
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2001

Modeling and simulation of steady state and transient behaviors Modeling and simulation of steady state and transient behaviors

for emergent SoCs for emergent SoCs

JoAnn M. PAUL

Arne SUPPE
Singapore Management University, asuppe@smu.edu.sg

Donald E. THOMAS

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons

Citation Citation
PAUL, JoAnn M.; SUPPE, Arne; and THOMAS, Donald E.. Modeling and simulation of steady state and
transient behaviors for emergent SoCs. (2001). Proceedings of the 14th International Symposium on
Systems Synthesis, Montreal, Canada, 2001 Oct 1-3. 262-267.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8284

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Abstract

We introduce a formal basis for viewing computer systems as
mixed steady state and non-steady state (transient) behaviors to
motivate novel design strategies resulting from simultaneous
consideration of function, scheduling and architecture. We relate
three design styles: hierarchical decomposition, static mapping and
directed platform that have traditionally been separate. By
considering them together, we reason that once a steady state
system is mapped to an architecture, the unused processing and
communication power may be viewed as a platform for a transient
system, ultimately resulting in more effective design approaches
that ease the static mapping problem while still allowing for
effective utilization of resources. Our simulation environment,
frequency interleaving, mixes a formal and experimental approach
as illustrated in an example.

Keywords

Hardware/Software Codesign, Computer System Modeling and
Simulation, System on Chip Design

1. Introduction

Emergent system on chip (SoC) designs are fundamentally
different from other computing systems for the combination of
three primary reasons. The first is that they contain multiple,
heterogeneous

clock domains

. Clock domains are an abstraction of
the physical limits of synchronous design — beyond these limits,
computation and communication must be partitioned among
multiple interacting domains. These domains give rise to custom
hardware devices, heterogeneous processor types, and
communication links (busses and networks). Secondly, their
complexity requires that designers consider system wide effects of
anticipated hardware and anticipated software over the lifetime of
the product. That is, architectures and software evolve over time.
The third reason is that the systems will contain a mix of real-time
and untimed behaviors. The notion of the purely reactive,
embedded system is disappearing. Increasingly, untimed, desktop-
style functionality is being integrated on embedded computers.

Computer systems can be thought of as consisting of two types of
behavior — that which is steady state, and that which is transient or
non-steady state. The behavior of a

steady state

 system is fixed with
respect to an external, absolute time reference. For systems with
hard real-time deadlines the most significant time reference is
typically determined by the response time of the system to sets of
inputs. The system must compute a bounded amount of work within

a bounded amount of time in reaction to a time-bounded set of
inputs. Over a system period, the system can be thought of as
having a fixed or steady-state behavior. In contrast, the behavior of
a

transient, non-steady state system

is not designed to external time
constraints nor finite computation. Rather they adapt their behavior
to unknown execution times, aperiodic input arrival times, and
internal state via dynamic scheduling techniques. These behaviors
are sometimes called untimed because the system timing is internal
and not tied to an absolute, external reference. Because these
untimed forms of system behavior are being mixed with hard real-
time behavior, effective SoC design requires architecture,
schedulers, and functionality to be designed together.

Steady state system design has been dominated by formal
analysis — these reactive systems are statically analyzed as a task
mapping problem ensuring that hard deadlines will be met for tasks
with periodic or sporadic arrival times for a given set of resources
and task execution times [12]. The givens in such schedulability
analysis include the set of tasks to be scheduled, their deadlines,
their execution times on the hardware, the scheduling algorithm,
and the hardware resources upon which they will execute [13].
Transient system design has been dominated by simulation and
benchmarking — analyzing performance under a representative set
of operating conditions often with the objective of improving the
relative balance of system processing. For this, performance
enhancements are proposed and their designs are then explored via
simulation-based experimentation.

Systems that are designed to only a steady state reactive
paradigm rarely attain a perfect match between processing power
and load — leftover processing power will result. However, if the
leftover processing power, that in excess of the power needed to
execute the steady state functionality, can be utilized for non-
steady-state processing, the system resources may be over-designed
intelligently without waste. A motivation for designing systems
with both steady state and transient behavior is that transient system
applications scale more effectively with the processing power of
their platforms because they are not limited to the processing of
externally time-bounded inputs. Thus they effectively take
advantage of Moore’s Law.

