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ABSTRACT
Connectivity across documents often exhibits a hierarchical net-

work structure. Hyperbolic Graph Neural Networks (HGNNs) have

shown promise in preserving network hierarchy. However, they do

not model the notion of topics, thus document representations lack

semantic interpretability. On the other hand, a corpus of documents

usually has high variability in degrees of topic specificity. For exam-

ple, some documents contain general content (e.g., sports), while

others focus on specific themes (e.g., basketball and swimming).

Topic models indeed model latent topics for semantic interpretabil-

ity, but most assume a flat topic structure and ignore such semantic
hierarchy. Given these two challenges, we propose a Hyperbolic

Graph Topic Modeling Network to integrate both network hierarchy
across linked documents and semantic hierarchy within texts into a

unified HGNN framework. Specifically, we construct a two-layer

document graph. Intra- and cross-layer encoding captures network

hierarchy. We design a topic tree for text decoding to preserve

semantic hierarchy and learn interpretable topics. Supervised and

unsupervised experiments verify the effectiveness of our model
1
.

CCS CONCEPTS
• Information systems→Datamining;Document topicmod-
els; • Computing methodologies→ Topic modeling.
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1 INTRODUCTION
Text documents are usually connected in a network structure, e.g.,

academic papers in a citation network, Web pages in a hyperlink
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network, etc. Connectivity across documents usually exhibits a hi-

erarchical topological structure, e.g., an academic paper is extended

by following research works, which are then further developed

by other papers; a breaking news article is traced by following

articles reporting subsequent events, etc. Such scenarios contain

a central document with hierarchical network links to others (Fig.

1(a)). Hyperbolic Graph Neural Networks (HGNNs) [6, 23] have

shown promise in preserving such network hierarchy when infer-

ring document embeddings. However, when modeling documents,

we usually assume a notion of latent topics [5]. Each document

is associated with a topic distribution, and each topic is semanti-

cally interpreted by its keywords. Topic model provides semantic
interpretability [5]. However, existing HGNNs do not assume topic

structure, resulting in uninterpretable document embeddings.

A corpus of documents usually has high variability in degrees

of topic specificity. Some documents contain general concepts (e.g.,

survey papers summarize a broad area), while others focus on

specific topics (e.g., regular papers deal with specific problems),

illustrated by Fig. 1(b). Modeling such semantic hierarchy could

better preserve latent topics of texts and improve the quality of

topic discovery. However, most existing topic models, e.g., LDA [5]

and GATON [42], are flat models without hierarchical topics.

Challenges. First, though Hyperbolic Graph Neural Networks

can capture network hierarchy, they lack topic modeling compo-

nent, resulting in uninterpretable document representations. Mod-

eling semantically interpretable topics within the corpus allows us

to better understand the main themes of documents.

Second, existing topic models are mainly flat models and ignore

the semantic hierarchy within text documents. Since a corpus may

contain documents with different semantic detailedness, modeling

semantic hierarchy could reveal insightful topic structure.

Third, while hierarchical topic models, e.g., nCRP [12], consider

semantic hierarchy, they represent each document using only one

topic, which is insufficient for documents with a mixture of differ-

ent topics. They are also not designed for network structure, thus

cannot model network hierarchy shown by document connectivity.

Approach. Our approach is based on the insight that network

and semantic hierarchy can be integrated into a unified framework,

i.e., a central document on the network usually describes general

semantics, while surrounding documents tend to focus on specific

topics. Thus, we design a Hyperbolic Graph TopicModeling Net-

work (HGTM) with a continuously updated topic tree to model both

network hierarchy across linked documents and semantic hierarchy

within text content. i) To model network hierarchy, we construct

a two-layer document graph, where both intra- and cross-layer

hyperbolic topic encoding capture network hierarchy. ii) To pre-

serve semantic hierarchy and learn interpretable topics, we design

https://doi.org/10.1145/3580305.3599384
https://github.com/cezhang01/hgtm
https://doi.org/10.1145/3580305.3599384
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(a) Network hierarchy (b) Semantic hierarchy of a coronavirus news corpus (c) Visualization of documents’ topic proportions with a three-level topic tree

Figure 1: (a) Network hierarchy. (b) Semantic hierarchy. (c) Visualization of documents’ topic proportions with a 3-level topic
tree. Each topic has keywords for semantic interpretability. Docs close to certain topics denote high probability of semantics.

a novel topic tree for document decoding. The root topic summa-

rizes general concept, while leaf topics become specific. General

documents are decoded by root topic, and specific ones sample

leaf topics. Moreover, different corpora contain unique hierarchical

topic structures. Some corpora present a deep topic tree, while oth-

ers are relatively flat. To match the semantic hierarchy of different

corpora, the topic tree is continuously updated during learning.

Besides, both our topic encoder and tree-structured decoder are

in hyperbolic space, not Euclidean. Hyperbolic space has exponen-

tially growing volume and is more suited for hierarchical struc-

ture than Euclidean space, whose volume grows only polynomially

[6, 23]. Both network and semantic hierarchies show a tree-like

structure. The number of nodes on the tree grows exponentially, not

polynomially, as the depth increases. Leveraging hyperbolic space

could preserve hierarchy and improve document representations.

In contrast, previous topic models are designed in Euclidean space.

Fig. 1(a) illustrates network hierarchy. The number of neighbors

of the central document grows exponentially. Fig. 1(b) is the seman-

tic hierarchy of a coronavirus news corpus learned by our model.

Topics are in a tree structure. Each topic is interpreted by its key-

words. Different paths from root to leaves cover different topics (e.g.,

left paths cover education, right paths cover health). Different levels

denotes different topic specificity (“covid→education→university”

gradually narrows down the semantics). Fig. 1(c) shows the visual-

ization of documents’ topic proportions learned by our model with

both network and semantic hierarchies. Documents close to certain

topics represent high probability of these topics’ semantics, making

document representations semantically interpretable. These topics

are organized in a three-level tree, indicating semantic hierarchy.

Contributions. First, we propose HGTM, which unifies HGNN

and topic modeling to jointly model both network hierarchy and

semantic hierarchy. To incorporate network hierarchy, we design a

two-layer document graph, and simulate intra- and cross-layer topic

encoding in hyperbolic space. Second, to model semantic hierarchy,

we propose a topic tree in hyperbolic space for document decoding.

Third, to match the unique hierarchical topic structures of different

corpora, we design a method to continuously update the topic tree.

2 RELATEDWORK
Graph neural networks (GNNs) are mostly in Euclidean space

[18, 37]. Recently, hyperbolic space attracts much attention, e.g.,

HGCN [6] and HGNN [23]. HAT [49] extends GAT in hyperbolic

space. LGCN [50] modifies hyperbolic aggregation and transforma-

tion. Q-GCN [40] designs a pseudo-Riemannian for hierarchical

and spherical graph. 𝜅GCN [1] extends to the product of different

spaces. They do not have topic modeling nor semantic hierarchy.

Flat topicmodels are previously graphical models [5]. Recently,

neural models are popular [8, 17, 27, 34]. There are topic models

with GNN [42, 47, 53]. They are flat models, without topic hierarchy.

Hierarchical topicmodels extract tree-structured topics. nCRP
[4, 12] pioneers this area. Graphical models include [11, 14, 21, 30,

51]. TSNTM [15] and HTV [31] are neural ones. They have semantic

hierarchy, but are not designed network hierarchy.

Relational topic models are designed for documents in a net-

work structure, e.g., graphical [7, 19] and neural models [2, 38, 39,

44–46]. These models consider both document content and network

connectivity, but no one incorporates network hierarchy.

Text classification models are previously based on CNN [16]

and RNN [22]. Recent ones are GNNs [9, 24, 43]. They do not have

topic modeling, leading to uninterpretable representations. VGATM

[48] integrates topic modeling into GNNs, but still ignores semantic

hierarchy and network hierarchy.

3 PROBLEM FORMULATION AND
PRELIMINARIES

We formulate the research problem and introduce preliminaries

here. Table 1 summarizes main mathematical notations.

