
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2024

Big Code Search: A Bibliography Big Code Search: A Bibliography

Kisub KIM
Singapore Management University, kisubkim@smu.edu.sg

Sankalp GHATPANDE

Dongsun KIM

Xin ZHOU
Singapore Management University, xinzhou.2020@phdcs.smu.edu.sg

Kui LIU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
KIM, Kisub; GHATPANDE, Sankalp; KIM, Dongsun; ZHOU, Xin; LIU, Kui; BISSYANDE, Tegawende F.; KLEIN,
Jacques; and LE, Traon Yves. Big Code Search: A Bibliography. (2024). ACM Computing Surveys. 56, (1),
1-49.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8281

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Kisub KIM, Sankalp GHATPANDE, Dongsun KIM, Xin ZHOU, Kui LIU, Tegawende F. BISSYANDE, Jacques
KLEIN, and Traon Yves LE

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8281

https://ink.library.smu.edu.sg/sis_research/8281

25

Big Code Search: A Bibliography

KISUB KIM, Singapore Management University, Singapore

SANKALP GHATPANDE, Independent Researcher, Luxembourg

DONGSUN KIM, Kyungpook National University, Republic of Korea

XIN ZHOU, Singapore Management University, Singapore

KUI LIU, Huawei, China

TEGAWENDÉ F. BISSYANDÉ, JACQUES KLEIN, and YVES LE TRAON, University of

Luxembourg, Luxembourg

Code search is an essential task in software development. Developers often search the internet and other code

databases for necessary source code snippets to ease the development efforts. Code search techniques also

help learn programming as novice programmers or students can quickly retrieve (hopefully good) examples

already used in actual software projects. Given the recurrence of the code search activity in software develop-

ment, there is an increasing interest in the research community. To improve the code search experience, the

research community suggests many code search tools and techniques. These tools and techniques leverage

several different ideas and claim a better code search performance. However, it is still challenging to illustrate

a comprehensive view of the field considering that existing studies generally explore narrow and limited sub-

sets of used components. This study aims to devise a grounded approach to understanding the procedure

for code search and build an operational taxonomy capturing the critical facets of code search techniques.

Additionally, we investigate evaluation methods, benchmarks, and datasets used in the field of code search.

CCS Concepts: • Software and its engineering→Maintaining software;

Additional Key Words and Phrases: Code search, code recommendation, code retrieval, find code, code snippet,

code search procedure

This work was supported by the European Research Council (ERC), under the European Union’s Horizon 2020 research and

innovation programme (grant agreement 949014); and Fonds National de la Recherche (FNR), Luxembourg, under FNR-AFR

PhD/11623818 and the National Research Foundation, Singapore, under its Industry Alignment Fund–Pre-positioning (IAF-

PP) Funding Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are those

of the author(s) and do not reflect the views of National Research Foundation, Singapore. This work was also supported

by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1A5A1021944

and 2021R1I1A3048013); the National Natural Science Foundation of China (62172214); the Natural Science Foundation

of Jiangsu Province, China (BK20210279). Additionally, the research was supported by Kyungpook National University

Research Fund, 2020.

Authors’ addresses: K. Kim and X. Zhou, Singapore Management University, 81 Victoria St, Singapore 188065, Singapore;

emails: kisubkim@smu.edu.sg, xinzhou.2020@phdcs.smu.edu.sg; S. Ghatpande, Independent Researcher, 6 Rue Richard

Coudenhove-Kalergi, 1359 Kirchberg, Luxembourg; email: contact@sghatpande.eu; D. Kim (corresponding author), Kyung-

pook National University, 80 Daehak-ro, Buk-gu, Daegu, South Korea; email: darkrsw@knu.ac.kr; K. Liu (corresponding au-

thor), Huawei, No. 360, Jiangshu Road, Binjiang District Hangzhou Zhejiang, 310051, China; email: brucekuiliu@gmail.com;

T. F. Bissyandé, J. Klein, and Y. L. Traon, University of Luxembourg, 6 Rue Richard Coudenhove-Kalergi, 1359 Kirchberg,

Luxembourg; emails: tegawende.bissyande@uni.lu, jacques.klein@uni.lu, Yves.LeTraon@uni.lu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

0360-0300/2023/08-ART25 $15.00

https://doi.org/10.1145/3604905

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://orcid.org/0000-0002-4462-6916
https://orcid.org/0009-0002-3386-5070
https://orcid.org/0000-0003-0272-6860
https://orcid.org/0000-0002-4558-0622
https://orcid.org/0000-0003-0145-615X
https://orcid.org/0000-0001-7270-9869
https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0002-1045-4861
https://doi.org/10.1145/3604905
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604905&domain=pdf&date_stamp=2023-08-26

25:2 K. Kim et al.

ACM Reference format:

Kisub Kim, Sankalp Ghatpande, Dongsun Kim, Xin Zhou, Kui Liu, Tegawendé F. Bissyandé, Jacques Klein,

and Yves Le Traon. 2023. Big Code Search: A Bibliography. ACM Comput. Surv. 56, 1, Article 25 (August 2023),

49 pages.

https://doi.org/10.1145/3604905

1 INTRODUCTION

Code search is one of the most frequent activities in software development, as developers tend
to write programs based on existing programs rather than writing them from scratch [94, 182,
234, 248, 252, 295]. Many programs consist of routines, data structures, and resources that are also
implemented by other programs [70]. Developers are indeed recurrently writing code to address
similar tasks or cloning (e.g., via copy/paste) other code. Toward easing software development,
searching for source code on the internet became a typical activity for developers [19, 249, 262].
In particular, developers often search for source code to reuse or to consider as reference exam-
ples [72, 249] to help them identify the programming concepts that are required for solving coding
tasks [14, 30, 94, 176, 248] or to fact-checking (i.e., in contrast to exploratory usages [174]) on the
availability of different implementations for a given algorithm. Furthermore, the core concept and
principles of code search research is also applied to other software engineering tasks such as con-
cept/feature/concern location [58], code clone detection [126], code completion [32, 229], match
and transform [207], vulnerability detection [37, 300], bug localization [3], and automatic program
repair [161].

Developers often search other external sources rather than local sources for necessary code
snippets. The external sources may include the internet, super repositories (e.g., GitHub [289] and
Bitbucket [25]), blogs, and Question and Answer (Q&A) forums (e.g., Stack Overflow [257]). We
define this type of code search as “big code search” since it explores a large space of resources.
In contrast to big code search, local code search, also called concept/feature/concern location, scans
features and functionalities available only in the local projects or search space [58]. Local code
search approaches often take a single software repository as the search base. This intra-project
setting tends to provide high retrieval performance and fast speed since the search base is relatively
small, and such approaches are implemented considering their characteristics [232]. Despite the
high retrieval quality, such approaches (e.g., [65, 67]) have clear limitations with the variety of
the source code and the generalization of the search engine. The research community started to
propose big code search approaches to address these issues, containing at least two repositories
as their search base to provide abundant source code. Especially, many of the big code search
approaches are built upon super repositories such as GitHub [289] or SourceForge [256] to cover
various requirements from the developers and users.