When designing steady and non-steady state digital systems,
three distinct

 design styles

 dominate:

hierarchical decomposition

,

static mapping

, and

platform-

based. A

hierarchical

 style is
traditionally associated with hardware design, and implies a self-
consistently partitionable and composable specification of
resources, where detail is filled in by sub-models without
destroying the hierarchy of the higher-level system.

A

static mapping

 design style arises from a separation into two
distinct design domains. The most pertinent example at this level of
design is that of functional tasks and processing resources, or
function and architecture. The resultant designs in each domain
must be resolved (mapped) to the other for the whole system to be
formed. The mapping is static and is motivated by real-time,
physical constraints placed on the overall system behavior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ISSS'01, October 1-3, 2001, Montreal, Canada.
Copyright 2001 ACM 1-58113-418-5/01/00010...$5.00.

 Modeling and Simulation of Steady State and
Transient Behaviors for Emergent SoCs

JoAnn M. Paul, Arne J. Suppé, Donald E. Thomas

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{jpaul, suppe, thomas} @ ece.cmu.edu

A

 platform

-based system is constructed by an application layer
that directs a service or resource layer. The layering permits
resource-layer details to be hidden from the application layer, and
for the resource layer to be designed independently of higher-
levels of the system model. In computer systems design, the
platform layering might consist of a processor providing resources
to a scheduler (e.g., an operating system — O/S), which in turn
provides resources to the tasks it schedules.

We formalize how a mix of these distinct design styles will be
needed to support the design of emergent systems and motivate
how design approaches that blend formal analytical and
experimentation-based simulation techniques are needed. Further,
we will show how effective future SoC design requires that the
function, architecture and scheduling of the system be considered
concurrently in support of a mix of steady-state and transient
processing. This is a step not considered previously in the codesign
of reactive systems (e.g. [5]). We show how our modeling
environment, frequency interleaving, is a basis for our approach.

2. Function, Architecture, and Scheduling

An architecture, A(t), is a weighted graph of resources with a set
of N processing nodes, and J communication arcs.

Each processing node has power P

n

(t), and each communication
arc has bandwidth B

j

(t); all are a function of time (t).
System functionality is a weighted graph F(t) of M computation

threads and D sets of information exchanged between them.

Each potentially concurrent thread of execution represents a
loading L

m

(t) on a computing resource, and a demand E

d

(t) on
communication resources; all are a function of time (t).

F(t) is the net computation of the system and not the behavior
required to construct a system. For instance, schedulers are a set of
behavior, U(t), specifying how a set of computational threads is
shared by a resource. Together, the functionality, architecture, and
schedulers are mapped by Y to form a system S(t) as in

Y implicitly requires consideration of system-wide effects while
the U(t) schedulers are local to system resources. This is a key
difference between a static mapping and a platform-based design
style. A platform-based style permits local scheduling decisions to
be made in the absence of system-wide detail.

Rel 1 also defines the result of the mapping of the functionality,
architecture and schedulers as a tuple, (S(t), X(t)). S(t) is the

net
behavior

 of the system. X(t) is the

remainder architecture

. When
the computation power of the original architecture, A(t), exceeds
the computation demand of the functionality mapped to the
system, F(t), and the schedulers, U(t), a net amount of processing
and communication power X(t) is extra in a system. The original
system architecture is transformed by this mapping and scheduling
to another (the remainder) architecture which is potentially capable
of carrying out additional behavior.

A(t) and F(t) also have an associated amount of storage. Since
our focus is the temporal response of systems and not their storage
requirements, the memory/state model is omitted for brevity.

2.1 Steady State Systems

A steady state system is designed to respond to its externally
time-bounded I/O, conceptually performing a bounded amount of
work over a time. Steady state systems result from either a
hierarchical hardware decomposition or a static mapping design

style. We define a pure

hierarchical hardware decomposition

system as a 1:1 correspondence between tasks and architecture:

In these systems, M=N, J=D and load perfectly matches
computation demand. For example, a hardware state machine and
datapath provide the exact power needed to implement a task
represented by load L. Because of the exact match, X(t)=0.

