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ABSTRACT
Event forecasting has been a demanding and challenging task
throughout the entire human history. It plays a pivotal role in crisis
alarming and disaster prevention in various aspects of the whole so-
ciety. The task of event forecasting aims to model the relational and
temporal patterns based on historical events and makes forecasting
to what will happen in the future. Most existing studies on event
forecasting formulate it as a problem of link prediction on temporal
event graphs. However, such pure structured formulation suffers
from two main limitations: 1) most events fall into general and
high-level types in the event ontology, and therefore they tend to
be coarse-grained and offers little utility which inevitably harms the
forecasting accuracy; and 2) the events defined by a fixed ontology
are unable to retain the out-of-ontology contextual information.

To address these limitations, we propose a novel task of context-
aware event forecasting which incorporates auxiliary contextual
information. First, the categorical context provides supplementary
fine-grained information to the coarse-grained events. Second and
more importantly, the context provides additional information to-
wards specific situation and condition, which is crucial or even
determinant to what will happen next. However, it is challenging
to properly integrate context into the event forecasting framework,
considering the complex patterns in the multi-context scenario.
Towards this end, we design a novel framework named Separation
and Collaboration Graph Disentanglement (short as SeCoGD) for
context-aware event forecasting. In the separation stage, we lever-
age the context as a prior guidance to disentangle the event graph
into multiple sub-graphs, followed by a context-specific module to
model the relational-temporal patterns within each context. In the
collaboration stage, we design a cross-context module to retain the
collaborative associations among multiple contexts. Since there is
no available dataset for this novel task, we construct three large-
scale datasets based on GDELT. Experimental results demonstrate
that our model outperforms a list of SOTA methods. The dataset
and code are released via https://github.com/yecchen/SeCoGD.

∗Both authors contributed equally to the paper.
†Corresponding author. Xiang Wang is also affiliated with Institute of Artificial Intelli-
gence, Institute of Dataspace, Hefei Comprehensive National Science Center.
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1 INTRODUCTION
Event forecasting [51] is one of the long-standing and challenging
tasks, including forecasting of pandemic outbreak [11], civil un-
rest [34], international conflicts [28], etc. Accurately predicting such
vital events enables people to prepare in advance to prevent cata-
strophic results or minimize potential influence. Automatic event
forecasting targets at modeling the rich relational and temporal pat-
terns endowed by events observed in history, thus making accurate
forecasting to events in the future. The development of data science
and artificial intelligence endows human with stronger capability
for automatic event forecasting, which has garnered more and more
attention in recent years.

One of the prominent formulations for event forecasting is to
define an event as a quadruple, i.e., (𝑠, 𝑟, 𝑜, 𝑡), where 𝑠 , 𝑟 , 𝑜 , and
𝑡 refer to subject, relation (event type) 1, object, and timestamp,
respectively. At each timestamp, all the quadruples form an event
graph. Given a query of (𝑠, 𝑟, 𝑡 + 1) in the future and the list of
historical event graphs until 𝑡 , we aim to predict the missing object.
Based on such a structured formulation, a plethora of works have
been emerging in recent years. They have applied structured rela-
tional and temporal information (e.g., RE-NET [22], RE-GCN [30]),
time intervals (e.g., EvoKG [36]), and texts from ontology and news
articles (e.g., Glean [9] and CMF [10]), etc. for event forecasting.

Albeit the remarkable achievements of current works [5, 9, 10,
22, 30], they still suffer from the following limitations. First, existing
structured events tend to be classified as high-level general events,
while more specific and informative events are few. As shown in
Figure 1(a), for the well-known GDELT [28] dataset, while the
hierarchical event type ontology [4] defines a large number of fine-
grained event types, most actual events were being classified into
1Relation and event type are the same in this work.
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hierarchical event ontology

(a) Most events fall into coarse-grained and higher-level types.
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(b) Diverse contexts affect event forecasting.
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Figure 1: The motivation of context-aware event forecasting.
(a) Most current events fall in the coarse-grained and higher
level types of the ontology, while more informative fine-
grained events are fewer. (b) Out-of-ontology and diverse
contexts affect events. Context can providemore fine-grained
information to enhance the event forecasting performance.
event types in the higher levels of event ontology and fine-grained
events are fewer. Consequently, the expressiveness of events is
severely restricted, resulting in less utility in practical scenarios.
Second, events follow the types in the predefined ontology, which
is usually fixed due to the difficulty of construction. For example in
political event forecasting, the well-known CAMEO [4] ontology
costs ten years to be finalized. It is difficult to update the ontology
timely, thus newly emerging out-of-ontology information is un-
able to be covered by the outdated ontology 2. Worse still, events
are greatly influenced by out-of-ontology contextual information,
such as the situation and circumstance. As the example shown in
Figure 1(b), given diverse contexts, the entity President Y performs
distinct roles and actions w.r.t. the various countries of the world.
Such diverse contexts that provide clues for certain situations, are
crucial or even determinant to event forecasting, and they cannot
be adequately modeled solely based on the event ontology.

To address these limitations, we introduce context into existing
event representation as supplementary information and define a
novel task named context-aware event forecasting. We associate each
event with a categorical context, elaborating the event’s occurrence
situation or condition. Then each event is extended from a quadru-
ple to a quintuple, i.e., (𝑠, 𝑟, 𝑜, 𝑡, 𝑐), where 𝑐 denotes the context. The
incorporation of context brings multiple benefits to event forecast-
ing. First, it endows more fine-grained information to each event,
thus making the coarse-grained events more specific and expres-
sive. Second, the flexibly defined context is able to offer crucial
information about the circumstances or backgrounds of the events,
narrowing down the potential forecasting space. As the example
shown in Figure 1(b), given different contexts of Olympics 2016
or G20 2022 Summit, the target countries that President Y would
make a visit to will be different. Despite various merits, integrating
context into the problem of event forecasting poses new challenges
2Both out-of-ontology and outdated ontology refer to the same problem in this work.

to existing methods. First, one entity under different contexts may
trigger distinctive events, and how to capture the relational and
temporal patterns given a certain context is not trivial. Second,
events from different contexts are also correlated with each other,
and how to delicately model the collaborative associations among
contexts is vital to accurate event forecasting.