3.1 Problem Formulation
We are given a corpus of documents with network structure C =

{D, E}.D = {d𝑖 }𝑁𝑖=1 is a set of𝑁 = |D| documents. Each document

𝑑 contains 𝑁𝑑 words in the vocabulary V , i.e., d = {𝑤𝑑,𝑛}
𝑁𝑑

𝑛=1
⊆

V . E is a set of network links where 𝑒𝑖 𝑗 ∈ E if there is a link

between document 𝑑𝑖 and 𝑑 𝑗 . We follow previous works [38, 39, 44]

and model an undirected network, i.e., 𝑒𝑑𝑖 ,𝑑 𝑗 = 𝑒𝑑 𝑗 ,𝑑𝑖 , though it is

straightforward to extend to directed networks. As in [38], if we do

not observe network structure E, we instead generate 𝜅NN links

using documents’ content similarity. The neighbors of a document

𝑑𝑖 are those directly linked to 𝑑𝑖 , denoted as neighbor set N(𝑖).
Given C as input, we design a topic model that outputs topic

proportions ZD = {z𝑑 }𝑑∈D for 𝑁 = |D| documents, preserving

network topology hierarchy E and textual semantic hierarchy D.
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Table 1: Summary of mathematical notations.

Notation Description

C a corpus

D a set of 𝑁 = |D| documents

V vocabulary

E network links among documents

N(𝑖) document 𝑑𝑖 ’s neighbor set

P𝑛,𝑐 Poincaré ball space with dimension 𝑛 and curvature 𝑐

TxP𝑛,𝑐 tangent (Euclidean) space around hyperbolic vector 𝑥 ∈ P𝑛,𝑐
exp

𝑐
x (v) exponential map, projecting tangent vector v to Poincaré ball

log
𝑐
x (y) logarithmic map, projecting hyperbolic vector y to x’s tangent space

ℎP𝑛,𝑐 (x, y) geodesic distance between hyperbolic vectors x and y
PT

𝑐
x→y (v) parallel transport, transporting v from x’s tangent space to y’s
𝐻 dimension of topic proportions z𝑑
z𝑑 topic proportion of document 𝑑

𝝅𝑑 path distribution of document 𝑑 over topic tree

𝑟 a path on topic tree, consisting of topics from root to leaf

t𝑘 hyperbolic topic embedding of topic 𝑘

𝜹𝑑 level distribution of document 𝑑 over topic tree

𝑆 the depth of topic tree

𝑞(z𝑑 ) variational posterior of document 𝑑 , parameterized by our encoder

log𝑝 (·|·) log-likelihood term of data generation

𝑝 (z) predefined prior distribution

𝑊 dimension of documents’ raw input features

v𝑑 a vector sampled from Euclidean Gaussian

𝜷 topic-word distribution 𝜷 ∈ R |V |×𝐾

𝑀 number of negative samples at Eq. 25

3.2 Preliminaries
Hyperbolic space can better preserve hierarchical structure. We are

thus motivated to design the model in hyperbolic space.

Hyperbolic space. Hyperbolic space is a non-Euclidean geome-

try with a constant negative curvature 𝑐 < 0. The curvature 𝑐 mea-

sures how a geometric object deviates from a flat plane. Poincaré

ball is one of the representative models of hyperbolic space. In this

paper, we use Poincaré ball, though our method is also applicable

to other models in hyperbolic space, e.g., hyperboloid model.

Poincaré ball and tangent space. Poincaré ball P𝑛,𝑐 is the set
of 𝑛-dimensional vectors with Euclidean norm smaller than − 1

𝑐 ,

P𝑛,𝑐 = {x ∈ R𝑛 |⟨x, x⟩2 < −1

𝑐
}. (1)

⟨·, ·⟩2 is inner product between two vectors. The tangent space of
Poincaré ball centered at point x is 𝑛-dimensional Euclidean space,

TxP𝑛,𝑐 = {v ∈ R𝑛 |⟨v, x⟩2 = 0}. (2)

Tangent space T𝑥P𝑛,𝑐 is a local and first-order approximation of

P𝑛,𝑐 around x and is a Euclidean space. We will use tangent space

to perform matrix operations in this paper. For v and w in T𝑥P𝑛,𝑐 ,
𝑔𝑐x (v,w) = ⟨v,w⟩2 → R is a Riemannian metric tensor [23], and

(P𝑛,𝑐 , 𝑔𝑐x) is a Riemannian manifold with negative curvature 𝑐 < 0.

Exponential and logarithmic map. The mapping between

Poincaré ball and its tangent space is by exponential and logarithmic

map. For each point x ∈ P𝑛,𝑐 on Poincaré ball and a tangent vector

v ∈ TxP𝑛,𝑐 , the exponential map projects v to Poincaré ball.

exp
𝑐
x (v) = x ⊕𝑐

(
tanh

(√
|𝑐 | 𝜆

𝑐
x | |v| |2
2

) v√
|𝑐 | | |v| |2

)
(3)

where 𝜆𝑐x = 2

1−𝑐 | |x | |2 , and Möbius addition ⊕𝑐 is [25]

𝑥 ⊕𝑐 y =
(1 − 2𝑐 ⟨x, y⟩2 − 𝑐 | |y| |2

2
)x + (1 + 𝑐 | |x| |2

2
)y

1 − 2𝑐 ⟨x, y⟩2 + 𝑐2 | |x| |2
2
| |y| |2

2

. (4)

Reversely, the logarithmic map projects a point y ∈ P𝑛,𝑐 (y ≠ x) on
Poincaré ball to the tangent space of x by

log
𝑐
x (y) =

2√
|𝑐 |𝜆𝑐x

tanh
−1

(√
|𝑐 | | | − x ⊕𝑐 y| |2

) −x ⊕𝑐 y
| | − x ⊕𝑐 y| |2

. (5)

In this paper, we use log
𝑐
x (·) with base x and curvature 𝑐 to de-

note hyperbolic logarithmic map, and use log(·) without base and
curvature to denote normal logarithm.

Geodesic distance. Geodesic distance in Poincaré ball space is

the generalization of the length of a straight line in Euclidean space.

Given two points x, y ∈ P𝑛,𝑐 , their geodesic distance is

ℎ𝑐P𝑛,𝑐 (x, y) =
1√
|𝑐 |

cosh
−1

(
1 −

2𝑐 | |x − y| |2
2

(1 + 𝑐 | |x| |2
2
) (1 + 𝑐 | |y| |2

2
)

)
. (6)

In ourmodel, wewill use geodesic distance tomeasure the similarity

between two points in Poincaré ball space.

Parallel transport. Given two points x, y ∈ P𝑛,𝑐 (x ≠ y), par-
allel transport can transport a vector on x’s tangent space to y’s.

PT
𝑐
x→y (v) =

𝜆𝑐x
𝜆𝑐y

gyr[y,−x]v ∈ TyP𝑛,𝑐 (7)

where v ∈ TxP𝑛,𝑐 , and gyration operator [25] is gyr[x, y]v =

⊖𝑐 (x ⊕𝑐 y) ⊕𝑐 (x ⊕𝑐 (y ⊕𝑐 v)). Here x ⊖𝑐 y = x ⊕𝑐 −y.

4 MODEL ARCHITECTURE AND ANALYSIS
We introduce the details of Hyperbolic Graph Topic Modeling

Network (HGTM) with a continuously updated topic tree.

4.1 Generative Process
As an overview, we describe the generative process of HGTM. Given

C, we generate documents D and network E with topic tree.

(1) For each word𝑤 ∈ V:

(a) Draw 𝐻 -dim hyperbolic topic proportion z𝑤 ∼ 𝑝 (z𝑤).
(2) For each document 𝑑 ∈ D:

(a) Draw 𝐻 -dim hyperbolic topic proportion z𝑑 ∼ 𝑝 (z𝑑 ).
(b) Obtain path distribution over topic tree 𝝅𝑑 = 𝑓𝜋 (z𝑑 ).
(c) Obtain level distribution over topic tree 𝜹𝑑 = 𝑓𝛿 (z𝑑 ).
(d) For each word𝑤𝑑,𝑛 in document 𝑑 where 𝑛 = 1, 2, ..., 𝑁𝑑 :

(i) Draw a path 𝑟𝑑,𝑛 ∼ Categorical(𝝅𝑑 ).
(ii) Draw a level 𝑠𝑑,𝑛 ∼ Categorical(𝜹𝑑 ).
(iii) Draw a word𝑤𝑑,𝑛 ∼ Categorical(𝜷𝑟𝑑,𝑛,𝑠𝑑,𝑛 , z𝑑 , z𝑤𝑑,𝑛

).
(e) If 𝑑’s label exists, draw its label 𝑦𝑑 ∼ 𝑝 (𝑦𝑑 |z𝑑 ).

