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Semantically Constitutive Entities
in Knowledge Graphs

Chong Cher Chia1[0000−0001−6053−4643], Maksim
Tkachenko[0000−0001−6687−0525], and Hady W. Lauw[0000−0002−8245−8677]

School of Computing and Information Systems, Singapore Management University
ccchia.2018@smu.edu.sg; maksim.tkatchenko@gmail.com; hadywlauw@smu.edu.sg

Abstract. Knowledge graphs are repositories of facts about a world. In
this work, we seek to distill the set of entities or nodes in a knowledge
graph into a specified number of constitutive nodes, whose embeddings
would be retained. Intuitively, the remaining accessory nodes could have
their original embeddings “forgotten”, and yet reconstitutable from those
of the retained constitutive nodes. The constitutive nodes thus represent
the semantically constitutive entities, which retain the core semantics of
the knowledge graph. We propose a formulation as well as algorithmic
solutions to minimize the reconstitution errors. The derived constitu-
tive nodes are validated empirically both in quantitative and qualitative
means on three well-known publicly accessible knowledge graphs. Exper-
iments show that the selected semantically constitutive entities outper-
form those selected based on structural properties alone.

Keywords: semantically constitutive · knowledge graph · embeddings.

1 Introduction
Graphs are predominantly used to represent real world data, including social
networks, citation network, hyperlink network, etc. One important analysis deals
with determining which vertices are the most ‘important’ in a graph. Because
the essential nature of graphs is the very connectivity among its vertices, this
notion of ‘importance’ is frequently formulated in terms of how well a vertex is
connected to others in the graph, giving rise to notions such as centrality [4] and
influence maximization [25] that would be further explored in related work.

In this work, we are interested in knowledge graphs, a machine-friendly way
of representing real world facts. These facts are extracted from various sources
such as encyclopedic Wikipedia [33], lexical WordNet [14], or even the open Web
[34]. The use of knowledge graphs have been extended to applications including
question answering [21], recommendations [52], fact-checking [8], etc.

Given its pertinence and myriad applicability, we explore notions of what
make a vertex ‘important’ in a knowledge graph. In addition to the graph-
theoretic sense of connectivity, another essential nature of a knowledge graph
is its semantics. Every triplet instance involving a head entity, relation, and tail
entity represents a fact, the totality of which collectively represents our semantic
understanding of an underlying ‘world’. Suppose we retain only a subset of the
entities; which subset best preserves our semantic understanding of the ‘world’?

For a concrete representation of semantics, we allude to knowledge graph em-
beddings [51], which embeds entities and relations into continuous vector spaces.
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The plausibility of facts (triplets) can then be assessed from the embeddings of
the corresponding entities and relations. In this work, we assume that such em-
beddings have been derived and specified as input to our problem.

As output, we seek to identify a relatively small subset of (“constitutive”)
entities, whose embeddings would be used to reconstitute the remaining (“ac-
cessory”) entities. To remain true to the raison d’être of a knowledge graph, this
reconstitution is faithful to a known fact (triplet) within the graph.

Fig. 1: Subgraph Using 1 or 2 Constitutive Nodes

This concept is illustrated by the knowledge graph subset in Figure 1, where
constitutive nodes (top) are connected to accessory nodes (bottom) by relational
edges (in this case Genre). Embeddings of accessory nodes can potentially be “for-
gotten”, and “reconstituted” by constitutive nodes. For example, we could use a
single constitutive node (Michael Jackson) to reconstitute all the accessory nodes
(solid edges only). While compact, it is not sufficient for distinguishing differ-
ent musical genres, and using two constitutive nodes produces more informative
reconstitutions (John Mayer, Michael Jackson both produce Soul Music).

Contributions. In this work, we make several contributions.
– The problem of identifying semantically constitutive entities in a knowledge

graph is novel, and distinct from existing work solely focused on structural
connectivity. We propose a reconstitution function consistent with transla-
tional embeddings, and produces interpretable reconstitutions by virtue of
being supported by actual triplets within the knowledge graph.

– We propose a new algorithmic formulation to identify constitutive nodes,
as well as the selection of triplets for each reconstitution. While related to
matching or assignment problems, our formulation is novel in allowing up to
k constitutive nodes per accessory node. We describe algorithmic solutions
based on Integer Linear Programming (ILP), and propose heuristics that
speed up the computation particularly for larger graphs.

– We experiment on 3 well-established knowledge graphs, outperforming base-
lines both quantitatively (downstream tasks), and qualitatively (user study).

– We make our code publicly available1 for reproducibility.