To tackle the above challenges, we borrow the idea from graph
disentanglement representation learning and propose a general
framework SeCoGD (Separation andCollaborationGraphDisenta-
nglement), for context-aware event forecasting. It consists of two
stages: separation and collaboration. First, in the separation stage,
we utilize the context as a prior guidance to separate the event
graphs into multiple sub-graphs. Then, we resort to established
relational-temporal models, such as RE-GCN [30], to capture the
context-specific patterns within each sub-graph. Second, in the
collaboration stage, we construct hypergraphs among the disen-
tangled embeddings and leverage GNN to learn the collaborative
associations among contexts. Different from current graph disentan-
glement methods that just focus on how to separate the graph, our
framework considers both separation and collaboration due to the
prior guidance of context for the separation. Moreover, our method
is a general framework, of which the key modules can be replaced
by alternative designs. At the same time, considering that there is
no available dataset that has context information, we build three
new datasets based on GDELT. Extensive experiments demonstrate
that our proposed framework outperforms various SOTA methods.
The main contributions of our work are summarized as:

• We propose to introduce the categorical contextual information
into the structured event forecasting problem.

• To tackle the new task, we build a novel framework SeCoGD, and
the two-stage design of separation and collaboration is effective
in capturing the complex patterns in the multi-context scenario.

• We build three datasets based on GDELT to facilitate current and
future studies for context-aware event forecasting. Our method
significantly outperforms SOTA methods on the three datasets.

2 PRELIMINARY
We first give a formal definition for the task of context-aware event
forecasting. Then, we introduce the newly constructed datasets.

2.1 Problem Formulation
We first present the problem formulation of conventional event
forecasting, which does not consider the contextual information.
Then we present how to introduce the context and formulate the
new task of context-aware event forecasting.

Conventional Event Forecasting. We define an event as a
quadruple (𝑠, 𝑟, 𝑜, 𝑡), where 𝑠 ∈ E, 𝑟 ∈ R, and 𝑜 ∈ E corresponds
to subject entity, relation, and object entity, respectively; 𝑡 is the
timestamp when this event happens; E and R are the entity and
relation set, respectively. All the quadruples in the same timestamp
𝑡 form an event graph, denoted as 𝐺𝑡 = {(𝑠𝑛, 𝑟𝑛, 𝑜𝑛, 𝑡)}𝑁𝑛=1, where
(𝑠𝑛, 𝑟𝑛, 𝑜𝑛, 𝑡) is the 𝑛-th event, and 𝑁 is the number of events at
timestamp 𝑡 . Given the historical event graphs at and before time
𝑡 , denoted as G≤𝑡 = {𝐺1,𝐺2, · · · ,𝐺𝑡 }, and a query, denoted as
(𝑠, 𝑟, 𝑡 + 1), we aim to predict the object 𝑜 .
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Context-aware Event Forecasting.We define context 𝑐 ∈ C
as a categorical value denoting certain situations or conditions
shared by a group of events, where C = {𝑐1, 𝑐2, · · · , 𝑐𝐾 } is the set
of contexts and 𝐾 is the number of a few contexts. In practice, for
historical events, the context can be obtained from human anno-
tation, crowd-sourcing tags, or automatic information extraction
systems. We assign a context 𝑐 to each event, thus extending its
quadruple representation into a quintuple representation, denoted
as (𝑠, 𝑟, 𝑜, 𝑡, 𝑐). Correspondingly, the event graph at each timestamp
𝑡 will be extended as 𝐺𝑡 = {(𝑠𝑛, 𝑟𝑛, 𝑜𝑛, 𝑡, 𝑐𝑛)}𝑁𝑛=1, where 𝑐𝑛 is the
context of the 𝑛-th event. Given the historical event graphs G≤𝑡 ,
a query (𝑠, 𝑟, 𝑡 + 1) and a specified context 𝑐 in which the query
event is supposed to be, we target at predicting the object 𝑜 . Please
note that specifying the categorical context during inference will
not leak information about the predicted object. For example, given
the context of Covid-19, the query "which country that President
Y will cooperate with" will not be leaked to the model. And we
assume that it is not difficult for human to provide such contextual
information for a certain event he/she wants to predict.

2.2 Dataset Construction
Existing datasets for event forecasting are different cropped ver-
sions of GDELT [28] and ICEWS [34]. For example, among the
datasets used by currentworks [15, 16, 22, 29, 30], ICEWS14, ICEWS18,
ICEWS05-15 include events in the ICEWS dataset of year 2014, 2018,
and 2005-2015, respectively; and GDELT covers January 2018 of the
original GDELT dataset. However, all of these versions only use the
existing quadruple data while overlooking the context information.

To facilitate the study of context-aware event forecasting, we
build three benchmark datasets based on the GDELT dataset [28],
which provides the original news article URLs of the extracted
events. Following previous works [9, 10], we crop three subsets of
GDELT according to the regions of the events, i.e., Egypt (EG), Iran
(IR), and Israel (IS), spanning from February 2015 to March 2022.
According to a previous systematical study [47], the structured
events extracted by GDELT have high recall while low precision,
which means there are many false positive events. Such noise could
be caused by the event extraction system used in GDELT or the low
quality of original articles. Since the GDELT event extraction system
is unavailable to the public, we aim to remove low-quality articles
to eliminate these noises by the following data preprocessing steps.