(3) For each pair of documents 𝑑𝑖 and 𝑑 𝑗 where 𝑑𝑖 , 𝑑 𝑗 ∈ D:

(a) Draw a network link 𝑒𝑑𝑖 ,𝑑 𝑗 ∼ 𝑝 (𝑒𝑑𝑖 ,𝑑 𝑗 |z𝑑𝑖 , z𝑑 𝑗 ).
To preserve semantic hierarchy and learn interpretable topics, we

design a hyperbolic topic tree and generate document content based

on the tree at Step 2. Specifically, different paths represent different

topics, while different levels on the same path denote different topic

specificity. Root topic summarizes general concept, topics close to

leaves focus on specific sub-concepts. This is why each document

with its unique content has its own path and level distributions

over the tree (Step 2b–2c). For each document, we generate its

words by repeatedly sampling a path and a level at Step 2d. Thus

general documents tend to be decoded by root topic, and specific

ones sample leaf topics. Semantic hierarchy can thus be captured.
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simulate intra- and cross-layer topic propagation to capture network hierarchy. (b) We use hyperbolic reparameterization to
sample topic proportions for documents. (c-d) We design a latent topic tree in hyperbolic space for hierarchical text decoding
to capture semantic hierarchy. (e) Finally, we use learned topic proportions of documents to reconstruct the network structure.

After drawing a path 𝑟𝑑,𝑛 and a level 𝑠𝑑,𝑛 (Step 2(d)i–2(d)ii), we al-

ready select one topic. Thus 𝜷𝑟𝑑,𝑛,𝑠𝑑,𝑛 is the topic-word distribution

of the selected topic, used to semantically interpret the topic.

We aim to maximize the log-likelihoodL(C) of above generative
process. Directly maximizing the log-likelihood is intractable, we

follow VAE [17] and instead maximize its evidence lower bound.

LELBO = E𝑞 (ZD ,ZV )
( ∑
𝑑∈D

[
𝜆text log𝑝 (d|z𝑑 ,ZV ) + 𝜆

label
log𝑝 (y𝑑 |z𝑑 )

]
+

∑
𝑑𝑖 ,𝑑 𝑗 ∈D

log𝑝 (𝑒𝑑𝑖 ,𝑑 𝑗 |z𝑑𝑖 , z𝑑 𝑗 )
)

−
(
KL

[
𝑞(ZD ) | |𝑝 (ZD )

]
+ KL

[
𝑞(ZV ) | |𝑝 (ZV )

] )
(8)

Upper letter ZD ∈ P𝑁×𝐻
denotes a collection of hyperbolic topic

proportions of all 𝑁 documents in Poincaré ball. The topic propor-

tion of each document is 𝐻 -dimensional. d is the text content of 𝑑 .

𝜆text and 𝜆label are hyperparameters, controlling the importance of

respective term. 𝜆
label

= 0 for unsupervised training if labels are not

observed, otherwise 𝜆
label

> 0 for supervised training. 𝑞(ZD ,ZV )
is variational posterior with structured mean-field assumption

𝑞(ZD ,ZV ) = 𝑞(ZD )𝑞(ZV ) = ∏
𝑑∈D 𝑞(z𝑑 )

∏
𝑤∈V 𝑞(z𝑤).

Variational posteriors 𝑞(z𝑑 ) and 𝑞(z𝑤) are topic encoders, pro-
ducing 𝐻 -dimensional hyperbolic topic proportions of documents

and words. Log-likelihoods log 𝑝 (·|·) are decoders. Specifically, the
textual content log-likelihood log𝑝 (d|z𝑑 ,ZV ) is a hyperbolic tree-
structured topic decoder. Below we elaborate the details of hyper-

bolic graph topic encoder and tree-structured topic decoder. We

then introduce how to update the topic tree to match the semantic

hierarchy of different corpora. Finally, we design KL divergence and

objective function. See Fig. 2 for an overview of model architecture.

4.2 Hyperbolic Graph Topic Encoder
Hyperbolic graph convolutional topic encoders 𝑞(z𝑑 ) and 𝑞(z𝑤)
project documents and words to 𝐻 -dimensional topic proportions

in hyperbolic space. Given a corpus C, considering documents and

words as vertices, we construct a bipartite graph. Intra-layer links

within document layer are document connections. Cross-layer links

are word occurrences in the document, shown by Fig. 2(a).

4.2.1 Intra-Layer Topic Encoding. The orange arrows at Fig.

2(a) show the direction of intra-layer propagation.

Hyperbolic feature initialization. Since documents’ raw in-

put features, e.g., Bag-of-Words or the average of pretrained word

embeddings, are usually in Euclidean space, we first project them

into Poincaré ball in order to do subsequent hyperbolic operations.

Let𝑊 -dimensional zero vector 0 = [0, 0, ..., 0]⊤ ∈ P𝑊,𝑐
denote the

origin of Poincaré ball, where𝑊 is the dimension of documents’

input features. We discover that input features x𝐸
𝑑
lie in the tangent

space of the origin by definition, x𝐸
𝑑
∈ T0P𝑊,𝑐

, due to ⟨x𝐸
𝑑
, 0⟩2 = 0

where ⟨·, ·⟩2 is inner product. We use superscript (
𝐸
) to denote Eu-

clidean features. We thus consider the origin 0 as a reference point

and map Euclidean features x𝐸
𝑑
to Poincaré ball by exponential map.

z(𝑙=0)
𝑑

= exp
𝑐
0 (x

𝐸
𝑑
) ∈ P𝑊,𝑐 . (9)

Here z(𝑙=0)
𝑑

is the hyperbolic input feature in Poincaré ball space

with curvature 𝑐 . We will explain superscript (
𝑙=0

) shortly.

Feature transformation. To learn low-dimensional topic pro-

portions for documents, we have hyperbolic feature transformation,

z̃′(𝑙)
𝑑

= exp
𝑐
0 (W

(𝑙)
log

𝑐
0 (z

(𝑙−1)
𝑑

)) ∈ P𝑛,𝑐 . (10)

𝑙 is the 𝑙-th graph convolutional step. Previous works [13, 37] call

it the 𝑙-th convolutional layer. But in order to differentiate from

our two-layer document graph, we instead name it convolutional

step. z(𝑙−1)
𝑑

∈ P𝑛′,𝑐 is the hyperbolic topic proportion output from

previous convolutional step. z(𝑙=0)
𝑑

is the hyperbolic input feature

obtained at Eq. 9.W(𝑙) ∈ R𝑛×𝑛′ is learnable parameter in Euclidean

space. Eq. 10 first projects hyperbolic topic proportion z(𝑙−1)
𝑑

to

tangent space T0P𝑛
′,𝑐

by logarithmic map. It then performs matrix

multiplication in tangent (Euclidean) space, whose result is pro-

jected back to hyperbolic space by exponential map. 𝑛 and 𝑛′ are
the dimensions of the 𝑙-th and (𝑙 − 1)-th convolutional step.

To perform bias addition, we adopt parallel transport. We define

learnable bias b(𝑙) ∈ R𝑛 as Euclidean parameter, located in the

tangent space of the origin, b(𝑙) ∈ T0P𝑛,𝑐 , again due to ⟨b(𝑙) , 0⟩2 = 0.

We then parallel transport b(𝑙) to the tangent space of z̃′(𝑙)
𝑑

. Finally,

we map it back to hyperbolic space by exponential map.

z̃(𝑙)
𝑑

= exp
𝑐

z̃′(𝑙 )
𝑑

(PT𝑐
0→z̃′(𝑙 )

𝑑

(b(𝑙) )) ∈ P𝑛,𝑐 . (11)

Neighbor aggregation. A document’s neighbors share latent

semantics to different extent. We here design hyperbolic attention.

𝑎𝑖 𝑗 = softmax

(
𝜎
(
𝜷 (𝑙)⊤ [log𝑐0 (z̃

(𝑙)
𝑑𝑖

) | | log𝑐0 (z̃
(𝑙)
𝑑 𝑗

)]
) )

where 𝑑 𝑗 ∈ N (𝑖).
(12)



Hyperbolic Graph Topic Modeling Network with Continuously Updated Topic Tree KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

𝜎 (𝑥) = 1

1+𝑒−𝑥 is sigmoid, [·| |·] is concatenation, 𝜷 (𝑙) ∈ R2𝑛 is learn-

able Euclidean parameter. Hyperbolic points are mapped to tangent

space to evaluate attention. We then aggregate 𝑑𝑖 ’s neighbors by

z(𝑙)
𝑑𝑖

= 𝑓
𝑐,𝑐′

act

(
exp

𝑐
0

(
1

2

(
log

𝑐
0 (z̃

(𝑙)
𝑑𝑖

) +
∑

𝑑 𝑗 ∈N(𝑖)
𝑎𝑖 𝑗 log

𝑐
0 (z̃

(𝑙)
𝑑 𝑗

)
) ))

. (13)

Hyperbolic points are mapped to tangent space for aggregation,

whose result is mapped back to hyperbolic space. Finally, hyperbolic

activation 𝑓
𝑐,𝑐′

act
(x) = exp

𝑐′
0 (𝑓act (log

𝑐
0 (x))) produces the output of

the current 𝑙-th convolutional step. We set 𝑓act (𝑥) = 𝑥 for the final

step, and 𝑓act (𝑥) = tanh(𝑥) for previous steps. To summarize,

z(𝑙)
𝑑𝑖 ,intra

= 𝑓
𝑐,𝑐′

act

(
z(𝑙−1)
𝑑𝑖

, {z(𝑙−1)
𝑑 𝑗

|𝑑 𝑗 ∈ N (𝑖)}
)
where 𝑙 = 1, 2, ..., 𝐿.

