
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2023

An adaptive large neighborhood search for heterogeneous vehicle An adaptive large neighborhood search for heterogeneous vehicle

routing problem with time windows routing problem with time windows

Minh Pham Kien NGUYEN

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Vincent F. YU

Mustafa MISIR

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Transportation Commons

Citation Citation
NGUYEN, Minh Pham Kien; GUNAWAN, Aldy; YU, Vincent F.; and MISIR, Mustafa. An adaptive large
neighborhood search for heterogeneous vehicle routing problem with time windows. (2023). Proceedings
of the 19th IEEE International Conference on Automation Science and Engineering (CASE), Auckland, New
Zealand, 2023 Aug 26-30. 2023,.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8316

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

An Adaptive Large Neighborhood Search for Heterogeneous Vehicle
Routing Problem with Time Windows

Minh Pham Kien Nguyen1, Aldy Gunawan2, Vincent F. Yu1, Mustafa Mısır3

Abstract— The heterogeneous vehicle routing problem with
time windows (HVRPTW) employs various vehicles with dif-
ferent capacities to serve upcoming pickup and delivery orders.
We introduce a HVRPTW variant for reflecting the practical
needs of crowd-shipping by considering the mass-rapid-transit
stations, as the additional terminal points. A mixed integer
linear programming model is formulated. An Adaptive Large
Neighborhood Search based meta-heuristic is also developed
by utilizing a basic probabilistic selection strategy, i.e. roulette
wheel, and Simulated Annealing. The proposed approach is
empirically evaluated on a new set of benchmark instances.
The computational results revealed that ALNS shows its clear
advantage on the instances with the increasing number of
vehicles, especially compared to commercial software, CPLEX.

I. INTRODUCTION

The development of public infrastructure has brought a
improved and convenient life to people around the globe. The
effects of the pandemic COVID-19 have also significantly
boosted the required demands through e-commerce platforms
in delivering small-scale items over short periods of delivery
time rather than large-scale goods with a long delivery
time. As a result, a multi-type vehicle has been adopted
for achieving this objective where each one has a unique
configuration. This is known as the Heterogeneous Vehicle
Routing Problem (HVRP), as an extension of the VRP [1].
The HVRP adopts more than one single type of vehicle.
Recently, advanced technology on robotics with a significant
number of inventions on different types of vehicles such as
drones and electric vehicles, have prompted many studies to
integrate them into the HVRP [2], [3]. Sitek and Wikarek
[4] consider parcel lockers and delivery options.

The present study introduces the HVRP with time win-
dows (HVRPTW), considering the public transportation con-
figurations, such as mass rapid transit (MRT) stations, as
additional terminals. They handle the delivery tasks using
an outsourced team from the terminals, which requires a
significant large demand that small-capacity vehicles can-
not carry. The configuration of the heterogeneous vehicle
fleets involves a number of small-capacity and large-capacity
vehicles with different operating costs per unit time. The
actual operating time of vehicles is also taken into account,
including the transportation and service time at each node.

1Minh Pham Kien Nguyen & Vincent F. Yu are with National
Taiwan University of Science and Technology, 43 Keelung Road,
106335, Taipei, Taiwan, d10901807@gapps.ntust.edu.tw,
vincent@mail.ntust.edu.tw

2Aldy Gunawan is with Singapore Management University, 81 Stamford
Road, 178902, Singapore, aldygunawan@smu.edu.sg

3Mustafa Misir with Division of Natural and Applied Sciences, Duke
Kunshan University, Duke Avenue No: 8, 215316, Kunshan, Jiangsu, China

The main contribution of this work is the adoption of
multiple types of vehicles in delivering goods to metro
terminals as transshipment locations with significantly large
service time for later delivery to the customers. A new
set of benchmark instances is also generated. An Adaptive
Large Neighborhood Search (ALNS) metaheuristic is devised
as a practical algorithm. ALNS [5] reconstructs the new
solutions from an initially generated solution using a set of
destroy and repair operators. Those operators are managed
and selected using the Roulette Wheel selection procedure.
We adopt Simulated Annealing (SA) that accepts worsening
solutions referencing a probability value. The results show
that the proposed approach can tackle HVRPTW, achieving
good-quality solutions within shorter computational times,
compared against CPLEX.

II. PROBLEM DESCRIPTION

The HVRPTW is defined as a directed graph G = (N,A)
with a node set N and an arc set A, as illustrated in Fig. 1.
The node set N = {0, e} ∪H ∪ T includes the depot node
as the start node and its virtual duplicate node {0, e} as
the end node, H is a set of nodes that represents customers
who require the home delivery, and T is the set of terminal
stations such as mass rapid transit (MRT) stations, where
parcel lockers are located to consolidate orders. These orders
may be sent to the other stations so that the customers can
collect their orders at those stations. The delivery operation
from terminals to other stations is assumed to be outsourced.
Thus, this activity is discarded in our model.

