
Context-Aware Neural Fault Localization
Zhuo Zhang , Yan Lei , Member, IEEE, Xiaoguang Mao , Meng Yan , Member, IEEE,

Xin Xia , Member, IEEE, and David Lo , Fellow, IEEE

Abstract—Numerous fault localization techniques identify sus-
picious statements potentially responsible for program failures
by discovering the statistical correlation between test results (i.e.,
failing or passing) and the executions of the different statements of
a program (i.e., covered or not covered). They rarely incorporate a
failure context into their suspiciousness evaluation despite the fact
that a failure context showing how a failure is produced is useful for
analyzing and locating faults. Since a failure context usually con-
tains the transitive relationships among the statements of causing
a failure, its relationship complexity becomes one major obstacle
for the context incorporation in suspiciousness evaluation of fault
localization. To overcome the obstacle, our insight is that leveraging
the promising learning ability may be a candidate solution to learn
a feasible model for incorporating a failure context into fault local-
ization. Thus, we propose a context-aware neural fault localization
approach (CAN). Specifically, CAN represents the failure context
by constructing a program dependency graph, which shows how
a set of statements interact with each other (i.e., data and control
dependencies) to cause a failure. Then, CAN utilizes graph neural
networks to analyze and incorporate the context (e.g., the depen-
dencies among the statements) into suspiciousness evaluation. Our
empirical results on the 12 large-sized programs show that CAN
achieves promising results (e.g., 29.23% faults are ranked within
top 5), and it significantly improves the state-of-the-art baselines
with a substantial margin.

Index Terms—Fault localization, graph neural networks,
program dependecy graphs, suspiciousness.

I. INTRODUCTION

FOR reducing the debugging cost, researchers have pro-
posed various fault localization techniques to provide

Manuscript received 30 July 2021; revised 31 March 2023; accepted 17 May
2023. Date of publication 23 May 2023; date of current version 18 July
2023. This work was supported in part by the National Natural Science
Foundation of China under Grant 62272072, in part by the Fundamental
Research Funds for the Central Universities under Grant 2022CDJDX-005,
in part by the Major Key Project of PCL under Grant PCL2021A06, in
part by the Chongqing Technology Innovation and Application Develop-
ment Project under Grants CSTB2022TIAD-STX0007 and CSTB2022TIAD-
KPX0067, and in part by the National Defense Basic Scientific Research Project
under Grant WDZC20205500308. Recommended for acceptance by A. Orso.
(Corresponding author: Yan Lei.)

Zhuo Zhang and Meng Yan are with the School of Big Data and Soft-
ware Engineering, Chongqing University, Chongqing 400044, China (e-mail:
zz8477@126.com; mengy@cqu.edu.cn).

Yan Lei is with the School of Big Data and Software Engineering, Chongqing
University, Chongqing 400044, China, and also with the Peng Cheng Laboratory,
Shenzhen, Guangdong Province 518066, China (e-mail: yanlei@cqu.edu.cn).

Xiaoguang Mao is with the College of Computer, National Univer-
sity of Defense Technology, Changsha, Hunan 410073, China (e-mail:
xgmao@nudt.edu.cn).

Xin Xia is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou, Zhejiang 310027, China (e-mail: xin.xia@acm.org).

David Lo is with the School of Information Systems, Singapore Management
University, Singapore 188065 (e-mail: davidlo@smu.edu.sg).

Digital Object Identifier 10.1109/TSE.2023.3279125

automated assistance in finding faults that cause failures (e.g.,
[1], [2], [3], [4], [5], [6], [7], [8], [9]). These techniques seek to
develop effective suspiciousness evaluation models to evaluate
the suspiciousness of a statement (or other program entities) of
being faulty. Among them, Spectrum-based Fault Localization
(SFL) [1], [10], [11], [12] and Deep-Learning-based Fault Lo-
calization (DLFL) [13], [14], [15] are two of the most popular
techniques.

Fig. 1 shows the process of SFL and DLFL respectively. Given
a programs P and a test suite T , the faulty program P contains
a fault and runs against T . Then, SFL and DLFL both collect
and abstract the runtime information of the faulty program P on
its T as a matrix [1], [13], representing a statement1 covered or
not covered with a passing or failing result, and the matrix will
be inputted into the next suspiciousness evaluation model. Next,
SFL uses correlation coefficients to construct a SFL formula fx,
evaluating the suspiciousness of each statement of being faulty
in the program P ; DLFL uses neural networks with the matrix
as well as some other program information of P as the training
dataset to learn a trained model for evaluating the suspiciousness
of each statement of being faulty in the program P . Finally, they
both output a ranking list of all statements of each faulty program
in descending order of suspiciousness.

Despite the fact that they have delivered promising localiza-
tion results [12], [13], [14], [16], they still have some limitations.
Their basic idea is that a program entity executed by more
failing test cases and less passing test cases should have a higher
suspiciousness value of being faulty. Following this idea, they
use neural networks or correlation coefficients to discover the
statistical correlation between test results (i.e., failing or pass-
ing) and the various coverage types (e.g., statements, branches,
du-pairs) [17] of a program (i.e., covered or not covered). The
coverage information generally cannot be regarded as a failure
context since it just shows whether a statement (i.e., a node)
is covered or not, without the relationships (i.e., edges) among
the nodes showing how a fault propagates to cause a failure.
Thus, these approaches do not consider the inherent relationships
(i.e., edges) presented by a failure context. For example, these
approaches are not based on graph-based architectures and thus
it is difficult for them to learn the relationships (i.e., edges)
presented by a failure context.

In fact, a graph structure constructed by a failure context
shows the process of how a failure is produced (e.g., the state-
ment dependencies not just coverage), and is useful for analyzing
and locating faults [18]. Therefore, just relying on the correlation

1Statements are the widely used program entity type. Other types can be
branches, du-pairs, etc.

https://orcid.org/0000-0003-3243-1019
https://orcid.org/0000-0003-4504-6806
https://orcid.org/0000-0003-4204-7424
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-4367-7201
mailto:zz8477@126.com
mailto:mengy@cqu.edu.cn
mailto:yanlei@cqu.edu.cn
mailto:penalty -@M xgmao@nudt.edu.cn
mailto:penalty -@M xgmao@nudt.edu.cn
mailto:xin.xia@acm.org
mailto:davidlo@smu.edu.sg

Fig. 1. The process of fault localization.

between test results and the coverage of each statement without
considering the inherent relationships presented by a failure
context can affect the accuracy of fault localization. Neverthe-
less, a failure context usually contains many program entities
(e.g., statements) and their transitive relationships. Due to the
transitive relationships among the entities, it is still difficult to
analyze and combine the failure context even if much research
(e.g., [18], [19], [20], [21], [22], [23]) has been conducted on re-
ducing the complexity of the analysis. Thus, the high complexity
also becomes one major challenge for incorporating the failure
context into suspiciousness evaluation for fault localization.

To address the aforementioned challenges, we aim to model
and learn a graph structure constructed from the failure con-
text for fault localization. Recently, graph neural networks
(GNNs) [24], [25] have been proposed to collectively aggre-
gate information from graph structure, modeling input and/or
output consisting of elements and their dependency. GNNs have
been successfully employed to model graph-structured depen-
dencies for various applications such as social science [26],
[27], natural language processing [28], computer vision [29],
vulnerability detection [30], [31], [32], [33], and many other
research areas [34], [35]. The learning process of GNNs is to
update the parameters and hidden state of nodes by capturing
the dependencies of a graph via the message passing on edges,
which perfectly simulates the propagation process of faults in
the program. In this paper, we present a failure context (i.e., a
program slice [18], [36]) as a graph (i.e., a program dependency
graph [18]) including nodes (i.e., statements) and edges (i.e., de-
pendencies). And GNNs can be a candidate solution of learning
the transitive relationships of a failure context (i.e., a graph) for
incorporating the failure context into suspiciousness evaluation
of fault localization.

Therefore, we propose CAN: Context-Aware Neural fault
localization, which uses program dependency graphs to model a
failure context, and leverages graph neural networks to analyze
and combine a failure context for suspiciousness evaluation of
fault localization. Following the training and testing process of
DLFL in Fig. 1, CAN also trains the model with all available
samples of a faulty program and tests the trained model with a
synthesized testing dataset. Specifically, in the training phase,
CAN uses program slicing [18], [36] to construct a failure
context denoted as a directed graph (i.e., a program dependency
graph widely used in software testing and analysis) including

the nodes (i.e., failure-inducing statements) and the edges (i.e.,
dependencies among these statements). Based on the graph,
CAN utilizes a GNN to capture dependencies among statements
and generate accurate statement embedding vectors correspond-
ingly, which are difficult to be revealed by the state-of-the-art
fault localization techniques (e.g., SFL and DLFL). Based on ac-
curate statement embedding vectors, CAN obtains more reliable
representations of the statements, and then trains the network
with test cases for each bug. In the testing phase, CAN evaluates
the suspiciousness of each statement of being faulty by testing
the trained model using the one-hot statement coverage vectors,
where each vector represents covering only one statement.