(14)

𝐿 is the max convolutional step. We finally get 𝐻 -dimensional hy-

perbolic topic proportion z(𝐿)
𝑑,intra

∈ P𝐻,𝑐 from intra-layer encoder.

4.2.2 Cross-Layer Topic Encoding. We design our topic en-

coder on top of HGNN [6, 23]. However, HGNN has only intra-layer

encoding. Since we model a document graph with both documents

and words, we extend HGNN and design cross-layer topic encoding.

A document contains many words, and these words in turn appear

in more documents. Such graph hierarchy is captured by cross-layer

links, shwon by green arrows at Fig. 2(a). The encoding is similar

to Eq. 9–13, except that the parameters W(𝑙)
and 𝜷 (𝑙)

are replaced

with cross-layer ones. Propagating from words to documents, we

obtain 𝐻 -dimensional topic proportions from cross-layer encoder.

z(𝑙)
𝑑,cross

= 𝑓
𝑐,𝑐′

act

(
z(𝑙−1)
𝑑

, {z(𝑙−1)𝑤𝑑,𝑛
|𝑤𝑑,𝑛 ∈ d}

)
where 𝑙 = 1, 2, ..., 𝐿.

(15)

d = {𝑤𝑑,𝑛}
𝑁𝑑

𝑛=1
is 𝑑’s words. Symmetrically, propagating from docu-

ments to words, we have𝐻 -dimensional topic proportion for words.

z(𝑙)𝑤 = 𝑓
𝑐,𝑐′

act

(
z(𝑙−1)𝑤 , {z(𝑙−1)

𝑑
|∀𝑑,𝑤 ∈ d}

)
where 𝑙 = 1, 2, ..., 𝐿. (16)

Hyperbolic reparameterization. Finally, we unify intra- and

cross-layer topic proportions by hyperbolic mean pooling.

𝝁𝑑 = exp
𝑐
0

(
1

2

(
log

𝑐
0 (z

(𝐿)
𝑑,intra

) + log
𝑐
0 (z

(𝐿)
𝑑,cross

)
) )

∈ P𝐻,𝑐 . (17)

Since we aim to output both mean and covariance from the final

convolutional step, we repeat the final 𝐿-th step twice with different

parameters, and obtain 𝝁𝑑 and 𝚺𝑑 for each document 𝑑 . We use

reparameterization to sample topic proportion of document 𝑑 , i.e.,

z𝑑 ∼ 𝑞(z𝑑 ) = WN(𝝁𝑑 , 𝚺𝑑 ). Here WN(·, ·), wrapped Gaussian

distribution [33] with hyperbolic mean and covariance, is the hy-

perbolic version of Euclidean Gaussian. To sample from wrapped

Gaussian, we first sample an instance v𝑑 from Euclidean Gaussian

v𝑑 ∼ 𝒩(0, log𝑐0 (𝚺𝑑 )) by Eq. 18. v𝑑 ∈ T0P𝐻,𝑐 by definition. The

final topic proportion z𝑑 is obtained by first transporting v𝑑 to 𝝁𝑑 ’s
tangent space, then mapping it to the hyperbolic space (Eq. 19).

v𝑑 = 0 +
(
log

𝑐
0 (𝚺𝑑 )

)
1/2𝝐 ∈ T0P𝐻,𝑐 where 𝝐 ∼ 𝒩(0, I) (18)

z𝑑 = exp
𝑐
𝝁𝑑 (PT

𝑐
0→𝝁𝑑

(v𝑑 )) ∈ P𝐻,𝑐 . (19)

z𝑑 ∈ P𝐻,𝑐 is 𝐻 -dimensional hyperbolic topic proportion of 𝑑 . It is

the output from our hyperbolic graph topic encoder, i.e., z𝑑 ∼ 𝑞(z𝑑 ).
We similarly repeat Eq. 18–19 and obtain z𝑤 ∈ P𝐻,𝑐 for words. The
hyperbolic reparameterization process is shown by Fig. 2(b).

4.3 Probabilistic Decoder
Having demonstrated the design of hyperbolic graph topic encoders

𝑞(z𝑑 ) and 𝑞(z𝑤), we now turn to probabilistic decoders, i.e., log-

likelihood terms log(·|·) at Eq. 8. Specifically, the textual content
log-likelihood log 𝑝 (d|z𝑑 ,ZV ) is a hyperbolic topic tree decoder:
we input topic proportions of document z𝑑 and one of its words

z𝑤𝑑,𝑛
to the decoder, and design a topic tree to decode the word

by log 𝑝 (𝑤𝑑,𝑛 |z𝑑 , z𝑤𝑑,𝑛
). We repeat this process for every word

𝑤𝑑,𝑛 ∈ d and obtain log𝑝 (d|z𝑑 ,ZV ). Here, we first elaborate tree-
structured topic decoder, then describe other log-likelihood terms.

4.3.1 Hyperbolic Tree-Structured Topic Decoder. Given the

topic proportion z𝑑 of a document𝑑 , we first evaluate its probability

distribution over paths and levels on the topic tree (Fig. 2(c-d)).

Path distribution. A path on the tree consists of a sequence of

topics. They belong to similar semantics with different specificity.

Root topic shows general concept, leaf topics discuss specific sub-

concepts. Different paths cover different semantics. For a tree with

depth 𝑆 , the probability of path 𝑟 with topics 𝑟 = {𝑘𝑠 }𝑆𝑠=1 is

𝑝 (𝑟 ) = 𝑝 ({𝑘𝑠 }𝑆𝑠=1) = 𝑝 (𝑘𝑆 |𝑘𝑆−1) · · · 𝑝 (𝑘2 |𝑘1)𝑝 (𝑘1) . (20)

Topic 𝑘1 = 𝑘root is the root topic, and topic 𝑘𝑆 is a leaf topic. Topic

𝑘𝑠−1 is the parent of topic 𝑘𝑠 . 𝑝 (𝑘1) = 1, since a path must go

through the root topic. We now define the conditional probability

𝑝 (𝑘𝑠 |𝑘𝑠−1), i.e., standing at parent topic 𝑘𝑠−1, what is the probability
of selecting one of its children 𝑘𝑠 ∈ Child(𝑘𝑠−1). We have

𝑝 (𝑘𝑠 |𝑘𝑠−1) =
(1 + ℎP𝐻,𝑐 (z𝑑 , t𝑘𝑠 )2)−1∑

𝑘′𝑠 ∈Child(𝑘𝑠−1) (1 + ℎP𝐻,𝑐 (z𝑑 , t𝑘′𝑠 )2)−1
. (21)

t𝑘𝑠 ∈ P𝐻,𝑐 is𝐻 -dimensional hyperbolic topic embedding of topic 𝑘𝑠 .

We parameterize it by t𝑘𝑠 = exp
𝑐
0 (t

𝐸
𝑘𝑠
) where t𝐸

𝑘𝑠
∈ R𝐻 is learnable

Euclidean parameter and lies in the tangent space of the origin,

t𝐸
𝑘𝑠

∈ T0P𝐻,𝑐 . ℎP𝐻,𝑐 (·, ·) is geodesic distance. Eq. 21 evaluates the
probability over topic 𝑘𝑠−1’s children. The lower the distance be-
tween document and one child, the higher the probability, the more

likely the path goes through this child topic. Putting Eq. 21 into Eq.

20, we obtain probability of one path. We repeat this process for ev-

ery path, and obtain path distribution 𝝅𝑑 = [𝑝 (𝑟1), 𝑝 (𝑟2), ...]⊤. Path
distribution is document-specific, since different documents contain

diverse topics, and select different paths for content generation.