Each customer i ∈ H has a demand di > 0 and wants
the order to be delivered within time window [li, ui]. Each
terminal o ∈ T has a significantly large demand do due
to order consolidation with the same time window that
equals the operation time of the depot [lo, uo] ≡ [l0,u0].
For delivering orders, a set of vehicles V is divided into
two categories or subsets: (1) a number of delivery vehicles
v1 ∈ V with small capacity Qv1

that only serve customers
requiring home delivery i ∈ H , and (2) a number of large-
capacity Qv2

vehicles v2 ∈ V that can fulfill demands from
both terminals o ∈ T and customers requiring home delivery
i ∈ H . To simplify the mathematical model, we introduce a
general capacity parameters Qv = Qv1

∪Qv2

. Each vehicle
v ∈ V carries a load of lvvi from node i ∈ N at time
tvi ≥ li ≥ l0 ≥ 0, where tvi indicates the vehicle v arrival time
at node i, to fulfill the demands dj at node j ∈ N : j ̸= i with
travel time tij and arrive at node j at time tvj ≥ tvi +tij+∆v

j :
lj ≤ tvj ≤ uj with the load of lvvj = lvvi − dj ≥ 0. Here,
∆v

j = max(0, lj − (tvi + tij)) is the idle (or waiting) time20
23

 IE
EE

 1
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

io
n

Sc
ie

nc
e

an
d

En
gi

ne
er

in
g

(C
AS

E)
 |

 9
79

-8
-3

50
3-

20
69

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CA

SE
56

68
7.

20
23

.1
02

60
38

0

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 06,2023 at 12:03:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An Illustration of the HVRPTW

of vehicle v ∈ V . Each node j ∈ N , except the depot,
has a service time of sj > 0, Each vehicle v ∈ V will
deliver the order at this node at tvj = tvi + tij + ∆v

j + sj .
Each vehicle v ∈ V will be compensated for its delivery
activities with a cost per unit of time of Cv respectively. We
introduce a set of tuples ⟨i, j, v⟩ ∈ P addressing the pairs
between location and vehicles that are designed to address
the small and large vehicles respectively. Let Xv

ij be the
binary decision variable for the assignments of vehicle v ∈ V
from nodes i to j ∀(i, j) ∈ A : i ̸= j, i ̸= {e}, j ̸= 0. In
more details, if Xv

ij = 1, then vehicle v ∈ V will serve
location j ∈ N : j ̸= 0 from location i ∈ N : i ̸= j, i ̸= {e}
and 0 otherwise. The objective is to find the minimum total
compensation for all the vehicles. Let N∗ = N \{0, e}. The
complete mathematical model is shown below.

min
∑

⟨i,j,v⟩∈P
v∈V

Cv × (tij + sj)×Xv
ij (1)

Subject to:∑
⟨i,j,v⟩∈P

Xv
ij = 1 ∀j ∈ N∗ (2)

Xv
0j ≤ 1 ∀⟨0, j, v⟩ ∈ P,∀v ∈ V (3)∑
⟨i,e,v⟩∈P

Xv
ie ≤ 1 ∀v ∈ V (4)∑

⟨0,j,v⟩∈P

Xv
0j −

∑
⟨i,e,v⟩∈P

Xv
ie = 0 ∀v ∈ V (5)

∑
⟨i,j,v⟩∈P

Xv
ij −

∑
⟨j,k,v⟩∈P

Xv
jk = 0 ∀v ∈ V,∀j ∈ N∗ (6)

∑
⟨i,o,v1⟩∈P

o∈T

Xv1

io = 0 ∀v1 ∈ V (7)

∑
⟨i,o,v⟩∈P

Xv
io = 1 ∀o ∈ T (8)

lvvi − lvvj −Qv × (1−Xv
ij) ≤ dj

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (9)
lvvi − lvvj + Qv × (1−Xv

ij) ≥ dj

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (10)

lvv
2

i − lvv
2

o −Qv2

× (1−Xv2

io) ≤ do

∀⟨i, o, v2⟩ ∈ P,∀o ∈ T (11)

lvv
2

i − lvv
2

o + Qv2

× (1−Xv2

io) ≥ do

∀⟨i, o, v2⟩ ∈ P,∀o ∈ T (12)
lvvi ≤ Qv ×

∑
⟨i,j,v⟩∈P

Xv
ij ∀v ∈ V,∀i ∈ N∗ (13)

lvv0 ≤ Qv ×
∑

⟨0,j,v⟩∈P

Xv
0j ∀v ∈ V,∀j ∈ N∗ (14)

tvj − tvi − sj −∆v
j − (u0 − l0 + 1)× (1−Xv

ij) ≤ tij

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (15)
tvj − tvi − sj −∆v

j + (u0 − l0 + 1)× (1−Xv
ij) ≥ tij

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (16)
∆v

o = 0 ∀o ∈ T ∪ e,∀v ∈ V (17)