First, we keep the event with a valid URL. Second, we sort the
domain names of the URLs, which correspond to different news
agencies. In total, there are around 20K domain names, and the
top 69 cover 40% of the events. After checking these top domain
names, we confirm that their news articles are of higher quality
and reliability. Therefore, we remove the remaining 60% of events
that are published in long-tailed domain names, which are usually
from less influential agencies or personal blogs and are likely to be
of low quality or even fake. Third, even though the interval of two
consecutive timestamps in the original GDELT data is 15 minutes,
it is unnecessary to have such precise timestamps for political
events. Following ICEWS, we take the one-day time interval and
collapse the 15 minutes-level timestamps of events on the same day
to the day-level timestamp. Finally, we obtain the datasets and split
them into training/validation/testing with a ratio of 8/1/1 over the

Table 1: Dataset Statistics.

|V| |E | #urls #days #train #valid #test
EG 2,594 225 96,081 2,584 377,430 36,588 28,644
IR 2,988 236 223,616 2,584 973,752 69,827 76,239
IS 3,456 238 345,611 2,584 1,430,389 171,518 156,695

timeline. Due to the severe popularity bias of the dataset, several
most frequent entities in the validation and testing set are masked.
The statistics are shown in Table 1.

Since there is no context label in the original GDELT dataset,
we leverage the textual content and topic model (i.e., LDA [1]) as a
proxy to generate contexts. In particular, we use an LDA model to
extract the topic distribution of each article, where the topic with
the highest weight is treated as the context of an article. An event
is assigned with its corresponding article’s context. More studies
about the topic models as well as alternative context generation ap-
proaches are presented in Section 4.4. To be noted, during inference,
people can provide certain context for the query to be predicted.

3 METHODOLOGY
To solve the new problem of context-aware event forecasting, we
propose a novel framework Separation and Collaboration Graph
Disentanglement (SeCoGD), as shown in Figure 2. It consists of
two stages: the separation stage and the collaboration stage.

3.1 Separation
In the separation stage, we first use the context as a prior guidance
to disentangle the event graph into multiple sub-graphs. Then we
devise a context-specific modeling module to capture the relational
and temporal patterns within each context.

3.1.1 Context-aware Graph Disentanglement. Generally, events in
the same context exhibit similar or correlated patterns, while events
in different contexts demonstrate distinctive characteristics. Cur-
rent works [10, 22, 30, 36] connect all the quadruples at the same
timestamp as a unified event graph and learn a single embedding
for each entity and relation via GNNmodels. However, such unified
entity and relation embeddings are highly entangled w.r.t. diverse
context [32], failing to capture the context-specific patterns.

Inspired by recent progress in disentangled representation learn-
ing [32, 46, 48], we seek graph disentanglement for context-aware
event forecasting. Most existing works solely rely on the inher-
ent structural information for graph disentanglement. For exam-
ple, MaridVAE [33] and DGCF [45] utilize the user-item interac-
tions to learn disentangled representations for different intents;
DisenKGAT [48] tackles the heterogeneous knowledge graph and
disentangles the entity embedding with respect to different topics
and clusters. Nonetheless, these methods are incapable of disen-
tangling event graphs since the events are too coarse-grained, and
pure structural information is unable to well disentangle the graph.

We employ the context as a prior guidance to disentangle the
event graph. Formally, given𝐾 contexts, we separate the original en-
tangled event graph𝐺𝑡 into𝐾 sub-graphs {𝐺𝑐1𝑡 , · · · ,𝐺

𝑐𝑘
𝑡 , · · · ,𝐺

𝑐𝐾
𝑡 },

where each sub-graph𝐺𝑐𝑘𝑡 contains all the events within context 𝑐𝑘 ,

denoted as 𝐺𝑐𝑘𝑡 = {(𝑠𝑛, 𝑟𝑛, 𝑜𝑛, 𝑐𝑘 , 𝑡)}
𝑁
𝑐𝑘
𝑡

𝑛=1 , where 𝑁
𝑐𝑘
𝑡 is the number

of events in timestamp 𝑡 within context 𝑐𝑘 . Note that we make use
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of the external prior knowledge, i.e., the context, to disentangle the
original graph. Meanwhile, previous works exploit end2end solu-
tions, which either adopt attention mechanism [32] or incorporate
auxiliary distance regularizer [45] to directly learn disentangled
representations solely relying on the graph data. This prior-guided
disentanglement is better than the end2end solutions in separating
the graph due to the incorporation of external knowledge. Based
on the disentangled event graph, the core of the model is to model
the patterns within each context and across multiple contexts.

3.1.2 Context-specific Modeling. Each separated graph preserves
distinct characteristics for both concurrent relations and evolving
patterns under its corresponding context. Towards this end, we
build a context-specific modeling module for each context. Given
a list of historical event graphs 𝐺𝑐≤𝑡 under a certain context 𝑐 , the
context-specific modeling module aims to learn entity and relation
representations. We inherit the design of RE-GCN [30] to build this
context-specific modeling module, which encompasses two parts:
concurrent events modeling and temporal event modeling.

Concurrent Event Modeling is curated to model the relation-
ship among events occurring in the same timestamp. We make use
of RGCN [37], which is capable of modeling multi-relation graphs,
as the graph kernel to learn the entity representation. At timestamp
𝑡 under context 𝑐 , for each layer 𝑙 of the graph propagation, the
message obtained by each object 𝑜 is e𝑙𝑜,𝑡,𝑐 ∈ R𝑑 , defined as:

e𝑙𝑜 = 𝑓

(
1

|E𝑜 |
∑︁

(𝑠,𝑟 ) ∈E𝑜
W𝑙

1 (e
𝑙−1
𝑠 + r) +W𝑙

2e
𝑙−1
𝑜

)
, (1)

where 𝑑 is the dimensionality of the message, E𝑜 stands for all the
events of which 𝑜 is the object,W𝑙

1,W
𝑙
2 ∈ R𝑑×𝑑 are the parameters

of the convolutional kernel in layer 𝑙 , and 𝑓 (·) is the activation
function which we use RReLU. To be noted, e𝑙𝑜 , E𝑜 , e𝑙−1𝑠 , r, e𝑙−1𝑜 all
stand for their corresponding representations in time 𝑡 of context 𝑐 ,
where we omit the subscript (𝑡, 𝑐) for simplicity. After performing
multi-layer message passing, we aggregate the messages obtained
from multi-layer propagation and yield the entity representation at
time 𝑡 under context 𝑐 , defined as:

e𝑜,𝑡,𝑐 =
𝐿∑︁
𝑙=0

e𝑙𝑜,𝑡,𝑐 , (2)

where e0𝑜,𝑡,𝑐 = e0𝑜,𝑐 ∈ R𝑑 is randomly initialized for each entity 𝑜
under each context 𝑐 . And the representations for all entities at
timestamp 𝑡 within context 𝑐 are denoted as E′𝑡,𝑐 ∈ R | E |×𝑑 .