Given the importance of code search in software development, the research community has
invested substantial effort in the field of code search, developing new techniques, applying new
methods, and collecting new data to improve efficiency and effectiveness. In broad terms, code
search is a procedure composed of a series of activities aiming to retrieve relevant code snippets
according to the user specification. These activities include (1) selection of the output type, (2)
creation of a search base, (3) indexing the search base, (4) formulation of user specifications into
search queries, (5) obtainment of code snippets relevant to the user query, and (6) demonstration of
relevant results to users. The ability to characterize the properties of each activity remains crucial
toward understanding the core concepts and principles of code search. To that end, we summarize
the properties and characteristics of code search approaches and use them to establish a procedure

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://doi.org/10.1145/3604905

Big Code Search: A Bibliography 25:3

for code search. Eventually, we propose a grounded approach to establish a standard procedure
for code search and build an operational taxonomy on this procedure.

Based on the preceding observations, this survey provides a comprehensive view of big code
search by addressing the following challenges. First, practitioners often have difficulties selecting
an appropriate tool or technique since there are too many code search approaches to consider.
Second, the Vocabulary Mismatch Problem (VMP) [142, 221, 241, 253] still exists in the field of
code search. Third, despite the substantial efforts by the researchers, code search benchmarks still
remain of low quality. Fourth, recent studies invested less effort in extensibility (i.e., for multiple
programming languages) and usability (i.e., for practical usage like binary code search because of
the obfuscation). Fifth, most existing approaches lack consensus for the specific requirements (e.g.,
a code snippet that is memory efficient).

It is still challenging to explore the world of big code search due to a lack of well-organized
knowledge that links to the building/managing procedures and suitable literature. Yet, to the best
of our knowledge, there has not been any attempt to undertake work that would address this
issue and provide literature covering the big code search domain in its entirety. Although Liu
et al. [158] recently submitted a survey that is based on the input and output of code search
engines, their work focuses mainly on understanding the publication trend within the domain
that provides a segmentation between the types of publication undertaken, venues, and trends.
We believe that further in-depth analysis is necessary for a better understanding of big code
search.

This survey aims to provide the reader with a complete view of the field, starting from the first
known publication of big code search. We consider a total of 137 big code search approaches, which
are all based on multiple projects (i.e., at least two projects as a search base). Due to the strict page
limitation, we append big tables in Appendix A.1

Concretely, our work provides many essential contributions to the code search field, such as the
following:

• A novel systematic literature review on 137 code search approaches published until the end
of 2020.
• A profound literature search strategy with snowballing to bring to light unrevealed ap-

proaches of code search.
• An overview of the field of code search and its historical evolution trend to highlight what

has been done so far.
• Identifying a general procedure of code search that can help to understand fundamental

concepts of code search.
• An operational taxonomy of code search that can guide researchers and practitioners to

locate code search approaches that are most suited to their tasks.
• Analysis of existing dataset and the benchmarks of code search.
• Discussion of the open issues and potential research directions.

2 DIFFERENCES FROM OTHER SURVEYS ON CODE SEARCH TECHNIQUES

As there have been other existing surveys on code search, we clarify their insights and differences
from our survey in this section. We found several surveys [5, 56, 125, 158, 219, 245] that can be
directly or potentially related to the field of code search. We clarify the differences from the most
relevant survey [158] as follows:

1https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf

25:4 K. Kim et al.

• Survey scope: We conducted a strict snowballing to collect the complete list of code search
techniques by including DBLP and arXiv. Especially, arXiv contains major industrial publi-
cations on the field, which tend to have high research values. This allowed us to discover
137 studies, whereas Liu et al. [158] found 81.
• Taxonomy: Thanks to the complete list, we identify further categories of code search studies

(e.g., code search based on dynamic information described in Section 5.2).
• Procedures: We not only provide a review of the techniques but also illustrate the full proce-

dure of code search, which assists in better understanding by linking each procedure with
our taxonomy.
• Deeper investigation: Finding more techniques and illustrating the full procedure of code

search allowed us to investigate deeper into the field, which led to the introduction of further
techniques. For instance, Liu et al. [158] only introduce the “inverted” technique for indexing
of code search, whereas we include all the other variants such as “graph indexing” and “ID-
based indexing.” We believe that this comprehensive and extensive investigation could help
researchers and practitioners have better understanding and may motivate them to propose
better approaches.
• Better correlations: Our code search procedure derives an intuitive understanding of the tax-

onomy of code search. For example, the query formulation phase in the procedure is directly
related to the studies in “code search based on query reformulation” of the taxonomy. This
can be an easy guide for the selection of the most suitable techniques during the design/im-
plementation process of each task.
• Opportunity discovery: There exist missed and under-explored research opportunities we

newly disclosed. For instance, a well-designed query language is good at modeling the struc-
ture (e.g., loops), and it can accurately express more complicated search patterns than typical
text-based queries. Although this is not a trendy topic for the code search field, these may
further improve the performance of tools.
• Additional issues: We discover further phenomenons such as “There exist too many code

search approaches to consider,” which may disturb practitioners as they must select the most
suitable one for specific tasks.

Furthermore, we illuminate the differences from the most recent survey [56] in the following
points:

• Categorization: We figure out a finer-grained categorization of code search techniques, as a
more detailed and nuanced categorization of techniques can help readers better understand
the similarities and differences between different approaches to code search. This can be par-
ticularly helpful for both researchers and practitioners who are interested in implementing
or comparing different techniques.
• Comprehensiveness: We have concrete tables for each category, and diverse sub-techniques

may help readers comprehend the field easier. This can be valuable, as providing clear and
organized information in tables can help readers quickly and easily understand the landscape
of the field. It can also make it easier for readers to compare and contrast different techniques
within each category.
• Datasets: We further support in-depth details of the datasets that can be directly and po-

tentially used for code search engines. It is crucial for researchers to replicate experiments
and build upon previous work. Our systematic literature review can provide a valuable re-
source for researchers who are interested in practical applications as well as developing or
evaluating code search engines.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:5

• Complementary points: The different open issues and challenges are found, and both of them
can be complementary to each other. For example, this article raises the VMP, extensibility,
and usability as the issues in the field, whereas the similar survey [56] includes additional
usage scenarios and cross fertilization with other fields.

3 PAPER COLLECTION AND REVIEW SCHEMA

This section describes the survey scope, paper collection methodology, and brief statistics of the
collected papers.

3.1 Survey Scope

The scope of our survey targets comprehensive internet-scale code search engines that take input
from users and then retrieve/recommend/suggest code snippets/examples.

We apply the following criteria for the inclusion of papers in this survey:

• Papers that propose or discuss a general idea of code search.
• Papers that introduce an implementation of a code search/retrieval/recommendation

techniques.
• Papers that propose an approach/study targeting specific code search techniques.
• Papers that present a dataset or benchmark especially designed for code search.

Some studies are considered beyond the scope of our work, even though they address code
search ideas. These studies adopt code search engines to improve the performance for other re-
search fields, such as code clone detection, which implies that such papers do not improve the
field of code search. Furthermore, our survey excludes studies that introduce code search tech-
niques but never retrieve code snippets or related information (i.e., we only cover end-to-end ap-
proaches). For instance, some approaches improve user queries by reformulating them (e.g., [106]),
but they do not retrieve code snippets. Such approaches are not being considered in the scope of
the survey. Moreover, we excluded the papers that explicitly mention a single search base scope
(i.e., approaches limited to a single specific software repository), as they are local approaches (e.g.,
feature location) rather than big code search.