Level distribution. A path contains multiple topics, each with

a different depth or level. After sampling a path, we aim to sample a

level on the selected path to determine the specific topic for content

generation. The level distribution depends on the specificity of

the document. A document with general concepts tends to draw

low-depth topics, a document with concrete content likely samples

high-depth topics. For a tree with depth 𝑆 , we have

𝑝 (𝑠) = (1 + ℎ(𝑠)2)−1∑𝑆
𝑠′=1 (1 + ℎ(𝑠 ′)2)−1

where ℎ(𝑠)2 = min{ℎP𝐻,𝑐 (z𝑑 , t𝑘𝑠 )
2 |∀𝑘𝑠 on depth 𝑠}.

(22)

We first take min pooling for geodesic distances between a docu-

ment and all the topics on the same level or depth. We then normal-

ize the probability. The reason of min pooling is to select the most

representative topic on each level for calculation. Level distribution
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𝜹𝑑 = [𝑝 (𝑠1), 𝑝 (𝑠2), ...]⊤ is also document-specific, since a corpus of

documents may contain texts with different degrees of specificity.

After sampling a path 𝑟 and a level 𝑠 , we narrow down to one

topic 𝑘 . Given 𝑟 and 𝑠 , the probability of topic 𝑘 is 𝑝 (𝑟 ) × 𝑝 (𝑠).
Since there are multiple paths going through the same topic 𝑘 ,

the overall probability of this topic is 𝑝 (𝑘) = 𝑝 (𝑠)∑𝑟 ′:𝑘∈𝑟 ′ 𝑝 (𝑟 ′),
i.e., the summation of all the paths going through 𝑘 . Finally, for a

document 𝑑 , we calculate the probability of every topic and obtain

its hierarchical topic distribution 𝜽𝑑 = [𝑝 (𝑘1), 𝑝 (𝑘2), ..., 𝑝 (𝐾)]⊤.
Here we assume there are totally 𝐾 topics on the tree.

Textual content log-likelihood. Following previous topicmod-

els [8, 27, 34], we generate the observed words of document 𝑑 by

log 𝑝 (d|z𝑑 ,ZV ) =
∑

𝑤𝑑,𝑛 ∈d
log𝑝 (𝑤𝑑,𝑛 |z𝑑 , z𝑤𝑑,𝑛

)

=
∑

𝑤𝑑,𝑛 ∈d
log 𝑓 (𝜷𝜽𝑑 ) ∝

1

𝑁𝑑

∑
𝑤𝑑,𝑛 ∈d

log 𝑓 (𝜷𝜽𝑑 ) .
(23)

𝑓 (𝑥) = softmax(𝑥) = 𝑒𝑥∑
𝑥′ 𝑒𝑥

′ is softmax function. 𝜷 ∈ R |V |×𝐾
is

Euclidean parameter, representing topic-word distribution, used

to semantically interpret the topics. Here we divide by document

length 𝑁𝑑 to avoid long documents dominating the log-likelihood.

Topic tree regularizer. One requirement is to make sure that

child topic 𝑘𝑠 indeed inherits a sub-concept of its parent 𝑘𝑠−1, but
not other parents 𝑘 ′

𝑠−1, so that topics on one path indeed belong

to similar semantics. To do so, we design a topic tree regularizer,

forcing child 𝑘𝑠 to be closer to its parent 𝑘𝑠−1 than other topics.

Lreg =
1

2

∑
𝑖≠𝑗

(ℎP𝐻,𝑐 (t𝑘𝑠𝑖 , t𝑘𝑠𝑗 )
2 − 𝑔(𝑘𝑠𝑖 , 𝑘𝑠 𝑗 ))2 . (24)

Here 𝑔(𝑘𝑠𝑖 , 𝑘𝑠 𝑗 ) is the length between topics 𝑘𝑠𝑖 and 𝑘𝑠 𝑗 on the tree,

i.e., the number of edges connecting 𝑘𝑠𝑖 and 𝑘𝑠 𝑗 . For example, the

length between a child and its parent is one, and the length between

two siblings is two. Topics belonging to the same branch tend to

have low lengths, while topics from different subtrees present high

lengths. We will add this regularizer to the final objective function.

4.3.2 Other log-likelihood terms. So far, we have focused on

textual content log-likelihood. We now turn to the discussion of

other terms. For network structure log-likelihood, we have

log𝑝 (𝑒𝑑𝑖 ,𝑑 𝑗 |z𝑑𝑖 , z𝑑 𝑗 ) = log𝜙 (z𝑑𝑖 , z𝑑 𝑗 ) −
∑𝑀
𝑚=1 E𝑑′𝑗∼𝑝𝑛 (𝑑) log𝜙 (z𝑑𝑖 , z𝑑′𝑗 ) .

(25)

𝜙 (z𝑑𝑖 , z𝑑 𝑗 ) = (1 + 𝑒ℎP𝐻,𝑐 (z𝑑𝑖 ,z𝑑𝑗 )
2

)−1 is Fermi-Dirac decoder [29].

ℎP𝐻,𝑐 (·, ·) is geodesic distance. We use negative sampling [28] with

𝑀 negative samples. 𝑝𝑛 (𝑑) is a noise distribution. To preserve both
intra- and cross-layer graph structure, we similarly design another

log-likelihood between documents and words by replacing z𝑑 𝑗 at
Eq. 25 with topic proportions of 𝑑𝑖 ’s words (Fig. 2(e)).

If document 𝑑’s label exists, we define label log-likelihood by

ŷ = softmax(𝑓MLP (log𝑐0 (z𝑑 ))), log𝑝 (y𝑑 |z𝑑 ) =
|y𝑑 |∑
𝑖=1

𝑦𝑑,𝑖 log𝑦𝑑,𝑖 .

(26)

𝑓MLP (·) is multi-layer perceptron [3], y𝑑 is one-hot label encoding.

To summarize, hyperbolic graph topic encoder captures network

hierarchy by intra- and cross-layer encoding. Tree-structured topic

decoder preserves semantic hierarchy by text content generation.

4.4 Continuously Updating the Topic Tree
Different corpora contain documents with different topic structures.

Some corpora have documents of various topic specificities, leading

to a deep topic tree, while others present a relatively flat tree. To

match the semantic hierarchy of different corpora, we design a

heuristic method to continuously update the tree during training.

More complicated design is our future work.

We evaluate the proportion of words assigned to topic 𝑘 by

𝛾𝑘 =

∑
𝑑∈D 𝑁𝑑𝜃𝑑,𝑘∑

𝑑∈D 𝑁𝑑
. 𝑁𝑑 is the number of words in 𝑑 . 𝜽𝑑 = [𝜃𝑑,𝑘 ]𝐾𝑘=1

is the topic distribution of 𝑑 . A high 𝛾𝑘 means topic 𝑘 captures too

many concepts, thus children should be added to split its concepts. A

low𝛾𝑘 indicates a topic with overly specific semantic and keeping it

may cause overfitting. We remove it as well as its descendants, since

descendants even capture more specific and redundant semantics.

4.5 KL Divergence and Objective Function
KL divergence. The KL divergence KL[𝑞(z𝑑 ) | |𝑝 (z𝑑 )] in the evi-

dence lower bound Eq. 8 serves as prior regularizer, which pushes

variational posterior 𝑞(z𝑑 ) to a predefined prior 𝑝 (z𝑑 ). Different
from VAE [17], whose KL divergence is in Euclidean space, both our

prior and variational posterior are in hyperbolic space. Thus our

KL divergence does not have a closed-form solution. We instead

use Monte Carlo sampling [3] to estimate KL divergence.

KL[𝑞(z𝑑 ) | |𝑝 (z𝑑 )] = 𝑞(z𝑑 ) log
𝑞(z𝑑 )
𝑝 (z𝑑 )

= Ez𝑑∼𝑞 (z𝑑 ) log
𝑞(z𝑑 )
𝑝 (z𝑑 )

= Ez𝑑∼𝑞 (z𝑑 ) (log𝑞(z𝑑 ) − log𝑝 (z𝑑 ))
(27)

where z𝑑 ∼ 𝑞(z𝑑 ) is the output from our hyperbolic graph topic

encoder (Eq. 18–19). In this paper, both prior and variational pos-

terior are wrapped Gaussian, 𝑞(z𝑑 ) = WN(𝝁𝑑 , 𝚺𝑑 ) and 𝑝 (z𝑑 ) =
WN(0, I), where 𝝁𝑑 and 𝚺𝑑 are obtained by our encoder (Eq. 17).

