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Abstract

 

The fundamental modeling differences between hardware
and software modeling can be thought of as reasoning about
connectedness vs. reasoning about interleaved (shared)
access to resources. A natural design hierarchy for physical
systems is component-based because of the existence of a
consistent basis for interconnect between design levels.
However, performance modeling and design of concurrent,
programmable systems require new ways of thinking about
what it means to abstract detail, add detail and partition a
model of software executing on hardware. We motivate
frequency interleaving (FI) as a common simulation
foundation for these systems because it resolves flow and
partitioning with software on hardware layering. Thus, FI
provides a basis for hardware and software designs that do
not simply co-execute together in fixed system views or later
mappings but to truly be co-designed together from high-
level conceptualizations to low-level implementable models.
We include an example of a network switch within a client-
server application. 

 

1  Introduction 

 

As programmable systems replace custom hardware and
as parallel and distributed systems become more affordable
and designed into smaller and smaller devices it will
become increasingly important to model, simulate, design
and integrate concurrent software with hardware
architectures. Performance modeling and so effective design
of these systems requires a consistent basis for resolving
software on hardware from high levels of design through
detailed designs. However, a consistent basis for modeling
the timing interactions that lead to the physical performance
of such systems from high levels of modeling to more
detailed levels of modeling to actual systems has limited
meaningful modeling and design exploration at high levels.

While hardware and software are seemingly similar in
that they both advance digital state, as design abstractions
they are very different. A significant difference is in regards
to a design hierarchy. 

A design hierarchy is
founded on a consistent
definition of what it means
to substitute more detailed
models for ideal modeling
assumptions at higher-levels
of design. Components are a
natural basis for a physical,
hardware design hierarchy,

where wires provide a common, consistent basis for
interconnect across design levels as shown in the component
hierarchy of Figure 1. Computer hardware designers utilize
such hardware-structural views of systems as encapsulated
computation and communication culminating in graph
representations because the physical wire abstraction allows
detail to be added at lower, more detailed levels of design
(that include more components) without changing the
timing properties at higher levels. The wired
interconnection of components ensures a consistent design
hierarchy with respect to timing and detail.

However, the absence of a software wire precludes a
graphical containment hierarchy as being the most natural
way to capture a multi-level design hierarchy when
modeling software on hardware. The sharing of concurrent
computation, communication and state resources transcends
hardware-like 2-D structure, requiring a very different
treatment of how sequencing — system timing and overall
performance — is affected by design detail. 

Figure 2A illustrates a 

 

resource sharing model

 

 where two
or more processors, implicitly shared by programs (shown
as the O/Ss), are connected to a common communication
channel (a network or a bus), implicitly shared by protocol
access. As shown, memory may also be common to the bus.
Figure 2B represents the structure of 

 

resource encapsulation
models

 

 that start with known interface boundaries. Events
are used to activate or synchronize computation or tokens
must be emitted and consumed for information exchange to
take place across boundaries [11][14]. 

Figure 2B allows a designer to reason about flow through
system elements in a consistent manner when the system is
partitioned into more detailed elements. Although software
is not explicitly captured in the structural diagram, Figure
2A motivates the importance of understanding the
performance impacts of the interleaved access of the
concurrent software to the 

 

underlying, shared 

 

system

Figure 1  A Containment 
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resources (processors, memory, and network).
A design hierarchy for layered software-on-hardware

resource sharing models must provide a basis for
partitioning and understanding information flow through
the system in the absence of consistent wire-like interfaces.

Frequency interleaving is a simulation foundation that
starts from a shared memory foundation for capturing
hardware modeling as well as software that executes upon
a hardware architecture. In this paper, we show how the
physical modeling basis of FI can be used to capture a
physical design hierarchy in the absence of a wire-like
construct for connectivity. We also show that FI supports
unrestricted software execution on this foundation. The
combination provides the foundation for a design hierarchy
for concurrent, programmable systems that is based upon
atomic granularity of logical on physical state update
instead of graphical decomposition.