A

statically

mapped system

 is one where M>N — the number of
tasks in the system exceeds the number of computation nodes.
Consider a system for which M=2 and N=1. The two tasks must be
mapped to a single processor resource; a scheduler is needed.
Given the time-bounded characteristic of the system, there is a
finite period, T, over which the system’s behavior is conceptually
constant. More formally, the mapping of systems with M>N
requires a scheduler, U, itself a function of time, that maps the
computation loads onto the processors; here scheduler U

1

resolves
our two tasks to a processor:

Schedulers are viewed as an entity mapped to the processing
resource, while tasks are mapped to the schedulers. In general,
schedulers can be null for single tasks mapped to individual
resources; the scheduling mechanism for the resource is the task
itself. In this way, M>N tasks are resolved to N resources,
implying N schedulers as

Over the steady state system period, T, behavior may be
considered constant for Q steady-state tasks as shown below.

The time-bound T effectively acts as a barrier within which sets
of computation must be completed, but also to which faster
internal processing is wasted. A

purely

 steady state system can do
no more computation than the processing required in the system
period. Thus, for purely steady state systems, when processing
power is increased, the system does no more work. More formally
for a steady state mapped system

when A(T) is increased, F(T), U(T), and S(T) remain constant, and
leftover processing power X(T) results. The most conservative
design of steady state systems is when X(T) is large, while the
most efficient system in terms of resource usage is when X(T) is
small. Rather than trying to match A(T) and F(T), it can be more
productive to understand how to utilize X(T) for transient system
processing. We discuss how transient systems achieve this next.

Although we have considered only computation nodes and the
computation complexity of tasks without regard to information
exchange in the architecture, consideration of a mapping of
information exchange to communication channels follows the
same line of reasoning.

2.2 Transient Systems

The design goal for transient systems is a

platform

 for which a
time-independent range of applications, task durations, input sets,
and internal state will have acceptable performance. In transient
systems, the platform, functional processing, net processing and
extra processing power may all be functions of time. Thus, one
important goal may be to minimize X(t) over all t. In contrast to
steady state systems, net processing, F(t) is not bound to the
availability of externally time-bounded inputs. An increase in

A t() P1 t() … Pn t() … PN t() } B{ 1 t() … B j t() …BJ t(), , , , , , ,{ , }()=

F t() L1 t() … Lm t() … LM t() } E{ 1 t() … Ed t() …ED t(), , , , , , , ,{ }(=

S t() X t()(,) Y F t() A t() U t(), ,()= Rel 1

Li Pi⇔() E j B j⇔(),() i j,()∀

U1 t L, 1 t() L2 t(),() P1 t()→

L1 t() … L, ,
M

t(){ } P1 t() … PN t(), ,{ }→ U1 t() … UN t(), ,{ }⇒

 Rel 2

L1 … L, ,
Q

{ } P1 … PN, ,{ }→ U1 … UN, ,{ }⇒ Rel 3

S T() X T()(,) Y F T() A T() U T(), ,()=

architectural power, A(t), could result in a corresponding net
increase in F(t) since the system can process more information so
long as there are inputs or internal state to process — this is
architecture-power scalability. Although perfect scalability is
limited, at least some scalability results for many applications.

Transient systems are constructed from the

platform design style

as a generalization of the task mapping problem. Schedulers map
K non-steady state tasks to processor resources as

For some transient systems, K may be dynamic. For example, an
unknown number of server threads may be spawned to service
separate requests. Or, the system may contain early notions of
anticipated functionality, which may not be finalized until well
after the system is shipped. The essence of platform design is that
the task set is presumed to be larger than may execute over some
period of time. The scheduler dynamically composes the system
functionality at runtime in processing inputs and internal state.

2.3 Merging Steady and Non-steady State

Emerging SoC computing systems will include both steady and
non-steady state behavior. While resources may be shared in both
types of systems, the scheduling of the sharing in a steady state
system is matched to its external, temporal processing
requirements. Resource sharing is based on time periods and
functionality is never resource starved over T. In contrast,
scheduling of functionality in a transient system is based first on
the availability of data, then on the availability of resources —
transient functionality may be resource starved

.

The response of transient processing is measured as execution
time after a data-dependent start time, or latency. The data- and
resource-dependent progress of a non-steady state task, k, is in
general measured over an interval

δ

k

=[s

k, sk+i*rk]. sk represents a
start time since the start of system execution, or relative to t=0. In
general, sk may be tied to some other data-dependency. rk is a rate
typically drawn from some internal system reference, such as a
processor frequency or communications bandwidth. The length of
the interval is i*rk , constructed as an integer-valued number, i, of
execution times of the reference rate.