Now the problem becomes how to evaluate logWN(·, ·). Once
we obtain it, we can evaluate log𝑞(z𝑑 ) − log𝑝 (z𝑑 ) to estimate KL

divergence. Fortunately, existing work [33] provides the solution.

Theorem 4.1. The logarithm of wrapped Gaussian is [33]

logWN(z; 𝝁, 𝚺) = log𝒩(v; 0, log𝑐0 (𝚺))

− (𝐻 − 1) log
( 1√

|𝑐 |
sinh(

√
|𝑐 | | |u| |2)

| |u| |2

)
.

(28)

u = log
𝑐
0 (z), v = PT𝑐𝝁→0 (u). 𝐻 is the dimension of representation z.

The theorem provides an explicit equation to calculate logWN(·, ·).
We replace z in Eq. 28 with topic proportion of documents z𝑑 , the
output from our encoder, to obtain log𝑞(z𝑑 ) and log 𝑝 (z𝑑 ). Finally,
we calculate log𝑞(z𝑑 ) − log 𝑝 (z𝑑 ) to estimate KL divergence. We

investigate the effect of KL divergence at the Experiments section.

Objective function. We have elaborated every necessary com-

ponent. Hyperbolic graph topic encoder captures network hierarchy

and outputs topic proportions of documents and words. Tree-struc-

tured topic decoder designs a topic tree to preserve semantic hier-

archy. KL divergence is prior regularizer. Putting all components

together, we obtain the final objective function for minimization.

L = −LELBO + 𝜆regLreg . (29)

We add topic tree regularizer Lreg at Eq. 24. Algo. 1 at Appendix

summarizes the training process of our model.
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Figure 3: Unsupervised document classification when varying the dimension of topic proportions 𝐻 from 8 to 128.

Table 2: Dataset statistics.

Name #Documents #Links Vocabulary #Labels

ML 3,087 8,573 2,885 7

PL 2,597 7,754 3,106 9

COVID 1,500 5,706 5,083 5

Aminer 114,741 265,345 10,018 10

Web 445,657 565,502 10,015 N.A.

5 EXPERIMENTS
The main objective of experiments is to evaluation the quality of

the learned topic proportions of documents.

Datasets. Table 2 shows five datasets. Cora [26] is a corpus of
papers with abstract as content and citations as links. We follow

[54] and created two independent datasets, Machine Learning (ML)
and Programming Language (PL). Aminer [35] is another citation
network. COVID is a Coronavirus news corpus. Since no links are

observed, we created 𝜅NN links using 𝑡 𝑓 − 𝑖𝑑 𝑓 similarity.Web [20]

is a Web page hyperlink network. Each page is a news with hyper-

links to related pages. Appendix A.2 shows dataset preprocessing.

Baselines.We consider 5 classes of baselines. i) Flat topicmod-
els, ProdLDA [34], ETM [8], NSTM [52], GATON [42], GraphBTM

[53], GNTM [32]. These unsupervised models treat all topics equally

without semantic hierarchy. By comparison, we highlight the ben-

efit of topic tree to differentiate documents with different topic

specificity. ii) Hierarchical topic models, nCRP [12], TSNTM

[15], HTV [31]. They model semantic hierarchy in Euclidean space

in an unsupervised way, but do not consider network hierarchy. iii)
Topic models for document graphs consider both text and net-

work links for unsupervised training, RTM [7], Adjacent-Encoder

[44], LANTM [38], GTNN [39]. They are all in Euclidean space.

By comparison, we show the utility of using hyperbolic space to

better preserve network hierarchy. iv) Hyperbolic graph neu-
ral networks derive node embeddings on graphs in hyperbolic

space. Strictly speaking, they are not topic models, nor baselines.

For completeness, we still compare to HGCN [6] and LGCN [50].

v) Text classification models learn text embeddings with label
supervision. They are not topic models. We mainly compare to GNN

models, TextGCN [43], HyperGAT [9], HINT [41]. HINT designs a

topic tree in Euclidean space for text classification.

We set 𝐿 = 2 convolutional steps. 𝜆text = 𝜆reg = 5.𝑀 at Eq. 25 is

5. We initialize the topic tree with three levels, and each topic has

three children. For the supervised version, 𝜆
label

= 5. For ProdLDA

and RTM, they perform the best with 1 and 2 as Dirichlet parameter,

respectively. Each result is obtained by 5 independent runs.

5.1 Quantitative Evaluation
5.1.1 Document classification. As in LDA [5], we use docu-

ment classification to evaluate the quality of topic proportions. We

split 80% documents for training (of which 10% for validation), 20%

for testing. During training, we only observe training documents

and links within them. During testing, we infer topic proportions

of test documents and classify them. We conduct two classification

tasks, corresponding to unsupervised and supervised versions.

Unsupervised training. We set 𝜆
label

= 0. Labels are never

involved for training. After convergence, we follow previous works

[44] and train an external 𝜅NN classifier (𝜅 = 5) using topic propor-

tions of training documents and predict the labels of test documents.

Fig. 3 shows Micro and Macro F1 with different dimensions of topic

proportions. LANTM, LGCN, and TextGCN cannot run on large

dataset Aminer even on a machine with 256GB, thus are excluded.

Supervised training. Labels are involved for supervised train-

ing. For a fair comparison, we pick the best baseline from each class

of baselines, then manually add a multi-layer perceptron 𝑓MLP (·)
as classifier to create their supervised version. These baselines are

GATON, TSNTM, GTNN, HGCN. For completeness, we also show

the results of other unsupervised models. Table 3 shows the results.

Analysis. For both tasks, TSNTM performs better than flat mod-

els, due to semantic hierarchy to differentiate documents. By using
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Table 3: Supervised document classification with Micro F1 (left) and Macro F1 (right) at 𝐻 = 16. Results are in percentage.

Category Model

Micro F1 score Macro F1 score

ML PL COVID Aminer ML PL COVID Aminer

Flat topic models
(GATON is converted to supervised version)

ProdLDA 65.3±1.0 49.8±2.5 72.7±1.7 69.1±0.1 67.4±1.4 48.4±1.8 73.3±1.7 67.5±0.1
ETM 46.2±1.2 39.8±0.8 67.2±1.8 20.7±0.9 42.8±1.6 32.1±1.2 67.4±1.7 19.0±0.9
NSTM 40.1±1.9 36.7±2.3 68.1±1.7 40.5±0.2 33.9±2.0 30.6±1.4 68.1±1.8 38.3±0.3
GATON 72.8±0.7 61.6±1.3 80.3±1.9 57.9±0.4 70.5±1.2 53.6±2.0 80.1±2.0 54.8±0.5

GraphBTM 44.5±1.0 39.2±0.6 40.3±0.3 37.3±0.4 31.9±0.6 29.5±1.2 40.1±0.4 34.6±0.2
GNTM 60.2±3.1 50.0±1.9 73.2±2.2 63.6±0.6 56.4±3.4 43.0±1.6 73.2±2.1 61.6±0.7

Hierarchical topic models
(TSNTM is converted to supervised version)

nCRP 28.6±1.7 25.2±2.5 41.7±4.4 20.5±0.8 21.6±1.8 16.7±2.5 41.5±4.5 15.8±0.3
TSNTM 72.8±1.5 63.3±0.5 84.1±1.3 71.5±0.1 68.6±1.3 56.1±0.8 84.0±1.2 67.3±0.1
HTV 37.3±4.2 29.2±5.4 61.6±4.3 46.8±0.5 32.0±4.1 21.3±4.7 61.9±4.7 44.4±0.1

Topic models for document graphs
(GTNN is converted to supervised version.

LANTM cannot run on large dataset Aminer

even on a machine with 256GB memory)

RTM 61.0±0.9 47.2±1.4 69.7±2.5 54.7±0.9 57.8±1.2 39.3±0.8 69.8±2.3 53.0±0.8
Adjacent-Encoder 72.5±1.1 61.2±1.0 74.8±2.4 64.5±0.3 68.3±1.0 49.3±0.6 69.8±2.3 62.7±0.4

LANTM 72.2±0.7 61.7±1.1 80.3±1.7 N.A. 68.6±1.0 54.6±1.2 80.2±1.7 N.A.

GTNN 75.0±0.7 61.3±1.0 77.8±2.6 63.1±0.2 73.1±0.9 53.3±1.6 77.0±3.6 61.1±0.2
Hyperbolic GNNs (HGCN is converted to supervised
version. LGCN cannot run on large dataset Aminer)

HGCN 82.6±1.3 70.3±1.0 86.0±0.5 67.6±1.0 81.2±1.3 65.9±1.3 85.8±0.5 65.5±1.0
LGCN 73.0±2.2 62.8±2.6 60.5±5.0 N.A. 70.1±2.8 54.8±3.2 61.2±4.8 N.A.