 

2  Modeling Computer Systems

 

The basis for the differences in modeling hardware and
software systems can be found in the ways in which logical
and physical sequencing are related. In this section, we
summarize our formal foundation from [1], which
contrasts logical and physical sequencing and summarizes
design implications of each.

An 

 

event

 

 in a system model has a tag and a value e = (t,
v). The 

 

value

 

 represents an operand v 

 

∈ 

 

V, the set of all
operands in the system, which is the result of a calculation.
The 

 

tag

 

 indicates a point in a sequence of events in which
the operand is calculated. 

Threads are an ordered set of N events, 
Th = {e

 

1

 

, … , e

 

N

 

}
where the ordering is specified by the tags of the events and
N may be considered infinite. Thus event e

 

i

 

 < e

 

j

 

 iff T(e

 

i

 

) <
T(e

 

j

 

), where T(e

 

x

 

) represents the tag of event e

 

x

 

. 
In addition to a specific logical or physical ordering of

tags, there are separate 

 

data precedence

 

 constraints to
consider in a thread. These often arise from sequential
language specifications where the resultant operand from
line 

 

i

 

 of the specification is used in another calculation on
line 

 

j

 

, where 

 

i

 

 < 

 

j

 

. That is, making the single change of
moving line 

 

i

 

 in the language specification to be after 

 

j

 

would make the results of line 

 

j

 

’s computation invalid.
Thus a basic assumption is that reordering the events of a
thread (i.e., reordering the time tags) is allowable as long
as the data precedences are not violated.

 

2.1  Logical and Physical Ordering

 

Computer system models contain two kinds of event
ordering — logical and physical [9]. The tags used in

 

logical ordering

 

 specify a sequence which is not physically
based. There is no physical meaning to the interval
between any two events; we only know that one precedes
the other or that the tags are the same. Logical ordering
often arises from functional language specifications at a
high level of design. The 

 

physical ordering

 

 tags represent a

real time basis, establishing a physical basis for the system. 
Both logical and physical event ordering can be

characterized by the maximum total amount of state that is
advanced by any event, the maximum complexity of the
functional state advancement between any two events, and
the number of events that can be considered to occur
simultaneously or at the same time tag. The latter allows
for a determination of the number of functions that can be
considered to execute simultaneously in the system. 

The ordered sequence 
Th = {e

 

1

 

, … , e

 

N

 

}
is ordered based on the tags. Clearly, a physically ordered
system is totally ordered. A 

 

partially ordered

 

 system has at
least two logical tags t and t’ for which we do not know if t
< t’ or t’ < t. Thus, assuming events e

 

a

 

 and e

 

b

 

 are partially
ordered, one mapping to a physical order is the sequence 

Th = {…, e

 

a

 

, e

 

b

 

, …}, 
and another correct mapping of events is

Th = {…, e

 

b

 

, e

 

a

 

, …}.
It is also possible that the two events are concurrent and
have the same tag. Thus a key reason for describing a
system with a partially ordered sequence is to allow greater
flexibility in the design of the system; partially ordered
events give rise to alternate, and potentially concurrent,
implementations of the system.

A sequence of events Th = {e

 

1

 

, … , e

 

N

 

} is derived from a
logical/physical time base T, the set of all state in the
thread V, and the set of all state advancement functions F as
shown:

Th = M (T, V, F).
The calculation of a new set of values in V between two
events in a sequence is functional and atomic. The
functions themselves can have arbitrary complexity and are
assumed to execute to completion between successive
events. Thus event-based models can be used for arbitrary
levels of system design. The function M is used to
sequence the system state advancement. We distinguish
two particular instances of M which produce event
sequences for logical and physical event orderings:

Th

 

L

 

 = M

 

L

 

 (T

 

L

 

, V

 

L

 

, F

 

L

 

), and 
Th

 

P

 

 = M

 

P

 

 (T

 

P

 

, V

 

P

 

, F

 

P

 

).