Temporal Pattern Modeling is designed to capture the tem-
poral evolution of entities and relations. Following the previous
study [30], we devise a learnable gate mechanism to reserve the
entities’ evolving patterns. It is formally defined as:

E𝑡,𝑐 = U𝑡,𝑐E′𝑡,𝑐 + (1 − U𝑡,𝑐 )E𝑡−1,𝑐 , (3)

where U𝑡,𝑐 ∈ R𝑑×𝑑 is the learnable gate, which is calculated by a
nonlinear transformation:

U𝑡,𝑐 = 𝜎 (W4E𝑡−1,𝑐 + b), (4)

where 𝜎 (·) is the sigmoid activation function, and W4 and b are
trainable parameters for the gate. For efficiency during implementa-
tion, we take the recent 𝐷 steps of historical graphs to capture the

temporal evolving patterns, following the typical TKG (Temporal
Knowledge Graph) solutions [5]. Then, the entity embeddings in
the last step preserve all the context-aware relational and temporal
patterns, and we denote them as E𝑐 .

For the relation representation, we concatenate its embedding
and associated entities, thus each relation embedding is updated as:

r′𝑡,𝑐 =
r𝑐 ;

1
|V𝑟,𝑡,𝑐 |

∑︁
𝑣∈V𝑟,𝑡,𝑐

e𝑣,𝑡,𝑐

 , (5)

where V𝑟,𝑡,𝑐 is the set of entities that connect to the relation 𝑟 ,
e𝑣,𝑡,𝑐 ∈ R𝑑 is the representation of entity 𝑣 in E𝑡,𝑐 , and [; ] is the
concatenation operation. Then a GRU is applied to deduce the
temporal relation representation r𝑡,𝑐 , calculated by:

r𝑡,𝑐 = GRU
(
r𝑡−1,𝑐 , r′𝑡,𝑐

)
. (6)

And all the relations’ representations at time 𝑡 for context 𝑐 are
defined as R𝑡,𝑐 ∈ R | R |×𝑑 . Going through 𝐷 steps of recurrent units,
we obtain all the relations’ representations that retain relational
and temporal information conditioned on context 𝑐 , denoted as R𝑐 .

3.2 Collaboration
In the collaboration stage, we leverage hypergraphs to model the
cross-context collaborative associations. Then we perform context-
aware prediction and optimization.

3.2.1 Cross-contextModeling. Even though the same entity demon-
strates different characteristics in various contexts, these contexts
are not independent but correlated with each other. For example,
given the contexts of Covid-19 Pandemic and Russia-Ukraine War,
many countries must consider them simultaneously to make eco-
nomic policies, in order to minimize the influence on their economy
as well as social stability. To this end, capturing such correlation
is crucial for some events that are affected by multiple contexts.
Furthermore, after disentangling the event graph into multiple con-
texts, each sub-graph will be sparser than the original unified graph.
Some entities that do not have sufficient occurrence in a certain
context will not be well-trained for accurate forecasting. For such
few-shot entities and relations, transferring knowledge from other
contexts that have sufficient training data is a promising solution.

Based on the above motivations, we devise a collaboration mod-
ule to model the collaborative effects among multiple contexts,
aiming to achieve potential knowledge transfer for sparse enti-
ties. It is worth mentioning that we do not have supervised infor-
mation to quantify the correlations among contexts, thus, we are
unable to explicitly model the collaborative effects. Considering
this, we resort to hypergraph to model the latent collaborations.
Concretely, for each entity 𝑣 , we construct a hypergraph among its
sub-embeddings in different contexts, where the nodes are the sepa-
rated embeddings of all entities (relations) in different contexts and
every hyper-edge connects the separated embeddings of the same
entity (relation). Then we leverage a multi-layer LightGCN [17] to
propagate over every hypergraph, and ê𝑝𝑣,𝑐 ∈ R𝑑 is the 𝑝-th layer
propagated information to node 𝑣 under context 𝑐 , obtained by:

ê𝑝𝑣,𝑐 =
1

|C𝑣 | − 1

∑︁
𝑖∈C𝑣\{𝑐 }

ê𝑝−1
𝑣,𝑖

, (7)
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Figure 2: The overall framework of SeCoGD consists of two stages: separation and collaboration. The separation stage includes
the context-aware graph disentanglement and context-specific modeling modules, and the collaboration stage comprises the
cross-context modeling and context-aware prediction modules.

where C𝑣 are all the contexts that the entity 𝑣 has been in. After 𝑃
layers of propagation, we aggregate each layer’s embedding and
yield the final entity representation:

ê𝑣,𝑐 =
𝑃∑︁
𝑝=0

ê𝑝𝑣,𝑐 , (8)

where ê0𝑣,𝑐 is the representation of entity 𝑣 in E𝑐 . After the hyper-
graph propagation, all entities are represented as Ê𝑐 .

Analogous to entities, relations’ representations in different con-
texts are also totally isolated during the context-specific modeling.
Thereby, for each relation, we also build a hypergraph and take
advantage of a multi-layer LightGCN kernel to capture the collabo-
rative associations among different contexts, defined as:

r̂𝑝𝑥,𝑐 =
1

|C𝑥 | − 1

∑︁
𝑖∈C𝑥 \{𝑐 }

r̂𝑝−1
𝑥,𝑖

, (9)

where r̂𝑝𝑥,𝑐 ∈ R𝑑 is information propagated to relation 𝑥 in layer 𝑝 ,
and C𝑥 is the set of contexts that relation 𝑥 has been in over the
historical observations. With 𝑃 layers of graph propagation, we
aggregate multiple layers’ representations and obtain the final rela-
tion embedding r̂𝑥,𝑐 , formally written as: r̂𝑥,𝑐 =

∑𝑃
𝑝=0 r̂

𝑝
𝑥,𝑐 , where

r̂0𝑥,𝑐 is relation 𝑥 ’s embedding in R𝑐 .