2 Related Work
Node Centrality Finding the “important” nodes in a graph had previously been
approached from structural connectivity. One class of techniques referred to as
point centrality looks at the quality of an individual node that makes it most
central. There are primarily three categories of point centrality measures: local
centrality, iterative centrality, or global centrality [48]. Local centrality measures
centrality by local network topology. A common metric is Degree Centrality,
1 https://github.com/PreferredAI/semantically-constitutive-entities
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which ranks each node based on the number of edges in the graph. For directed
graphs, the in-degrees or out-degrees of a node may be used. Another well-known
local centrality metric is h-index [19,26], where a node has index h if it has at
least h neighbouring nodes of h degree. Iterative centrality metrics measure a
node’s centrality through some (possibly fixed) number of iterative calculations.
One such metric is Eigenvector Centrality [1,2], which repeatedly updates the
centrality for each node based on the centrality of its neighbours. PageRank [40]
builds on Eigenvector Centrality by dampening the influence of further neigh-
bours on the centrality of a given node. Global centrality measures a node’s
centrality in the context of the entire network topology, such as Betweenness
Centrality [16], derived from the number of shortest paths passing through it.

In the experiments, we compare against representative point centrality met-
rics, such as degree centrality and PageRank. Such point centrality measures
select nodes based on its individual quality. In our problem, we seek to select
a group of constitutive nodes. Hence, we compare against the group version of
these metrics in the experiments. For example, compared to PageRank that se-
lects nodes individually, another formulation of influence maximization seeks to
identify a group of “influential” nodes based on their ability to affect other nodes
within the graph, in order to maximize social influence [25]. Although NP-hard,
algorithms such as SSA guarantee a (1−1/e−ϵ)-approximate solution [20,37,38].

Knowledge Graph A core concept in our work is the representation of se-
mantic information within a knowledge graph. Such representations commonly
take the form of Knowledge Graph Embeddings, as discussed in [24]. One class
of Knowledge Graph Embeddings are linear/bilinear models, as exemplified by
TransE [3], which represents relations between two entities as the translation
of one point within the embedding space to another. Given a triplet (h, r, t)
representing the head entity, relationship, and tail entity respectively, TransE
minimizes the L1/L2 distance between h + r and t. Other Translational Knowl-
edge Graph Embeddings have since been proposed, such as TransH [53] which
extends the translation operation onto a hyperplane, and TransD [23] which uses
separate mapping matrices for the head and tail entities, and each projection is
defined by both the entity and relation embeddings.

Other classes of embeddings include factorization models (e.g., RESCAL
[39], LFM [22]), neural network models (e.g., ConvE [12], ConKB [36]), and
transformer-based models (e.g., CoKE [50], KG-BERT [54]).

Inductive Knowledge Graph Completion [11,18,30,49] generates embeddings
for unseen entities. This is done from combining embeddings of known entities,
and is therefore not comparable with our work.

Another widely studied aspect of knowledge graphs is the summarization of
such graphs, typically through the addition and/or removal of nodes (as dis-
cussed in [31]). Summaries typically take the form of either a supergraph or a
sparsified graph. Supergraphs refer to graphs where the (super)nodes and (su-
per)edges are a collection of nodes/edges from the original graph, and may be
obtained by grouping nodes [13,41,42,56] or identifying patterns within the orig-
inal knowledge graph [6,9,55]. Supergraphs do not retain the entities and edges
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of the original graph, and are therefore not comparable with our work. Sparsified
graphs are subsets of the original knowledge graph, and reduce the number of
nodes and/or edges as compared to the original knowledge graph. This may be
accomplished by the introduction of “compressor nodes” [32] or “virtual nodes”
[5] to the graph for (edge) dedensification. Other techniques may require a query
to base the summary, such as Ontovis [44] or Egocentric Abstraction [28].

3 Semantically Constitutive Entities
Our goal, as stated in Section 1, is to select a (user-specified) number of consti-
tutive nodes from a given knowledge graph. Graph embeddings of constitutive
nodes can be used to reconstitute non-selected (i.e., accessory) node embeddings.

Problem Definition A knowledge graph G = (E,R, T ) consists of a set of
entities E, relations R, and relational triples T ⊂ E×R×E. Triple (h, r, t) ∈ T
indicates that relation r is present between head h and tail t entities. Let H( · )
return the corresponding embeddings for entity or relation. For a given target
size P, we seek to select a semantically constitutive graph Ĝ = (Ê, R̂, T̂ ) that ties
subset of constitutive entities Ê ⊂ E with the accessory entities Ê′ via relations
R̂ ⊆ R: T̂ ⊂ Ê ×R× Ê′. Formally, we seek to solve the minimization problem:

argmin
Ĝ:|Ê|=P

∑
e∈Ê′

d(H(e), f(e|Ĝ)), (1)

where d is a distance function on embeddings (L2 in this work) and f(e|Ĝ)
reconstitutes the accessory node e from entities and relations in Ĝ.