 

2.2  Concurrent Hardware/Software Systems

 

For the effective design of concurrent systems,
interactions between Th

 

L

 

 and Th

 

P

 

 must be explored prior
to partitioning into components [11][13][14] or separating
design concerns [12].

We first consider the design implications when logical
and physical sequence are 

 

independent

 

. When M

 

L

 

 alone is
used to sequence a system — software design — the
system will have unknown physical execution times
between the events in Th

 

L

 

. The key to this view is the
assumption that the 

 

design

 

 of the logical ordering of the
system (writing the software) is not significantly affected
by the actual physical system (the processor, or system
architecture) upon which it will ultimately execute.
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Function and architecture can be separated. Clearly there
must be some assumptions on the existence of a physical
machine to execute the software [10], but the system is
literally formed at runtime, when the software is deployed
on the platform by a scheduler. 

Next we consider the design implications when logical
and physical sequence are 

 

identical

 

. While it is possible to
assign a time base to logically sequenced systems by
assuming a fixed execution order and execution time on
partially ordered events, these approaches effectively
strongly couple a logical sequence to a physical time base
either for hardware synthesis or for the analytical
scheduling of real time tasks to a fixed, physical
architecture [6][7][8][11][12][13] — the event sequences
generated by M

 

L

 

 and M

 

P

 

 are the same. 
For instance, assume that the thread sequence 
Th

 

L

 

 = {e

 

1

 

, … , e

 

i 

 

,…}
is a high level model. Because the events represent a
relatively large amount of functional advancement, we
term them 

 

macro states

 

 or 

 

macro events

 

. These macro
events can be decomposed into several states or events
which have relatively less functional advancement — we
term these 

 

micro states

 

 or 

 

events

 

. If the macro states are
totally ordered, they allow for substitution on micro event
sequences, allowing the sequence to be re-written as 

Th

 

L

 

 = {(e

 

11

 

, e

 

12

 

,… , e

 

1i 

 

,…), (e

 

21

 

, e

 

22

 

,… , e

 

2i 

 

,…), ...}
Thus, each macro event, e

 

i

 

, is seen to 

 

contain 

 

a sequence
of micro events, e

 

i1

 

,e

 

i2

 

,...e

 

ij

 

, where all the micro events of
macro event e

 

i

 

 must complete before any of macro event e

 

j

 

can execute (where i<j). All logical state advancement may
eventually be substituted 1:1 by a physical sequence Th

 

P

 

— e.g., a set of gates. The physical time tags of the micro
events may be combined to form a physical macro event
tag; the substitutions can be made without affecting higher-
level events nor events in other branches of the hierarchy.

Finally, we observe that, for concurrent hardware and
software systems, neither independent specification of
sequences (software design), nor component-like
containment captures the way logical and physical
sequencing are related in concurrent software systems.
Consider such a logical sequence of macro states 

Th

 

L

 

 = {e

 

1

 

, e

 

2

 

, …, e

 

i 

 

,…}.
Typically, concurrent software events are partially ordered
and thus the micro states implied by e

 

1

 

 and e

 

2 

 

may be

 

interleaved

 

 with each other on shared resources by a
scheduler. As illustrated below, the actual execution of the
micro event sequences are no longer substitutable and
atomic, but interleaved. 

Th

 

L

 

 = {e

 

21

 

, e

 

11

 

, e

 

12

 

, e

 

j1

 

, e

 

22

 

,… }
For instance, e

 

j1

 

 above might be a hardware network event
that makes data ready allowing the scheduler to schedule
software e

 

22

 

. The time at which e

 

j1

 

 occurs is dependent on
other data dependent dynamic software and e

 

j

 

’s time base.
Indeed, this is only one ordering of the system’s events as
the true order depends on the data dependent and dynamic
unbounded software, the scheduling method of the

scheduler, and the shared resources.
Clearly in the performance modeling of concurrent

systems, the function and architecture are not
independently optimizable as in a single processor
software system. When adding either physical or logical
concurrency to a computer system, the new system may
have better or poorer performance. Significantly, for
performance modeling of concurrent software systems
logical and physical sequencing must be related, not
considered identical as in components or independent as in
general-purpose software. 