Text classification (designed with label supervision.
TextGCN cannot run on large dataset Aminer)

TextGCN 78.3±0.7 67.5±0.7 83.7±0.5 N.A. 76.0±0.8 61.4±1.1 79.6±0.5 N.A.

HyperGAT 80.0±0.4 65.8±2.5 84.3±1.2 74.2±1.5 78.9±0.5 60.2±2.5 81.3±0.8 72.0±1.1
HINT 69.5±1.1 55.4±2.3 85.7±1.5 66.5±0.5 64.8±3.9 44.3±3.2 85.8±1.5 59.5±0.3

Our proposed model (supervised version) HGTM 83.8±0.5 72.2±1.4 86.3±1.7 70.0±0.3 82.6±0.7 67.4±2.0 86.2±1.9 68.5±0.3

Table 4: Link prediction AUC (in percentage) at 𝐻 = 16.

Model ML PL COVID Aminer Web

ProdLDA 82.5±0.2 78.9±0.4 80.1±0.8 93.4±0.1 82.4±0.0
ETM 70.3±1.6 72.5±1.1 87.2±0.9 63.0±1.2 79.4±0.0
NSTM 65.1±0.7 64.7±0.8 71.0±1.6 67.4±0.8 67.0±0.8
GATON 75.9±1.5 64.5±0.5 70.2±1.2 82.2±0.8 87.6±0.1

GraphBTM 69.2±2.5 68.9±1.0 70.3±1.3 71.2±1.4 N.A.

GNTM 79.3±0.8 73.2±0.3 76.8±0.4 91.8±0.3 86.3±0.0
nCRP 58.0±0.9 60.1±3.1 70.8±0.8 70.7±2.0 57.2±0.0
TSNTM 77.8±1.5 75.5±0.9 70.8±0.8 90.4±0.7 87.4±0.8
HTV 69.9±1.9 68.3±4.6 86.0±2.0 85.5±0.3 86.1±0.8
RTM 75.7±0.5 69.0±0.4 69.8±0.2 81.7±0.3 78.4±0.1

Adjacent-Encoder 81.0±1.1 80.8±1.7 79.8±0.6 92.6±0.3 73.2±0.0
LANTM 78.7±0.7 82.2±0.3 93.6±0.3 N.A. N.A.

GTNN 76.6±0.9 73.7±1.2 84.3±1.0 84.6±0.4 74.3±0.2
HGCN 89.7±0.4 90.3±0.3 94.8±0.3 94.2±0.1 90.5±0.2
LGCN 89.2±0.4 90.8±0.5 93.4±0.5 N.A. N.A.

TextGCN 76.5±0.5 68.2±0.4 87.1±0.4 N.A. N.A.

HyperGAT 82.0±0.8 77.5±1.0 87.1±0.4 90.0±0.0 N.A.

HINT 71.7±1.4 69.7±1.4 86.6±0.2 89.8±0.1 N.A.

HGTM 89.9±0.8 91.3±0.3 95.7±0.2 95.9±0.2 91.3±0.1

hyperbolic space for network, HGCN preserves network hierarchy

and is the best baseline. Compared to HGCN, we further model se-

mantic hierarchy with topic tree, improving the results. Compared

to hierarchical models, we achieve improvement due to network hi-

erarchy. HyperGAT performs better on Aminer, possibly because it

has word-word connections. We are still better than other baselines.

5.1.2 Link Prediction. As in RTM [7], we predict links on the

document network. During training, we observe 80% training docu-

ments and linkswithin them. During testing, we predict linkswithin

20% testing documents. Following previous works [38, 44], the prob-

ability of a link for Euclidean baselines is 𝑝 (𝑒𝑖 𝑗 ) ∝ 𝑒
−| |z𝑑𝑖 −z𝑑𝑗 | |

2

,

while the probability for hyperbolic baselines is Fermi-Dirac de-

coder at Eq. 25. We compare the predicted probability with the

ground-truth adjacency with AUC as metric. Table 4 shows the

results. TextGCN and HyperGAT cannot run onWeb with no labels.

Our model predicts links more accurately than baselines, due to

the modeling of both semantic and network hierarchy. Compared

(a) HGTM (e) HGCN

(b) GATON (c) TSNTM (d) GTNN

Figure 4: Visualization on ML dataset.

to hierarchical topic models with topic tree, we showcase the ad-

vantage of modeling network hierarchy. Compared to hyperbolic

GNNs, we verify the benefit of semantic hierarchy.

5.2 Topic Analysis
5.2.1 Topic Coherence. An important property of topic models

is semantic interpretability. In our model, decoding parameter 𝜷 ∈
R |V |×𝐾

is topic-word distribution. Each column is the distribution

of a topic over the vocabulary, and the highest values on that column

are the keywords of the topic. As in ProdLDA [34], we evaluate

the coherence of keywords by an external corpus, Google Web 1T

5-gram Version 1 [10], with NPMI as metric. Table 5 (left) shows the

results. We exclude TextGCN, HyperGAT, HGCN, LGCN, since they

are not topic models and cannot evaluate coherence. Our model

generates more coherent words than flat models, since we construct

a topic tree to model topic relationship. Connected topics on the tree

complement each other to improve coherence. TSNTM performs

slightly better on Web, possibly because it models pretrained word

embeddings. Our model is still better than most baselines on Web.
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Table 5: Topic coherence NPMI (left, in percentage, higher is better) and perplexity (right, lower is better) at 𝐻 = 16.

Category Model

Topic Coherence NPMI (higher is better) Perplexity (lower is better)

ML PL COVID Aminer Web ML PL COVID Aminer Web

Flat topic models

ProdLDA 10.9±0.7 12.1±0.7 12.0±0.7 9.3±0.5 21.2±0.2 7.97±0.00 7.99±0.00 7.82±0.00 8.18±0.00 8.34±0.00
ETM 7.1±0.2 8.7±0.1 8.2±0.7 5.4±0.3 16.4±0.6 7.96±0.00 7.94±0.00 7.80±0.00 8.31±0.00 8.52±0.00
NSTM 17.2±0.7 19.2±0.7 22.0±0.6 15.5±0.3 24.0±0.3 7.83±0.00 7.80±0.00 8.38±0.00 9.00±0.00 8.93±0.00
GATON 17.4±1.0 5.4±1.1 13.8±1.2 19.4±1.5 4.8±1.1 8.37±0.02 8.38±0.03 8.42±0.00 9.25±0.03 8.33±0.00

GraphBTM 5.1±0.5 7.0±0.4 10.4±0.1 8.2±0.3 N.A. 7.09±0.01 7.04±0.02 7.87±0.00 7.92±0.01 N.A.

GNTM 12.1±0.3 15.4±0.7 13.8±0.8 17.3±0.4 23.8±0.3 6.91±0.01 6.83±0.01 7.69±0.01 7.81±0.00 7.79±0.00

Hierarchical topic models
nCRP 2.2±0.1 2.2±0.1 3.0±0.1 0.2±0.1 2.8±0.0 6.94±0.02 6.87±0.02 7.69±0.05 7.99±0.02 7.71±0.04
TSNTM 12.1±0.6 15.1±0.8 14.1±0.8 17.6±0.8 26.6±2.3 6.92±0.01 6.83±0.01 7.64±0.04 7.85±0.01 7.35±0.03
HTV 10.8±1.0 13.3±1.8 16.6±2.5 17.2±0.6 26.5±0.9 6.95±0.02 6.83±0.03 7.62±0.04 7.97±0.00 7.44±0.01

Topic models for document graphs
(LANTM cannot run on large datasets

Aminer and Web even on 256GB machine)

RTM 7.1±0.3 9.3±0.2 16.2±0.5 10.8±0.3 20.9±0.4 7.46±0.05 7.52±0.05 8.98±0.04 8.89±0.01 10.28±0.19
Adjacent-Encoder 9.9±0.9 11.3±0.9 13.8±0.4 11.4±0.2 15.2±0.1 7.65±0.05 7.62±0.04 6.96±0.00 8.71±0.02 8.26±0.01

LANTM 5.4±0.3 7.2±0.8 8.6±0.3 N.A. N.A. 8.63±0.00 8.48±0.00 8.48±0.00 N.A. N.A.