To define a particular reconstitution function f( · |Ĝ), we draw on the knowl-
edge graph embedding training procedures: a family of related models (Trans*)
learn embeddings by treating the relations between entities as translations be-
tween two points in a high-dimensional space, which effectively turns into the
following equation: H(h) + H(r) ≊ H(t). A target entity e in principle can be
reconstituted using multiple head entities and relations as long as we have an
appropriate relation between them:

f(e|Ĝ) =
∑

(h,r,t)∈T̂

[
1t=e · (H(h) + H(r))

]/ ∑
(h,r,t)∈T̂

[
1t=e

]
, (2)

where 1t=e is 1 when t and e refer to the same node and 0 otherwise.
We also experimented with the use of deep neural networks, such as Multi-

Headed Attention [47] encoders, as the basis for an alternate reconstitution func-
tion, in order to allow varying levels of reconstitution importance for each con-
stitutive node. However, such networks are challenging to train as modelling
reconstruction from an unordered set of constituent node/relation pairs is com-
plex. Furthermore, it is not clear how we can retain the translational embedding
relationships in such approaches. As such, we opt to use Equation 2, which is
simple and effective for accessory node reconstitution in our experiments, and
leave the exploration of alternative reconstruction functions for future work.

Optimization The optimization problem above is similar to the well-known
P-Median Problem (PMP) [10], which selects P facilities such that the total
cost of serving all locations is minimized. However, PMP covers only a basic
scenario where each accessory entity must be reconstituted with only a single
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semantically constitutive node, which is too limiting (as noted in Section 1). It
is also not feasible to use a fixed number of constitutive nodes, simply because
there may not be sufficient triplets in G to reconstitute each accessory node.
Thus, we introduce “phantom” nodes, which “reconstitutes” any accessory node
at a higher cost. These phantom nodes serve as padding nodes for the entities
with low in-degree and are discarded after selection process is completed.

Given that all nodes in G are both facilities and locations, we allow facilities
to serve themselves without cost, mirroring the memorization of retained con-
stitutive node embeddings. We update the constraint on location assignment to
allow exactly G facilities to serve the same location, mirroring accessory node
reconstitution with multiple constitutive nodes, and introduce “free” facilities
which serve locations that are also facilities at no cost.

Let P be the desired number of facilities, and G be the maximum number
of constitutive nodes used to reconstitute a given accessory node. Given a set
of locations I = E, the set of facilities J is defined as J = I ∪ P ∪ F , where
P = {p1, p2, . . . , pG} and F = {f1, f2, . . . , fG−1} are the set of phantom and free
nodes respectively with I, P , and F being mutually disjoint.

Let X be the facility assignment matrix, such that Xij = 1 if location i is
served by facility j, and 0 otherwise. Y is the facility opening matrix, such that
Yj = 1 if facility j is open, and 0 otherwise. Cij denotes the cost of serving loca-
tion i from facility j. For the nodes i and j from the knowledge graph G, such
that (i, r, j) ∈ T for some r, we define the cost consistently with the reconstitu-
tion function: d(H(i) + H(r),H(j)). If an entity pair has multiple relations, we
select the relation that minimizes distance, and denote it as Rij . Free facilities
serve locations at no cost (i.e., Cij = 0) for any j ∈ F . We arbitrarily set a high
cost (α ≥ 1) for phantom nodes to encourage the preferential selection of real
entities, and discard both free and phantom nodes post-selection.

Cij =



min
(j,r,i)∈T

d(H(j) + H(r),H(i)) if ∃r ∈ R : (i, r, j) ∈ T,

α max
(j,r,i)∈T

d(H(j) + H(r),H(i)) if j ∈ P,

0 if i = j or j ∈ F,

+∞ otherwise,

(3)

Since PMP is known to be NP-hard, we use an Integer Linear Programming
(ILP) solver (i.e., Gurobi [17]) to find an approximate solution:

min
∑
i∈I

∑
j∈J

CijXij subject to (4)

∑
j∈J

Xij = G ∀i ∈ I (5)

∑
j∈I

Yj = P (6)

Xij ≤ Yj ∀i ∈ I, j ∈ J (7)

Xiĵ ≥ Yi ∀i ∈ I, ∀ĵ ∈ F (8)

Yj ∈ {0, 1} and Xij ∈ {0, 1} ∀i ∈ I, j ∈ J (9)
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Having a solution to the program above, we can generate the semantically
constitutive graph Ĝ = (Ê, R̂, T̂ ) from X, Y , and R, where Ê = {e ∈ I|Ye = 1},
R̂ = {Rij |i, j ∈ I} and T̂ = {(h,Rht, t)|h ∈ Ê, t ∈ Ê′}.

Approximation While it is possible to obtain an integer solution directly,
we observed that a 2-step procedure achieves slightly better performance at the
cost of marginally higher computational costs. We first solve a relaxed version of
the problem where the Equation (9) is removed. This results in a partial solution
Ȳ containing fractional assignment of facilities. We replace the facility set J in
the original program with a restricted set J̄ = {i : Ȳi ≥ ϵ}, and solve the new
program directly. In our experiments, we default to the 2-step procedure, and
set ϵ = 0.01 to discard non-significant facilities.