To evaluate our approach, we design and conduct a large-scale
empirical study on 12 real-world programs (e.g., the programs of
Defects4J, python, and gzip). We compare CAN with a total of 12
state-of-the-art fault localization baselines, including Dstar [12],
MULTRIC [37], CNN-FL [13], and DeepRL4FL [16].

The results show that CAN improves the state-of-the-art base-
lines statistically significant and substantially, e.g., the average
improvement for the most important metric [38], such as Top-5,
as compared to the best-performing baseline is 14.31%.

The main contributions of this paper can be summarized as:
� We propose a context-aware fault localization approach

(CAN) by modeling a failure context as a graph and learn-
ing the complex relationship (i.e., statement dependencies)
among the nodes (i.e., statements) from the graph level for
effective fault localization.

� We propose a GNN-based bug-specific learning scheme
to better evaluate statement suspiciousness for each bug
individually. To the best of our knowledge, it is the first
time that graph neural networks are used in analyzing
and combining a failure context for fault localization,
demonstrating their promising context-aware potential of
improving fault localization.

� We conduct a large-scale empirical study on 12 large real-
life programs and 12 baselines, showing that our approach
is effective to improve fault localization.

� We open source the replication package online2 with an
archival snapshot,3 including the source code, datasets,

2https://github.com/oy-sarah/CAN
3https://zenodo.org/badge/latestdoi/291069322

docker implementation and running examples, for follow-
up works.

The structure of the rest paper is organized as follows.
Section II introduces the related work. Section III depicts our
approach CAN. Section IV presents our large-scale empirical
study. Section VII concludes the whole study and mentions
future works.

II. RELATED WORK

A. Graph Neural Networks

Recently, graph neural networks (GNNs) have emerged as
an effective class of models for solving non-euclidean data
structure problems, they could learn representations of nodes
on graphs and collectively aggregate information from graph
structure [24], [25]. Due to their convincing performance and
high interpretability, GNNs have been utilized to be the standard
toolkit for analyzing and learning from data on graphs and have
been successfully applied to various applications [26], [27], [28],
[29], [34], [35], [39], such as social sciences, computer vision,
knowledge graphs, natural language processing, etc. GNNs are
also applied for vulnerability detection (e.g., [30], [31], [32],
[33]) whereas our work focuses on a different research topic on
software fault localization.

In a graph, each node is naturally defined by its features and
the related nodes. Thus, the target of GNN is to learn the state
embeddings which contain the information of neighborhoods.
The state embeddings are vectors of nodes and could be used
to produce outputs such as the labels of the nodes. There are
several advantages of GNNs compared with traditional neural
networks such as convolutional neural networks, recurrent neu-
ral networks and multi-layer perceptron.

First, GNNs could handle the graph input properly via prop-
agating on each node and ignoring the input order of nodes.
It means that the output of GNNs is invariant for the input
order of nodes. In contrast, traditional neural networks process
the graph input by stacking the feature of nodes in a certain
order, although the graph does not exist a natural order of nodes.
Furthermore, if a traditional neural network is used to present
a graph completely, all input sequences need to be traversed,
incurring much computational overhead. Although programs
are written in a certain order, they are not always executed
line-by-line in a linear fashion. Instead, the features like function
call, loops and conditionals cause the program jump around from
line to line in a nonlinear and arbitrary fashion, in which fashion
GNNs can work whereas traditional neural networks cannot.

Second, unlike regarding an edge as the feature of nodes in
traditional neural networks, GNNs update the hidden state of
nodes by capturing the dependencies of a graph via the message
passing on edges. Thus, the propagation of GNNs is based on
the graph structure instead of using it as part of features, i.e.,
GNNs can retain a state that represents the information from its
neighborhood with arbitrary depth. Take a program dependency
graph, widely used for representing a program, as an example. In
a graph, the edges are the dependencies like data dependencies or
control dependencies between two statements, and the massage
passing in the graph simulates the propagation of errors among

Fig. 2. The coverage and results of M executions.

the statements in the program. In this context, GNNs can learn
the dependencies while traditional neural networks cannot.

Third, just like the operating mechanism of the human brain
that is almost based on a graph extracted from daily experience,
GNN can analyze graph and capture salient features from a graph
while traditional neural networks cannot do so well (without
some loss of information).

Based on the above analysis, GNNs demonstrate the potential
of analyzing and learning the transitive relationships of the
failure context as a graph for fault localization.

B. Spectrum-Based Fault Localization

Spectrum-based Fault Localization (SFL) [1], [10], [13], [40],
[41], [42] seeks to use correlation coefficients to discover the
statistical correlation between test results (i.e., failing or passing)
and the coverage of the different statements of a program (i.e.,
covered or not covered).

Given a program P with N statements, it is executed by a
test suite T with M test cases, which contain at least one failing
test case (see Fig. 2). SFL first defines a matrix as the input to
represent the runtime information of a test suite including the
coverage information of statements and the test results. Fig. 2
shows the definition of the matrix. The element xij = 1 means
that the statement j is covered by the test case i, and xij = 0
otherwise. The M×N matrix records the coverage information
of each statement by the test suite T. The error vector e represents
the test results. The element ei equals to 1 if the test case i failed,
and 0 otherwise. The error vector shows the test results of each
test case (i.e., failing or passing).

anp(sj) =
∑

i∈np(sj)
(1− xij), aep(sj) =

∑

i∈ep(sj)
xij

anf (sj) =
∑

i∈nf(sj)
(1− xij), aef (sj) =

∑

i∈ef(sj)
xij

where,

np(sj) = {i|(xij = 0) ∧ (ei = 0)}, ep(sj)

= {i|(xij > 0) ∧ (ei = 0)}
nf(sj) = {i|(xij = 0) ∧ (ei = 1)}, ef(sj)

= {i|(xij > 0) ∧ (ei = 1)} (1)

Based on the matrix in Fig. 2, SFL defines four variables in 1,
where anp, anf , aep, and aef for the statement j (i.e., sj) denote
the number of passing/failing test cases in which the statement
was/wasn’t executed.

TABLE I
SFL FORMULAS

Fig. 3. Suspiciousness evaluation using neural networks.

With the four variables for each statement, SFL defines many
suspiciousness evaluation formulas using correlation coeffi-
cients to evaluate the suspiciousness of each statement being
faulty. Researchers have conducted both theoretical [43], [44]
and empirical analysis [12] on finding the optimal SFL formulas,
i.e., ER1, ER5, GP02, GP03, GP19, Ochiai and Dstar (D*).
Table I shows all the 7 optimal SFL formulas.4 Some researchers
further combine the multiple SFL formulas to improve fault
localization, e.g., MULTRIC [37].

C. Deep-Learning-Based Fault Localization

Deep-Learning-based Fault Localization (DLFL) [13], [14],
[45], [46] tries to utilize artificial neural network with hidden
layers [15], [46], [47], [48], [49], [50], [51] to learn a lo-
calization model reflecting the statistical correlation between
test results (i.e., failing or passing) and the coverage of the
different statements of a program (i.e., covered or not covered).
Among these DLFL techniques, MLP-FL [45], CNN-FL [13],
BiLSTM-FL [14] and DeepRL4FL [16] are the representative
and effective ones.

Fig. 3 shows the architecture of suspiciousness evaluation of
DLFL: one input layer, deep learning components with several
hidden connected layers, and one output layer. In the input layer,
DLFL uses the matrix and the error vector of Fig. 2 as the training
samples and their corresponding labels, respectively. In other
words, h rows of the matrix M×N and its corresponding error

4The * in D* formula is usually assigned to 2.

vector are used as an input, which are the coverage information
of h test cases and their corresponding test results starting
from the i-th row, where i ∈ {1,1+h,1+2h,...,1+(�M/h�+1)×h}.
In deep learning components with several hidden connected
layer, MLP-FL, CNN-FL/DeepRL4FL and BiLSTM-FL use
multi-layer perceptron, convolutional neural network and bi-
directional long short-term memory respectively. In the output
layer, DLFL uses Sigmoid function [46] because values sent
into a Sigmoid function will be 0 to 1. Each element in the
result vector of the Sigmoid function has difference with the
corresponding element of the target vector. Back propagation
algorithm is used to update the parameters of the model, and the
goal is to minimize the difference between training result y and
error vector e. The network is trained iteratively.

Finally, DLFL learns a trained model reflecting the relation-
ship between statement coverage and test results, and constructs
a synthesized testing dataset (i.e., one-hot vectors [13], [15]) to
test the trained model for evaluating the suspiciousness of each
statement.

Besides the above suspiciousness evaluation, there are other
recent related work, e.g., Learning-to-Rank technique [52],
[53], composition technique [54], [55], unified debugging tech-
nique [56]. Our work focuses on deep learning technique not
Learning-to-Rank technique, and the results [46] have shown
deep learning technique has higher effectiveness than Learning-
to-Rank technique [52], [53]. Composition technique [54], [55]
studies the combination of different individual fault localization
approaches whereas our work proposes an effective individual
fault localization approach. Unified debugging technique [56]

Fig. 4. The architecture of CAN.

focuses on how to improve fault localization using the repair
information whereas our work concentrates on how to improve
fault localization without using the repair information.