 

3  Logical and Physical Thread Relationships

 

The model of a system is shown in the middle of Figure
3 as a layering of software models on scheduling models
on resource (hardware architecture) models in our
Modeling Environment for Software and Hardware project
(MESH). As introduced in [3], each layer provides a set of
services — a virtual machine — to the next layer above. In
our approach, the physical resource layer can be thought of
as providing processing power to the next layer up of
schedulers. The schedulers, in turn, split that power among
the software threads they each schedule. Each software
thread appears as a load on the scheduler; as each software
thread uses its power, others are scheduled to maintain
performance and fairness. Essentially, these schedulers
resolve the logical sequencing with the physical
sequencing through a simulation.

The layered approach supports design exploration of a
concurrent computing system by allowing the models of
each of the layers to be separately modified. Figure 3
illustrates this as three gray arrows emanating from the
testbench. For instance, the rates of the resources (e.g.,
processor or network performances) can be modified
separately from the scheduling algorithms on each
processor, which can be modified separately from the
software loading. 

Some modeling environments allow certain models of
computation to execute together — for instance, a discrete
event system with a Kahn process network[13]. This works

Figure 3   MESH Design Methodology
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well for validating the correctness of a system. However,
our approach provides 

 

performance modeling

 

 by directly
modeling, for example, a Kahn process network layered on
a set of independently specifiable processors. It further
allows us to model the performance impacts of other
concurrent parts of the system. 

Our approach to simulation uses 

 

frequency interleaved
scheduling

 

 (FI) [2][3][4][5]. All computation in FI is
modeled by two fundamental thread types — C and G(F).
C threads model Th

 

P

 

 threads. They are rate-based threads
that continuously sample inputs and generate outputs at
fixed rates or frequencies (f

 

i

 

), regardless of any other type
of data events such as changes on inputs. Thus their
activation is guaranteed and interleaved in time. C threads
provide the resource basis for a platform style of multiple
clock domain hardware design. As such, they are the
foundation of all scheduling in the system, just as real
hardware resources provide a foundation for all system
execution. However, C threads are very high-level physical
models and their rates can be varied separately from each
other, allowing us to explore the resource layer.

G(F), or 

 

guarded functional

 

 threads, model logical
sequencing of software — Th

 

L

 

 threads. They: have
functional dependencies, can be eligible to execute (but
resource starved), can be dynamic in number, need not
execute atomically, and have flexible forms of time
resolution. Thus, they capture layered sequencing.

While partitioning and flow are naturally captured in
resource encapsulation diagrams, layering is not captured.
In the next two sections we motivate FI as a common basis
for capturing partitioning, flow and layering, thus forming
the basis for a consistent design hierarchy.

 

4  A Rate-based Hardware Design Hierarchy

 

High-level functional models tend to be cycle-accurate
models that implicitly assume ideal system properties such
as perfect parallelism, zero-time computation, or unlimited
bandwidth. These are our C threads. These are conceived to
run at a rate which represents an overall system cycle (e.g.,
it might represent the cycle needed to process a packet of
information). While rate-based models are intuitive
foundations for system design, they are not an obvious
means of capturing hierarchical detail and flow. 

 

4.1  Modeling Flow Without Wired Interconnect

We provide the basis for reasoning about the flow of
information through a system and provide a means of
integrating resource/performance modeling with a self-
timed layer [9] of computation. This is an increasingly
important system design paradigm, as a basis for reasoning
about the flow of information though a shared memory
model before the underlying architecture has been defined.

Figure 4 motivates how we mix self-timed protocols in
frequency interleaving. The loop-shaped arrows depict C
threads, representing concurrency through multiple rates of
activation, interleaved in a common memory space. The

boxes represent state shared among (in this case) three C
threads. Thus the boxes are labeled as Si-j denoting the
overlapping (shared) state. Data is presumed to flow from
left to right, so that location a as generated by thread C1
flows through thread C2 and emerges as location b. It then
flows through thread C3 and finally emerges as location c.
Clearly, with execution based only upon relative frequency
and a frequency of thread C1 much greater than that of
thread C2, data generated by C1 would be lost without
some additional control superimposed on the C threads. At
least a simple self-timed protocol with ready and
acknowledge signals is needed. 