When a designer is interested only in the relative progress of a
set of data-dependent tasks and not latency, sk can be arbitrary and
taken to be zero. δk then becomes an observation window for task
k of the effects of data, resource power, and task scheduling
interactions across a number of resources. While T captures an
external constraint as a data-independent interval during which a
set of steady state tasks is guaranteed to execute, δk is a designer’s
reference. Indeed, a designer may choose to observe the
cumulative progress of one or more tasks over a number of
successive δk, simplifying the need to consider the complete
execution history of the system, since when sk=0 and i=∞, δk= (0,
∞) for the range of t. This also allows the designer to design
systems relative to internal system performance references. In
general, for a system with K non-steady state tasks, K observation
windows exist in a set ∆={δ1,...,δK}, one for each transient task.

Mixed steady-state and non-steady state systems are constructed
when schedulers can allow for a partitioning of the utilization of
the system resources. Thus, for mixed digital systems

The mixed steady state and non-steady state system behaviors F
are formed by schedulers local to each resource. These form the
guaranteed, steady-state system mapping along with non-steady-
state, data-dependent resource sharing. Relation 6 combines

relations 2, 3, and 5 for an architecture with constant processing
power in a system with M tasks (Q of which are steady state and K
of which are non-steady state) scheduled by N schedulers, each of
which resolve steady state and transient functionality.

Thus, the most effective means of scheduling the individual system
resources is first with respect to all of the steady-state processing
(i.e., T) and then with respect to a designer’s reference which
captures the relative execution of all transient tasks in the system
on the system resources on which they are executing, using the
system-wide set, ∆. Note that while Q=M-K is bounded in relation
6, K may be dynamic and unbounded for dynamic multitasking.

The key design consideration for general concurrent computer
systems is captured in relation 6. While resource sharing
scheduling decisions are made by schedulers local to resources
(the Un), the most effective resource sharing scheduling decisions
for a set of data-eligible tasks minimizes data starvation of the
tasks in other parts of the system. Some global system context is
required in each local resource. While relation 6 represents a
simplification over the transient response of the entire system over
all time, t, additional simplification is possible.

The effective set of observation windows required for
consideration at each Un is clearly much smaller. We define τn, as a
scheduling scope, permitting simplification of the system-wide set
of observation windows required for effective resource scheduling
decisions at resource n. Each τn may be a set of intervals in

where we also allowed the steady state scheduling considerations
of each local scheduler to be designed to a set of local periodic
references, Tn.

A scheduling scope must permit at least some degree of
knowledge about the flow of data outside of its scope, in addition
to having adequate knowledge about the most effective use of
heterogeneous resources within its own scope. Clearly, this
requires an explicit form of scheduling that simultaneously takes
into consideration functional data dependencies for data-dependent
task activation along with architectural resource capability for
effective resource sharing — thus, the concurrent design of
function, architecture, and schedulers.

We are defining the basis of a design environment which will
allow the designer to more effectively design the schedulers
Un(Tn,τn) for the way function, architecture and schedulers
interact in the formation of a layered platform system. Clearly the
complexity of such interactions requires a simulation and design
environment that simultaneously captures system functionality,
architecture and schedulers, modeling the internal behavior of the
system along with its net response.

3. Frequency Interleaved Simulation (FI)
Our design environment [2] uses a textual specification to

capture a layered system model composed of software models,
software scheduler/protocol models, and resource models. It
includes frequency interleaved simulation targeting integration of
steady-state hardware and mapped design styles with non-steady
state platform-based design. It introduces pure software models
into a simulation environment, allowing for unrestricted modeling
of the software and hardware virtual machines.

All computation in FI [2] is modeled by two fundamental thread
types — C and G(F). C and G(F) threads execute in a shared

Un t L, 1 t() … L, K t(),() Pn t()→ Rel 4

F T() F ∆(){ , } U1 T ∆,() … UN T ∆,(),{ , }⇒ Rel 5

L1 t() … L, ,
K

t() LK 1+ … LM, , ,{ } P1 … PN, ,{ }→
U1 T ∆,() … UN T ∆,(),{ , }⇒ Rel 6

L1 t() … L, ,
K

t() LK 1+ … LM, , ,{ } P1 … PN, ,{ }→
U1 T 1 τ1,() … UN T N τN,(),{ , }⇒ Rel 7

memory modeling environment, from which communications can
be explicitly modeled or inferred from the manner in which inputs
are read and outputs are generated among individual threads or
thread groupings.