Another criterion we have applied is discarding approaches that focus on locating specific code
elements. Even if the same approach is applicable toward searching, detecting, or locating a code
element, its use cases differ. There are code clone detection and feature location techniques that
closely resemble the code search. Additionally, some code search engines leverage them to eval-
uate the performance. However, we do not consider code clone detection, as code search as their
purpose is generally different from code search; they try to locate the concerned spot within a
single project.

We also exclude a set of incomplete work from this survey. The literature of code search also
consists of posters that present either work in progress or ideas by different authors at various
venues. As most of the posters are later extended in the form of a conference paper or a journal, we
do not consider posters in our study as separate ideas or approaches. However, we cover the short
papers (i.e., papers that introduce interesting ideas to improve the code search without performing
a proper/complete evaluation, and they are usually less than seven pages), as they also contribute
to the field.

3.2 Methodology for Literature Identification

To collect the papers across different research avenues that would cover as many papers as feasi-
ble, we initiated the keyword search first on popular scientific databases. The databases are listed

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:6 K. Kim et al.

as follows: ACM Digital Library,2 IEEE XPlore,3 DBLP,4 Springer Link,5 Wiley Online Library,6

Elsevier Online Library,7 and arXiv.8

Researchers have used diverse keywords for the fundamentally identical concept (e.g., “code
snippet”-“code example” and “retrieval”-“recommendation”). Therefore, we employed keyword
combinations for code-related keywords (i.e., source code, code snippet, code fragment, code ex-
ample) and search related (i.e., retrieve, recommend, and suggest) for the text searching across the
repositories and published until 2020. We manually checked all the titles and abstracts to extract
papers related to big code search.

To further ensure that we cover all the big code search [72] papers and avoid confusion from
missing papers, we conducted snowballing on each paper found by text searching following a well-
known guideline [293]. Snowballing is a process that traces citations of papers continuously until
there are no missing papers in a domain. The main idea of such a process is to avoid missing related
studies that are not discovered by keyword search. This process allowed us to add studies that
satisfy our inclusion criteria in Section 3.1. For instance, CodeLikeThis [176] and Strathcona [95–
97] are missing from the keyword search but found by such a process.

We observed an increasing trend in the number of code search approaches published in various
venues since the inception of the year 2005. Figure 1 illustrates the trend. As this figure reports,
the research within the code search domain gradually increased from 2006, reaching its peak in
2019 and 2020. Finally, we ended up with 175 code search approaches. We carefully excluded all
duplicate papers (i.e., journal first and short versions of regular papers are not retained) for our
taxonomy. Overall, 137 approaches were kept. These trends emphasize the importance of code
search, and it is still in growth.

Conferences are popular venues for code search research papers. As shown in Figure 2, confer-
ence papers (including full and short versions) account for more than 70% of all papers we have
studied. Other venues are academic journals and e-Print archives, which account for 7% and 19%
of all papers surveyed, respectively. Note that papers published at arXiv are non-peer reviewed,
but this should be included in our survey since it is one of the major industrial R&D publication
venues. The International Conference on Software Engineering (ICSE) has been the aim of 20 out
of 102 overall approaches that target the conference as a publishing venue. Similarly, the journals
IEEE Transactions on Software Engineering (TSE), Empirical Software Engineering (EMSE), Journal

of Systems and Software (JSS), and IEEE Access are the most target journals in the domain. The pub-
lic repository that contains all the publications is available at our GitHub repository.9 Conferences
and journals that cater to the code search domain are listed in Table 1 of Appendix A.1.10

4 CODE SEARCH ENGINES: GENERAL PROCEDURE

Figure 3 illustrates the typical process under which any general code search is conducted. This
process is summarized from the literature, after taking into account all details in the manuscripts.
A procedure of code search approach consists of several steps: (1) selecting search type, (2) search
base creation, (3) indexing data, (4) formulating input (query), (5) building retrieval model and

2https://dl.acm.org/.
3https://ieeexplore.ieee.org/.
4https://dblp.org/.
5https://link.springer.com.
6https://onlinelibrary.wiley.com/.
7https://elsevier.com/.
8https://arxiv.org/.
9https://github.com/FalconLK/CodeSearch_Survey.git.
10https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://dblp.org/
https://link.springer.com
https://onlinelibrary.wiley.com/
https://elsevier.com/
https://arxiv.org/
https://github.com/FalconLK/CodeSearch_Survey.git
https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf

Big Code Search: A Bibliography 25:7

Fig. 1. The number of papers published ranged from 2005 to 2020.

Fig. 2. Publication venue distribution of code search studies.

Fig. 3. General code search process.

retrieve, and (6) presenting the results. These steps are therefore guiding the characterization that
we will make in our review of the code search literature.

Providing a general procedure can derive a baseline (i.e., how to design a code search approach)
for researchers while developers can understand the characteristics of each step and figure out the
best approach to apply or use for conducting their own tasks. In other words, this should serve as
a practical guide to researchers who are new to this field and developers who are confused about
picking a code search approach.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:8 K. Kim et al.

Depending on the design of each step in the procedure, a code search approach can have a
significant difference in terms of various performance metrics. For instance, creating a search base
with good-quality code snippets can improve the baseline performance, implying that poor code
leads to poor results even though the other steps are well designed. Formulating the query with a
specific query language may help avoid a well-known VMP to enhance the relevancy of the code
snippets. Designing the retrieval model with learning-based approaches significantly improves the
performance, although classical models are still much faster to retrieve code snippets.

4.1 Search Target

The first step to designing a code search approach is to decide what kind of search targets it can
provide. Developers want to search for various types of code. For example, some need code snip-
pets related to a specific Application Programming Interface (API), whereas others require
interface-related code. However, most developers search for available code snippets to address
their problems or implement their tasks. These types vary by the desire of target users:

• General code snippet: Generally, code search approaches retrieve the most relevant general
code snippets rather than other source code types (e.g., API usages, GUI code, or binary
code). Some representative examples are as follows: [13, 133, 253].
• API usage example: Many software developers leverage the use of APIs that provide standard

functionalities toward smooth developments. The developers understand and learn about the
API by referring to the API documentation and tutorials (e.g., JDK), looking toward Q&A
forums such as Stack Overflow or searching for code examples on super repositories such
as GitHub. Some representative examples are as follows: [194, 217].
• GUI or binary code: A code is used not just for writing software that provides specific

functionalities but also for user interface development that serves as the interface for
the user’s interaction with underlying software. Some representative examples are as fol-
lows: [37, 49, 299]. Moreover, there exists software without its compilable source code; in-
stead, they exist with only compiled binary files. Some representative examples are as fol-
lows: [22, 297].

4.2 Search Base Creation

The search base is a repository or dataset where a code search approach can search for and take
the code snippets relevant to the user’s specification. This is important because the overall perfor-
mance of a search engine is influenced by the quantity and the quality of data [208]. Considering
the importance of the data, we focus on how developers and researchers create their search base in
this section and leave the description of the data itself used for code search in Section 6. Many ap-
proaches within the literature [133, 166, 220, 253] leverage a super repository such as GitHub [289]
for their search base because such repositories are a rich and well-maintained source from the
community.