3.2.2 Context-aware Prediction andOptimization. With the context-
specific and cross-context modeling modules, we learn the entity
and relation representations that not only capture context-aware
characteristics but also preserve transferred knowledge from other
contexts. Following the established approach to event forecast-
ing [29, 30], we devise a decoder based on ConvTransE [38]. In
particular, given a query quadruple (𝑠, 𝑟, 𝑡, 𝑐), we first use a Con-
vTransE to produce the query’s representation, then score the candi-
date entities E via inner-product between the query and candidate
representations. Formally, we calculate the prediction scores for all
candidate entities given the query (𝑠, 𝑟 ) at time 𝑡 + 1 under context

𝑐 as follows:

p̂(E|𝑠, 𝑟, 𝑐,𝐺≤𝑡 ) = softmax
(
Ê𝑐ConvTransE(ê𝑠,𝑐 , r̂𝑐 )

)
, (10)

where softmax(·) is the softmax function, ConvTransE(·) is the
ConvTransE decoder, and ê𝑠,𝑐 and r̂𝑐 are the representations for 𝑠
and 𝑟 , respectively. The predicted object is presented as:

𝑜 (𝑠,𝑟,𝑡+1,𝑐 ) = argmax
E

𝑝 (E|𝑠, 𝑟, 𝑐,𝐺≤𝑡 ). (11)

We employ cross-entropy loss to optimize the whole framework
in an end-to-end fashion, and the loss is defined as:

L =

𝑇−1∑︁
𝑡=0

∑︁
𝑐∈C

∑︁
(𝑠,𝑟 ) ∈𝐺𝑐

𝑡+1

y(𝑠,𝑟,𝑡+1,𝑐 ) logp̂(E|𝑠, 𝑟, 𝑐,𝐺≤𝑡 ), (12)

where 𝑇 is the total number of timestamps in the training set, and
y(𝑠,𝑟,𝑡+1,𝑐 ) is the one-hot representation of ground-truth object 𝑜 .

3.3 Discussion
To further highlight the key contributions of this work, we discuss
the generalization capability of SeCoGD, as well as the rationale
behind separation and collaboration.

3.3.1 Generalization Capability. We argue that our method SeC-
oGD is a general framework instead of a specific model. The key
contribution of SeCoGD lies in two aspects: 1) it makes use of con-
text as a prior guidance to disentangle the event graph; and 2) it
proposes a novel graph disentanglement idea under prior-guided
disentanglement, that is to model the collaborative association
among the disentangled representations. First, the context can be
flexibly defined according to various application scenarios. For ex-
ample, the tag of the news article that an event belongs to can be
used as its context. Alternatively, similar to our solution of the
latent topic model, various automatic text clustering algorithms,
such as K-means or GMM (Gaussian Mixture Model), are plausible
to identify the latent contexts of events. Second, each component
of SeCoGD has various alternatives. For example, RE-NET [22]
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can be used to replace the RE-GCN module for context-specific
modeling, hypergraph can be replaced by some regularizers (i.e.,
L2 distance) that pull closer the disentangled representations, and
multiple modules [12, 40, 49] could be manipulated as the decoder.

3.3.2 Separation and/or Collaboration. Our work strengthens that
it is crucial to incorporate the collaboration stage on top of the
separation stage. However, most previous works on graph disen-
tanglement solely focus on the separation part. For example, they
either leverage regularization terms to maximize the mutual in-
formation [45] among multiple chunked representations or use
attention mechanism [32] to make different disentangled repre-
sentations attend on various sub-graphs. We assume that such
contradictory modeling philosophy roots in two reasons. First, we
have prior knowledge as the guidance for the disentanglement,
therefore, we do not need any heuristically manipulated disen-
tanglement strategies, such as mutual information maximization
or attention. Second and more importantly, we believe that the
crux of an effective graph disentanglement model lies in a good
balance of separation and collaboration. Current works are built
upon a unified graph model, which is highly intertwined. Thereby,
a separation module is necessary to eliminate the entanglement.
Meanwhile, we disentangle event graphs by the prior contextual
information, where the sub-graphs are well or even over separated,
thus a collaboration module is required to rectify the separation.

4 EXPERIMENTS
We aim to answer the following research questions:
• RQ1: Does our framework outperform the SOTA methods?
• RQ2: Are the design of two stages, i.e., separation and collabo-
ration, effective in terms of event forecasting?

• RQ3: How does the context affect event forecasting?

4.1 Experimental Settings
We conduct experiments on the three datasets that we constructed,
i.e., EG, IR, and IS. The construction and statistics of the datasets
can be found in Section 2.2. Following previous settings [30], we use
Mean Reciprocal Rank (MRR) and HIT@{1, 3, 10} as the evaluation
metrics.We useMRR to select the best model based on the validation
set and record its corresponding performance on the testing set.

4.1.1 Compared Methods. Since current works have never studied
the newly proposed problem of context-aware event forecasting on
temporal event graph data, we select several strands of the most
relevant works to compare with our proposed method.
• Static KG completion methods treat event forecasting as a
link prediction task on the static event graph. We select the
following representative methods: DistMult [49], ConvE [12],
ConvTransE [38], RotatE [40], and RGCN [37].

• Temporal KG forecasting methods are designed for temporal
event forecasting. These methods consider both relational and
temporal information for link prediction in the next timestamp.
We consider the following SOTA methods: TANGO [16], RE-
NET [22], RE-GCN [30], EvoKG [36], and HiSMatch [29].

• Temporal event forecasting methods with texts incorporate
textual information into the event forecasting model, while the
standard temporal KG forecasting methods only use structural

information. In particular, we implement two versions of a rep-
resentative method: 1) CMF𝑜𝑛𝑡 [10], by faithfully following the
settings of the original work and incorporating the event textual
description defined in the CAMEO [4] ontology into the structural
event forecasting model. In addition, we also re-implemented 2)
CMF𝑎𝑟𝑡 [10], which differs from CMF𝑜𝑛𝑡 by using the original
article embeddings extracted by doc2vec [26] instead of using the
texts in the ontology. CMF is originally designed for binary clas-
sification of a event happening or not. We replace their task head
with a typical ConvTransE decoder to enable link prediction.