Discussion We note that our problem definition is distinct from the Ca-
pacitated P Median Problem [15,35,45], which limits the number of locations
allowed in each cluster. Our work, conversely, increases the number of clusters
each location can belong to, and is therefore not comparable. We also note that
phantom (P) and free nodes (F) are artificial constraints, and are removed in Y .

4 Experiments
Our experimental objective is to validate whether paying attention to the se-
mantics in the selection of semantically constitutive entities within a knowledge
graph would outperform baselines that focus primarily on structural centrality.

4.1 Experimental Setup
Datasets We experiment on publicly-available datasets (Table 1) which are
common benchmarks for evaluating Knowledge Graph Embeddings.

Table 1: Dataset Summary
Dataset # Entities # Relations # Training Triples # Validation Triples # Testing Triples

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
CoDEx-L 77,951 69 551,193 30,662 30,662

FB15k-237 FreeBase is a knowledge base containing general facts, and con-
tains reversible (i.e., symmetric) relations. The FB15k-237 dataset [3,46] is a
collection of FreeBase triples which retains only a single copy of reversible rela-
tion pairs, preventing information leakage during downstream evaluation.

WN18RR WordNet is a knowledge base consisting of different usages of a
given word ("senses"), as well as the lexical relations between these "senses".
The WN18RR dataset is selected from a collection of WordNet triples [3], where
reversible relations have been removed in the same manner as FB15k-237 [12].

CoDEx Wikipedia is a crowdsourced encyclopedia that is openly edited. The
CoDEx dataset is sampled from Wikipedia using a selection of seed entities and
relations [43]. We use CoDEx-L, the largest version of CoDEx.

Baselines We compare our semantically constitutive nodes to nodes selected
by the graph centrality approaches that focus on structural connectivity:

Point Centrality We expect that highly connected nodes are better suited
for accessory node reconstitution as compared to low degree nodes, due to the
larger number of possible reconstitutions. We calculate the degrees for all nodes
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in each dataset, and select the top k nodes as a baseline. We experimented with
using in-degrees (Point-In-Centrality) and out-degrees (Point-Out-Centrality)
for selection, and observed that the latter generally performs better.

Group Centrality Point Centrality approaches prioritizes nodes within a dense
subgraph at the expense of sparser nodes, as they are selected based on local
network topology. We attempt to address this by selecting the nodes iteratively
in a greedy fashion; after a node ei is selected, we remove edges to/from ei from
the degree counts of the remaining nodes, stopping after we have selected k nodes
or after all edges have been removed. In the latter case, we then randomly select
nodes to ensure that there are k facilities. We note that this is similar to the
SingleDiscount heuristic [7]. We report the results when using only in-degrees
(Group-In-Centrality) and out-degrees (Group-Out-Centrality), as above.

Eigenvector Centrality We observe that the above baselines only consider the
centrality of each node (i.e., degree), and places no weight on the influence of
their neighbours. We therefore also compare to PageRank2, which considers both
the centrality as well as neighbouring influence when ranking node importance.

Influence Maximization We note that PageRank ranks nodes individually,
and may therefore not return the best group of nodes. Our last baseline selects
a group of nodes which maximizes the social influence of the group. As this is an
NP-Hard problem [25], we use the SSA algorithm (Linear Threshold, ϵ = 0.03,
δ = 0.01), which guarantees a (1− 1/e− ϵ)-approximate solution [20,37,38].

Embedding Models As our focus is on reconstruction, we obtain embed-
dings from the OpenKE implementation and suggested parameters for TransE,
TransH and TransD. We target P to be a similar proportion (30%) of entities (7K
for CoDEx-L, 4K for FB15k-237, 9K for WN18RR) in all following experiments.

4.2 Quantitative Comparisons

A measure of quality is the ability of the selected nodes to retain the semantic
meaning of accessory nodes. As we use knowledge graph embeddings to represent
node semantics, we turn to knowledge graph embedding evaluation tasks.

Link Prediction Knowledge graph embedding quality is commonly com-
pared via downstream task such as the well-known Link Prediction task. We
form embeddings for each node selection by replacing the embedding for dis-
carded entities with the reconstituted embedding. We use the (filtered) Link
Prediction Task [3,53]. Given a true testing triple (ĥ, r̂, t̂), we wish to rank t̂

given (ĥ, r̂) amongst the set of testing entities Ẽ (or ĥ given (r̂, t̂)).
Table 2 shows the experimental results for each dataset, where Hit@10%