Many studies [41, 66, 195, 211] implied that narrowing the search base allows the search engines
to hit more relevant results to the queries. To do so, project metadata such as the programming
language, creation date, and popularity are further considered in the code search domain. For some
approaches, the researchers [133] consider specific repositories that a certain number of users have
starred to avoid toy projects that contribute as noise within the data. Furthermore, some studies
(e.g., [109]) leverage supplement information like commit logs (e.g., commit messages) to improve
their engines’ performance by narrowing the search base or mining them for specific topics. A
dataset from Q&A forums where questions are mapped with answers containing code snippets is
used in many studies (e.g., [133, 150, 160, 216, 217, 220, 221, 253]).

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:9

4.3 Index

Indexing is a process that makes the data access efficient within its search base. Generating and
storing an index optimizes the speed and performance of finding the relevant results for a given
query. Without such an index, the engine would need to parse every code snippet within the
dataset for any given query, which leads to higher time and space complexity. Many studies lever-
age different indexing techniques to speed up source code retrieval in the code search field:

• Inverted indexing: This is an index data structure containing a mapping from content such
as words to its locations in a document or a set of documents. Inverted indexing is the most
popular indexing technique that many search engines, such as Google, employ in the real
world. Many code search engines also take this technique to index their source code snippets
in their search base. To apply inverted indexing, a number of researchers [12, 133, 237, 253]
utilized Lucene [290], a representative open source search engine library. This library is
commonly used to demonstrate many code search techniques (e.g., where they do not need
specific indexing techniques).
• B+ Tree indexing: This technique is an alternative mechanism to index a sequential set of data

elements. A B+ Tree is primarily utilized for implementing dynamic indexing on multiple
levels. It stores the data pointers only at the tree’s leaf nodes, making the retrieval, addition,
and deletion process more accurate and code search faster. Some researchers [22, 71, 143] in
code search have relied on this indexing for boosting speed performance.
• Graph indexing: Graphs have been used extensively to model the complicated structures and

relationships between different entities within programming code. Every query provided
as input toward these approaches is transformed in graph structure to retrieve similar or
related graphs from the search base. Researchers [124, 265, 297] have leveraged the graph
structure and graph indexing techniques for code search engines. The algorithm indexes all
the reachable relationships between node labels.
• ID-based indexing: This indexing mechanism (also called file based) is used to optimize an

access to data managed in the form of a single file or access point. This mechanism typically
leverages a specifically created index file that stores only the search key’s value and a pointer
toward the file’s storage location. Within code search engines, the use of ID-based indexing
means that for each of the potential searchable source code files, an index is stored that can
point toward its location. Specific code search engines [34, 120, 274] leverage the ID-based
index by assigning a unique searchable ID toward each file, class, or method that can be
matched for optimized retrieval.
• Positional indexing: Positional indexing is the mechanism that leverages the existence of

tokens within a document. Each positional information (e.g., line number, the position
of a token within a sentence) of every term is indexed and leveraged with the retrieval
techniques.

4.4 Input (Query)

Formulating input to a query is one of the procedures related to the user side (also known as the
front-end). In particular, the client-side of code search starts with taking the input from the user.
The form of input varies because each user has their own specific tasks. For instance, for developers
who want to find a similar code to their code, a code search approach takes a code as the input is
needed. Such tasks are mostly related to software maintenance (e.g., refactoring and performance
optimization). If a developer has test cases to pass, the perfect-fit code search engine may take the
test case as the input. It is crucial to design the input variety in code search according to these
situations. We report the inputs and their properties used to design code search approaches:

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:10 K. Kim et al.

• NL query: Developers often find it easier to formulate the query in natural language for
the desired search describing the expected code snippet. An NL query allows a developer
to enter terms in any form, either a statement, a question, or a list of keywords associated
with programming elements (e.g., class or method name). As many developers do not always
have the knowledge about the technical expression required to express their search formats,
most code search approaches are designed for NL queries. Community-driven forums for
developers such as Stack Overflow [257] and super repositories like GitHub [289] take NL
input for the user query.
• Code fragment: We define code fragment as the source code that the search engine takes as

input and code snippet as the source code that the search engine retrieves as output; code-to-
code search engines leverage the fragments and snippets as query and results, respectively.
The code-to-code approach is beneficial for research directions in code transplantation, code
diversity, and patch recommendation to find essential ingredients for their techniques. One
of the popular commercial engines, Krugle [134], has its snippet-based search in the ad-
vanced option, whereas Searchcode [244] is capable of taking input as both NL and code
fragment in its main interface.
• Query language: A query language is specifically designed to model the structure and proper-

ties (e.g., loops, method calls, and exception handling). Modeling such properties can express
more complicated search patterns such as “find all code examples that call the ABC method
in a loop and handle an exception of type abcException.” In the case of typical text-based
input, this cannot be accurately expressed [239, 255].
• Binary code: In some cases, developers may need to search for code similar to functions

within an existing binary file. Developers mostly use the use case of binary code search to
search for critical vulnerabilities or find code snippets that implement the given binary input
file’s functions. Researchers have proposed approaches (i.e., [37, 49, 300]) that take a binary
file as input and perform code search to retrieve code snippets that implement semantically
similar functions.
• Test case: A test case is executed and reaches a state of pass if the output from the code

and the provided output matches are considered to have failed. Test cases are used heavily
in software development and form the basis of test-driven development[21]. In many cases,
Test-Driven Code Search (TDCS) approaches take either test cases or a set of keywords
that can define a required test case. Test cases are beneficial, as they provide instant feedback
about the suitability of a particular code result.
• Class/Interface type: Similar to test cases, Interface-Driven Code Search (IDCS) ap-

proaches leverage the interface types existing within the input snippet. These interface
or class types are similar to existing interfaces within a function such as string f(string)

in Java. In the example, the types (as input of a code search) are “string.” Some re-
searchers [95–97, 144] have leveraged the use of interface or class types for matching, which
reduces the potential search space and provides effective code search engines.
• Software specification: Software specification is what the user specifies as their requirements

and conditions toward the search. For example, a user may wish to retrieve code with only
a limited set of parameters or asynchronous-only API code. Researchers [173, 263] have
leveraged software specifications to specify the security constraints (i.e., method pre- and
post-conditions) for retrieving results aligned with the user’s needs.