• Graph disentanglement methods aim to separate the inter-
twined relational information into disentangled representations.
We take into account two representative graph disentanglement
methods: DisenGCN [32] and DisenKGAT [48]. Both of the
methods are designed for static graphs.

4.1.2 Hyper-parameter Settings. We implement all the static meth-
ods using OpenKE 3, for TANGO, RE-NET, RE-GCN, and EvoKG, we
use their released code. For CMF and HiSMatch, we re-implement
them by ourselves since these methods have not released the code.
To be fair and following previous settings [30], for all the base-
lines and our method, we set 𝑑 = 200, use cross-entropy loss,
search learning rate from {0.01, 0.001, 0.0001} and weight decay
from {10−4, 10−5, 10−6, 10−7}. For temporal methods, we search
the historical graph length 𝐷 in the range of {1,3,7}. For our method,
we search the number of RGCN propagation layers 𝐿 from {1,2,3},
the number of hypergraph propagation layers 𝑃 from {1,2}, the num-
ber of LDA topics (aka. contexts) 𝐾 from {3, 5, 7}. We use Adam [24]
optimizer and Xavier [13] initialization for all the parameters.

4.2 Performance Comparison (RQ1)
Table 2 shows the overall performance of our model and baselines.
First of all, our method outperforms all the baselines on all three
datasets. Among all the metrics, the improvement on HIT@1 is
the highest, which is truly helpful in practice. Second, for all the
baselines, RE-GCN achieves the best performance and even beats
the models with textual inputs (i.e., CMF𝑜𝑛𝑡 and CMF𝑎𝑟𝑡 ), demon-
strating its superiority in modeling temporal event graphs. This
is why we select RE-GCN for context-specific modeling in our im-
plementation. Third, in terms of the methods with textual inputs,
CMF𝑜𝑛𝑡 and CMF𝑎𝑟𝑡 perform well, beating most of the static and
temporal methods. The results imply that the additional textual
information offers valuable clues that are crucial to forecast future
events. However, they are not the strongest baseline, probably be-
cause they are originally designed for binary event classification
and the link prediction head is not perfectly adapted. Finally, for
the two graph disentanglement-based methods, i.e., DisenGCN and
DisenKGAT, they do not perform very well. There are two possible
reasons: 1) they rely on the static global graph, which cannot model
the temporal evolving patterns; and 2) more importantly, the events
in current datasets are coarse-grained and less discriminative, there-
fore, the methods that solely rely on structured data fail to learn
disentangled representations. The results also justify our method
that leverages the context as a prior guidance, instead of graph
structure, to separate the event graph.

3https://github.com/thunlp/OpenKE
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Table 2: The overall performance comparison between SeCoGD and baselines.

Model EG IR IS
MRR HIT@1 HIT@3 HIT@10 MRR HIT@1 HIT@3 HIT@10 MRR HIT@1 HIT@3 HIT@10

DistMult [49] 0.1164 0.0344 0.1214 0.2927 0.1349 0.0392 0.1468 0.3379 0.1031 0.0223 0.0929 0.2950
ConvE [12] 0.1151 0.0312 0.1272 0.2882 0.1365 0.0409 0.1485 0.3400 0.1060 0.0251 0.0984 0.2935
ConvTransE [38] 0.1205 0.0377 0.1305 0.2921 0.1405 0.0462 0.1529 0.3412 0.1079 0.0287 0.0994 0.2930
RotatE [40] 0.0892 0.0125 0.0772 0.2748 0.1055 0.0125 0.1074 0.3152 0.0879 0.0132 0.0714 0.2638
RGCN [37] 0.0974 0.0279 0.1046 0.2377 0.1185 0.0366 0.1301 0.2860 0.0861 0.0242 0.0652 0.2307
TANGO [16] 0.1043 0.0240 0.1106 0.2761 0.1249 0.0281 0.1367 0.3314 0.0972 0.0171 0.0852 0.2889
RE-NET [22] 0.1212 0.0413 0.1224 0.2932 0.1401 0.0451 0.1501 0.3452 0.1064 0.0263 0.1016 0.2894
RE-GCN [30] 0.1245 0.0352 0.1366 0.3101 0.1647 0.0622 0.1796 0.3838 0.1301 0.0408 0.1281 0.3346
EvoKG [36] 0.0797 0.0012 0.0775 0.2529 0.0892 0.0011 0.0767 0.3120 0.0779 0.0008 0.0518 0.2789
HiSMatch [29] 0.1126 0.0275 0.1279 0.2906 0.1469 0.0496 0.1599 0.3572 0.1283 0.0434 0.1248 0.3017
CMF𝑜𝑛𝑡 [10] 0.1206 0.0348 0.1298 0.3015 0.1527 0.0529 0.1643 0.3673 0.1248 0.0368 0.1224 0.3256
CMF𝑎𝑟𝑡 [10] 0.1202 0.0345 0.1293 0.3027 0.1510 0.0496 0.1636 0.3716 0.1263 0.0382 0.1236 0.3261
DisenGCN [32] 0.0849 0.0196 0.0805 0.2198 0.1084 0.0275 0.1096 0.2793 0.0833 0.0162 0.0633 0.2427
DisenKGAT [48] 0.0801 0.0083 0.0822 0.2382 0.0895 0.0059 0.0977 0.2744 0.0724 0.0106 0.0429 0.2322
SeCoGD(ours) 0.1464 0.0593 0.1605 0.3236 0.1757 0.0724 0.1902 0.3975 0.1552 0.0595 0.1588 0.3693
%Improv. 17.59 57.29 17.50 4.35 6.68 16.40 5.90 3.57 19.29 37.10 23.97 10.37

Figure 3: Results comparison of propagating different num-
ber of layers L in the context-specific modeling module.