(of entities in the dataset; similar results observed for Hit@5%) is used as met-
ric to facilitate comparison between differently-sized datasets. The first line is
the performance of the original (i.e., full-sized) TransE embeddings. Subsequent
lines are performances (relative to the original, in percentage) of each selection
method. Semantically-Constitutive consistently achieves a higher Hit@10% as
compared to the baselines in all cases for FB15k-237 and WN18RR. For CoDEx-
L, Semantically-Constitutive outperforms most baselines, tying with one.
2 Adapted from https://github.com/louridas/pagerank, a = 0.85, c = 1× 10−32

https://github.com/louridas/pagerank
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Table 2: Link Prediction Task Hit@10%, Relative % to Original
(TransE Embeddings, Higher is Better)

Model FB15k-237 WN18RR CoDEx-L
Original 0.968 0.755 0.989

Point-In-Centrality 80.5 35.0 7.3
Point-Out-Centrality 86.1 37.3 24.9
Group-In-Centrality 78.7 40.0 7.2

Group-Out-Centrality 86.6 41.9 25.1
SSA 71.1 25.4 14.3

PageRank 77.1 39.3 6.1
Semantically-Constitutive 87.9 43.2 25.1

Multiple Node Reconstitution We now study the effect of multiple nodes
for reconstitution, which is controlled by the parameter G. We expect that larger
G allows reconstitutions to better capture the semantic meaning of the accessory
entity, as shown in Section 1. We conduct an ablation study for each dataset,
by reducing the number of reconstitution nodes allowed (from G = 10) from
the same partial solution Ȳ (as described in Section 3), and repeat the Link
Prediction task with the resulting reconstitutions (Table 3).

We observe that while the Hit@10% generally remains fairly consistent as
G is reduced for all models, small but noticeable differences in performance can
be observed. For example, in FB15k-237, Semantically-Constitutive outperforms
all baselines at every G level. Next, we observe that the best performance for
Semantically-Constitutive is at G−4 (88.29%). This suggests that the number
of constitutive nodes G can be tuned to best utilize the selected semantically
constitutive nodes, improving downstream performance. WN18RR shows similar
improvements (G−2, 43.29%), but CoDEx-L performance is flat across G.

Embedding Models Lastly, although not the focus of our work, we study
the generalizability of our approach. We replace the entity embeddings with the
encoding representations from translational knowledge graph embedding models
such as TransH and TransD, and show the Hit@10% for WN18RR in Table 4(con-
sistent results are observed for other datasets).

First, we observe that among the original embeddings, TransE performs the
best (0.755), while TransD (0.738) is able to outperform TransH (0.723). We
speculate that this is related to the choice of encoding representation function
f , which does not fully capture the translation operation in the TransH and
TransD training processes, and leave the selection of a suitable f as future work.

Turning to the baseline approaches, we observe that all models generally
perform at similar relative levels across the embedding models. Group-Out-
Centrality, the best performing baseline, achieves the best baseline performance
on TransE (41.90), similar to the performance of the full embeddings.

Lastly, we observe that while Semantically-Constitutive shows a similar drop
in relative performance on TransH (42.86) as compared to TransE (43.21), it
was able to achieve a minor improvement on TransD (43.47). We note that the
absolute performance of Semantically-Constitutive is still higher on TransE.
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Table 3: G Reduction Hit@10%, Relative % to Original
(TransE Embeddings, Higher is Better)

Model G = 10 G−1 G−2 G−3 G−4

FB15k-237
Original 0.968

Point-In-Centrality 80.5 80.5 80.5 80.4 80.4
Point-Out-Centrality 86.1 86.1 86.1 86.1 86.1
Group-In-Centrality 78.7 78.7 78.7 78.7 78.7

Group-Out-Centrality 86.6 86.7 86.7 86.7 86.7
SSA 71.1 70.9 70.9 70.0 70.9

PageRank 77.1 77.1 77.2 77.1 77.1
Semantically-Constitutive 87.9 88.0 88.1 88.2 88.3

WN18RR
Original 0.968

Point-In-Centrality 35.0 35.0 35.0 35.0 35.0
Point-Out-Centrality 37.3 37.3 37.3 37.0 37.0
Group-In-Centrality 40.0 40.0 40.0 40.0 40.0

Group-Out-Centrality 41.9 41.9 41.9 41.9 42.0
SSA 25.4 25.4 25.4 25.5 25.4

PageRank 39.3 39.3 39.3 39.3 39.3
Semantically-Constitutive 43.2 43.2 43.3 43.2 43.1

CoDEx-L
Original 0.968

Point-In-Centrality 7.3 7.3 7.3 7.3 7.3
Point-Out-Centrality 24.9 24.9 24.9 24.9 24.9
Group-In-Centrality 7.2 7.2 7.2 7.2 7.2

Group-Out-Centrality 25.1 25.1 25.1 25.1 25.1
SSA 14.3 14.3 14.3 14.3 14.3

PageRank 6.1 6.1 6.1 6.1 6.1
Semantically-Constitutive 25.1 25.1 25.1 25.1 25.1

Effect of Graph Size on Runtime. We study the effects of knowledge
graph size on runtime between Semantically-Constitutive and the “Direct” one-
step program. We sample (from 23,616 unique) CoDEx-L tail entities to between
23,000 and 14,000 (with intervals of 1,000), and retain only triples contain-
ing those sampled tail entities. We then run both “Direct” and Semantically-
Constitutive on these sub-graphs, and set P to 30% of the number of sampled
entities to ensure consistent difficulty. We report the mean runtimes on 5 sam-
ples in Figure 2 (labelled with the initial sample sizes, from 23K to 14K). As
discussed in Section 3, we observe that Semantically-Constitutive achieves a
general improvement in model performance at the expense of slightly longer
runtimes, particularly at smaller sampled sizes.