4.5 Retrieval Model

A retrieval model predicts and explains what a user desires given the input (i.e., it matches the
query and retrieves the source code). The correctness of the model’s predictions can be validated

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:11

in various experiments. Moreover, different retrieval models usually categorize code search ap-
proaches as they take the position of the principle behind them. The retrieval phase of code search
generally consists of matching text, computation of matrix, or vector similarity measure depending
on a specific technique:

• Textual similarity: In code search, the textual similarity consists of matching tokens, key-
words, or even a sequence of tokens between the user query and source code from the search
base. As for the standard models, the Boolean Model (BM) [136] and Vector Space Model

(VSM) [238] are famous classical information retrieval models adopted many times by code
search engines. Query and the target code files are conceived as sets of terms in the BM
model, and the retrieval is based on whether or not the code files include the terms from the
query. It has an explicit limitation that at least one of the query terms must be present on
the document side when an OR connective is used. However, VSM represents the document
(source code files) as the vector of identifiers such as method name, class name, or tokens.
Generally, the comparison between such two vectors is derived using the cosine similarity.
It does not support structural queries that consist of complex AND/OR relations. Therefore,
researchers revised the VSM integrating with BM to address the limitations by weighting
both query and document terms.
• Graph similarity: As the tokens in source code are not just text, one might need a differ-

ent form of representation to capture the semantics in the code. Graph representation [6]
is an optimal way to model the different source code elements and leverage them for the
code search. The code search approaches that leverage graph-based retrieval do not explic-
itly accept input in a “graph” form; instead, it accepts a typical query in the form of NL or
code fragments. The query is transformed into a suitable graphical representation such as
an abstract syntax tree before being passed as input for the underlying search technique.
The type of graphical representation selected for a particular search engine depends on the
context of the targeted input. For instance, a binary code search engine is likely to transform
the binary input into a control flow graph; a code search engine targeting object-oriented
programming language would use a dataflow graph. In the form of similarity computation,
this comparison consists of leveraging graph traversing techniques for optimized results.
• Matrix computation: Matrix computation is an elaborate method used as a retrieval technique

in some code search approaches [241, 291]. The result of the computation provides a charac-
terized correspondence between the matrix elements. Many applications have adopted these
matrix computations because of their scalability that retains the results’ predictive accuracy.
Similarly, code search employs the matrix computation for measuring the co-occurrences of
specific features (e.g., terms) within the source code.
• Embedding vector similarity: Recently, code search approaches (e.g., [33, 80, 160, 233]) using

neural networks have been a trend. Common across such approaches is the idea of embed-
ding user queries and code into vectors (i.e., an embedding refers to a real-valued vector
representation [132]). The computation of the distance between the embedding vectors is
the correlation that forms the basis of retrieving the suitable candidates. As code search ap-
proaches based on neural networks show that they can adequately learn the features of both
the query and code from a large dataset, it helps to address the issues from the previous
techniques.
• Execution trace: A source code in binary format is hard to read and understand [147]. An

efficient way toward understanding what a binary file is performing is to trace its execu-
tion flow, known as the execution trace [31]. This execution flow provides information on
the behavior of a program, such as the logical sequence of execution, and changes in the

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:12 K. Kim et al.

data variables. The similarity between the execution traces of two syntactically different
programs provides information on how similar (or dissimilar) the two binary programs are.
• Clone detection: Code search is another way to identify similar or identical source code

snippets. Generally, code-to-code approaches sometimes leverage code clone detection tech-
niques in the middle of their retrieval process to narrow down the search space by clustering
similar source code [4, 127, 162, 188]. Clone detection techniques are also directly used to
determine the lexical similarity between the query code and candidate snippets [218].
• Type link: Type link [10] is a methodology that resolves a given function name by referencing

the function and attempting to link it with its canonical form for the same type. For example,
a class extending another class may have complex inheritance and nested types from its par-
ent class. Such a type of class or code context requires a different approach when searching
within them.
• Solver : Solver or SMT solvers [261] (short for satisfiability modulo theories) are instances

represented as a formula in first-order logic. These formulas represent functions and symbols
that follow specifications in the form of input and output of a program. For any given query,
represented in the input and output of a program, the solver finds programs for which these
specifications and constraints are satisfied. The satisfied candidates thus form part of the
results presented to the user.

4.6 Implementation

The final step of the code search procedure delivers and presents the results in an appropriate
platform. As each user has different requirements and feasibility, code search approaches should
be provided on different platforms such as independent code search engines, an Integrated De-

velopment Environment (IDE), or presented as an idea in a research paper. Independent code
search engines can be either local or online to interact with developers with the underlying tech-
niques, whereas others are implemented as a plugin of different IDEs allowing them to leverage
the search within the development process. Additionally, some are presented just as an idea form
as potential work in code search:

• Search engine: A search engine catered explicitly toward the code search is the popular means
of presenting the search approach results. These search engines are either working online
(accessible over the internet) or offline (where the engine is deployed locally over the dataset
chosen by the user).
• IDE extension: Rather than providing the code search in a search engine, some researchers

have attempted to provide code search facilities within the IDE such as Eclipse as a plugin.
The majority of the code search implementation in the form of IDE extensions take as input
either a pure NL query or a code fragment to output a relevant code snippet. The usage of
the IDE plugin allows the code search to leverage the written code tokens as given input for
the approach to find similar or potential code examples.
• Idea: Among all the different code search approaches, not all propose an evaluation or im-

plementation; instead, there are ideas that can be incorporated into a potential code search
implementation. Such approaches are classified as “idea” that proposes an approach without
any evaluation or implementation details described. Such ideas are valuable contributions
within the field since some of them are later implemented as part of a code search engine or
an IDE plugin.

5 TAXONOMY OF CODE SEARCH TECHNIQUES

This section presents a taxonomy of code search tools and techniques. The taxonomy provides an
overview of different techniques and their categories in the code search literature. Since there are

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:13

Fig. 4. Taxonomy for big code search techniques.

hundreds of code search techniques, it can be challenging to figure out their characteristics and
details. A clear taxonomy can help to understand the techniques with a concise view on their key
differences.

Based on the general procedure of code search, we have identified that code search approaches
are broadly differentiable based on the kind of information that is used to drive the search (i.e., the
query). Beyond that, the method under which the query is matched is also a key differentiator. Over-
all, we have defined six top-level categories to classify code search techniques. These categories
represent the most common and popular ideas used in many code search techniques, whereas
other details of each individual technique would be different from others. The overall taxonomy
is presented in Figure 4, demonstrating the orders and sub-categories for better understanding.
When a specific technique leverages ideas of multiple categories, we classify the technique as one
category, which is the principal idea of the technique. Note that all the big tables for our taxonomy
are located in Appendix A.11

5.1 Code Search Based on Static Information

Code search can leverage static information such as text in source code, which is similar to general-
purpose search engines [74, 185]. For example, a code search tool can scan source code files and
make an index of class, name, variable names, and parameter types. Recent code search tech-
niques with static information consider more information, such as code comments; they generate
code summaries to match against the query. We have identified six sub-categories of code search
engines utilizing static information: keyword-based, structure-based, semantic-based, interface-
based, constraints-based, and clone-based approaches. The details for each technique are presented
in Table 2 of Appendix A.2.

5.1.1 Keyword-Based Code Search. Many early code search engines rely on general text re-
trieval approaches; they treat source code as either plain or structured text. To that end, those
approaches build an index of the textual information (i.e., keywords). Given a user query, the
approaches try to compute a token-level similarity between the query and index. This type of
code search is categorized into Keyword-Based Code Search (KBCS) in this study. The earli-
est known KBCS approaches [65, 67] were based on retrieving code snippets without considering
any code-specific information (structure, sequence, etc.). Although these approaches cannot be
classified as big code search approaches, it is meaningful to consider in the survey for historical

11https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf

25:14 K. Kim et al.

trends. Later, KBCS techniques often leverage additional information available after parsing ab-
stract syntax trees [251]; when building an index, those techniques annotate keywords with code
entity information such as package, interface, class, method, constructor, field, and initializer. In
addition to tokens in source code, it is able to use tokens in other sources such as API documenta-
tion [77, 78, 180, 183, 253], which are linked to source code as code search inevitably suffers from
the VMP [253]. KBCS techniques are also applied to code search in Q&A posts [311], code-to-code
search [191, 193, 272], and code summarization [114].