Consider the mix of the C threads with the self-timed
layer. The self-timed layer sits conceptually on top of the
underlying resource model (visualize the gray arrow as
being above the underlying C-thread resources). Thus,
layer 1 consists of the frequency activated C threads, their
internal state (not shown), and their shared state, shown as
Si-j (with locations a, b, and c shown separately). Layer 2
consists of the ready/ack protocols, added to the shared
state Si-j spaces and additional control in the C threads to
support the self-timed protocols. 

Clearly the flow of data from a to c is determined both by
the control interdependencies established for each
individual C thread and by the C threads themselves. The
diagram is analogous to software modeling which ideally
separates the software functionality from the underlying
resources to execute it. But this approach adds resource
modeling so that the performance of the interaction of
software with an architecture may be considered. 

Self-timed protocols are far from new. However, we
provide a means of understanding the interaction of self-
timed models with resource models when modeling mixed
hardware/software systems. Consider a situation in which
C2 executes at a frequency much higher than either C1 or
C3. The flow of information from a to c would then result
in many executions of C2 in which C2 would simply find
there was no data available to process. While C2 would
potentially have more computation capacity per execution
cycle, it would not be able to produce more data, because
of the dependency. Frequency interleaving allows us to
adjust the rate of the C2 thread to find architectural corner
cases leading to design inferences.

For instance, past a certain point, a higher execution rate
for the C2 thread does not result in additional performance.
C2 can be isolated as a resource which either has the
potential to be reduced in terms of relative rate (power) so

Figure 4  Layered self-timed logic on rate-based, 
physical resourcs
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that it only handles the given transfer of data, or it might be
considered for additional functionality (loading or sharing
of the resource). 

4.2  Rate-Based Hierarchical System Partitioning

Intuitively, time granularity affects a system designer’s
interpretation of structure at varying levels of design detail.
If a system were to be modeled as a single rate-based
thread, all state inside the thread could be modeled as being
perfectly accessible during each cycle of the single cycle-
based model. As more rates are hierarchically substituted,
providing more detail to the design, information access
becomes less ideal as it must be exchanged between
threads. Each finer-grained thread may also conceptually
execute at a relatively higher frequency, since it is likely
executing far less functionality. When the rates become
closer to actual clock rates and the models become more
detailed, a separation into actual devices emerges and the
individual rates in the system begin to correspond to
system components. Thus the hierarchy can be viewed as a
few rate-based threads at a relatively slow system-wide
execution rate implicitly representing a larger number of
higher rate threads that specify the design detail.

Again, consider a situation in Figure 4 in which C2
executes at a frequency much higher than either C1 or C3.
The rate of processing of C2 is high enough so that shared
variable b is effectively available to C3 at the rate at which
C1 produces a — the processing of b by C2 is effectively
transparent to the performance of the system. Further
assume that C2 did no functional processing in producing b
from a — that is, the C2 thread effectively acted as a wire,
used to route the value of a from space S1-2 to S2-3. In this
case, the variables a and b are effectively collapsed — state
spaces S1-2 and S2-3 are conceptually shared and access
can be modeled as such. At high levels of modeling the bus
is ideal — it executes at a much higher clock rate than the
level of model being considered.

However, if additional detail is added to the system such
that the frequency at which thread C2 operates is reduced
— for instance the threads end up on different processors
in a system — a flow channel emerges from the modeling
space. This multi-level protocol view is naturally handled
in C threads in FI, because the effects of each update are
naturally viewed with respect to both the rate foundation,
and a self-timed layer of information flow. 