Prior studies proposed mining of bug signatures [21], [22],
[23], [57], [58]) (i.e., bug contexts) after identification of suspi-
cious program elements for bug understanding. Different from
such studies, our work improves the suspiciousness evaluation
models with bug contexts. Our work can potentially be used
in tandem with these existing works; we can run bug signature
mining work after suspicious program elements are identified
by our proposed approach.

III. APPROACH

This section will introduce CAN which applies graph neural
networks to analyzing and combining failure contexts for fault
localization. Fig. 4 shows the architecture of CAN.

CAN is different from traditional machine learning training
and testing scheme. CAN tries to learn the mappings between
statements and failures from all available test cases, and evaluate
the suspiciousness of each statement individually. For training
dataset, we use all available test cases as the training dataset
to learn a model for the mappings because their execution
information corresponds to a specific bug. For testing dataset, we
employ one-hot coverage vectors to represent each of involved
statements individually and then consider them as the testing
dataset where a size equals to the number of statements of
a failure context. The testing result of each one-hot coverage
vector reflects the failing possibility of its covering statement.

We will first formulate the problem; then explain how to
construct a graph from a subject program to represent a fail-
ure context; next depict the training phase, i.e., the process of
learning node embeddings on graphs; finally describe the testing
phase, i.e., the process of obtaining the fault localization result,
which is a ranked list of the statements in descending order of
suspiciousness.

A. Formulation

Given a faulty program P with N statements, it is executed by a
test suite T with M test cases, which contain at least one failed test

case. In Fig. 2, a matrix and an error vector are defined to denote
the execution information of a program. CAN will use the matrix
and the error vector (i.e., the upper left matrix and error vector in
Fig. 4) as the training samples and their corresponding labels for
graph neural networks, respectively. As a reminder, the element
xij = 1 means that the statement j is executed by the test case i,
and xij = 0 means otherwise. The element ei equals to 1 if test
case i failed, and 0 otherwise. Based on the faulty program and
the information model (i.e., the matrix and error vector), CAN
should figure out how to define and incorporate a failure context
into suspiciousness evaluation of fault localization using graph
neural networks.

B. Modeling Failure Context as Graph

It is easy to see that the information model defined in Fig. 2
contains no relationships among the statements in the error
propagation process. Therefore, we need to construct a graph
where nodes denote statements (or other program entities) and
edges represent relationships among the statements. Program
dependency graphs (PDG) [18] are the widely used graph struc-
ture for modeling the relationships among the statements, where
nodes are statements (or other program entities) and edges are
data or control dependencies between two statements. Unlike
traditional machine learning techniques, the learning process of
GNNs is to update the parameters and hidden state of nodes
by capturing the dependencies of a graph via the message
passing on edges. However, the PDG of the whole program
usually consists of many subgraphs reflecting no relationship
with the error output. Furthermore, when we input the PDG
of the whole program including these subgraphs into CAN,
the learning process may not perform well, and even cannot
be convergent. Program slicing technique [18] is amongst the
most popular ones to model a failure context. Based on the
failure context, we can construct a connected PDG related to
a failure with a smaller size in comparison to the PDG of the
whole program.

Specifically, we construct a PDG in which the nodes denote
statements in the failure context (i.e., the slice) and the edges

TABLE II
SUMMARY OF SUBJECT PROGRAMS

represent data or control dependencies. We utilize JSlice5 and
Javaslicer6 for Java programs, WET7 for C programs. They are
all dynamic slicing tools [18], [36] relying on PDG. Based on
these slicing tools, the slicing process of CAN is: 1) we convert
the executed statements of a program into a representation, i.e.,
a form representing a PDG with data and control dependencies;
2) then we analyze the representations via dynamic data or
control dependencies to identify those statements having de-
pendencies on the program output (i.e., the slicing criterion in
(2)) as a slice; 3) finally we use the API/method of these slicing
tools to interpret the representation to construct a PDG for the
slice, where a node is a statement in the slice and an edge of two
nodes represents a data or control dependency among them.

Thus, a failure context is defined as follows:

A failure context: statements that directly or indirectly
affect the computation of the faulty output value of a failure
through chains of dynamic data or control dependencies are
included in a failure context (i.e., a dynamic backward slice).

To compute a failure context, we use the following slicing
criterion.

failSC = (outStm, incorrectV ar, failEx) (2)

Where, outStm is an output statement whose value of a vari-
able (i.e., incorrectV ar) is incorrect in the execution of a failing
test case (i.e., failEx). Since a small size of a failure context
can help reduce the complexity of the subsequent analysis and
save the computation cost, a small size of a failure context is
preferable. Take the version 3 of the program nanoxml_v5 in
Table II as an example. We use the smallest failure context and
the largest failure context to conduct the localization process,
respectively. The computation cost of the smallest one is 13.7
minutes (i.e., the lowest cost) while the cost of the largest one
is 17.6 minutes (i.e., the highest cost). For multiple failing test
cases, the one with the smallest number of executed statements
usually has a small size of a failure context. Thus, CAN chooses
the failing test case having the smallest number of executed
statements to construct a slicing criterion in (2), and inputs this

5http://jslice.sourceforge.net/
6https://github.com/hammacher/javaslicer
7http://wet.cs.ucr.edu/

slicing criterion into program slicing technique to model a failure
context. If there are several failing test cases with the same
smallest number of executed statements, we randomly choose
one of them to perform program slicing.

Suppose that a failure context has K statements. As shown
in Fig. 4, after the computation of using the slicing criterion in
(2), program slicing technique constructs a failure context as
a program dependency graph, i.e., the directed graph G = (V,
ξ), showing how K failure-inducing statements of the program
(i.e., the statements of a failure context) affect each other in the
execution of a failing test case to cause a failure. In the directed
graph G, a node (e.g., vi ∈ V) represents a statement in the
failure context, and an edge (e.g., (vi, vj) ∈ ξ) denotes a data
or control dependency between the two statements of vi and
vj . Each node (e.g., vi ∈ V) will be embedded into a unified
embedding space, and has its node vector (e.g., vectori ∈ Rd in
(5)) representing the latent vector of the node (e.g., vi) learned
via graph neural networks, where d is the dimensionality.

Furthermore, we remove the coverage information of those
statements not in the failure context and obtain a new M×K ma-
trix that records the execution information of K failure-inducing
statements in the test suite T. The element yij = 1 means that the
j-th statement of the failure context (i.e., node vj in the graph)
is executed by test case i, and 0 otherwise.

After constructing the graph, the connection relationships
between the graph nodes are further represented by an adjacency
matrix A, i.e., the adjacency matrix is the representation of the
failure context (i.e., the PDG of the slice) An elementAij means
the one in the i-th row and the j-th column of the matrix A.
Aij = 1 means that there is a directed edge eij from node i to
node j; otherwise, Aij = 0. Aij shows whether the information
of node i is propagated to node j. Some data or control dependen-
cies in the PDG are spurious, e.g., y = 3 ∗ x− 3 ∗ x+ 1 does
not effectively depend on x. In this case, a simple data-flow
analysis that does not simplify the expression will not realize
it. Consequently, our approach may not be able to discount the
influence of x on y.

C. Learning CAN Model on Graph (Training Phase)

Next we present how to train CAN model via graph neural
networks. Graph neural networks could capture dependencies
among statements and generate corresponding statement em-
bedding vectors trained with test cases [25] according to the
failure context.

Architecture of CAN: Fig. 4 shows the architecture of CAN
including input components, graph embedding module, linear
transformation layers and output layer. After the previous steps
(i.e., modeling failure context as graph), we could acquire the
input components that consist of three parts: an adjacency matrix
A, node vectors vectori (i ∈ {1,2,...,k}) and the coverage
information matrix M×K. The graph embedding module is a
2-layer graph neural network. In the first layer, the input channel
is the dimension of node vector equaling to the size of the failure
context and the output channel is 2h (h = round(logn2)− 1,
wheren is the input channel and round is the rounding function).
In the second layer, the input channel is 2h and the output

Fig. 5. One-hot statement coverage vectors.

channel is 2(h−1). Then, a Gated Recurrent Unit (GRU) is used
to incorporate the dependencies between pieces of node state
information in different update rounds, and linear transformation
layers use Sigmoid function. We use Adam as the optimizer.
Back propagation is used to update the parameters.

