect the model’s predictions
or by leveraging a confidence score to gauge how
confident the Al model is about its own output.

According to one theory of trust, trust is
grounded in probabilities that a trustor A at-
tributes to his/her own beliefs about the behavior
and competences of a trustee B with respect
to the performance of some action ¢ relevant
to a goal G. Where n denotes the probability
threshold value and m denotes the probability
value that A attributes to his/her trust-relevant
beliefs, there will be a trust relation between A
and B if and only if m > n. It is at least arguable
that this probability threshold value will be met,
given the twin phenomena of hallucination and
behavioral drift. In any case, we believe that trust
is more than a matter of satisfying probability
threshold conditions (i.e., m > n). We can define
Trustworthiness as a 5-ary relation R(A, B, ¢,
1, G), consisting of five relata: the trustor A, a
trustee B, some action ¢ to be performed, some
G-relevant attribute 1) that may be judged by A
as absent or present in B during B’s performance
of ¢, and a goal G that makes the performance
of ¢ desirable [20]. Indeed, trust is a mental
state that A holds toward B with respect to the
performance of some G-relevant ¢.
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If the goal G is NLP, actions ¢; are typical
NLP tasks such as sentiment analysis and dia-
logue generation, and G-relevant attributes 1); are
qualities such as explainability and interpretabil-
ity. All other things being equal, if B; possesses
each G-relevant attribute v); in greater abundance
than B,, we have pro tanto reasons to have
greater trust in the former than the latter.

Intuitively, even if real parrots or stochastic
ones (LLMs) produce appropriate linguistic re-
sponses to task-related ¢; prompts, we would not
deem their linguistic behavior trustworthy unless
they possess the relevant natural language un-
derstanding. Meaning involves a relation between
the linguistic form of data and an extralinguistic
reality that is distinct from language. Where M
denotes meaning, E denotes the form of natural
language expressions, and / denotes communica-
tive intent, this relation may be formally repre-
sented as M C E x I [2]. M contains ordered
pairs (e, ) of natural language expressions (e) and
communicative intents (z). Understanding may be
interpreted as the process of retrieving ¢, given e.
Since LLMs are pretrained on large datasets and
meaning cannot be learnt from linguistic form
(e) alone, however impressive their transformer
architecture might be, LLMs will necessarily lack
the relevant intentionality. Such a limit can result
in hallucinatory responses from LLMs, if e and
1 are not directly associated in the pertaining
datasets. Hence, humans have to watch over them
and correct them in mission-critical tasks.

Ensuring Trustworthiness requires collabora-
tion among Al experts, ethicists, and policymak-
ers. It involves a combination of technical mea-
sures, ethical considerations, and transparency
initiatives. As Al continues to play an increasing
role in various aspects of society, building and
maintaining trust in Al technologies is essential
for their responsible and sustainable integration.

Conclusion

The pursuit of automating tedious or repetitive
tasks has a rich history, with origins tracing back
to Ancient Egypt and the Greek Empire. Among
the earliest documented works on automation is
the “Book of Ingenious Devices”, published in
850 by the Banu Musa brothers. While we have
made significant strides since those times, thanks
to advancements in mathematical modeling, we

now face the challenge that mere mathematics
alone may not suffice to model the intricate
processes by which the human brain encodes and
decodes meaning for complex tasks, including
intuitive decision-making, sense disambiguation,
and narrative comprehension.

In this work, we proposed a novel approach
to Al that centers on humanity, characterized by
seven essential features or pillars. In the future,
we plan to define best practices for abiding by
such pillars. For example, current post-hoc in-
terpretability methods may not be the best way
to implement Trustworthiness as they simply find
correlations between inputs and outputs of an Al
model without really explaining its inner work-
ings. Similarly, there is no point in having a
confidence score if this is calculated based on the
wrong parameters. Moreover, we need to define
how to evaluate explainability in terms of quali-
ties such as plausibility, i.e., the extent to which
an explanation resonates with and is deemed
acceptable by a human audience, and faithfulness,
i.e., the extent to which the explanation accurately
reflects the model’s decision-making process.

As we look ahead, it is imperative to fos-
ter the development of human-in-the-loop and
human-in-command systems, integrating human
participation in Al through paradigms such as
active learning and decision intelligence. We need
to develop clear guidelines and principles for
Al development which prioritize human values,
fairness, accountability, transparency, and privacy,
and which should be integrated into the design
process from the outset. We need to conduct
regular audits of AI algorithms to detect and
mitigate biases, errors, and ethical concerns.

Finally, we need to implement and enforce
regulations and governance mechanisms that de-
fine the boundaries of Al usage, protect individual
rights, and foster moral Al practices. By imple-
menting these strategies, society can work to-
ward ensuring that Al technologies are developed
and used in ways that empower individuals and
align with ethical values. Balancing technological
progress with human agency and values is essen-
tial for the responsible advancement of Al. If we
do not engineer it well, in fact, Al could very
much end up being like plastic: a great invention
that made our life easier about a century ago, but
which is now threatening our own existence.
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