5.1.2 Structure-Based Code Search. In contrast to tokens and keywords used in general search
engines, source code often has specific structures such as call graphs, code trees, developer activi-
ties, and common API usage patterns. It might take some time to extract such information, but it
is much less than dynamic information (see Section 5.2) as the information is essentially static.

Graphical information is one of the most common structures used for code search. For exam-
ple, function [45, 166, 171, 181, 184, 236, 274] or API call graphs [36, 151] are common types of
structure information used in code search engines. This information helps to expand the search
space, followed by the graphs, compared with KBCS in which the search space is limited to code
entities containing tokens in a given query. The system dependency graph [212] and program
expression graphs (E-PEGs) [212] are used for code search as well. Computing tree similarity
is another way of utilizing static structural information, as source code is fundamentally a tree
form after parsing. Code search can leverage tree similarity based on hashing [4] or intermedi-
ate models [55, 235, 275, 276]. Hierarchical structures are also used for code search, such as code
blocks [100] and class hierarchy [163], as they can expand the search space.

There have been code search approaches combining structural information and other entity
types together. Sourcerer [12] provides a ranked list of code entities, and the ranking is computed
by keywords, structures, and graphs available in source code. Another approach [192] collects
developer activities recorded in development tools and incorporates them with structural informa-
tion such as classes, types, and parameters available in source code to compute a degree-of-interest
model, which improves the code search performance. Barbosa et al. [17, 18] proposed an approach
to searching for exception handling structures. This approach combines matching keywords in a
user query with exception handling blocks.

Leveraging API usage patterns is another line of structure-based code search. By mining
API documents (or other types of documentation) and usage patterns together, code search ap-
proaches [10, 140, 173, 186, 194, 198, 206, 214, 296] figure out relationships between them. For a
given user query (e.g., what a user wants to implement, described in a natural language), an ap-
proach in this category first searches for similar API descriptions to the query and then retrieves
API usage cases corresponding to the descriptions.

5.1.3 Interface-Driven Code Search. Functions (also known as methods in some languages, e.g.,
Java) are often a target unit of code search. IDCS approaches take an information of a function
signature (i.e., interface) [312]. The information may include function name, parameters (with
type information), and return type. Based on the information, IDCS can reduce the search space
(e.g., by restricting the parameter and return type of a function to int) and generally improve the
performance of code search. Strathcona [95–97] is an example of IDCS. Another approach [144]
extends Sourcerer [13] to implement IDCS.

5.1.4 Semantic-Based Code Search. Keywords and structural information often represent func-
tional aspects, whereas other types of information convey semantic aspects of source code. The
semantic information includes part-of-speech, topics, and source code types. These data can iden-
tify latent semantics of queries and code entities corresponding to the semantic. Thus, code search

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:15

tools based on semantic information often extract the information both from user queries and
source code.

Several code search engines have utilized diverse semantic information available in source code.
For example, it is common to use semantic information collected from natural language process-
ing. Part-of-speech [159, 279] and phrasal concepts [92] after parsing entity names (e.g., func-
tion signature, variable names, and types) are often leveraged to extract semantics of queries and
source code. Since the meaning of the collected words cannot be discovered directly from the
source code, those code search engines often adopt word models (e.g., the Software Word Usage
model) [90]. Topics are another standard semantic information used in code search. Topic mod-
eling can identify common topic information from a bunch of documents. Several recent code
search tools [9, 182, 278, 315] extract topics by using latent Dirichlet allocation [26], latent system
analysis [53], feature identification approach [60], or the N-gram model [87] to identify code en-
tities highly relevant to a given query even though they share very few keywords. Another type
of semantic information used in code search is production and test code relationships. Test Rec-
ommender [209] identifies the relationships by collecting changesets in versioning histories. The
changesets are used for ranking search results.

5.1.5 Constraints-Based Code Search. Some code search approaches [43, 121, 260–263] attempt
to use example-based query models to conceptualize what users want to search for. The approaches
encode source code snippets as constraints. Each query (e.g., an input/output example) is trans-
formed into constraints and sent as input to an SMT solver [51] along with the encodings of the
source code repositories. The SMT solver identifies the code from the repository that meets the
I/O example, which forms the results.

5.1.6 Clone-Based Code Search. Code clone detection [231] and code search share several com-
mon ideas and techniques. Thus, many code search approaches [127] employ techniques used in
code clone detection. For example, CodeNuance [162] directly uses CCFInderX [123], a code clone
detector, to identify similar code (i.e., code clones) and build an exploration graph based on non-
duplicate methods. Other approaches [188, 218] in this category are designed in a similar way to
support code search. Sometimes, code clone detection techniques help to overcome the limitations
with non-compilable code or play a compensatory role of other similarity measures. It can say that
the approaches in this category leverages static information since code clones used in code search
are mostly Type-1, Type-2, and rarely Type-3 clones rather than Type-4 clones [231]. Note that the
Type-4 clones are semantic clones, whereas other clone types are defined by lexical similarity.

5.2 Code Search Based on Dynamic Information

Code search engines driven by dynamic information focus on behaviors captured after running
programs, whereas search engines based on static information utilize data collected without exe-
cuting the programs. To extract dynamic information, it is necessary to run a program with con-
crete inputs (e.g., from test cases), which may cause an additional cost. Despite the cost, dynamic
information can improve the performance of code search. For example, the dynamic information
can assist developers who lack the expertise of the desired code [71] and non-native speakers of the
language in which the repository is based [143], assure faster retrieval of code snippets [137], and
provide more guarantee of the correctness of the behavior of retrieved code snippets [137]. Table 3
of Appendix A.2 illustrates the details of code search techniques based on dynamic information.

5.2.1 Test-Driven Code Search. What if a user can specify input/output example pairs (i.e., test
cases) when searching for a certain source code snippet? TCDS is one of the dynamic approaches
in code search that takes a test case(s) and identifies the appropriate code snippets that pass the

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:16 K. Kim et al.

given test case. The use of test cases helps (1) define the behavior of the desired functionality to be
searched and (2) test whether the search results are suitable in the local context [137]. Typically,
TDCS consists of the following procedures: define test cases, feed the test cases to the search
engine, and run the test cases on each search result (e.g., code snippet or function), given by the
search engine, to validate whether it satisfies the search requirements specified by the test cases.

There have been several TDCS techniques. CodeGenie [137–139, 141] is one of the earliest tech-
nique that leverages Sourcerer [12], a well-known code search engine, as it carries out KBCS
with keywords extracted from test cases. Then, CodeGenie runs the test cases for each search
result. This technique has been extended by using thesaurus-based tag clouds [143] as well to mit-
igate the VMP. Code Conjurer [111, 117] attempts to implement a more proactive code search
based on TDCS than CodeGenie. EQMINER [120] generates random test input generation by us-
ing symbolic [148] or concolic execution [135], then checks the abstract memory states [131] to
compute function similarity based on execution outputs. Additionally, code search engines (e.g.,
S6 [28, 29, 223–226], HUNTER [287], and that of Kessel and Atkinson [129]) augment TDCS ideas
to enhance search performance.