C threads are rate-based threads that continuously sample inputs
and generate outputs at fixed rates or frequencies (fi), regardless of
any other type of data events such as changes on inputs. Thus their
activation is guaranteed. Since each C thread potentially has a
different frequency, the activations are interleaved in time.

C threads capture the steady state response of traditional
hardware resources, including the cycle accurate models of
processors, busses and ASICs. C threads are, however, a more
general modeling abstraction than cycle accurate hardware models.
They can be used to model finer details of rate-based hardware
descriptions [11], thus permitting a basis for partitioning a cycle
accurate hardware model.

The most significant difference between C threads and other
modeling environments with multi-rate capabilities [16], including
HDLs, is that C threads provide the resource basis for a platform
style of design. C threads are the foundation of all scheduling in
the system, just as real hardware resources provide a foundation
for all system execution.

C threads provide this capability by supporting G(F), or guarded
functional threads. In general, G(F) threads can be activated by any
other thread in the system. However, some specific types emerge
(discussed later). Used to model software, G(F) threads:
• have functional dependencies — they do not have guaranteed,

independent, activation properties as C threads do. Rather their
activation depends on the state of the functional execution.

• can be eligible to execute, but resource starved,
• can be dynamic in number — they can be created and

destroyed, as needed,
• need not execute atomically — atomicity must be explicitly

modeled by the designer, e.g., as a critical section,
• have flexible forms of time resolution — functional instrumen-

tation of a G(F) thread’s source code determines how much
computational complexity was represented between successive
calls back to a scheduling domain.

We also define G(C) threads which are scheduler threads; they are
guarded by a C thread and schedule G(F) threads. We also define
G(T) threads which are guarded by a real-time constraint.
Together, C threads and G threads form the basis of mixing
hierarchical decomposition, static mapping, and directed platform
design styles for simulation and analysis of steady-state and
transient system responses.

3.1 Thread-based Design Abstractions
Consider the simple system of Figure 1

which represents two busses
interconnected by a network. Each bus
has a single processor, one or two
memory mapped hardware devices, and
some global (to the bus) memory space.
This architecture was selected as it and
Figure 2 will be used in a later example.
(Thus, this system is meant as an
illustration. It can be extended to include
an arbitrary number of processors and
hardware devices per bus, and an arbitrary
number of busses and networks.) Each of
the processor resources, hardware
devices, and communication channels
could be a conceptual clock domain. In
this view, the system resource model

contains eight clock domains. Thus A=({P},{B}) where
P={P1,H1,H2,P2,H3} and B={B1, B2,N1}.

Each of these clock domains allows independent manipulation
of its power P or bandwidth B to translate state from inputs to
outputs. Each is modeled as a separate C thread in FI. Not shown
on the purely architectural diagram of Figure 1 are the software
threads and software schedulers important to the static mapping
and platform-based design styles. Figure 2 shows these threads as
G(C) threads above the C threads. We draw the set of C threads
that models the system resources at the bottom of the figure,
labeled P1, and P2, associated with clock domains (or frequencies)
f1, and f6 respectively. These are also scheduling domains because
they provide the basis for functionality that executes on the C
thread resource, loading its resource power. Note that we have left
B1 and B2 out of Figure 2; to simplify the example, we assume
their execution rates are sufficiently large compared to other rates
in the system and thus do not slow the processing.

Scheduling domains, or Un are labeled in the FI scheduling
diagram as U1(T1,τ1) = G11(C) and U6(T6,τ6) = G61(C). The first
subscript denotes the unique clock domain to which the scheduler
is mapped. The second subscript is 1, implying that the only
function which may activate the scheduler is the underlying C
thread itself. Thus, G61(F) == G(C6), where C6 is clock domain 6.

A platform is the coupling of a scheduling domain to an
underlying C thread, as illustrated in Figure 2 and defined by
relation 6. Outside of the schedulers, all other G threads are
activated by schedulers. Since the system depicted in Figure 2 is
following an example presented later, a G(F) and G(T) thread are
bound to clock domain 1 (the processor on Bus 1). An unbounded
number of additional threads are bound to clock domain 6, the
processor on Bus 2. This can be captured as in relation 6 as

Thus, G(F) threads model transient forms of processing with
dynamic functional and data dependencies, G(T) threads represent
steady state behaviors scheduled by a statically mapped scheduler
[1], and G(C) threads are scheduling domains.