∆v =
∑
i∈N

∆v
i ∀v ∈ V (18)

tvi + tij +∆v
j + (u0 − l0 + 1)× (1−Xv

ij) ≥ lj

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (19)
tvi + tij +∆v

j ≤ uj + (u0 − l0 + 1)× (1−Xv
ij)

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (20)
tvi + tio +∆v

o ≤ uo + (u0 − l0 + 1)× (1−Xv
io)

∀⟨i, o, v⟩ ∈ P,∀o ∈ T ∪ e (21)
lj + (u0 − l0 + 1)× (Xv

ij − 1) ≤ tvj

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (22)
uj + (u0 − l0 + 1)× (1−Xv

ij) ≥ tvj

∀⟨i, j, v⟩ ∈ P,∀j ∈ H (23)
uo + (u0 − l0 + 1)× (1−Xv2

io) ≥ tv
2

o

∀⟨i, o, v2⟩ ∈ P,∀o ∈ T ∪ e (24)
tvi ≤ (u0 − l0 + 1)×

∑
⟨i,j,v⟩∈P

Xv
ij ∀v ∈ V, i ∈ N (25)

tv0 = 0 ∀v ∈ V (26)
Xv

ij ∈ {0, 1} ∀⟨i, j, v⟩ ∈ P (27)

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 06,2023 at 12:03:29 UTC from IEEE Xplore. Restrictions apply.

tvi ≥ 0, lvvi ≥ 0,∆v
i ≥ 0 ∀v ∈ V,∀i ∈ N (28)

∆v ≥ 0 ∀v ∈ V (29)
The objective function (1) minimizes the total compen-

sation for all deliveries. Constraint (2) ensures that all
customers will be served. Constraints (3) - (4) ensure that
each vehicle will depart and return to the depot after delivery.
The numbers of inbound and outbound vehicles from the
depot have to be the same (Constraint (5)). Constraint (6)
ensures that vehicles will leave after visiting or servicing
nodes. Constraint (7) prohibits small vehicles approaching
terminal nodes and Constraint (8) guarantees the visit at
terminal points. Constraints (9) - (10) cover the sub-tour
elimination constraints. Constraints (11) - (12) ensure that
large-capacity vehicles will not deliver more or less than the
terminals’ demands. Constraints (13) - (14) guarantee that
vehicles will not violate their capacities.

Constraints (15) and (16) ensure accuracy in vehicles’
operating time. Constraint (17) allows large-capacity vehicles
to visit terminal nodes at any time, and Constraint (18)
computes the total waiting time of each vehicle. The ve-
hicles’ arrival time at the assigned nodes is bounded by the
nodes’ time windows (Constraints (19) - (20)). Constraint
(21) ensures that vehicles will not return to the depot or
approach terminal nodes later than the nodes’ upper bound
of the time windows. Constraints (22) - (24) have the same
function as (19) - (21). Constraint (25) ensures that vehicles’
time will only be accounted at the node they depart, and
constraint (26) is initially set to time = 0 as the beginning
of the delivery operation. The natural range of decision
variables is given by Constraints (27) - (29).

III. PROPOSED ALNS
We explain the framework of ALNS in Algorithm 1. Algo-

rithms 2, 3, and 4, which are parts of the entire framework,
will be explained as well. First, an initial solution XInit is
randomly generated by assigning nodes to vehicles randomly
with respect to the time windows and capacity constraints,
which later be assigned to the global solution XGlobal and
the local solution XLocal (Algorithm 1: Lines 2-3).

The variable BestCost is assigned with the objective
value F (XGlobal), the non-optimal counter ξ is set to 0,
while the iterations counter υ for updating mechanism pro-
portions is set to 1 (Algorithm 1: Lines 4-5). The global loop
is initiated with maximum iterations Υ by resetting the local
loop counter ϕ to 1 with the maximum allowed iterations
for the local loop = Φ (Algorithm 1: Lines 6-8). The local
loop then generates a number of removal nodes NExc to be
excluded from the current solution XInit. Destroy operator
D will be selected from the set of destroy operators MD by
generating a random number Rand(0, 1) that is higher than
the proportion of the prior operator πD−1

υ and less than the
current operator proportion πD

υ (Algorithm 1: Lines 9-10).
The current solution XInit then removes NDes, which can
be higher than the generated destroyed nodes NExc using
the drawn destroy operator D. A repair operator R will be
selected from the repair set MR using a random number
Rand(0, 1) that is bounded by the proportion of the selected

operator πR
υ and its prior candidate πR−1

υ to construct a
new solution XInit with the excluded nodes NDes from
the destroyed ones (Algorithm 1: Lines 11-13). This work
adopts the destroy and repair operators [6].