4.3 User Study
We conducted a user study to investigate the real-world informativeness of
Semantically-Constitutive, and expect Semantically-Constitutive to provide re-
constructions (i.e., relation between accessory and constitutive nodes) with higher
relevance due to the semantic reconstruction process. We first filter the CoDEx-L
dataset to retain only entities that have at least 10 unique edges. We then com-
pare Group-Out-Centrality (best performing baseline) to Semantically-Constitutive
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Table 4: Translational Knowledge Graph Embedding Hit@10%,
Relative % to Original (WN18RR, Higher is Better)

Model TransE TransH TransD
Original 0.755 0.723 0.738

Point-In-Centrality 35.0 35.8 33.9
Point-Out-Centrality 37.3 38.7 38.2
Group-In-Centrality 40.0 39.2 40.9

Group-Out-Centrality 41.9 41.3 41.5
SSA 25.4 25.0 25.1

PageRank 39.3 42.3 41.2
Semantically-Constitutive 43.2 42.9 43.5

Fig. 2: Model Runtime and Hit@10% on Sampled CODEXL

(TransE embeddings, G=10, Ĝ=3), and select accessory nodes where the triplet
relation is “occupation”3 and all 3 constitutive nodes differ. We randomly select
20 (from 45 total) such accessory nodes for the user study.

Each user was presented a accessory node (e.g., "Film Actor" in Table 5a)
in each question4, and asked to rank the relevance of all 6 constitutive nodes
(supplemented with their Codex-L description) on a five-level Likert Scale [29].
We compare the collected responses by assigning a score between -1 and 1 to
each level (Table 5b). Figure 3 shows the average score by 13 users5 for Group-
Out-Centrality (mean = 0.103) and Semantically-Constitutive (mean = 0.458)
on each question. We observe that Semantically-Constitutive (in red) generally
achieves a higher average score on all questions as compared to Group-Out-
Centrality (in blue), showing that the nodes selected by Semantically-Constitutive
is better related to the query occupation, and are therefore more informative.

Inter-rater Reliability Next, we wish to study the agreement between
different raters. Fleiss’ Kappa [27] is commonly used for understanding the inter-
rater reliability of ordinal rating data, and range from -1 to 1, with values above
0 indicate agreement (beyond chance) between the raters.

3 Selected in order to limit the obscurity of triplets in the user study
4 The order of questions and Likert items were randomized for every user.
5 This was the number of study participants who agreed to take part in the study.

They were neither co-authors, nor aware of the subject of this paper.
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Fig. 3: User Study Scores
Table 5: Example User Study Question ("Film Actor")

(a) Likert Items (Constitutive Node + Codex-L description)

Semantically-Constitutive Group-Out-Centrality
Robin Williams

(American actor and
stand up comedian (1951-2014))

John Cale
(Welsh composer, singer-songwriter

and record producer)
Justin Timberlake

(American singer, record producer,
and actor)

John Lennon
(English singer and songwriter,

founding member of The Beatles)
Nicolas Cage

(American actor)
A. R. Rahman

(Indian singer and composer)

(b) Ranking Options and Associated Score

Option Relevant Somewhat
relevant

Neither relevant
or irrelevant

Somewhat
irrelevant Irrelevant

Score 1 0.5 0 -0.5 -1

We first combine all “Relevant” and “Somewhat relevant” responses, and do
the same for “Neither relevant or irrelevant”, “Somewhat irrelevant” and “Irrele-
vant” classes. Next, we calculate the (2-Rater 2-Class) Fleiss’ Kappa for each pair
of raters, and average them. The expected Fleiss’ Kappa in this setting is 0.245,
which suggests that a random pair of raters would likely show fair agreement
(as suggested by [27]) on the (binary) relevance of each choice.

Next, we investigate the overall reliability of the User Study. We report that
the Multiple-Rater 5-Class Fleiss’ Kappa (0.119 > 0), indicates that there is
likely to be agreement amongst the raters.
4.4 Case Studies
Next, we show 2 subgraphs generated by Semantically-Constitutive on Codex-
L. Figure 4a shows the reconstruction of an accessory node {Angelina Jolie},
from two constitutive nodes, ({Girl, Interrupted} and {Billy Bob Thornton}).
Other triplets involving accessory nodes such as {Mr. & Mrs. Smith} are dis-
carded from the full knowledge graph. We also show accessory nodes that are
reconstituted by other constitutive nodes, such as {Brad Pitt} being reconsti-
tuted by {Moneyball}, {World War Z}, and {Interview with the Vampire}. This
subgraph shows how Semantically-Constitutive reconstitutes (specific) nodes by
combining multiple more general relations, such as being cast in a movie.