5.2.2 Execution-Based Code Search. Code search engines can leverage dynamic information
extracted after running a program. Program source code is not just text, and it is meaningful
once it is executed. Fundamentally, the users of code search engines want to locate programs
that carry out the meaning specified in the queries rather than those containing the same tokens.
DyCLINK [265] is one of the examples of code search engines utilizing execution traces. This
tool takes a code snippet as a query and constructs its Dynamic Dependency Graph (DDG)

that captures behavior at the instruction level. The query’s DDG is compared with DDGs of other
programs to identify similar code snippets. CodeHint [71] is another code search engine leveraging
execution traces. This engine exploits the Java runtime capabilities by executing the debugger at
runtime to collect data. This data is used for matching the information specified in a user query.

5.3 Code Search Based on Query Reformulation

The users of code search engines often try several different queries for a single search campaign
when their first queries are not effective searching for necessary code snippets. Some code search
engines proactively help or simulate the trials of different consecutive queries. This process is often
called query reformulation. Search approaches in this category reason about more precise query
strings based on initial user queries. A subset of the approaches leverage interactions between
search engines and users to improve search queries (i.e., feedback-driven code search). Another
subset of the approaches automatically reformulate the initial query and provide the search results
(automatic query reformulation). Other approaches in this category use domain-specific query
language to enhance the query reformulation process. The related particulars are exhibited in
Table 4 of Appendix A.2.

5.3.1 Feedback-Driven Code Search. Code search tools in this category assume that the first
user queries are highly likely to be incomplete. Instead, these tools provide a series of feedback
(or clarification questions) to improve the user queries. The feedback includes adding, removing,
or editing their initial queries [15, 30, 94, 247, 258]. This process is iterated until the developer
is satisfied with the results. Note that developers often do not have a clear idea of what they are
working with [50, 250]. Thus, the feedback loop can help the users complete the search queries [50,
63, 167, 188]. Multiple researchers have investigated an approach toward building feedback-driven
(i.e., iterative) approaches based on such observation [1, 39, 85, 91, 93, 150, 164, 176, 177, 230, 239,
255, 264, 284].

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:17

5.3.2 Code Search with Automatic Query Reformulation. A query plays one of the most critical
roles for the code search engines [93, 210], and many researchers have worked toward improving
the search quality by reformulating the queries automatically (i.e., without the user’s intervention).
Query reformulation is conducted because the VMP [88] (multiple words for the same topic), pol-
ysemy (one word with multiple meanings), and the general words in the query complicate the
code search engines. A query can be reduced, expanded (augmented) [2, 34, 61, 105, 107–109, 122,
133, 142, 160, 169, 201, 216, 220, 221, 240–242, 253, 254, 294, 302, 304, 313, 317], or even entirely
alternated by their properties [35, 84, 153, 165, 172, 217, 298, 303].

5.3.3 Code Search with Query Languages. When creating search queries, the users can benefit
from a domain-specific language for code search. This type of language is called query language. A
query language defines the structure of a query and the property of a token in the query. A user can
annotate additional information of each element in a query. For example, SnipMatch [292] incorpo-
rates crowd-sourced source code and introduces a simple markup language used for indexing and
matching relevant code snippets. Another example is the dependence query language [283, 286].
This language allows users to formulate the queries by describing dependence properties on top
of textual properties. AutoQuery [282] alleviates the burden of users when creating a query based
on a query language.

5.4 Learning-Based Code Search

Leveraging machine learning techniques is popular in building a code search engine. Code search
is fundamentally a prediction task for a given input (search query) to provide a set of code snippets
as output so that machine learning techniques fit the task. Additionally, code search techniques
benefit from the recent advancement of deep learning. Nevertheless, machine learning techniques
such as support vector machine [47] are useful for code search campaigns as well. The encapsulated
details are shown in Table 5 of Appendix A.2.

5.4.1 Code Search with Classical Machine Learning Techniques. Code search can be modeled as
supervised (e.g., classification of a given query string into a set of files) or unsupervised (e.g.,
clustering of similar source code files) learning tasks. Thus, many classical machine learning
techniques are applied to code search approaches to improve the quality of search results. The
approaches leverage different machine learning techniques, such as collaborative filtering [291],
clustering [81, 102, 268], classification [119, 124, 197, 199], graph embedding [318], and Bayesian
networks [190].

5.4.2 Code Search with Neural Network Techniques. Deep neural networks opened a new re-
search direction for code search as they do the same for other computer science topics. Like the
code search approaches utilizing classical machine learning techniques, many recent approaches
define code search as supervised and unsupervised learning tasks especially for deep learning.
Those approaches use diverse deep learning techniques such as embedding (for word, sentence,
or paragraph) [3, 33, 59, 80, 89, 154, 200, 233, 305], recurrent neural networks [80, 154, 160], con-
volutional neural networks [52, 104, 149, 246, 281], long short-term memory [79, 80, 86, 103, 112,
115, 146, 154, 228, 243, 246, 267, 280, 305, 307, 316], auto-encoders [42], transformers [285, 309],
feed-forward neural networks [68, 104], graph neural networks [40, 155, 280], and generative ad-
versarial networks [314].

5.5 Binary Code Search

Static information is not limited to source code. Some code search approaches [37, 49, 130, 152, 299,
300] address binary code as the search space instead of source code. These approaches are helpful
when available resources have only compiled binary files. The approaches often create additional

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:18 K. Kim et al.

Fig. 5. Statistics of dataset types used in code search studies.

indices after decompiling the binary code or retrieving control flow graphs from the binary files.
The detailed information per each technique is demonstrated in Table 6 of Appendix A.2.

5.6 Code Search for Graphical User Interfaces

Researchers have proposed different approaches that aim to simplify and automate exploring and
building Graphical User Interfaces (GUIs) by lettering users’ reuse similar GUIs within data
repositories. The retrieved result is provided in the form of an interface for users to interact with
the code to replicate them. Some approaches [22, 297] take input sketches from the user, identify its
features, and apply various code search techniques to retrieve similar designs from the search space.
Another approach [227] empowers the search by seeking users to “draw” the required interface
design within the search engine, potentially with additional context such as keywords relevant
toward the search. Each characteristics are displayed in Table 7 of Appendix A.2.

6 DATASETS AND BENCHMARKS FOR CODE SEARCH

The choice of datasets in which performing the search has a high impact on the performance of
code search techniques. Additionally, those play a crucial role in evaluating the techniques from
the research perspectives. For instance, using a readily available dataset allows reproducibility
of the approach, and the larger the dataset, the better the coverage of the code search approach.
This phenomenon makes the dataset a crucial component when designing a code search engine,
as it directly impacts its performance. The dataset may also contain additional information
such as Q&A posts of open developer forums and software metadata, whereas benchmarks can
incorporate other features such as fixed queries and metrics. This section explains the source code
dataset, non-code dataset, and benchmarks used within the code search domain to create search
bases or evaluate the code search engines. Figure 5 illustrates the statistics of dataset types used
in the code search studies.