Figure 4: Results of using different graph kernels.

4.3 Study of Key Modules (RQ2)
We conduct model studies to analyze the effect of the key modules
in the two stages, i.e., separation and collaboration.

4.3.1 Study of the Separation Stage. For the concurrent event
modeling, we use the RGCN kernel. We tune the number of prop-
agation layers, and the results are shown in Figure 3. Basically, two
and three layers are better than one layer, depicting that higher-
order information propagation over the concurrent event graph is
beneficial to capture the context-specific signals. We also replace
RGCN with CompGCN [42], and Figure 4 illustrates the results.
Overall speaking, CompGCN and RGCN perform similarly to each
other on the three datasets, and they differ slightly in terms of
different evaluation metrics. It shows that our framework is not
sensitive to relational modeling models.

For the temporal patternmodelingmodule, we tune the length
of historical graphs 𝐷 that we used to generate the entity and

Figure 5: Results of with different historical length D.

Table 3: Study of the cross-context modeling and context-
aware prediction.

Model EG IR IS
MRR H@10 MRR H@10 MRR H@10

SeCoGD 0.146 0.324 0.176 0.397 0.155 0.369
w/o Ent HG 0.139 0.315 0.168 0.391 0.147 0.359
w/o Rel HG 0.143 0.331 0.170 0.400 0.147 0.362

w/o Ent or Rel HG 0.138 0.315 0.163 0.386 0.144 0.355
Avr. Context 0.130 0.309 0.163 0.373 0.129 0.331

relation embeddings. We try different historical length 𝐷 within {1,
3, 7} and visualize the results in Figure 5. For HIT@10, the longer
the historical length is, the better the performance will be. But
for MRR, EG and IR achieve the best performance with D=1 and
D=2, respectively. This difference reminds practitioners to properly
select evaluation metrics according to the application scenarios. For
example on the EG dataset, if we care more about the ranking of
the prediction, we need to choose MRR and set D=1. Meanwhile, if
we pay more attention to the hit rate of the top-10 predicted results,
HIT@10 with D=7 should be a better option. In addition, longer
historical length takes extra computational costs. Therefore, it is a
trade-off between efficacy and efficiency in practice.

4.3.2 Study of the Collaboration Stage. We construct a hypergraph
over the sub-embeddings of each entity and relation to retain the
collaborative associations across multiple contexts. To test the ef-
ficacy of the collaboration stage and the implementation of the
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Figure 6: Results with different number of contexts.

Table 4: Alternative context generation methods.

Model EG IR IS
MRR H@10 MRR H@10 MRR H@10

RE-GCN 0.125 0.310 0.165 0.384 0.130 0.335
K-means 0.139 0.314 0.169 0.388 0.145 0.352
GMM 0.139 0.316 0.165 0.375 0.134 0.339

LDA(SeCoGD) 0.146 0.324 0.176 0.397 0.155 0.369

hypergraph, we design several ablated models by progressively
removing the two hypergraphs of entity and relation. In Table 3,
"w/o Ent HG", "w/o Rel HG", and "w/o Ent or Rel HG" refer to
without relation hypergraph, without entity hypergraph, and without
either entity or relation hypergraph, respectively. From the results,
we can see that the results of removing either relation or entity hy-
pergraph are worse than SeCoGD but better than that of removing
both, demonstrating the efficacy of both hypergraphs. More inter-
estingly, the performance drop of removing the entity hypergraph
is generally larger than that of removing the relation hypergraph,
implying that the collaboration of entities is more valuable.

During prediction, our context-aware event forecasting will pair
each query (𝑠, 𝑟, 𝑡 +1) with an auxiliary context 𝑐 . By specifying the
context, its corresponding branch of the decoder will be selected
and performs the forecasting. We argue that such a context-aware
prediction narrows down the candidate space and performs better.
To justify our hypothesis, we curate a variant, in which we do
not specify the context during inference while just averaging the
prediction scores from all the context decoders, corresponding to
the row "Avr. Context" in Table 3.We can observe that "Avr. Context"
performs much worse than SeCoGD. This phenomenon indicates
that the specification of the proper context during inference is
crucial to SeCoGD, justifying our hypothesis that the context plays
a pivotal role in accurate event forecasting.

4.4 Study of the Context (RQ3)
4.4.1 Effect of the Number of Contexts. We vary the number of
LDA topics 𝐾 when we generate the context based on the news
article, resulting in multiple versions of datasets with different
number of contexts. We implement SeCoGD on all the versions of
dataset and obtain the results, which are presented in Figure 6. In
general, more contexts yield better performance. This is natural
and reasonable because when the number of contexts increases,
each context will be more specific, resulting in more fine-grained
information being injected into the event. However, more contexts
inevitably introduce more computational expenses. We leave the
study of efficiency and scalability improvement in future work.

4.4.2 Effect of the Context CurationMethods. Wedefine the context
as a categorical label for each event, while LDA is just one of the

automatic methods in order to avoid extensive labor and costs for
context annotation.We argue that alternative automatic approaches
are also workable for our framework. To illustrate this property, we
leverage two prominent text clustering methods, i.e., K-means and
GMM (Gaussian Mixture Model) using the article embeddings pre-
trained by doc2vec [26], to generate contexts. Results based on the
newly-generated contexts are shown in Table 4. From the results, we
can conclude that SeCoGD is generally able to outperform RE-GCN
by leveraging the contexts generated with alternative clustering
methods. This further illustrates that ourmethod is robust to diverse
context sources. Nonetheless, our proposal of using LDA to generate
contexts performs best, thus we take it as the default setting.

4.4.3 Case Study. We seek to elicit the content of each context,
thus to elaborate how different events are predicted under distinct
contexts. As shown in Figure 7, for each dataset, we illustrate the top
words of each context in the form ofword cloud [19] (the size of each
word is proportional to its weight in the LDA topic distribution).
Fromword clouds, we observe rich information within each context
and clear content differences among contexts. For example, each
context in the EG dataset covers background information such as
popular actors, important cities, and critical actions; meanwhile,
they are about economic, military, and political events respectively.