Learning process in graph embedding module: Graph em-
bedding module is the core component of CAN for the learning
process. The node vector vectori is the state information of the
node i. First, we initialize the state information of node i to a
vectorvectori(1)∈Rd via using one-hot encodings, where d is
the dimensionality of the vector and the superscript (1) denotes
the 1st round of iteration. Then, during the t-th round of iteration,
each central node i gathers all neighbor node information to
obtain the node interaction embedding mi

(t)∈Rd. In (3), CAN
assigns different weights to each neighbor node in order to
characterize its importance to the central node δij , with function
mapping performed through the neural network a: Rd × Rd

→ R, where a calculates the correlation coefficient between
the central node i and its neighbor node j and then uses the
softmax function to normalize the correlation coefficients of
all neighboring nodes. The weight parameter of the neural
network a is related to the round of information propagation.
(4) computes the interaction context mi

(t) of the node. During
the graph model’s information propagation, mi

(t) is the
interaction context of node i throughout the whole graph. mi

(t)

is obtained by directly accumulating δij and the product of
the feature information vectorj of the neighbor node j as well
as the propagation matrix Aij on the edge eij . In (5), the
GRU considers the relationship between pieces of node state
information in different update rounds, i.e., when the node
updates during the t-th round, there is a time series relationship
between the hidden layer vector expression vectori

(t) and the
state information vector(i)

(t−1) of the previous round.

δij = softmax(a(vector
(t−1)
i , vector

(t−1)
j)) (3)

m
(t)
i =

∑
j∈Ni

δij ·Aij · vectorj (4)

vector
(t)
i = GRU(vector

(t−1)
i ,m

(t)
i) (5)

Training Procedure: During training, CAN utilizes graph em-
bedding module and linear transformation layers to update the
parameters and node vectors ofvector1 tovectorK . Specifically,
each training iteration will conduct a node state information
propagation process. Suppose that CAN uses the i-th row of the
matrix M×K (i.e., [yi1,yi2,...,yiK]) and its error vector (i.e., ei).
For yij , yij = 1 means that node vj is executed by the test case i
(i.e., Ti), and CAN feeds its node vector vectorj into the neural

network; yij = 0 means that node vj is not executed by Ti, and
CAN feeds zero vector into the neural network. After executing
test case Ti, we choose the executed failure-inducing statements
of Ti and feed their corresponding node vectors into the GNN
components and conduct the node state information propagation
process while keeping the node vectors of those unexecuted
failure-inducing statements unchanged (i.e., the values are the
result of the last training step). After node state information
propagation process, there are linear transformation layers to
output the result oi (i∈{1,2,...,M}), the value of which ranges
from 0 to 1. oi has a difference with the corresponding target
vector ei, and the difference is the loss between the output layer
and target. CAN will iterate the above process by traversing from
the 1st to the last row of the matrix M×K and its error vector
one by one, and using back propagation algorithm to update the
parameters of the model and node vectors of vector1 to vectorK
in graph G. Thea goal is to minimize the loss between training
result o and error vector e. The algorithm goes forward from
the input components calculating the outputs of each layer up
to the output layer. Then it starts calculating derivatives going
backwards through the layers and propagating the results to do
less calculation by reusing all of the elements already calculated.
We repeat the training of the model with the matrix M×K until
the loss is small enough to reach convergence. Thus, the number
of times of each test case selected during training is almost the
same. As a reminder, according to the recent studies [59], [60],
different types of test cases have different impacts on fault local-
ization effectiveness, and thus the number of times of each test
case selected during training may affect the learning outcome.
Studying the impact of test cases on the learning process is
another research direction that we leave for future work.

The learning rate impacts the speed of convergence. CAN
adopts dynamic adjusting learning rate (see (6)) for two reasons.
First, it can make large changes at the beginning of the training
procedure when larger learning rate values are used. Second, it
can decrease the learning rate with a smaller training updates
for computing weights later, resulting in accurate weights more
quickly. In (6), one Epoch means completing all training data
once, LR represents learning rate, DropRate is the amount that
learning rate is modified each time, and EpochDrop is how often
to change the learning rate.

LR = LR ∗DropRate(Epoch+1)/EpochDrop (6)

D. Suspiciousness Evaluation With Trained Model (Testing
Phase)

After obtaining the parameters of the model and the embed-
ding of failure-inducing statements, the training process will
learn a model with trained node vectors, reflecting the complex
nonlinear relationship between the execution of a statement and
a failure with the consideration of the statement dependencies.
Thus, as shown in Fig. 5, we construct K one-hot statement
coverage vectors as the testing dataset, with a size equal to the
number of the failure-inducing statements, where each one-hot
vector only covers one statement. Specifically, for a one-hot
vector one-hoti, xi =1 means that the i-th statement of the
failure context (i.e., the failing-inducing statements) is the only

Fig. 6. An example illustrating CAN (modeling failure context as graph).

Fig. 7. An example illustrating CAN (training and testing).

one element that is covered. When the one-hoti is inputted to the
trained model, the output is the estimation of execution result of
being a failure by covering only the i-th statement of the failure
context. The value of the result is between 0 and 1. The larger
the value is, the more likely it is that the statement only covered
by the one-hoti is the buggy statement to cause a failure. In this
way, we can evaluate the suspiciousness of each statement being
faulty by inputting the one-hot statement coverage vectors into
the trained model. For those statements not in the failure context,
CAN will assign the lowest suspiciousness value to them. When
we encounter two or more erroneous statements, GNN may rank
them with one above the other and we recognize the one with
the higher rank as the final result. In different runs, the rank may
be different but in a relatively small fluctuation range.

E. An Illustrative Example

Figs. 6 and 7 illustrate a faulty program P with 8 statements
that contains a faulty statement S4 to show how CAN works.
Fig. 6(a) presents a program P with a faulty statement S4.
Fig. 6(b) shows 6 test cases with T2 and T3 being the failing
test cases. Since the failing test cases of T2 and T3 have the
same smallest number of executed statements, we randomly
choose T3 to construct the failure context. Fig. 6(c) shows the
dynamic slice result of program P with the test case T3 (i.e.,
the failure context), in which six statements are included while
two ones are not included. We could observe the relationships
among the statements in the slice result, S1, S3, S4, S5 and S6

affect the output value of variable z at S8. Fig. 6(d) illustrates
graph of program P (i.e., the graph representation of the failure

context), which lists the statements in the slice along the program
dependence edges including both data dependencies and control
dependencies from the starting point.

Fig. 7(e) shows the training process of CAN. CAN converts
the program dependency graph of failure-inducing statements
into the adjacency matrix and input it to GNN model. Then
it trains the GNN model with the coverage data and inputs
the errors vector into the target vector. There are 6 vectors
representing the node embeddings of 6 statements on the graph.
For example, S1 is a node on the graph of program P, vector1
is S1’s node embedding. Concretely, according to T1=[1, 1, 1,
1, 1, 1] and its test result 0 on the right side of Fig. 6(b), we
input (vector1, vector2, vector3, vector4, vector5, vector6)
with the target 0 to the model; according to T2=[1, 1, 1, 1, 1, 1]
and its test result 1, we input trained (vector1, vector2, vector3,
vector4, vector5, vector6) of the last step with the target 1 to
the model; according to T3=[1, 1, 1, 1, 1, 1] and its test result 1,
we input trained (vector1, vector2, vector3, vector4, vector5,
vector6) with the target 1 to the model; according toT4=[1, 1, 1,
1, 0, 1] and its test result 0, we input trained (vector1, vector2,
vector3, vector4, zero vector, vector6) with the target 0 to the
model; according to T5=[1, 1, 1, 1, 0, 1] and its test result 0, we
input trained (vector1, vector2, vector3, vector4, zero vector,
vector6) with the target 0 to the model; according toT6=[1, 1, 1,
1, 0, 1] and its test result 0, we input trained (vector1, vector2,
vector3, vector4, zero vector, vector6) with the target 0 to the
model. Repeat training the network with these data until the
loss is small enough and reaches the condition of convergence.
According to the small number of statements in this example, we
set the convergence condition as that the value of loss between
training result o and error vector e does not decrease for five
epochs. After training, the GNN model reveals the complex
nonlinear relationship between the statement embeddings in the
graph and failures.

Finally, CAN constructs 6 one-hot statement coverage vectors
(see Fig. 7(f)), where each only covers one statement. We input
a one-hot vector into the trained network, and the output is
the suspiciousness of the statement covered by the one-hot
vector. For example, we input the one-hot vector one-hot1 =
[1, 0, 0, 0, 0, 0] into the trained network, and the output is the
suspiciousness of S1, i.e., 0.6. In the same way, we could
compute the suspiciousness of other statements. SinceS2 andS7

are not included in the failure context, CAN assigns the lowest
suspiciousness value to them, i.e., the value of 0. As depicted in
Fig. 7(g), there is a ranked list of all statements in descending
order of suspiciousness: (S4, S1, S3, S5, S6, S8, S2, S7). The
faulty statement S4 is ranked in the first place.

IV. EXPERIMENTS

A. Experimental Setup

Benchmarks: The experiments use the widely used large-
sized programs (e.g., [1], [2], [12], [13], [14], [46]) in fault
localization, reflecting characteristic of practice and enabling
comparable and reproducible studies. Table II summarizes the
subject programs. For each program, it depicts a brief func-
tional description (column ‘Description’), the number of faulty

versions (column ‘Versions’), the number of thousand lines of
statements (column ‘KLOC’), and the number of test cases
(column ‘Test’). The first 4 programs [61] (i.e., chart, math,
lang, and time) are from Defects4J.8 The python, gzip and libtiff
are collected from ManyBugs.9 The space and the four separate
releases of nanoxml are acquired from the SIR.10

We use JSlice, Javaslicer and WET for slicing Java and C
Programs respectively. These tools cannot slice some faulty
versions (e.g., all faulty versions of Closure in Defects4J), and
we remove these versions in our evaluation.