Comparing our approach to others, none allow the designer to
reason directly about the resulting interactions and system-level
characterizations of independently manipulable models of resource
power, resource loading, and resource sharing captured by relation
2 of our model. Further, some current high-level system design
methodologies ignore the modeling of the hardware [3], limit
software to hardware-like finite models of computation [5], or
apply synthesis to a restricted portion of the design space
[6][7][8][9]. Others view all system scheduling as being either
hardware-like or single processor RTOS-based [10], or they

P1 M1

H2

P2 M2
H3

N1

Figure 1 A System
Architecture

B1

B2

H1

Figure 2 A Frequency Interleaved Schedule

f1
P1

f2
H1

f3
H2

f4
N1

f5
H3

f6
P2

G11(C)

G12(T) G13(F)

G6z(F)

G63(F)G62(T)

G61(C)

G13 F() G63 F() … G6z F() G, , , ,
12

T() G62 T(),{ } P1 P2,{ }→
G11 C1() U=

1
T 1 τ1,() G61 C6() U=

2
T 2 τ2,(){ , }⇒

resolve all modeling to either token-based encapsulated
computation and communication [4][14], or gate-like discrete
event scheduling [15].

3.2 G(F) Thread Time Resolution
All execution in an FI simulation is resolved back to a set of C

threads each with its own frequency defined relative to the others.
The frequencies are normalized with respect to the smallest and
inverted producing time periods. Note that some threads are based
on physical timing data, giving the simulation a real time basis.

G(C) threads that schedule other G(F) threads are scheduling
domains. The underlying resource C thread provides power P to
the scheduling domain thread, which in turn selects which of the
G(F) threads should execute and keeps track of how much load L it
put on the resource. If one G(F) thread finishes and there is still
power left for others, execution continues with one of them.
Finally, the scheduler returns to the C thread which will reactivate
later as specified by its calculated period.

Schedulers have a variety of means of resolving functional
execution to a time budget. For instance, a collection of G(F)
threads can consume a time budget on the basis of thread
execution, memory access, or more complex means. Different
operations may be instrumented as determined by the designer.
Coarse time estimates allow for system designers to utilize
intuition and allow software execution to be relatively resource
independent for high-level models.

The designer is completely free to select the appropriate
scheduling policy and time budgets. This permits a rate for system
resources which is far lower than that which would be required if
instruction set simulators were being utilized. Since the lower rate
represents a more abstract model, it also allows the resource to be
viewed as a platform for more complex behavior early in the
system design process, thus enabling early system level modeling.

4. Example
In previous research [2], our simulations results were within 5%

of an actual measured laboratory setup, giving confidence to the
modeling and simulation capabilities of our approach. In this work,
we modeled and simulated a streaming MPEG-1 Layer III audio
decoder [17] in a client-server model distributed over a network.
Our system architecture is that of Figure 1, and FI thread
relationships are that of Figure 2. This example contains an
illustrative set of interacting steady-state and transient system
behaviors. Our goal is to simulate the system to determine the
steady state processing requirements for P1, and then to determine
the performance of the transient tasks also being processed by P1.
As before, the busses are not modeled. Bus domain 2 (P2,H3) is a
thread-on-accept file server, which dynamically loads the CPU and
network. A network buffer (NIC), H3, provides a clean interface to
the switch. The network C thread, N1, fills and empties the
interface buffers asynchronously. The high-level model of the
network utilized only a single C thread.

Bus domain 1 (P1,H1,H2) depicts the thread relationships for the
client. It has an additional piece of hardware (H2) in the form of a
buffer for the audio DAC. The client scheduling domain thread,
G11(C), schedules two threads, G12(T) and G13(F). G12(T) is the
MPEG decoder task. It is computationally complex with a steady
state response which can be met when the processing power of the
client CPU, P1, is adequate. Once the power is determined, P1 is
free to execute transient tasks. For this, we modeled G13(F) which
simply writes data to the network buffer. Because of space
constraints, we focus on the behavior of the client with the
assumption that the network and the server are always fast enough

to meet the data demands of the CPU. However, the network buffer
remains bounded in size and only empties itself periodically.