Algorithm 1: The Proposed ALNS
Input:

Set of destroy operator MD , repair operator MR, and update mecha-
nism U; Normalization mechanism K; The set of selection probabilities
for destroy operators πD

0 and repair operators πR
0 ; The score set of

destroy operators δD0 and repair operators δR0 for update mechanism’s
decision; Maximum available iterations for generating local solutions
Φ; Maximum available iterations for updating the destroy and repair
operators Υ; Maximum non-global improvement iterations Ξ; Objective
Function F (X).

Output:
Global solution XGlobal; Total Compensation F (XGlobal); Total
Travel Time Travel

1 Initialize:
2 Generate an Initial Solution XInit

3 XGlobal ←− XInit;Xbest ←− XInit

4 BestCost←− F (XGlobal)
5 υ ←− 1; ξ ←− 0
6 while υ ≤ Υ do
7 ϕ←− 1
8 while ϕ ≤ Φ do
9 Generate a number of remove nodes

NExc ←− Rand(1, H + T)

10 D(NExc, πD
υ)

Rand(0,1)←−−−−−−−MD : πD−1
υ ≤

Rand(0,1) < πD
υ

11 XInit D←− XInit −NDes : NDes ∈ [NExc, H + T]

12 R(NExc, πD)
Rand(0,1)←−−−−−−−MR : πR−1

υ ≤
Rand(0,1) < πR

υ

13 XInit R←− XInit + NExc

14 U(XGlobal, Xbest, XInit)

15 δDϕ
U(XGlobal,Xbest,XInit)←−−−−−−−−−−−−−−−−−− δDϕ−1 + δD

16 δRϕ
U(XGlobal,Xbest,XInit)←−−−−−−−−−−−−−−−−−− δRϕ−1 + δR

17 if F (XGlobal) < BestCost then
18 BestCost←− F (XGlobal)
19 ξ ←− 0
20 else
21 ξ ←− ξ + 1

22 πD
υ

K(δDΦ)
←−−−−− πD

υ−1; πR
υ

K(δRΦ)
←−−−−− πR

υ−1

23 if ξ = Ξ then
24 return XGlobal, F (XGlobal), Travel

25 return Output

The first four operators represent the destroy operators:
Random Removal: this operator randomly selects a node in
the initial solution XInit using the Roulette Wheel procedure
and inserts it into the Removal List NDes.
Route Removal: this operator randomly chooses a route in
the current solution, excludes all covered nodes in that route
from the solution, and inputs them into the Removal List.
Zone Removal: this operator randomly generates a region
with four pairs of coordinates (xlow, ylow); (xlow, yhigh);
(xhigh, ylow); and (xhigh, yhigh). Then, all nodes belonging
to the generated region, except the depot, are excluded from
the solution and are added into the Removal List.
Worst Removal: it removes NDes nodes from the current
solution that consumes large travel times among routes in
the descending order and adds them into the Removal List.

We also implement the following repair operators [6]:
Random Best Recover: it re-inserts the excluded nodes from

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 06,2023 at 12:03:29 UTC from IEEE Xplore. Restrictions apply.

NDes by selecting nodes using the Roulette Wheel procedure
and then searching for its best insert location within the
existing route or a new generated feasible route.
Random Best with Noise Recover: this operator considers
a noise score ∆s by selecting the maximum value among
the multiplication results of a random generated factor
Rand(−1, 1) with a small fixed parameter π = 0.1 to
the current route’s maximum distance with the service time
between the covered nodes. This noise will be added to the
re-insert costs of the excluded nodes, and these nodes are
then re-inserted based on their best locations so far.
Greedy Recover: this operator sorts the re-insert costs of
all excluded nodes in the ascending order and adds them to
their best feasible locations. Greedy with Noise Recover:
this is similar to the second one. The re-insert cost will
be added by a noise score ∆s mentioned before and then
performs the same procedure as Greedy Recover. The
Farthest Best Recover: this operator adds the nodes that are
further from the depot first, which is opposite to the Closest
Best Recover, which re-inserts the closer nodes. After the
sequence of nodes is created, the operator will insert the
nodes based on the best positions.