Figure 4b shows a subgraph from the CoDEx-L dataset, centered on the node
representing the constitutive node {Guy Ligier}. We also show nodes which are
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(a) Subgraph Centered on Accessory Node Angelina Jolie

(b) Subgraph Centered on Constitutive Node Guy Ligier

Fig. 4: Codex-L Case Studies
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reconstituted by {Guy Ligier}, other retained nodes, and reconstituted nodes
from these retained nodes. From Figure 4b, we can infer that {Guy Ligier}
was probably involved in rowing ({occupation}→{rowing}), racing ({occupation}
→{motorcycle racer}), and rugby ({occupation}→{rugby union player}), Note
that while {Guy Ligier} is used to reconstitute {racing automobile driver}, this
reconstitution is in conjunction with other constitutive nodes such as {Karl Ebb}
and {Eddie Jordan}, suggesting that the concept of {racing automobile driver}
is not fully captured by a single node. Next, we observe that while a relation ex-
ists between {Guy Ligier} and the accessory node {businessperson}, it is recon-
stituted by {Howard Hughes} and {Donald Trump}, who may be relatively better
recognized as businesspersons, instead.

5 Conclusion
In this work, we identify semantically constitutive entities in a knowledge graph
(KG). Intuitively, embeddings of “constitutive” nodes can be used to reconstitute
“accessory” nodes, and is based on actual KG triples, providing credence and
interpretability. Experiments on three knowledge bases validate the proposed
methodology in several ways. On the downstream Link Prediction task, our
method outperforms structural connectivity baselines. A user study validates
our reconstitutions as more consistent with human evaluation.

One limitation of our work is a reliance on pretrained graph embedding as in-
put, as our approach is unable to generate these embeddings from the knowledge
graph directly. Next, reconstructions are only as accurate as the KG provided;
problematic reconstructions can be avoided by auditing the underlying KG.

One future direction is to adapt our approach to non-translational KG em-
beddings. Another is to explore how semantically constitutive entities could en-
hance related tasks such as KG summarization.

References

1. Bonacich, P.: Factoring and weighting approaches to status scores and clique iden-
tification. Journal of mathematical sociology 2(1), 113–120 (1972)

2. Bonacich, P.: Power and centrality: A family of measures. American journal of
sociology 92(5), 1170–1182 (1987)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. NeurIPS 26 (2013)

4. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Social
networks 28(4), 466–484 (2006)

5. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph
compression with communities. In: WSDM. pp. 95–106 (2008)

6. Chen, C., Lin, C.X., Fredrikson, M., Christodorescu, M., Yan, X., Han, J.: Mining
graph patterns efficiently via randomized summaries. PVLDB 2(1), 742–753 (2009)

7. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: KDD. pp. 199–208 (2009)

8. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.:
Computational fact checking from knowledge networks. PloS one 10(6), e0128193
(2015)

9. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. JAIR 1, 231–255 (1993)



14 Chong Cher Chia, Maksim Tkachenko, and Hady W. Lauw

10. Cornuéjols, G., Nemhauser, G., Wolsey, L.: The uncapacitated facility location
problem. Tech. rep., Cornell University Operations Research and Industrial Engi-
neering (1983)

11. Dai, D., Zheng, H., Luo, F., Yang, P., Chang, B., Sui, Z.: Inductively representing
out-of-knowledge-graph entities by optimal estimation under translational assump-
tions. arXiv preprint arXiv:2009.12765 (2020)

12. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge
graph embeddings. In: AAAI. No. 1 (2018)

13. Dunne, C., Shneiderman, B.: Motif simplification: improving network visualization
readability with fan, connector, and clique glyphs. In: CHI. pp. 3247–3256 (2013)

14. Fellbaum, C.: Wordnet. In: Theory and applications of ontology: computer appli-
cations, pp. 231–243. Springer (2010)

15. Fleszar, K., Hindi, K.S.: An effective vns for the capacitated p-median problem.
European Journal of Operational Research 191(3), 612–622 (2008)

16. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
pp. 35–41 (1977)

17. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022)
18. Hamann, F., Ulges, A., Krechel, D., Bergmann, R.: Open-world knowledge graph

completion benchmarks for knowledge discovery. In: IEA/AIE. pp. 252–264 (2021)
19. Hirsch, J.E.: An index to quantify an individual’s scientific research output. PNAS

102(46), 16569–16572 (2005)
20. Huang, K., Wang, S., Bevilacqua, G., Xiao, X., Lakshmanan, L.V.: Revisiting

the stop-and-stare algorithms for influence maximization. PVLDB 10(9), 913–924
(2017)