We also pick an example query (𝑠, 𝑟, 𝑡 + 1) from the testing set of
each dataset to concretely explicate the benefits of context-aware
event forecasting.We list the object with the highest score predicted
by RE-GCN and SeCoGD, and we observe that SeCoGD generates
more accurate prediction results compared to RE-GCN. With a
given context 𝑐 , general event types such as ‘Consult’, ‘Negotiate’,
and ‘Host a visit’ are now narrated with more supplementary infor-
mation modeled in the context, leading to better results. We also
observe that given the same query, SeCoGD sometimes predicts
distinct objects under different contexts. For example, for the ex-
ample query in IS dataset, SeCoGD predicts that Israel will host a
visit for Ukraine students under Context 2, and predicts UK instead
under Context 3. We notice that both events exist in the dataset and
thus are both correct, and the two predictions are in line with the
contents of their context. As shown in the word cloud for IS Context
2 and 3, the former prediction might take more military factors into
consideration, and the latter is more related to government affairs.
This demonstrates the flexibility in depicting the event by context.

5 RELATEDWORK
5.1 Temporal Event Forecasting
Temporal event forecasting aims to forecast future events based
on a list of observed historical events. It has been studied in vari-
ous application scenarios, including criminal activities [44], disease
outbreaks [11], stock markets [2], as well as international politi-
cal events [28, 34]. Various problem formulations are utilized with
regard to different event types, such as time series forecasting, nat-
ural language generation, and link prediction. In this work, we
follow the typical formulations of link prediction, which is also
called temporal knowledge graph completion. It inherits from static
knowledge graph completion, where the key is to learn relational
embeddings via various scoring functions, such as TransE [3], Dist-
Mult [49], ComplEx [41], RotatE [40], ConvE [12], ConvTransE [38]
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Figure 7: Case study on three datasets. In each sub-figure, the context number K is set as three, the top shows the word cloud of
each context, and the bottom illustrates several exemplar forecasting results by SeCoGD and RE-GCN.

etc. To tackle the temporal evolving patterns and forecast future
events, recurrent neural network (RNN) [20] has been included.
RE-NET [22] proposes to use RGCN [37] to capture the relational
patterns in each timestamp and GRU [7] to model the dynamics of
embeddings over time. RE-GCN [30] additionally incorporates a
static graph to learn the static properties of the entities and adopts
ConvTransE [38] as the decoder. TANGO [16] models the struc-
ture of candidate entities via neural ordinary differential equations;
EvoKG [36] considers the time information for event forecasting;
HiSMatch [29] reformulates event forecasting as a query-candidate
matching problem and proposes a two-branch framework to match
a query to candidate entities. More related works [15, 18, 27, 39, 53]
can be seen in the survey [5]. Most of these TKG methods only
operate on pure structured data, overlooking the rich semantic or
contextual information. To address these limitations, Glean [9] and
CMF [10] propose to use the textual information. They simplify
the event forecasting problem from fine-grained link prediction to
an easier binary classification problem, i.e., predicting whether an
event will happen or not. In addition, the textual information is
only available for historical events but unavailable for future events,
thus this additional information cannot directly narrow down the
candidate space. Some works also use context for event prediction,
while they are either for event status classification [8] or time series
forecasting [35], which are different tasks.

5.2 Graph Disentanglement
Graph neural networks [14, 25, 43] have been the defacto solutions
for graph representation learning. Graph disentanglement is the
extension of disentangled representation learning from the general
domain to the graph data. Disentangled representation learning
focuses on separating the unified representation into multiple dis-
entangled components, thus achieving many excellent modeling
properties such as enhanced representation capability or explain-
ability. Various studies have been conducted on CV [6], NLP [23], as
well as recommender system [21, 33, 45]. For graph representation
learning, disentanglement has also garnered particular attention.
DisenGCN [32] is one of the pioneering works to use multiple dis-
entangled graph convolutional kernels to learn disentangled node
representations. FactorGCN [50] factorizes the node embedding
into multiple blocks, which captures interpretable global topologi-
cal semantics. IPGDN [31] leverages the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) to achieve disentanglement. ADGCN [52]
introduces adversarial learning to graph disentanglement repre-
sentation learning. DisenHAN [46] is designed for heterogeneous

graph, where multiple node and relation types are involved. The
most relevant work for event forecasting is DisenKGAT [48], which
aims to learn disentangled representations for knowledge graph.
Despite various studies on graph disentanglement, our work differs
from current works and promotes these works in several aspects.
First, we are the first to introduce graph disentanglement learning
to temporal event forecasting. Second, most of the existing works
aim to directly disentangle the graph purely using the graph’s own
features, ignoring the contextual information.

6 CONCLUSION AND FUTUREWORK
In this work, we explored the incorporation of context into the
problem of event forecasting and proposed a novel task of context-
aware event forecasting. To tackle this novel problem, we borrowed
the idea from graph disentanglement and designed an overall frame-
work SeCoGD. Specifically, we utilized the context as prior guidance
to separate the event graph and incorporated a context-specific
modeling module to capture the relational and temporal patterns
in each context. In addition, we designed a cross-context modeling
module to model the collaborative associations among multiple
contexts. Since there are no available datasets for this new task, we
built three large-scale datasets based on GDELT. Extensive experi-
ments on these three datasets demonstrated that our framework
outperforms all the SOTA methods. Various model studies further
elaborated more details about the effectiveness of the key modules
and various contexts of the framework.

Despite the progress achieved by this work, there are several lim-
itations, thus motivating multiple potential research directions in
the future. First, the implementation of context generation is based
on unsupervised methods, while human-generated contexts, such
as tags and categories, could be more useful in practice. Second, the
original articles of these events are just used as a proxy to generate
contexts, of which just a little information has been utilized. More
effective approaches to mining more beneficial patterns from raw
texts are promising. Third, more advanced graph disentanglement
methods are expected to be explored and enhance the performance.
Finally, in addition to next step prediction, the more important yet
challenging multi-horizon forecasting should be studied in future.
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