A further transformation might suggest that C2 handles
not only the communication between C1 and C3 but other
(un-shown) communication as well — C2 would then be
evolving into a network that requires a level of protocols.
The protocols would be captured by additional threads. It is
interesting to note that combining C2 with other
communication threads breaks across the traditional
(hardware) 2-dimensional, hierarchical view that
computation and communication are physically distinct
when they are, in fact, computationally related.

The point is that C threads afford reasoning about adding
detail to a system and partitioning it into finer-grained
elements without relying upon component-based structure.

4.3  Example 

We designed and simulated three different network
switch architectures, implementing multi-layer switching
(Ethernet (IEEE 802.3) for OSI layer 2, Internet Protocol
version 6 (Ipv6) OSI layer 3), Unicast, Anycast, and
Multicast support, and Round Robin and Weighted Round
Robin Quality of Service (QoS) mechanisms.
Parameterization of the models includes the frequency of
the C threads, look-up table sizes, number of ethernet
ports, FIFO buffer limits, time threshold for stale entries,
and enabling/disabling Layer 2 and/or Layer 3 switching.
A common testbench interface exists across all models. 

Our least detailed model, Model #1, is shown in Figure 5
and consists of several C threads: a single thread for the
packet routing, a timer thread, a stale-entry thread, and a
port service thread for each port modeled on the switch.
Model #1 contains the least structural detail and is
therefore the highest-level model of the switch. The routing
fabric thread routes packets through the switch to the
switch ports. Fixed frequencies are associated with each
type of thread except for the routing thread, with f=0.1
assigned to the port service threads. Two primary variables
are required for our models: work per iteration (the
computation load of the loop), and frequency (the rate of
recurrence — the resource power). Any frequency
interleaved loop by itself is purely an abstract function —
there is no limit to the amount of computation modeled in a
given loop and so implied in a physical implementation. 

The frequency for the routing thread has been left as
variable X so comparisons may be made within the system
under different parameters and against other more detailed
versions of this baseline model. The key assumption in
switch Model #1 is that communications overhead is
nonexistent within the switch fabric — it is ideal. Common
networking issues such as switching fabric contention or
buffer overflows are not realized in this model. 

Note that the model includes several frequency
interleaved threads. Interestingly, higher-level single loop
models exist for the entire simulation. These packet-
accurate models are used to explore high-level trade-offs
associated with complex forms of scheduling but include
less architectural insight. These cycle-based models are
completely consistent with our simulation environment.
However, we chose to include additional architectural
insight; in this case the primary focus was to decouple the
rates of execution between several general functions. 

Figure 5  Network Switch Model #1
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In switch Model #2, implementation detail is added by
replacing the ideal routing fabric of Model #1 with a
frequency interleaved model of a Banyan network. In
Model #1, the routing thread handled any number of
packets per cycle. In Model #2, the routing work is spread
over a set of threads of bounded functionality. Notice the
implied flow of data in the set of resource threads shown by
the arrows in Figure 6. These arrows do not imply wire-like
communication channels — the switch is completely
modeled as a set of C type threads sampling inputs and
producing outputs at regular intervals for which the flow of
packets through the switch can be inferred. 

In making the design transformation to a more realizable
model, work done per thread execution was re-defined to
include the functional complexity of state advancement
and the amount of state read and written in each execution.
This implies more structure through data locality, and
increased overhead when accessing non-local data. 

Model #3 (not shown) represents a switching hierarchy.
The switching hierarchy is designed to route local traffic in
smaller Banyan networks, while non-local traffic must be
routed through a central Banyan network. Thus, we used
smaller Banyans in this model plus a new central Banyan
for the hierarchical routing and a master lookup table. The
design captures a trade-off that local routing would not
leave the smaller Banyan network and access the central
Banyan, thus, in theory, improving throughput.

Our simulation results are shown in Figure 7. For each
model, we varied the routing fabric frequencies (the
compressed X-axis) while all other frequencies
representing system resources remained constant. In all
cases we assumed unbounded buffers and we used a traffic
model that should have benefited Model #3. The top line in
Figure 7 represents the number of packets presented to the
switch models by the testbench in a given period of time.
We varied the frequency of the switching fabric (a single
thread in Model #1 and multiple, identical threads in
Models #2 and #3) and show the resulting bytes that are
processed by the switch in the given time. The second line
from the top represents switch Model #1. Note that the

switching fabric is not the bottleneck in the design at high
frequencies. Rather, the loss in bytes is due to other
structural losses within the model. However, as the
switching fabric frequency is lowered below .02, it
becomes the bottleneck. 