The Updated mechanism U (Algorithm 2) will be initiated,
which results in a pair of destroy and repair operator scores,
δD and δR, respectively. These scores are used to update the
total score so far of the respective destroy operator δDϕ and
repair operator δRϕ at local iteration ϕ (Algorithm 1: Lines
14-16). After the local loop ϕ reaches its maximum allowed
counters Φ, the objective value F (XGlobal) will be compared
with the BestCost to check if a new global optimum was
found. If any updates with the optimum solutions happen,
then the non-optimal counter ξ is reset to 0 or increased by
1 otherwise. The proportion sets of both Destroy πD

υ and
Repair operators πR

υ are then updated by normalizing the
set of operators’ achieved score so far, K(δDϕ) and K(δRϕ)
(Algorithm 1: Lines 17-22). Two conditions to terminate
Algorithm 1 are: (1) the number of non-upgrade iterations ξ
for the global score to reach its maximum counter Ξ or (2)
the global iteration υ reaches its maximum value Υ.

The proposed ALNS updates the existing solution by
implementing the Updated Mechanism. First, the current
solution is checked if it is currently in the solution pool
or not before examining the pair conditions: the policy on
the number of available vehicles and the obtained objective
values, F (XGlobal) and F (Xbest). If it is a new solution,
then a set of designed scenarios with respective actions is
implemented (Algorithm 2: Lines 2-27):
Achieve a new global solution (F (XGlobal) > F (XInit)):
the new solution XInit will be assigned to both global so-
lution XGlobal and local solution Xbest. The global solution
pool χGlobal will be cleared to add the current solution in
addition to the historical solution pool χ. Its cost F (XInit) is
added to the Cost pool C and the non-local update counter λ
will be reset to 0. This achievement will set the reward scores
for the applied destroy and repair operators RewardD and
RewardR to the Best Achievement scenario with ∆D(1)
and ∆R(1) (Algorithm 2: Lines 3-7).

Discover a permutation of the current global solution
(F (XGlobal) = F (XInit)): the global solution pool χGlobal

will not be cleared while the remaining activities are kept
similar to the first scenario (Algorithm 2: Lines 8-12).
Obtain a new local solution (F (Xbest) > F (XInit)): the
update procedure involves the local solution Xbest only. In
addition, χGlobal will not add the found solution while the
solution pool χ and the Cost pool C will still record the
new solution and its cost. The non-local update counter
λ is reset to 0, and the reward scores for the selected
destroy and repair operators RewardD and RewardR are
set to the Medium Achievement scores ∆D(3) and ∆R(3),
respectively (Algorithm 2: Lines 13-16).
Attain a new permutation of the current local solution
(F (Xbest) = F (XInit)): this will check if the non-local
optimal updates counter λ exceeds its maximum allowance
Λ or not. The true condition will trigger the Reconstruct
mechanism that assigns a recorded global solution XGlobal ∈
χGlobal to both current local optimal solution Xbest and
current solution XInit and reset the non-local update counter
λ to 0 (Algorithm 2: Lines 18-19).
Obtain a worse-than-local-optimal-solution (F (XInit <
F (Xbest)): this triggers the Simulated Annealing algorithm
(Algorithm 3) to see whether the current solution is accepted
as a new local optimal with the respective reward scores
for the selected destroy and repair operators RewardD and
RewardR, the updated solution pool χ, and the non-local
update counter λ (Algorithm 2: Lines 24-25).

The initial solution is otherwise accepted and assigned to
the local optimal Xbest ←− XInit. The solution pool χ will
record the current solution XInit, and the solution’s cost
F (XInit) is also added to its respective pool while the non-
local update counter is increased by 1. The reward scores for
the respective applied operators RewardD and RewardR

are set to the Worse Achievement score ∆D(2) and ∆R(2),
respectively (Algorithm 2: Lines 20-23).

If the number of available vehicles is invalid, then the
Reconstruct Solution mechanism will be triggered and the
non-local update counter will be added by 1 (Algorithm 2:
Lines 26-27). If the initial generated solution is a member
of the solution pool XInit ∈ χ, a random generator will be
initiated with a chance of 50% that the Reconstruct Solution
mechanism is triggered, and the remaining 50% will force
the initial solution to revert to the local solution XInit ←−
Xbest. In this case, the Worst Reward score set is assigned to
the destroy and repair operators’ RewardD ←− ∆D(4) and
RewardR ←− ∆R(4) in addition to the incremental of 1 for
the non-local update counters (Algorithm 2: Lines 28-33).