4.1 Instrumentation
The hardware is instrumented in two places: the output buffer of

the DAC, H2, and the output buffer of the NIC, H1. We monitor the
performance of G12(T) and G13(F). The NIC buffers are fixed in
size and are emptied each time they execute, the rate of which is
determined by the buffer’s frequency. Performance is measured as
percentage of occupied buffer slots at each execution.

The frequency of the C thread that models P1, and so the
execution rate of its scheduling domain thread G11(C), is varied in
our simulation. Time budgeting of the G(T) and G(F) threads
mapped to a scheduling domain is resolved to this underlying
power. Each time G11(C) executes it gives priority to the MPEG
task, G12(T), allowing it to run until the DAC output buffer is filled
or the MPEG task has exceeded the processing power of P1’s C
thread. This is measured by assigning a cost to the inverse
modified DCT (mDCT) function of the MPEG software. Each time
this function is executed, P1’s C thread is charged a fixed amount
by the scheduling domain thread mapped to it, G11(C).

When the total time budget of the execution of G(F) and G(T)
threads mapped to a G(C) scheduling domain exceeds some
maximum value, the computational capacity of the underlying
resource has been exceeded. Other C threads in the system
simulation are then allowed to execute. Thus, steady state and non-
steady state system responses are determined by a mix of
processing power (the rate of the C threads), scheduling decisions
(modeled in the G(C) threads), computation loads (determined in
the G(F) and G(T) threads), and data availability.

4.2 Simulation Results
For this experiment, the audio and NIC buffers have a period of

one and the frequency (power) of the client processor P1 resource
is varied. With a 44.1 kilosamples per second per channel output
rate of the DAC buffer, each channel 16 bits, and a 64 byte buffer,
each flush of the buffer accounts for about 0.36 ms. When we
assign a frequency of one to this buffer we also give a meaning to
the frequency of the other C threads in the system. For example, if
the processor resource has a frequency of 0.5, then each execution
of the processor resource C thread accounts for 2*0.36 ms or 0.72
ms. The audio buffer is 64 bytes and the network buffer is 256
bytes. On P1, each inverse mDCT costs 15 and each network write
costs 2, with a total computation cost not to exceed 100.

0

5

10

15

0.02

0.04

0.06

0.08

0
0.5

1

Period = 8/1.5xTime (s)

U
til

iz
at

io
n

Figure 3 Steady State System Response

Figure 3 is a plot of DAC buffer utilization over time vs. the
period of P1 (inverse-frequency). The graph is semi-logarithmic on
period, averaged over 5 time values for clarity. On the x-axis, 8 is
the period at which the buffer utilization starts rising appreciably.
The denominator is chosen to condense the data for better viewing.
The start-up time is strongly dependent on the period of the
processor resource. P1 is unable to meet demand until its period is

near 8/1.513 = 0.04, or about 24 times the speed of the buffer. With
a 0.36 ms buffer cycle time, P1 must cycle every 0.36 ms/24 =
0.015 ms. The maximum amount of computation is 100, and each
inverse mDCT costs 15, then we can have at most 6.66 inverse
mDCTs per cycle. P1 must therefore sustain about 4.4*105 inverse
mDCT/s in order to meet steady state demand for G(T).

The periodic horizontal streaks result from the way the
algorithm reads a frame of data and then proceeds to do all the
inverse mDCT operations at once, starving the buffer as P1 is
overloaded. From this, a designer might reduce peak loads by
either altering the algorithm or using a buffer design that is better
able to handle bursty traffic.

Figure 4 is a plot of the utilization of the NIC, H2, which is filled
by the transient task, G13(F), which G11(C) only executes when
G12(T) is I/O bound. When G12(T) is compute bound, G13(F)
suffers, as is evident by the streaks which match those in Figure 4.
G13(F) eventually plateaus when it also becomes I/O bound.