Baselines: Prior studies [12], [37], [43], [44] have conducted
theoretical [43], [44] and empirical analysis [12] on finding the
optimal SFL formulas and their combination, i.e., Ochiai, ER5,
GP02, GP03, Dstar, GP19 and ER1, MULTRIC. Furthermore,
the recent results [13], [14], [16], [62] on DLFL have identified
four representative and effective ones, i.e., MLP-FL, CNN-FL,
BiLSTM-FL and DeepRL4FL. Therefore, the experiments use
the 12 state-of-the-art fault localization approaches as the base-
lines. We implement the 12 baselines including the parameters
as described in their publications.

Parameter settings and environment: We apply a grid search to
identify the best settings of hyper-parameters: the initial learning
rate l is tuned in {0.0001, 0.001, 0.002, 0.005, 0.01}, the dropout
rate d is searched in {0.98, 0.96, 0.95, 0.94, 0.93} and the batch
size β is in {10, 16, 32, 64}. To prevent overfitting, we tuned
the L2 regularization λ in {10−5, 10−3, 10−1}. We utilize adam
optimizer in CAN. The physical environment of the experiments
is on a computer containing a CPU of Intel I5-2640 with 128G
physical memory, and two 12G GPUs of NVIDIA TITAN X
Pascal. The operating system is Ubuntu 16.04.3. We computed
statistics of the data and plot display on the MATLAB R2016b.

B. Evaluation Metrics

We adopt 4 widely used metrics: Top-N Accuracy: [63], [64],
Mean Average Rank (MAR) [46], Mean First Rank (MFR) [46],
and Relative Improvement (RImp) [50], [65], [66]. A higher
value of Top-N Accuracy means better localization effectiveness,
while a lower value denotes better localization effectiveness for
the other 3 metrics.

Top-N Accuracy: It denotes the percentage of faults located
within the first N position of a ranked list of all statements in de-
scending order of suspiciousness returned by a fault localization
approach.

Mean Average Rank (MAR): It is the mean of the average rank
of all faults using a localization approach.

Mean First Rank (MFR): For a fault with multiple faulty
statements, locating the first one is critical since the others
may be located after that. MFR is the mean of the first faulty
statement’s rank of all faults using a localization approach.

Relative Improvement (RImp): It is to compare the total num-
ber of statements that need to be examined to find all faults using
CAN versus the number that need to be examined by using other
fault localization approaches.

8Defects4J, http://defects4j.org
9ManyBugs, http://repairbenchmarks.cs.umass.edu/ManyBugs/
10SIR, http://sir.unl.edu/portal/index.php

http://defects4j.org
http://repairbenchmarks.cs.umass.edu/ManyBugs/
http://sir.unl.edu/portal/index.php

TABLE III
TOP-N, MAR AND MFR COMPARISON OF CAN OVER 12 FAULT

LOCALIZATION APPROACHES

C. Experimental Results

Top-N Accuracy, MAR and MFR: Parnin and Orso [64] con-
ducted a user study of evaluating the usefulness of fault localiza-
tion techniques in assisting developers, and recommend using
the rank of the faulty statement to evaluate fault localization
effectiveness. Since then, Top-N, MAR and MFR are widely used
in fault localization. Afterwards comprehensive user studies
(e.g., [38], [63]) show that it useful to help developers in de-
bugging by setting Top-N within Top-5. For automated program
repair (APR), since the APR techniques generate patches in the
suspicious rank list from top to down and many APR techniques
(e.g., SimFix [67] and TBar [68]) set clear time limitation, the
improvement of Top-N, MAR and MFR metrics could also help
the APR techniques that rely on the suspicious rank list and have
limited time for each bug during the repair. Thus, our experi-
ments use Top-N (i.e., N=1, 3, 5), MAR, and MFR to compare
CAN with the 12 baselines. Table III presents their distribution
among 12 fault localization approaches. As shown in Table III,
CAN achieves very promising best localization effectiveness in
all 5 scenarios in comparison to the baselines. Specifically, CAN
can localize 4.62%, 20%, 29.23% faults when inspecting the
Top-1, Top-3 and Top-5 ranked statements, The MAR and MFR
are 49 and 75 respectively, achieving (127-49)/127=61.42% and
(215-75)/215=65.12% relative improvement over each best-
performing baseline respectively.

RImp distribution: For a detailed improvement, we adopt
RImp to evaluate CAN. Fig. 8 shows the RImp distribution of
our approach in two cases: the RImp on 12 fault localization
approaches in Fig. 8(a) and the RImp on 12 subject programs in
Fig. 8(b).

As shown in Fig. 8(a), the RImp score is less than 100% in
all approaches, meaning that CAN improves localization effec-
tiveness of all the fault localization approaches. The statements
that need to be examined decrease ranging from 12.99% in
BiLSTM-FL to 67.13% in DeepRL4FL. It also means that CAN,
in comparison to the other approaches, obtains a maximum sav-
ing of 87.01% (100%-12.99%=87.01%) in BiLSTM-FL and the
minimum saving is 32.87% (100%-67.13%=32.87%) in Dstar
which indicates that CAN can save from 32.87% to 87.01% of
the number of statements examined among the fault localization
approaches.

Fig. 8. RImp distribution of CAN on fault localization approaches and subject
programs.

As shown in Fig. 8(b), the RImp score is less than 100%
in all subject programs, meaning that CAN obtains improve-
ments on all the programs. The statements that need to be
examined decrease ranging from 2.87% in python to 58.66%
in nanoxml_v1. It means that CAN needs to examine from
2.87% to 58.66% of statements that all the 12 fault localization
approaches need to examine for locating all faults of the program
python and nanoxml_v1, repsectively. Thus, CAN obtains a
maximum saving of 97.13% (100%-2.87%=97.13%) in python
and a minimum saving of 41.34% (100%-58.66%=41.34%) in
nanoxml_v1, which indicates that CAN can save from 41.34%
to 97.13% of the number of statements examined among all the
programs.

Statistical comparison: To investigate whether the difference
between the baselines and CAN is statistically significant, we
adopt Wilcoxon-Signed-Rank Test [69] with a Bonferroni cor-
rection [70], which is a non-parametric statistical hypothesis
test for testing the differences between pairs of measurements
F(x) and G(y). The experiments performed 12 paired Wilcoxon-
Signed-Rank tests by using the ranks of the faulty statements
as the pairs of measurements F(x) and G(y). Each test uses both
2-tailed and 1-tailed p-value checking at the σ level of 0.05.
Specifically, given a localization technique FL1, we use the list
of the ranks of the faulty statements using CAN in all faulty ver-
sions of all programs as the list of measurements of F(x), while
the list of measurements of G(y) is the list of the ranks of the
faulty statements using FL1 in all faulty versions of all programs.
Hence, in the 2-tailed test, CAN has SIMILAR effectiveness as
FL1 when H0 is accepted at the significant level of 0.05. And
in the 1-tailed test (right), CAN has WORSE effectiveness than
FL1 when H1 is accepted at the significant level of 0.05. Finally,
in the 1-tailed test (left), CAN has BETTER effectiveness than
FL1 when H1 is accepted at the significant level of 0.05.

TABLE IV
STATISTICAL RESULTS OF CAN OVER 12 LOCALIZATION APPROACHES

To further assess the difference quantitatively, we use the
nonparametric Vargha-Delaney A-test [71], to evaluate the mag-
nitude of the difference by measuring effect size (scientific
significance). For A-test, the bigger deviation of A-statistic
from the value of 0.5, the greater difference of the two stud-
ied groups. A-test of greater than 0.64 (or less than 0.36) is
indicative of ”medium“ effect size, and of greater than 0.71 (or
less than 0.29) can be indicative of a promising ”large“ effect
size [72].

Table IV shows the statistical results on this relationship,
where the cells show the A-test values and different rages of
p values of Wilcoxon-Signed-Rank Tests (i.e., ***p<0.001,
**p<0.01 and *p<0.05). The p values are all less than 0.05,
i.e., the ranks of the faulty statements of CAN are significantly
smaller than those of all the 12 baselines in all programs. In ad-
dition, CAN mostly arrives at the promising “large” effect size,
showing the significant amount of the difference between CAN
and the 12 localization approaches. Therefore, it is statistically
significant that CAN outperforms all the 12 baselines with a
BETTER conclusion.

Thus, based on all the results and analysis, we can safely
conclude that CAN significantly improves effectiveness of fault
localization, showing that graph neural networks are potential to
analyze and learn the transitive relationships of a failure context
for improving fault localization effectiveness.

V. DISCUSSION

A. Why is CAN Better?

The experimental results show that CAN outperforms 12
localization approaches. It is natural to seek the factors from the
characteristics of CAN over other architectures to understand
why CAN significantly improves fault localization.