A brief description of Simulated Annealing is explained
in Algorithm 3 with the input values of α = 0.9, ϵ = 10−3,
and (Lp;Up) = (1, 50) [7]. A checking procedure is done
to see if the current global iteration υ is less than 3 or not.
If true, then the initial temperature T0 is set to the abso-
lute difference between the iteration’s maximum recorded
cost so far Max(C(υ, :)) and its minimum recorded cost
Min(C(υ, :))(Algorithm 3: Line 2-3); otherwise, we adopt
the procedure for generating the initial temperature. For more

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 06,2023 at 12:03:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Updated Mechanism
Input:

Global solution XGlobal; Local solution Xbest; Initial solution
XInit; Set of rewards for Destroy and Repair Operators ∆D and ∆R;
Set of objective values obtained C; Set of solutions obtained so far
χ; Set of global solutions so far χGlobal; Number of available small
vehicles V 1; Number of available large vehicles V 2; Maximum Number
of Iterations without Improvement Λ; Objective Function F (X).

Output:
Updated initial solution XInit; Updated global solution XGlobal;
Updated local solution Xbest; Reward for destroy/repair operator
RewardD/RewardR; Set of Costs C, Set of Solutions χ, Set of
Global Solutions χGlobal

1 Initialize:
2 if XInit /∈ χ then
3 if v2 < V 2 and v1 < V 1 : v1 and v2 ∈ XInit and

F (XGlobal) > F (XInit) then
4 (XGlobal, Xbest)←− XInit

5 χGlobal ←− ∅; χGlobal ←− χGlobal + XGlobal;
χ←− χ + XInit

6 C ←− C + F (XInit); λ←− 0;
7 RewardD ←− ∆D(1); RewardR ←− ∆R(1)

8 else if v2 < V 2 and v1 < V 1 : v1 and v2 ∈ XInit and
F (XGlobal) = F (XInit) then

9 (XGlobal, Xbest)←− XInit

10 χGlobal ←− χGlobal + XGlobal; χ←− χ + XInit

11 C ←− C + F (XInit); λ←− 0

12 RewardD ←− ∆D(1); RewardR ←− ∆R(1)

13 else if v2 < V 2 and v1 < V 1 : v1 and v2 ∈ XInit and
F (Xbest) > F (XInit) then

14 Xbest ←− XInit; χ←− χ + XInit

15 C ←− C + F (XInit); λ←− 0

16 RewardD ←− ∆D(3); RewardR ←− ∆R(3)

17 else if v2 < V 2 and v1 < V 1 : v1 and v2 ∈ XInit and
F (Xbest) = F (XInit) then

18 if λ > Λ then
19 Reconstruct Solution; λ←− 0
20 else
21 Xbest ←− XInit; χ←− χ + XInit

22 C ←− C + F (XInit); λ←− λ + 1

23 RewardD ←− ∆D(2); RewardR ←− ∆R(2)

24 else if v2 < V 2 and v1 < V 1 : v1 and v2 ∈ XInit then
25 χ, (XInit, XBest, RewardD ; RewardR; λ)←−

Simulated Annealing

26 else if Other Cases then
27 Reconstruct Solution; λ←− λ + 1

28 else
29 if Rand(0, 1) > 0.5 then
30 Reconstruct Solution
31 else
32 Xbest ←− XInit

33 λ←− λ + 1; RewardD ←− ∆D(4); RewardR ←− ∆R(4)

34 return Output

details, please refer to [7]. The Reconstruct Mechanism plays
a significant role in completing our algorithm by re-assigning
the initial solution XInit and the local solution Xbest to
a historical recorded global solution in its respective set
XGlobal ∈ χGlobal when an invalid solution is crafted from
the destroy and repair operators in Algorithm 4.

IV. COMPUTATIONAL RESULTS

New benchmark instances are introduced by modifying
the well known Gehring & Homberger’s 200 customer
benchmark instances c1 2 1 to c2 2 10. The instances with
the indices of c2 (c2 2 1 to c2 2 10) have more number of
small and large vehicles. Data are available upon request.

Algorithm 3: The Proposed ALNS: Simulated An-
nealing Process [7]

Input:
Initial Solution XInit; Local Solution Xbest; Set of objective value
obtained so far C(υ,Φ); Non-improvement in local loop value λ;
Acceptance ratio α ≥ 0.8; Step ratio ε ≤ 10−3; Range (Lp;Up) for
generating real number p ≥ 1.