The key difference in observing the behavior of the steady-state
MPEG thread, G12(T), and the transient processing of the
background thread, G13(F), is seen by examining each graph on
the basis of three regions. Each graph has a sloped region for low
processor frequencies, a rilled region in which processing is
mostly saturated, and a completely saturated region. But while the
steady-state task, G12(T), is only correct in the region in which
steady state performance is met all the time, the performance of a
transient task may be acceptable over all three regions. While
performance of the transient task is clearly better in the completely
saturated region, its net performance may also be measured as a
cumulative amount of processing over the scheduling scope, i.e.
for τ6=0.10s. That is, the net difference between the processing in
the rilled region as compared to the completely saturated region
may be negligible. Thus, our modeling and simulation capability
allowed us to determine the processing power required in a
complex system and then determine the performance of the
leftover transient tasks.

5. Conclusion
Current digital system design approaches have been limited by

the view that the entire system must be characterized by a single
design style, such as reactive, real-time, or general-purpose. By
starting with an observation that all system behaviors may be
classified as steady-state or transient, and all design styles may be
classified as hierarchical decomposition, static mapping or directed
platform, we developed a formalism to show how existing design
styles may be related. We used this to show how viewing system
design as the simultaneous manipulation of function, architecture,
and schedulers can result in novel design methodologies that more
closely match emergent systems as well as simplify the need to
match real-time processing requirements to resources. We
introduce how local scheduling decisions for transient behavior
can be optimized across broader system scheduling scopes. We
presented FI simulation as the basis for unifying design styles
through a mix of formalism and simulation-based experimentation.
We are continuing to develop our modeling approach.

6. Acknowledgments
We thank our other research team members: Henele Adams, Chris
Andrews, Chris Eatedali and Neal Tibrewala. This work was
supported in part by the General Motors Collaborative Research
Lab at Carnegie Mellon, ST Microelectronics, NSF Award EIA-
9812939, and the Pittsburgh Digital Greenhouse.

7. References
[1] J.M. Paul, S.N. Peffers, D.E. Thomas. “A Codesign Virtual

Machine for Hierarchical, Balanced Hardware/Software Sys-
tem Modeling,” DAC, 2000.

[2] N.K. Tibrewala, J.M. Paul, D.E. Thomas. “Modeling and
Evaluation of Hardware/Software Designs,” 9th international
Workshop on Hardware/Software Codesign, 2001.

[3] B. Selic. “Turning Clockwise: Using UML in the Real-Time
Domain,” Comm. of the ACM, pp. 46-54. Oct. 1999.

[4] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. Lee, et. al,
"Overview of the Ptolemy Project," ERL Technical Report
UCB/ERL No. M99/37, Dept. EECS, Berkeley. July 1999.

[5] F. Balarin, M Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, et.al,
Hardware-Software Co-design of Embedded Systems. The
Polis Approach. Boston: Kluwer. 1997.

[6] D. Gajski, F. Vahid, S. Narayan, J. Gong. “SpecSyn: An Envi-
ronment Supporting the Specify-Explore-Refine Paradigm for
Hardware/Software System Design,” IEEE Trans. VLSI ‘98.

[7] Y. Li, W. Wolf, “Hardware/Software Co-Synthesis with Mem-
ory Hierarchies,” Proc. of ICCAD98, pp. 430-436. 1998.

[8] R. Ortega, G. Borriello. “Communication Synthesis for Dis-
tributed Embedded Systems,” ICCAD98. pp. 437-453. ‘98.

[9] K. Rompaey, D. Verkest, I. Bolsens, H. De Man. “CoWare - A
design environment for heterogeneous hardware/software
systems,” Proceedings of EURO-DAC 1996.

[10] D. Desmet, D. Verkest, H. De Man. “Operating System Based
Software Generation for Systems-on-chip,” DAC 2000.

[11] A. Dasdan, D. Ramanathan, R. Gupta. “Rate derivation and
its applications to reactive, real-time embedded systems,”
DAC 1998.

[12] G. Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications. Boston: Kluwer, ‘97.

[13] P. Pop, P. Eles, Z. Peng. “Schedulability Analysis for Systems
with Data and Control Dependencies,” EURO-DAC 2000.

[14] http://www.inmet.com/sldl/
[15] http://www.systemc.org/
[16] http://www.mathworks.com/
[17] http://www.iis.fhg.de/

0

5

10

15

0.02

0.04

0.06

0.08

0
0.5

1

Period = 8/1.5xTime (s)

U
til

iz
at

io
n

Figure 4 Transient System Response

	Modeling and simulation of steady state and transient behaviors for emergent SoCs
	Citation

	ISSS_7_31.doc