From Model #1 to Model #2, C threads are added to
capture the added detail, the Banyan network threads and
their interactions. Now a packet must traverse several
threads to propagate from an input to output port, and there
is contention for resources as multiple streams of data vie
for a limited number of communication pathways. The
lower level models require higher frequencies for the
fabric, and may require scaling to attempt to achieve the
higher level model functionality. In the case of Model #2,
the frequencies of the fabric and the associated supporting
subsystems may be increased to minimize the effects of the
change in the design. Optimally, if the frequencies are high
enough, the overhead and resource constraints added may
disappear as is reflected in Figure 7 by the throughput
approaching that of Model #1. 

In Figure 7, switch Models #2 and #3 (the bottom curve)
give identical performance — the two lines essentially
overlap. Each curve shows that low frequencies in the
Banyan networks interfere with switch throughput until
approximately a frequency of 0.2. This is an intuitive
result, since the more fine-grained Models #2 and #3
should require higher frequencies for the C threads, but
more cycles required to pass information through their
implied structure. The non-ideal nature of the switching
fabric is captured as these fine-grained C threads must
exchange information only on the basis of execution rates.
Most interesting is that Models #2 and #3 exhibit identical
behavior. This result is seemingly counter-intuitive, since
the traffic model should have benefited Model #3.
However, under this traffic model a hierarchical Banyan
switch model produces little or no additional benefits. This
shows that our interleaved rate-based model correctly
captured the structural detail of the network. 

Figure 6  Network Switch Model #2
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5  Layered Foundation for Software

Clearly, performance modeling of data-dependent
software can not be modeled as simple rates. However, as
we resolve the logical sequencing of software to the
physical sequencing provided by our rate-based models,
we form the basis for a common model that allows for
consistency across a design hierarchy. While FI allows for
hardware-like structure to be captured in the absence of a
wire model, significantly, it also supports a layered view of
software, allowing for a common basis for the two design
abstractions to be merged. In this section, we discuss how
FI resolves software timing to hardware models. Since we
do not require full resource models, we establish the basis
for high-level models as well as more detailed ones that
include full processor and communication models.

We modeled streaming MPEG-1 audio decompression in
a client server model distributed over our network Model
#1 of Figure 5 with a routing fabric frequency of 1 and 16
port service threads. Each of the 16 switch ports has a
computational resource attached to it; 5 random traffic
generators of two types, and eight clients accessing two
servers. The first stochastic traffic generator creates full
size packets at random probabilities and the other
generates streams of packets with the likelihood of variable
length packets at the beginning and end of the streams.
This behavior models typical network traffic.

Figure 8 shows the FI thread relationships for a thread-
on-accept file server. A network buffer buffers both
incoming and outgoing traffic. It is modeled as a C thread
because it represents the network interface card (NIC) and
can be considered an intermediary channel. The outgoing
buffer is limited in size; threads wanting to transmit data
are stalled until there is buffer room. The incoming data
buffer is unbounded in order to prevent packets from being
dropped before entering the system model. We are
interested in the normal operation of the network;
monitoring the backup at the buffer is an indicator of
network performance. At reset, the server has only one
server master G(F) thread which listens for clients
requesting a file. This thread then spawns a child which

sends the data to the client over the network interface.
When finished, the slave is terminated — we can create
and destroy threads that all compete for network resources.

The client shares the same code with the server thread.
The two differentiate only at run time. The client has an
additional piece of hardware (a C-thread) in the form of a
buffered digital to analog converter (DAC). Its purpose is
to play the decoded sound at the proper rate (e.g. 44
kilosamples per second). The client also only ever has
exactly two threads mapped to its OS scheduler, an MPEG
and a background thread. Further, the client has a variable
frequency assigned to its processor (PE).