Output:
Initial Solution XInit; Local Solution Xbest; Reward for destroy/re-
pair operator RewardD/RewardR; Non-improvements in local loop
λ

1 Initialize:
2 if υ < 3 then
3 T0 ←−Max(C(υ, :))−Min(C(υ, :))
4 else
5 p←− Rand(Lp;Up)
6 i←− 1; σ ←− 0
7 while i ≤ υ do
8 σ ←− σ + Max(C(i, :))−Min(C(i, :))

9 T0 ←− −σ
υ×log(α)

10 i←− 1; η ←− 0; ζ ←− 0
11 while i ≤ υ OR |E[T0]− α| > ε do

12 η ←− e

(
−Max(C(i,:))

T0

)
13 ζ ←− e

(
−Min(C(i,:))

T0

)
14 E[T0]←− η

ζ

15 T0 ←− T0 ×
(

log
(
E
[
T0

])
log

(
α
)) 1

p

16 if T0 ≤ 0 then
17 T0 = Rand(0, 1)×Min(C(υ, :))

18 if Rand(0, 1) < e

(
F (Xbest)−F (XInit)

T0

)
then

19 Xbest ←− XInit

20 λ←− 0

21 RewardD ←− ∆D(2); RewardR ←− ∆R(2)
22 else
23 XInit ←− Xbest

24 λ←− λ + 1

25 RewardD ←− ∆D(4); RewardR ←− ∆R(4)

26 return Output

The modified attributes include the vehicles’ capacities,
quantities, and operation costs, the number of nodes for
home and terminal deliveries, the terminal nodes’ capacity,
the service time, and the time windows of respective nodes.

Experiments were executed on a computer with Intel Core
i7-12700 CPU @ 2.10 GHz processor, 16.0 GB RAM (Win-
dows 10 Education 64-bit) and solved by CPLEX 12.10.0.0,
limited to three hours of computational times.The results are
compared with the ones of our ALNS using Visual Studio
Code with C++ platform version 1.75.0. For the ALNS,
each instance is solved 5 times with the pre-defined input
parameters: Global Iterations = 500, Local Iterations = 1000,
Best Achievement Score = 100, Medium Achievement Score
= 25 and Worse Achievement Score = 50.

Two types of experiments are conducted with the former
is done with the Destroy and Repair operators, which are
selected through the Roulette Wheel procedure (Algorithms
2 and 3), while the latter selects operators randomly. Com-
putational results show that both Roulette Wheel and random
selection procedures perform well on solving the problem.
It outperforms CPLEX’s non-optimal outcomes on 14 out of
20 instances. The ALNS with Roulette Wheel’s outcomes’

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 06,2023 at 12:03:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: The Proposed ALNS: Reconstruct So-
lution

Input:
Initial Solution XInit; Local Solution Xbest;
Global Solution XGlobal; Set of global solutions so far χGlobal.

Output:
Initial Solution XInit; Local Solution Xbest.

1 Initialize:
2 if Size(χGlobal > 1) then
3 XInit ←− XGlobal : XGlobal ≡ Rand(χGlobal)

4 Xbest ←− XGlobal

5 else
6 XInit ←− XGlobal

7 Xbest ←− XGlobal

8 return Output

TABLE I: Experiments Results

Instances CPLEX
RunTime Roulette Wheel Procedure Random Procedure

in sec. Avg. Best Gap (%) Avg. Time Avg. Best Gap (%) Avg. Time
c1 2 1 4486∗ 348 4524 4524 0.85 9.7 4531.6 4524 1.0 7.1
c1 2 2 5646∗ 836 5720 5720 1.31 12.4 5732.8 5720 1.54 11.3
c1 2 3 10452∗ 1789 10520.8 10520 0.66 17 10526.4 10520 0.71 14.9
c1 2 4 10180∗ 3884 10242 10242 0.61 20.9 10242 10242 0.61 17.9
c1 2 5 16260 10800 16344 16344 0.52 56.7 16352 16344 0.57 28.4
c1 2 6 5370 10800 5314.4 5308 −1.04 12.8 5306.4 5302 −1.18 10.2
c1 2 7 7870 10800 7843.2 7802 −0.34 18.2 7850.4 7798 −0.25 15.7
c1 2 8 11842 10800 11968 11938 1.06 28.8 11968 11938 1.06 19.9
c1 2 9 11662 10800 11652 11652 −0.09 21.9 11648 11642 −0.12 18
c1 2 10 22798 10800 22770 22770 −0.12 77 22770 22770 −0.12 53.3
c2 2 1 9178 10800 8538.4 8490 −6.97 24 8534 8514 −7.02 18.9
c2 2 2 9682 10800 9649.2 9596 −0.34 26.9 9704 9648 0.23 17.2
c2 2 3 16894 10800 16886.8 16810 −0.04 30.2 16924.8 16876 0.18 26.1
c2 2 4 21946 10800 21548 21494 −1.81 41.8 21554.8 21522 −1.78 33.2
c2 2 5 − 10800 29803.2 29776 − 60.6 29813.2 29784 − 41.3
c2 2 6 7648 10800 7460.4 7356 −2.45 14.9 7492 7382 −2.04 14.5
c2 2 7 10508 10800 9965.6 9866 −5.16 17.5 10018.4 9992 −4.66 17.4
c2 2 8 15726 10800 15090.4 14986 −4.04 38.8 15112.8 15012 −3.9 29.2
c2 2 9 19672 10800 18682 18664 −5.03 51.1 19063.2 18966 −3.09 42.4
c2 2 10 − 10800 34393.2 34274 − 82.7 34428 34370 − 72.4
∗: CPLEX’s Optimal Results

average costs are lower than the Random ones, especially
on the second group of instances that are marked as c2 2 ∗,
except for instances c1 2 6, c1 2 9, and c2 2 1.