Let us use the example in Fig. 6 to understand the character-
istics. SFL just uses the coverage information (i.e., a statement
executed or not executed) denoted as a 6 × 8 matrix in Fig. 6(b)
to identify the relationship between the statement and failures. It
does not consider the relationships among statements of causing
a failure. In addition to coverage information, CAN models a

failure context as a program dependency graph and then use
graph neural networks to successfully capture the error propaga-
tion path: S4→S5→S6→S8. When CAN trains the model, node
state information propagation process successfully simulates
the error propagation on the path S4→S5→S6→S8. Therefore,
from the above characteristics of CAN, learning the complicated
relationships in a context graph may be the key factor of CAN
in contributing to fault localization effectiveness.

To verify the above discussion, we conduct the following
experiments for two goals. One is to check whether learning the
transitive relationships contributes to localization effectiveness.
The other one is identify to what extent leaning the transitive
relationships contributes to localization effectiveness.

Does learning the transitive relationships of CAN contribute
to its effectiveness?: There are two types of relationships (i.e.,
edges): data dependencies and control dependencies. Thus, we
use three cases: 1) randomly removing some of the edges (i.e.,
data and control dependencies) of the original graph of a failure
context (denoted as CAN-R); 2) removing data dependencies
and keeping control dependencies of the original graph of a
failure context (denoted as CAN-C); 3) removing control de-
pendencies and keeping data dependencies of the original graph
of a failure context (denoted as CAN-D). Specifically, we ran-
domly remove 20%-40% edges of the original graph of a failure
context, and their removal will preserve the connectedness of the
graph, resulting a new connected graph. If learning the transitive
relationships in a context graph is a factor of CAN in contributing
fault localization effectiveness, the effectiveness of CAN with
the reduced graphs (i.e., CAN-R, CAN-C and CAN-D) should
decrease. Table V shows the statistical results of the comparison
of original CAN with the three cases in all programs using
Vargha-Delaney A-test and Wilcoxon-Signed-Rank Test at the
σ level of 0.05. As shown in Table V, all the p values are less
than 0.05 and the most A-test values belong to the “medium”
and “large” effect sizes. The results show that the effectiveness
of CAN with all three cases decrease.

Thus, the results show that learning the transitive relationships
in a context graph is a factor of CAN in contributing to fault
localization effectiveness.

TABLE V
STATISTICAL RESULTS OF CAN OVER CAN-R, CAN-C AND CAN-D

TABLE VI
AVERAGE SIZE AND VARIANCE OF A FAILURE CONTEXT IN EACH PROGRAM

To what extent does leaning the transitive relationships of
CAN contribute to its effectiveness?: We use the 12 baselines
working on a failure context without considering those state-
ments not in a failure context, and compare CAN with the 12
baselines using a failure context (denoted as baseline-context).
Since CAN and baseline-context work on the same failure con-
texts, if CAN significantly outperform the 12 baselines-context,
it means that CAN is more effective to learn the transitive
relationships whereas the 12 baselines is ineffective. It can
also show that learning the transitive relationships of CAN
significantly contributes to fault localization effectiveness. Fur-
thermore, Some may argue that CAN removes a set of statements
from the original program to construct a failure context (i.e., a
program slice).

First, the average size of a failure context is 21% of the
original programs, which is much more than the rank of the faulty
statements CAN outputs (e.g., see Table III). Table VI shows the
percentage which the average size of a failure context accounts
for each program and its variance. As shown in Table VI,
nanoxml_v1, nanoxml_v2, nanoxml_v3 and nanoxml_v5 have
larger percentage than the other programs. Since the program
dependency graph is constructed from the failure context (i.e.,
the slice), the failure context with a larger size may lead to more
redundant statements involved in the learning process. It can
affect the effectiveness of CAN. Thus, as shown in Fig. 8(b),
CAN in these programs has lower effectiveness (i.e., higher
RImp scores) as compared with the other programs. Further-
more, since the connectedness of the dependence matrix (i.e., the
failure context) should affect both the computational cost and the
sample efficiency of learning, Table VII shows the information
of the adjacency matrices including the average number and the
variance of the number of the outgoing branches per node in
each subject. As shown in Table VII, the average number and
the variance in all programs are 6.72 and 6.09, respectively.

Next, we further exclude slicing technique and use the graph
of original source code for CAN (denoted as CAN-rmSlice)

TABLE VII
AVERAGE NUMBER AND VARIANCE OF OUTGOING BRANCHES PER NODE IN

EACH PROGRAM

TABLE VIII
TOP-N, MAR AND MFR COMPARISON OF CAN OVER CAN-RMSLICE

to check whether a failure context (i.e., a slice) contributes
to the effectiveness of CAN. Due to the use of graph neural
networks, CAN collectively aggregates information from graph
structure [24], [25], i.e., the learning process of GNNs is to
update the parameters and hidden state of nodes by capturing
the dependencies of a graph via the message passing on edges.
Thus, the input graph in CAN should be a connected graph. How-
ever, the PDG of the whole program may consist of numerous
disconnected subgraphs, among which there are no correlations
with each other and no message passing behavior. It means
that when input the graph (i.e., PDG) of the whole program,
the learning process of CAN works not well and even cannot
reach a convergent result. To address the problem, we choose the
subgraph which has correlation with the faulty output for CAN.
Table VIII shows the comparison of CAN and CAN-rmSlice.
The results show that CAN outperforms CAN-rmSlice, showing
that a failure context (i.e., a slice) contributes to the effectiveness
of CAN.

Thus, it seems necessary to use slicing to construct a failure
context to extract the connected graph as small as possible while
deleting redundant statements, which could reduce the learning
noise for the model. It means that slicing could also focus the
model to the likely failure context and improve the scalability
of training. CAN uses a failing test case to construct a failure
context. Thus, it is natural to raise a question whether CAN
can be improved by using the relationships among different test
cases to construct a slice even if the slice has a larger size. Since
passing test cases do not show a failure, slicing is widely used
on failing test cases for debugging [2], [19]. Therefore, we use
the union of the slices of all failing test cases to represent the
relationships among different test cases. We compare CAN using
the union (denoted as CAN-U) with original CAN. Table IX
shows the statistical results of this comparison in all programs
using Vargha-Delaney A-test and Wilcoxon-Signed-Rank Test
at the σ level of 0.05. As shown in Table IX, all the p values are
less than 0.05 and all the A-test values belong to the promising
“large” effect size. The results show that original CAN per-
forms better than CAN-U. We observe that the average size of
original failure context is 27.46%, 23.49%, 25.21%, 24.79%,
57.78%, 19.37%, 79.33%, 78.14%, 84.57%, and 81.48% of the
union in libtiff, math, lang, python, space, time, nanoxml_v1,
nanoxml_v2, nanoxml_v3 and nanoxml_v5, respectively. Thus,
the reason may be that CAN already shows a complete failure

TABLE IX
STATISTICAL RESULTS OF CAN OVER CAN-U

Fig. 9. RImp distribution of five approaches related to the ablation experiments
of failure contexts.

TABLE X
STATISTICAL RESULTS OF CAN OVER 12 BASELINES-CONTEXT

with a smaller size beneficial for the learning process even if the
union considers the relationships among different test cases.

For a further evaluation, we adopt RImp to evaluate CAN
with the above five approaches (i.e., CAN-R, CAN-C, CAN-D,
CAN-rmSlice and CAN-U) related to the ablation experiments
of failure contexts. Fig. 9 shows the RImp distribution. The RImp
scores are all less than 100%, showing that CAN outperforms the
five approaches. The results are also consistent with the above
evaluation.

Finally, due to the noise reduction advantage of slicing, it
is also desirable to compare CAN with 12 baselines using a
failure context (denoted as baseline-context) to see whether
CAN outperforms 12 baselines using a failure context (i.e., a
sliced program). Table X shows the statistical results of CAN
versus each of 12 baselines-context using Vargha-Delaney A-test
and Wilcoxon-Signed-Rank Test at theσ level of 0.05. As shown
in Table X, all the p values are less than 0.05 and all the A-test

TABLE XI
STATISTICAL COMPARISON OF CAN OVER CAN-NODECONTENT

values belong to the promising “large” effect size. Thus, the
results also show it is statistically significant that CAN still
outperforms all the baselines on a failure context with a BETTER
conclusion.

Based on the above discussion, learning the transitive rela-
tionships of a failure context significantly contributes to effective
fault localization, serving as a key factor of CAN in significantly
improving fault localization.