21. Huang, X., Zhang, J., Li, D., Li, P.: Knowledge graph embedding based question
answering. In: WSDM. pp. 105–113 (2019)

22. Jenatton, R., Roux, N., Bordes, A., Obozinski, G.R.: A latent factor model for
highly multi-relational data. NeurIPS 25 (2012)

23. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: COLING-IJCNLP. pp. 687–696 (2015)

24. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowl-
edge graphs: Representation, acquisition, and applications. TNNLS 33(2), 494–514
(2021)

25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD. pp. 137–146 (2003)

26. Korn, A., Schubert, A., Telcs, A.: Lobby index in networks. Physica A: Statistical
Mechanics and its Applications 388(11), 2221–2226 (2009)

27. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. biometrics pp. 159–174 (1977)

28. Li, C.T., Lin, S.D.: Egocentric information abstraction for heterogeneous social
networks. In: ASONAM. pp. 255–260. IEEE (2009)

29. Likert, R.: A technique for the measurement of attitudes. Arch. psychol (1932)
30. Liu, S., Grau, B., Horrocks, I., Kostylev, E.: Indigo: Gnn-based inductive knowledge

graph completion using pair-wise encoding. NeurIPS 34 (2021)
31. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and

applications: A survey. CSUR 51(3), 1–34 (2018)
32. Maccioni, A., Abadi, D.J.: Scalable pattern matching over compressed graphs via

dedensification. In: KDD. pp. 1755–1764 (2016)
33. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: A knowledge base from multilin-

gual wikipedias. In: CIDR (2014)



Semantically Constitutive Entities in Knowledge Graphs 15

34. Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J.,
Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., et al.: Never-ending learning. Com-
munications of the ACM 61(5), 103–115 (2018)

35. Mulvey, J.M., Beck, M.P.: Solving capacitated clustering problems. European Jour-
nal of Operational Research 18(3), 339–348 (1984)

36. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model
for knowledge base completion based on convolutional neural network. arXiv
preprint arXiv:1712.02121 (2017)

37. Nguyen, H.T., Dinh, T.N., Thai, M.T.: Revisiting of ‘revisiting the stop-and-stare
algorithms for influence maximization’. In: COSN. pp. 273–285 (2018)

38. Nguyen, H.T., Thai, M.T., Dinh, T.N.: Stop-and-stare: Optimal sampling algo-
rithms for viral marketing in billion-scale networks. In: SIGMOD. pp. 695–710
(2016)

39. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML (2011)

40. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Tech. rep., Stanford InfoLab (1999)

41. Purohit, M., Prakash, B.A., Kang, C., Zhang, Y., Subrahmanian, V.: Fast
influence-based coarsening for large networks. In: KDD. pp. 1296–1305 (2014)

42. Riondato, M., García-Soriano, D., Bonchi, F.: Graph summarization with quality
guarantees. DMKD 31(2), 314–349 (2017)

43. Safavi, T., Koutra, D.: CoDEx: A Comprehensive Knowledge Graph Completion
Benchmark. In: EMNLP. pp. 8328–8350 (Nov 2020)

44. Shen, Z., Ma, K.L., Eliassi-Rad, T.: Visual analysis of large heterogeneous social
networks by semantic and structural abstraction. IEEE TVCG 12(6), 1427–1439
(2006)

45. Stefanello, F., de Araújo, O.C., Müller, F.M.: Matheuristics for the capacitated
p-median problem. ITOR 22(1), 149–167 (2015)

46. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: CVSC. pp. 57–66 (2015)

47. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NIPS 30 (2017)

48. Wan, Z., Mahajan, Y., Kang, B.W., Moore, T.J., Cho, J.H.: A survey on centrality
metrics and their network resilience analysis. IEEE Access 9, 104773–104819 (2021)

49. Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation
for inductive knowledge graph embedding. In: AAAI. vol. 33, pp. 7152–7159 (2019)

50. Wang, Q., Huang, P., Wang, H., Dai, S., Jiang, W., Liu, J., Lyu, Y., Zhu,
Y., Wu, H.: Coke: Contextualized knowledge graph embedding. arXiv preprint
arXiv:1911.02168 (2019)

51. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of
approaches and applications. TKDD 29(12), 2724–2743 (2017)

52. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: Kgat: Knowledge graph attention
network for recommendation. In: KDD. pp. 950–958 (2019)

53. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI. vol. 28 (2014)

54. Yao, L., Mao, C., Luo, Y.: Kg-bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193 (2019)

55. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE.
pp. 880–891. IEEE (2010)

56. Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A.: Unsupervised
entity resolution on multi-type graphs. In: ISWC. pp. 649–667 (2016)


	Semantically constitutive entities in knowledge graphs
	Citation

	Semantically Constitutive Entitiesin Knowledge Graphs