GTNN 7.2±0.6 5.8±0.6 13.5±2.7 12.6±0.5 7.9±1.6 7.75±0.02 7.73±0.01 7.96±0.00 9.39±0.01 8.26±0.01
Text classification (cannot run on Web with no labels) HINT 6.6±2.2 8.6±2.4 11.6±3.0 12.1±3.3 N.A. 8.45±0.08 8.51±0.28 8.84±0.12 10.04±0.54 N.A.

Our proposed model HGTM 19.0±2.6 21.9±2.8 23.3±3.1 20.5±1.4 25.0±1.7 6.89±0.02 6.81±0.00 7.60±0.01 7.78±0.01 7.71±0.01
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Figure 5: Ablation analysis of our model.

5.2.2 Perplexity. We evaluate perplexity [5], 𝑒
− log𝑝 (D

test
)∑

𝑑′∈D
test

𝑁𝑑′
, for

20% test documents. Since perplexity is exponential, we instead re-

port its power, − log𝑝 (Dtest)∑
𝑑′∈D

test
𝑁𝑑′

. Lower is better. Table 5 (right) shows

that benefiting from semantic hierarchy, TSNTM performs well

among baselines. Compared to it, we further consider network hi-

erarchy to improve the performance, since topological structure

also reveals the centrality and the hierarchy of documents.

5.2.3 Topic Visualization. We use t-SNE [36] to learn 2D topic

proportions for documents for visualization at Fig 4. Every topic

has keywords, but we only show some topics for clarity. Our model

and HGCN present similar separation between categories based on

visual observation. However, we further learn topic embeddings

and keywords of each topic for semantic interpretability.

5.3 Model Analysis
Effect of topic tree structure. We designs a latent topic tree to

preserve semantic hierarchy. To verify its effectiveness, we conduct

two experiments. i) To investigate the hierarchical tree structure,
we remove the topic tree and treat all topics equally. ii) To test the

advantage of the continuously updated structure, we fix the topic

tree during training. Fig. 5(a) shows that changing the decoding top-

ics to a flat structure hurts the results, since topics cannot preserve

the semantic hierarchy, thus deteriorating topic proportions. Fixing

the topic tree also influences the results, since the predefined tree

may not be suited for the corpus, leading to semantic mismatch.

Effect of intra- and cross-layer encoding. We remove each

encoding respectively from the complete model. With both encod-

ings, we perform the best at Fig. 5(b), revealing the advantage of

both encodings to capture network hierarchy. Intra-layer encoding

is more informative, since disregarding it leads to the worst results.

Effect of hyperbolic spacemodeling. Using hyperbolic space
for network link reconstruction can better preserve network hier-

archy than Euclidean space. To verify network hierarchy is indeed

better preserved, we replace all hyperbolic operations with the

Euclidean counterparts, while keeping all necessary components.

The only difference is the modeling spaces. Fig. 5(c) contrasts the

performance. Hyperbolic space achieves better results, since its

exponentially growing volume can better model hierarchically ex-

panding network than Euclidean space with polynomial growth.

Effect of variational inference. Our model is built on varia-

tional inference with Monte Carlo sampling and KL divergence. To

evaluate its effect, we remove it and report the results at Fig. 5(d).

Our model with variational components classifies documents more

accurately. This is because Monte Carlo sampling introduces a ran-

dom noise to topic proportions at each training epoch, improving

model robustness. The model without variational components does

not have sampling or KL regularizer, thus may suffer overfitting.

6 CONCLUSION
We propose HGTM, a hyperbolic graph topic modeling network

that learns interpretable document representations.We design intra-

and cross-layer topic encoding to capture network hierarchy, and a

continuously updated topic tree to preserve semantic hierarchy.
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Algorithm 1 Training Process of HGTM

Input: Corpus C with documents D and network links E,
number of convolutional steps 𝐿, number of negative samples𝑀 , a

predefined tree structure.

Output: Topic proportions ZD and ZW , and topic-word

distribution 𝜷 .

1: Initialize model parameters.

2: while not converged do
//intra-layer topic encoding

3: for 𝑙 = 1, 2, ..., 𝐿 do
4: Simulate intra-layer topic encoding by Eq. 10–14.

5: end for
//cross-layer topic encoding

6: for 𝑙 = 1, 2, ..., 𝐿 do
7: Simulate cross-layer topic encoding by Eq. 15–16.

8: end for
9: Hyperbolic reparameterization by Eq. 17–19.

//probabilistic decoding
10: Obtain path distribution by Eq. 20–21.

11: Obtain level distribution by Eq. 22.

12: Evaluate objective function with log-likelihood terms (Eq.

8 and Eq. 25), KL divergence (Eq. 27), and tree-structured regu-

larizer (Eq. 24).

//optimization
13: Minimize objective function Eq. 29.

//update topic tree structure
14: Update topic tree based on Sec. 4.4.

15: end while

A REPRODUCIBILITY SUPPLEMENT
A.1 Pseudo-Code of Training Process
We summarize the training process of our model at Algo. 1.

A.2 Dataset Preprocessing
Here we introduce the details of dataset preprocessing. Code and

datasets are submitted, and will be released upon publication.

Cora
2
is publicly available dataset with academic papers as tex-

tual content and citations as links. We created two independent

datasets, Machine Learning (ML) and Programming Language (PL).
For both datasets, after removing stop words and punctuations, we

kept the most frequent 3,000 words as the vocabulary.

COVID3
is a publicly available coronavirus news corpus from

multiple publishers. Each document is a news article and is associ-

ated with a category. We selected five categories, economy, business,
and finance, education, health, labour, and sports. For each category,

we randomly selected 300 news articles, forming a corpus of 1,500

articles in total. Similarly, after removing stop words and punctu-

ations, we kept the most frequent 5,000 words as the vocabulary.

Since we did not observe links connecting these news articles, we

instead compared documents’ 𝑡 𝑓 − 𝑖𝑑 𝑓 similarity and induced links

by 𝜅NN (𝜅 = 5), resulting in 5,706 links in total.

2
http://people.cs.umass.edu/~mccallum/data/cora-classify.tar.gz

3
https://aylien.com/coronavirus-news-dataset/

Table 6: Categories and venues of Aminer dataset

Category Venues

Computational Linguistics ACL, EMNLP, NAACL, COLING, EACL

Databases and Information Systems SIGMOD, VLDE, ICDE, CIKM, IPM

Data Mining and Analysis KDD, WWW, ICDM, TKDE, SIGIR

Computer Vision and Pattern Recognition CVPR, ICCV, ECCV, TPAMI, TIP

Artificial Intelligence NeurIPS, ICML, AAAI, IJCAI, JMLR

Computer Graphics TOG, TVCG, SIGGRAPH, CGA, TVS

Theoretical Computer Science STOC, SODA, FOCS, JOC, JACM

Software Systems ICSE, ASE, FSE, TSE, PLDI

Computer Networks and Wireless Communication SIGCOMM, INFOCOM, TWC, CM, JNCA

Computing Systems TPDS, ISCA, TJSC, ICDCS, ATC

Aminer4 is another academic corpus with abstract as document

content and citations as links. We used ACM-Citation-network V8 as
the raw dataset. Since we did not discover any categories of these

academic papers, we labeled documents based on their publication

venues. Specifically, we used Google Scholar Metrics
5
as ground-

truth categories. We selected 10 computer science categories. For

each category, we selected 5 representative conferences or journals,

resulting in totally 50 venues. Table 6 summarizes the details of

these venues. Again, after removing stop words and punctuations,

we maintained the most frequent 10,000 words as vocabulary.

Web6 is a web page hyperlink network. Each page is a news

article containing the most frequent phrases and quotes. Each page

has hyperlinks to other related pages. After removing stop words

and punctuatinos, we kept documents with links and more than 30

words, resulting in 445,657 documents and 565,505 links in total. We

did not observe any ground-truth categories of these documents.

A.3 Experiment Environment
All the experiments were conducted on Linux server with a Tesla

K80 GPU with 11441MiB. Its operating system is CentOS Linux 7

(Core). We implemented our proposed model HGTM using Python

3.6 as programming language and TensorFlow 1.15.0 as deep learn-

ing library. Other frameworks include NumPy 1.17.4, sklearn 0.23.2,

and scipy 1.5.2.

4
http://www.arnetminer.org/citation

5
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng

6
https://snap.stanford.edu/data/memetracker9.html

http://people.cs.umass.edu/~mccallum/data/cora-classify.tar.gz
http://www.arnetminer.org/citation
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
https://snap.stanford.edu/data/memetracker9.html
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