B. How Do Other Variants Impact the Localization
Effectiveness of CAN?

Node content: There are several approaches that leverage
graph structure of codes in the software engineering tasks [33],
[73], [74], which consider node content as the initial represen-
tation of the nodes. Thus, we evaluate the contribution of node
content to the effectiveness of CAN by using various types of
representations in statements. Specifically, we use the “expres-
sion” type meaning a node contains an expression statement
(e.g., arithmetic expression, assignment expression, relational
expression and logical expression), the “function call” type
denoting a node includes a function call statement, the “control”
type representing a node includes a control statement (e.g., if,
while, do while, for, switch, break, goto, continue and return), the
“compound” type denoting a node includes a compound state-
ment, the “empty” type representing a node includes an empty
statement(e.g., idle loop). Table XI presents the statistical com-
parison of original CAN and the CAN with nodes embedding
various types of node content (denoted as CAN-NodeContent)
using Vargha-Delaney A-test and Wilcoxon-Signed-Rank Tests
at the σ level of 0.05. CAN acquires BETTER and SIMILAR
results, showing that node content contributes little to the effec-
tiveness of CAN.

Graph-based architectures: CAN uses GNN architecture be-
cause it has a simple yet effective structure which is easy
to be trained [25]. There are other representative graph-based
architectures with sophisticated structures, e.g., graph atten-
tion network (GAT) [75] and gate graph attention neural net-
work (GGANN) [76], [77]. It is interesting to see the effec-
tiveness of other representative graph-based architectures on
CAN. We use GAT (denoted CAN-GAT) and GGANN (denoted
CAN-GGANN) for CAN, and compare their effectiveness with
original CAN. Table XII presents the statistical results using
Vargha-Delaney A-test and Wilcoxon-Signed-Rank Test at the

TABLE XII
COMPARISON OF CAN OVER CAN-GAT AND CAN-GGANN

TABLE XIII
COMPARISON OF CAN OVER CAN-1LAYER AND CAN-3LAYERS

σ level of 0.05. CAN acquires BETTER and SIMILAR results,
showing that CAN has comparable effectiveness while the graph
embedding module of CAN had a simpler structure and easier
to be trained.

Furthermore, we compare the current CAN (i.e., 2-layers
graph neural network) with different layers (i.e., CAN-1Layer
and CAN-3Layers) to see whether different layers make a dif-
ference. CAN-1Layer and CAN-3Layers represent 1-layer and
3-layers graph neural network followed by a GRU, respectively.
Table XIII presents the statistical results among different layers

using Vargha-Delaney A-test and Wilcoxon-Signed-Rank Test
at the σ level of 0.05. The results show that CAN acquires SIM-
ILAR results over CAN-1Layer and CAN-3Layers in almost all
cases.

C. How Efficient is CAN?

The state-of-the-art localization techniques can be roughly
classified into two major types: SFL and DLFL. We discuss the
efficiency of CAN over the two major types of fault localization
techniques, respectively.

For SFL, its suspiciousness evaluation just analyzes the infor-
mation of a statement covered or not covered, and thus incurs a
very low overhead. Since CAN uses GNN to analyze a failure
context including the transitive relationships, its overhead is
much higher than SFL. However, without incorporating con-
textual information, the localization effectiveness of SFL is
significantly lower than CAN.

For DLFL, since CAN focuses on a failure context, its over-
head is much lower than the state-of-art DLFL techniques while
showing much higher effectiveness. For training time, CAN
consumes from 4.8 minutes to 53.4 minutes, and 20.7 minutes
on average while the four DLFL techniques (i.e., MLP-FL,
CNN-FL, BiLSTM-FL and DeepRL4FL) cost from 3.6 minutes
to 19.35 hours, and 4.67 hours on average.

VI. THREATS TO VALIDITY

Threats to internal validity: Threats to internal validity relate
to potential errors in our implementation. First, one potential
threat to validity is the potential errors in the implementation
of CAN and 12 baselines. To mitigate the threat, for the eight
SFL techniques (i.e., Ochiai, ER5, GP02, GP03, Dstar, GP19,
ER1, and MULTRIC), we implement them based on the widely
used SFL source code GZoltar ;11 for the four DLFL techniques
(i.e., MLP-FL, CNN-FL, BiLSTM-FL, and DeepRL4FL), we
reuse and enhance the source code from the previous stud-
ies [13], [14]. We also double-check the implementation and
fully test our code, still there could be errors that we did not
notice.

Threats to external validity: Threats to external validity relate
to generalizability of our results. We adopt neural networks,
whose outputs are not stable, meaning that the localization
results are not the same through different training times. That
drawback is caused by characteristic of deep learning technol-
ogy. To make the results more reliable, we follow the conven-
tional strategy by repeating the experiments ten times and using
the average score as the experimental results. Specifically, the
range of top-1 is from 4.43% to 4.78%, the range of top-3 is
from 18.14% to 23.39% and the range of top-5 is from 26.67%
to 30.32%.

Another threat to external validity is the subject programs
used for our experiments. Our subject programs are commonly
used in the field of software debugging, which are all from real-
life development. However, the experimental results may not
apply to all programs because there are still many unknown

11https://gzoltar.com/

and complicated factors in realistic debugging that could affect
the experiment results. Thus, it is worthwhile to conduct the
experiments on more large-sized programs to further strengthen
the experimental results.

Threats to construct validity: Threats to construct validity
relate to the suitability of our evaluation. One potential threat
is that we adopt Top-N Accuracy, MAR, MFR, and RImp as
the evaluation measures, and use Wilcoxon signed-rank test to
investigate whether the improvement of our proposed approach
over baselines is significant. The four evaluation metrics and
the Wilcoxon signed-rank test have been widely used in many
fault localization studies. According to the extensive use of
the measures and the Wilcoxon signed-rank test, the threat is
acceptably mitigated.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose CAN: context-aware neural fault
localization, to analyze and incorporate a failure context into
suspiciousness evaluation for improving fault localization. CAN
leverages program slicing to model a failure context denoted
as a program dependency graph; then it constructs a graph
neural network to analyze and learn the complicated relation-
ships among the statements in the failure context; finally it
uses the learned model to evaluate the suspiciousness of each
statement of being faulty. We conducted the experiments on 12
real and large-sized programs and compared CAN with the 12
state-of-the-art fault localization approaches. The results show
that CAN significantly improves fault localization effective-
ness. e.g., the improvement for the most important metric [63],
such as Top-5, as compared to the best-performing baseline
is 14.31%.

In future, we plan to study the impact of test cases on the
learning process and explore inter-procedural analysis to further
leverage the learning ability of graph neural networks in im-
proving fault localization. We also plan to compose our solution
with other solutions proposed in the literature (e.g., multi-modal
analysis [78], active learning [79]) and conduct a use study to
explore the usefulness of our work in practice.

REFERENCES

[1] L. Naish and Hua, “A model for spectra-based software diagnosis,” ACM
Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 1–32, 2011.

[2] W. E. Wong, R. Gao, Y. Li, A. Rui, and F. Wotawa, “A survey on software
fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8, pp. 707–740,
Aug. 2016.

[3] T. D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and spectrum
based bug localization: Better together,” in Proc. Joint Meeting Found.
Softw. Eng., 2015, pp. 579–590.

[4] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using PageRank,” in Proc. 26th Int. Symp. Softw. Testing
Anal., 2017, pp. 261–272.

[5] M. Zhang et al., “An empirical study of boosting spectrum-based fault
localization via PageRank,” IEEE Trans. Softw. Eng., vol. 47, no. 6,
pp. 1089–1113, Jun. 2021.

[6] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,” in
Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 82–92.

[7] S. Benton, X. Li, Y. Lou, and L. Zhang, “On the effectiveness of unified
debugging: An extensive study on 16 program repair systems,” in Proc.
IEEE/ACM 35th Int. Conf. Automated Softw. Eng., 2020, pp. 907–918.

[8] M. Papadakis and Y. L. Traon, Metallaxis-FL: Mutation-Based Fault
Localization. Hoboken, NJ, USA: Wiley, 2015.

[9] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: Automated
neural network model debugging via state differential analysis and input
selection,” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2018, pp. 175–186.

[10] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proc. IEEE/ACM 20th Int. Conf.
Automated Softw. Eng., 2005, pp. 273–282.

[11] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in Proc. IEEE Int. Conf. Softw. Qual. Rel.
Secur., 2017, pp. 114–125.

[12] S. Pearson et al., “Evaluating and improving fault localization,” in Proc.
IEEE/ACM Int. Conf. Softw. Eng., 2017, pp. 609–620.

[13] Z. Zhang, Y. Lei, X. Mao, and P. Li, “CNN-FL: An effective approach for
localizing faults using convolutional neural networks,” in Proc. IEEE 26th
Int. Conf. Softw. Anal. Evol. Reengineering, 2019, pp. 445–455.

[14] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and J. Wen, “Improving deep-
learning-based fault localization with resampling,” J. Softw. Evol. Process,
vol. 33, pp. 1–22, 2020.

[15] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham,
“Effective software fault localization using an RBF neural network,” IEEE
Trans. Rel., vol. 61, no. 1, pp. 149–169, Mar. 2012.

[16] Y. Li, S. Wang, and T. N. Nguyen, “Fault localization with code coverage
representation learning,” in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng.,
2021, pp. 661–673.

[17] R. Santelices, J. Jones, Y. Yu, and M. Harrold, “Lightweight fault-
localization using multiple coverage types,” in Proc. IEEE 31st Int. Conf.
Softw. Eng., 2009, pp. 56–66.