The MPEG-1 Layer III audio decoder [15] provides an
interesting, computationally complex example with real
time demands. All G(F) threads supported by the O/S
G(F)-C threads are scheduled using a highest-priority-first
round-robin scheduler. Normally, the MPEG decoder is the
highest priority thread in the system with all other tasks
executing in the background only when the decoder is
blocked. However, by creating other threads of equal or
higher priority, we degrade the decoder’s performance
through competition for the CPU. By changing the
frequency of the CPU, we can compensate for changes in
the performance of the software through changes in the
performance of the hardware.

A 128 kbps MPEG audio file translates to 16 kilobytes
per second. In the steady state, the network transmits one
packet every 50 cycles, with respect to the rest of the
system. If the packet payload is 512 bytes, each cycle of
the simulation accounts for .0064 seconds. Assuming an
infinitely fast processor and therefore no bottlenecks
between the network buffer and the DAC buffer, and that
the DAC buffer is able to empty itself each time it runs, the
throughput is equal to the buffer size in bytes divided by
two audio channels each 2 bytes wide, divided by 10 times
the elapsed time of .0064. The factor of 10 is the period of
a loop of frequency .1. 

The actual throughput is dependent upon the algorithm
that fills the buffer. For an MPEG file playing audio at 44.1
kHz, the buffer size must be at least 1129 bytes, given a
frequency of 0.1 and the above computation of .0064

Figure 8   Layered Thread Detail of Server
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seconds for each cycle. Figure 9 demonstrates the steady
state behavior of the system with a packet size of: 1)
infinity, 2) 1250 bytes, 3) 1129 bytes, 4) 1000 bytes. Note
that the curve is predictable, and that with the proper
packet size, it converges on the throughput we would
expect from a 128 kbps MP3 file playing at 44.1 kHz.
Notice the roughness of curve 1 as compared to curves 2-4.
Intuitively a buffer acts as a filter. 

Of course the CPU is actually not infinitely fast. By
assigning a cost to each of MPEG’s discrete cosine
transform (DCT) executions equal to some percentage of
the CPU’s total computational capacity, Figure 10 shows
how throughput drops as computational cost increases.
Curve 1 results when the CPU is not shared. The cost at the
knee of the curve is .015, or 66 mDCTs (modified DCTs)
per CPU cycle. A CPU capable of about 1000 mDCTs per
second is required.

Curve 3 results when the CPU is shared with a data
dependent process (a random number search) which has
priority over the decoder. On average, this process takes 23
percent of the CPU capacity before completing. As
expected, curve 3 is about 75 percent of curve 1. The match
is not exact because the system is actually somewhat more
complex. Curve two results from changing the frequency
of the CPU from .1 to .14, recovering most of the
performance loss. However, since the input and output
buffers have a frequency of .1 each (Figure 10), the CPU is
out of sync with them, causing faster fall-off of the curve. 

6  Conclusion

The modeling and design of concurrent, programmable
systems that result in embedded and other mobile devices
will transcend traditional approaches including those for
parallel and distributed processing and the Computer-
Aided Design (CAD) of custom hardware devices. As in
CAD, the design process will become as important as the
ultimate performance of the devices; design time is an
important factor. As in parallel and distributed processing,
understanding the impacts of concurrent software
executing on concurrent software poses a performance

modeling challenge for these programmable systems. One
of the most important aspects of a design methodology
around which tools and techniques can be based is that of a
design hierarchy. Frequency Interleaving (FI) provides
both a basis for hardware modeling as well as a basis for
layered models of software systems. We have shown how
FI provides the basis for a novel design hierarchy that is
not based upon physical components, but which still
includes the physical modeling of software on hardware.
This will provide designers with a consistent basis for
understanding the design implications of concurrent
software executing on concurrent hardware for high-level
designs as well as more finely detailed designs. A
supporting modeling environment for these systems is
being developed as part of the MESH research project.
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