The former approach also offers better stability than the
latter one when making comparisons between both meth-
ods’ outcomes’ variances and their results’ gaps with the
CPLEX’s best-known-so-far are also lower than the results
provided by the random procedure. The Roulette Wheel
procedure’s coefficient of variances are consistently below
0.5% for all instances while for the random one, some
instances have the coefficient variances more than 1%. We
can conclude that our ALNS can handle the problem with a
limited resources compared to CPLEX with shorter compu-
tation times especially for the second group of instances.

We also analyze the effects of removing a pair of destroy
and repair operators for the Roulette Wheel approach by
considering four scenarios in solving five randomly selected
instances: without Route Removal and Greedy Recover op-
erators (Scenario 1), without Route Removal and Greedy
with Noise Recover operators (Scenario 2), without Worst
Removal and Greedy Recover operators (Scenario 3), and
without Worst Removal and Greedy with Noise Recover
operators (Scenario 4), as shown in Table II.

Most of the scenarios’ results are worse compared to
the original Roulette Wheel and Random procedure results,
except for the instances c2 2 9, which has a slightly better
average result than the one of the Random procedure when

TABLE II: Operators Evaluation

Instances c1 2 6 c1 2 8 c2 2 7 c2 2 8 c2 2 9
CPLEX 5370 11842 10508 15726 19672

RW 5314.4 11968 9965.6 15090.4 18682

Random 5306.4 11968 10018.4 15112.8 19063.2

Scenario 1 5329.2 11980.4 10350.8 15594 19036.4

Scenario 2 5334.4 11983.6 10387.2 15628.8 19248.4

Scenario 3 5332.8 11995.2 10381.6 15611.6 19084

Scenario 4 5334.4 12012.4 10407.6 15665.6 19138

being implemented with Roulette Wheel procedure (Scenario
1). The Greedy with Noise can help improving the results
better than the original Greedy operators while the Worst
removal is worse than the Route removal when applying the
same recover operator themselves, except for instance c2 2 8
with the removal of Greedy with Noise recover operator.

V. CONCLUSION

We introduce a heterogeneous vehicle routing problem
with time windows. It is applicable for delivery activities
in e-commerce platforms where the demands are small-scale
items that are needed to be delivered at some convenient
pickup points with a large number of requested orders. A
mixed integer programming model is formulated and ALNS
is also proposed. It has shown the effective in handling the
newly developed benchmark instances with shorter compu-
tational times, limited resources.

The limitation of this study is a lack of appropriate input
parameters. Future studies can focus on more sophisticated
algorithms that can improve the solution quality, such as
adopting hyper-heuristics for diversifying the solution or
finding suitable input parameters.

REFERENCES

[1] G. D. Konstantakopoulos, S. P. Gayialis, and E. P. Kechagias, “Vehicle
routing problem and related algorithms for logistics distribution: a
literature review and classification,” Operational Research, pp. 1–30,
2020.

[2] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5816–5823, 2021.

[3] X. Bai, W. Yan, and S. S. Ge, “Distributed task assignment for multiple
robots under limited communication range,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 52, no. 7, pp. 4259–4271,
2021.

[4] P. Sitek and J. Wikarek, “Capacitated vehicle routing problem with
pick-up and alternative delivery (cvrppad): model and implementation
using hybrid approach,” Annals of Operations Research, vol. 273, no.
1-2, pp. 257–277, 2019.

[5] E. Demir, T. Bektaş, and G. Laporte, “An adaptive large neighborhood
search heuristic for the pollution-routing problem,” European journal
of Operational Research, vol. 223, no. 2, pp. 346–359, 2012.

[6] C. Friedrich and R. Elbert, “Adaptive large neighborhood search for
vehicle routing problems with transshipment facilities arising in city
logistics,” Computers & Operations Research, vol. 137, p. 105491,
2022.

[7] W. Ben-Ameur, “Computing the initial temperature of simulated an-
nealing,” Computational Optimization and Applications, vol. 29, pp.
369–385, 2004.

Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 06,2023 at 12:03:29 UTC from IEEE Xplore. Restrictions apply.

	An adaptive large neighborhood search for heterogeneous vehicle routing problem with time windows
	Citation

	An Adaptive Large Neighborhood Search for Heterogeneous Vehicle Routing Problem with Time Windows