[18] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey of program
slicing,” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 2, pp. 1–36,
2005.

[19] Y. Zhang and R. Santelices, “Prioritized static slicing and its applica-
tion to fault localization,” J. Syst. Softw., vol. 114, no. Apr., pp. 38–53,
2016.

[20] E. Pira, V. Rafe, and A. Nikanjam, “Searching for violation of safety
and liveness properties using knowledge discovery in complex systems
specified through graph transformations,” Inf. Softw. Technol., vol. 97,
pp. 110–134, 2018.

[21] C. Sun and S. C. Khoo, “Mining succinct predicated bug signatures,” in
Proc. Joint Meeting Found. Softw. Eng., 2013, pp. 576–586.

[22] Z. Zuo, S.-C. Khoo, and C. Sun, “Efficient predicated bug signature mining
via hierarchical instrumentation,” in Proc. Int. Symp. Softw. Testing Anal.,
2014, pp. 215–224.

[23] D. Lo, H. Cheng, and X. Wang, “Bug signature minimization and fu-
sion,” in Proc. IEEE 13th Int. Symp. High-Assurance Syst. Eng., 2011,
pp. 340–347.

[24] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[25] J. Zhou et al., “Graph neural networks: A review of methods and applica-
tions,” 2018, arXiv:1812.08434.

[26] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

[27] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[28] Z. Li, X. Ding, and T. Liu, “Constructing narrative event evolutionary
graph for script event prediction,” 2018, arXiv:1805.05081.

[29] K. Marino, R. Salakhutdinov, and A. Gupta, “The more you know: Using
knowledge graphs for image classification,” 2016, arXiv:1612.04844.

[30] Z. Li et al., “VulDeePecker: A deep learning-based system for vulnerability
detection,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[31] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2244–2258,
Jul./Aug. 2022.

[32] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “VulDeeLocator: A deep
learning-based fine-grained vulnerability detector,” IEEE Trans. Depend-
able Secure Comput., vol. 19, no. 4, pp. 2821–2837, Jul./Aug. 2022.

[33] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 1–11.

[34] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combi-
natorial optimization algorithms over graphs,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 6348–6358.

[35] T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto, “Knowledge
transfer for out-of-knowledge-base entities: A graph neural network ap-
proach,” 2017, arXiv:1706.05674.

[36] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” ACM SIGPlan
Notices, vol. 25, no. 6, pp. 246–256, 1990.

[37] J. Xuan and M. Monperrus, “Learning to combine multiple ranking metrics
for fault localization,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2014, pp. 191–200.

[38] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2016, pp. 267–278.

[39] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A com-
prehensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[40] M. Wen et al., “Historical spectrum based fault localization,” IEEE Trans.
Softw. Eng., vol. 47, no. 11, pp. 2348–2368, Nov. 2021.

[41] J. A. Jones, “Fault localization using visualization of test information,” in
Proc. IEEE Int. Conf. Softw. Eng., 2004, pp. 54–56.

[42] A. J. C. V. G. R. Abreu and P. Zoeteweij, “An evaluation of similarity
coeffcients for software fault localization,” in Proc. IEEE 12th Pacific Rim
Int. Symp. Dependable Comput., 2006, pp. 39–46.

[43] X. Xie, T. Y. Chen, F. C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, 2013, Art. no. 31.

[44] X. Xie, F. C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably optimal
and human-competitive results in SBSE for spectrum based fault locali-
sation,” in Proc. Int. Symp. Search Based Softw. Eng., Berlin Heidelberg,
Springer, 2013, pp. 224–238.

[45] W. Zheng, D. Hu, and J. Wang, “Fault localization analysis based on deep
neural network,” Math. Problems Eng., vol. 2016, pp. 1–11, 2016.

[46] X. Li, W. Li, Y. Zhang, and L. Zhang, “DeepFL: Integrating multiple
fault diagnosis dimensions for deep fault localization,” in Proc. 28th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2019, pp. 169–180.

[47] Y. Lecun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, 2015, Art. no. 436.

[48] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic fea-
tures for defect prediction,” in Proc. 38th Int. Conf. Softw. Eng., 2016,
pp. 297–308.

[49] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced software
traceability using deep learning techniques,” in Proc. IEEE 39th Int. Conf.
Softw. Eng., 2017, pp. 3–14.

[50] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in Proc. IEEE Int. Symp. Softw. Rel., 2007,
pp. 137–146.

[51] W. E. Wong and Y. QI, “BP neural network-based effective fault localiza-
tion,” Int. J. Softw. Eng. Knowl. Eng., 2009, pp. 573–597.

[52] X. Li and L. Zhang, “Transforming programs and tests in tandem for fault
localization,” Proc. ACM Prog. Lang., vol. 1, no. OOPSLA, pp. 1–30, Oct.
2017.

[53] J. Sohn and S. Yoo, “FLUCCS: Using code and change metrics to improve
fault localization,” in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Testing
Anal., 2017, pp. 273–283.

[54] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE Trans.
Softw. Eng., vol. 47, no. 2, pp. 332–347, Feb. 2021.

[55] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in Proc. IEEE/ACM
29th Int. Conf. Automated Softw. Eng., 2014, pp. 127–138.

[56] Y. Lou et al., “Can automated program repair refine fault localization?
A unified debugging approach,” in Proc. 29th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2020, pp. 75–87.

[57] H. Hsu, J. A. Jones, and A. Orso, “Rapid: Identifying bug signatures
to support debugging activities,” in Proc. IEEE/ACM 23rd Int. Conf.
Automated Softw. Eng., 2008, pp. 439–442.

[58] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug
signatures using discriminative graph mining,” in Proc. 18th Int. Symp.
Softw. Testing Anal., New York, NY, USA, 2009, pp. 141–152.

[59] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and J. Wen, “Improving deep-
learning-based fault localization with resampling,” J. Softw., Evol. Process,
vol. 33, no. 3, 2021, Art. no. e2312.

[60] H. Xie, Y. Lei, M. Yan, Y. Yu, X. Xia, and X. Mao, “A universal data
augmentation approach for fault localization,” in Proc. 44th Int. Conf.
Softw. Eng., 2022, pp. 48–60.

[61] D. Jalali and M. D. Ernst, “Defects4J: A database of existing faults to
enable controlled testing studies for Java programs,” in Proc. Int. Symp.
Softw. Testing Anal., 2014, pp. 437–440.

[62] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and X. Zhang, “A study of
effectiveness of deep learning in locating real faults,” Inf. Softw. Technol.,
vol. 131, 2021, Art. no. 106486.

[63] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proc. 25th Int. Symp. Softw. Testing Anal.,
2016, pp. 165–176.

[64] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?,” in Proc. Int. Symp. Softw. Testing Anal., 2011,
pp. 199–209.

[65] V. Debroy, W. E. Wong, X. Xu, and B. Choi, “A grouping-based strategy to
improve the effectiveness of fault localization techniques,” in Proc. IEEE
Int. Conf. Qual. Softw., 2010, pp. 13–22.

[66] Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault localization
using program slices,” in Proc. IEEE Comput. Softw. Appl. Conf., 2012,
pp. 1–10.

[67] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting
template-based automated program repair,” in Proc. 28th ACM SIGSOFT
Int. Symp. Softw. Testing Anal., 2019, pp. 31–42.

[68] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proc. 27th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2018, pp. 298–309.

[69] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach, vol. 78. Hoboken, NJ, USA: Wiley,
2010.

[70] H. Abdi, “The Bonferonni and Šidák corrections for multiple compar-
isons,” Encyclopedia Meas. Statist., vol. 3, pp. 103–107, 2007.

[71] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proc. 33rd Int.
Conf. Softw. Eng., 2011, pp. 1–10.

[72] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” J. Educ.
Behav. Statist., vol. 25, no. 2, pp. 101–132, 2000.

[73] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet,” IEEE Trans. Softw. Eng., vol. 48,
no. 9, pp. 3280–3296, Sep. 2022.

[74] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proc. 29th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2021, pp. 292–303.

[75] P. Velickovic, G. Cucurull, A. Casanova, and A. Romero, “Graph attention
networks,” in Proc. Int. Conf. Learn. Representations, 2018, pp. 1–16.

[76] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence
neural networks,” in Proc. 4th Int. Conf. Learn. Representations, 2016,
pp. 1–20.

[77] J. Wu, J. Xu, X. Meng, H. Zhang, and Z. Zhang, “Enabling reliability-
driven optimization selection with gate graph attention neural network,”
Int. J. Softw. Eng. Knowl. Eng., vol. 30, no. 11n12, pp. 1641–1665,
2020.

[78] T. Hoang, R. J. Oentaryo, T.-D. B. Le, and D. Lo, “Network-clustered
multi-modal bug localization,” IEEE Trans. Softw. Eng., vol. 45, no. 10,
pp. 1002–1023, Oct. 2019.

[79] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization
leveraging simple user feedback,” in Proc. IEEE 28th Int. Conf. Softw.
Maintenance, 2012, pp. 67–76.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