6.1 Specific Open Source Projects

In an earlier time before the rise of open source software, only a limited number of projects and
their source codes were actively maintained and accessible to the public. As a result, researchers
intending to apply code search ideas had to leverage these sparsely available open source projects.
These projects ranged from different communities such as Apache HTTP Server [273] and the
Linux operating system [73]. Portfolio [181, 184] and Coogle [235] are representative examples of
approaches that utilize specific open source projects to demonstrate their results.

6.2 Data Sources from Super Repositories

There has been widespread use and adaptation of open source software in the past decade. This
has created thriving open source software development communities that leverage collaborative

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:19

coding systems and are made centrally available for everyone to use. Similarly, researchers within
the code search have adopted the data sources that form a large set of different open source projects
when testing their approaches [12, 274].

The leveraged data source, known as the dataset, is in a file archive, where most of the source
code files are extracted from different software projects. These repositories are often accessible
online on code hosting services such as GitHub [289] or SourceForge [256]. The hosting services
are built upon version control systems such as Git [156]. Software repositories are a rich source
of code snippets created and curated by developers around the globe. Furthermore, the curated
source code snippets in the form of datasets provide opportunities to investigate and research new
ways for code search techniques.

Many of commercial code search approaches [44, 134, 204, 244] and research prototypes [133,
169, 177, 178, 186, 189, 214, 215, 218, 221, 253, 262, 288, 304] have utilized source code files collected
from the code repository platform Github as their search base. Github is one of the largest super-
repositories built on top of the Git version control system [16]. It is the most superior hosting
service [222], with more than 100 million repositories hosted as of January 2020. Github also
hosts huge and popular projects such as Homebrew [179] (a package manager) or Django (a web
framework) [98].

SourceForge is another super repository used for constructing code search datasets. It hosts
more than 500,000 projects. Similar to GHTorrent for GitHub, the FLOSSMole [99] project sup-
ports creating a dataset [187] from SourceForge. Exemplar [180], Lukins et al. [168], and Hsu and
Lin [101] crawled and utilized the data from SourceForge.

For Android-centric code search approaches, there exists a website named F-droid.12 It is a repos-
itory of Android applications of various sizes and categories. The dataset13 contains meta-data
(name, description, and version), the source code of each major version, and its most recent “apk”
file. Some code search approaches [119, 201] leveraged such datasets for Android code search.

Although these super repositories have been used frequently to construct various code search
approaches, their use has several disadvantages. For example, users tend to upload (commit and
push) files unrelated to source code, such as security-related tokens or documents containing per-
sonal information. These can affect the quality of the search base. Such accidental exposure of
information can have dire consequences (e.g., disclosing personal information to the public) [271]
even through the code search engines. Another disadvantage of super repositories for research
is that the quality of the projects and developers within such community is hard to validate. A
significant amount of time needs to be dedicated to curating good candidate projects.

6.3 Other Data Sources

Other resources have been leveraged for different approaches toward code search problems. Re-
sources such as the developer Q&A forums, benchmarks, metadata, and API documents are applied
for some approaches. Such additional resources have demonstrated an increase in the code search
techniques’ efficiency and accuracy.

6.3.1 Software Developer Q&A Forum. Q&A forums are community-driven platforms that allow
users to share knowledge with other users who participate in them. Q&A forums offer social mech-
anisms to evaluate and improve the quality of both the question and answer that implicitly leads to
brevity in questions and qualitative answers, potentially with source code snippets [133]. The posts
within such forms tend to include code snippets within the question and its answer. It makes them

12https://f-droid.org.
13https://gitlab.com/fdroid/fdroiddata.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://f-droid.org
https://gitlab.com/fdroid/fdroiddata

25:20 K. Kim et al.

ideal for forming the part of the dataset for some code search approaches. Many of the code search
approaches [9, 116, 127, 133, 144, 151, 169, 175, 186, 201, 202, 218, 253, 259, 262, 263, 278, 279, 311]
have utilized the developer Q&A forum called Stack Overflow. Stack Overflow is the largest
Q&A forum that mainly contains questions and answers on programming-related topics [76]. An-
swers from Stack Overflow often are an alternative explanation for corresponding official prod-
uct documentation wherein the documentation is either insufficient, does not exist, or lacks in-
depth information [19]. Furthermore, a significant portion of answers includes code snippets that
demonstrate the solution for the corresponding programming problem.

Recently, a large and systematically mined dataset using Stack Overflow was proposed, and
learning-based code search approaches [52, 86, 103, 281, 314] leveraged these in their evaluation.
The CoNaLa dataset by Yin et al. [310] consists of two parts, a manually curated parallel cor-
pus of training and test examples as well as systematically mined pair examples. Unlike CoNaLa,
StaQC [306] is specifically intended for code search (i.e., not for code generation or summarization),
and it consists of 148,000 systematically mined Python and SQL question-code pair datasets.

Even though such data from Q&A forums have advantages for code search, they are not pri-
marily designed for code reuse or the search for particular code snippets [19]. Thus, not all the
posts include source code, as some are mere questions and answers either with incomplete code
or devoid of any code. For example, there are multiple instances where the code is written with
ellipses (i.e., “. . . ”) [253]. This implies that some people prefer to express natural language expres-
sions that make it hard to leverage the data. Furthermore, pervasive unqualified names [266] and
ambiguity in enclosing class names of method calls [48] for code snippets can affect the accuracy
of the overall source code approach.

6.3.2 Language/API Documentation. Some code search studies [38, 132, 175, 180] leveraged
well-known API documentation. Generally, developers refer to the API documentation for exam-
ples [151] of a concerned project where such documents are the official source of information, such
asJavaDoc [205]. These documentations are known and followed by all vendors for consistencies
usually written by multiple people [54].

6.3.3 Code Clone Benchmark. Several researchers have used a benchmark designed explicitly
for code clone detection to evaluate their code search approaches. For example, BigCloneBench [8,
269, 270] is a benchmark that clearly distinguishes between the actual Java clones mined from a
cross-project dataset, IJaDataset 2.0 [7, 8]. FaCoY [133], a semantic-based code search approach,
uses BigCloneBench in a different perspective (i.e., code clone detection using a code search ap-
proach). Its evaluation consists partially of BigCloneBench’s data as its search base and is evalu-
ated against the state-of-the-art clone detection tools (e.g., [237]).

6.3.4 Challenge/Competition Data. Coding competitions are events where participants try to
code a program based on specific problems. For example, Google Code Jam [75] is an annual on-
line coding competition hosted by Google. Each submission for a defined problem is expected to
perform semantically similar even though they may syntactically be different. Researchers have
leveraged the problems and the different solutions to evaluate the code search engines. For ex-
ample, DyCLINK [265] and FaCoY [133] applied the code written for Code Jam to identify code
relatives at the granularity of methods. The latest challenge known as CodeSearchNet [113] aims
to encourage researchers and practitioners to study and propose new approaches toward code
search. Several learning-based approaches [79, 155, 267] leveraged this challenge dataset.

6.3.5 Metadata. Software project metadata includes information such as the project name,
owner, and description [23, 24, 46, 62, 83, 234]. Code search studies [27, 72, 82, 128, 133, 177, 181,

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:21

253] have leveraged project metadata by claiming that metadata can play an important role in
designing and implementing code search approaches.

6.4 Benchmarks for Code Search

Common benchmarks are necessary to compare the performance of different code search ap-
proaches. Many studies on code search collected their datasets from various sources and incor-
porated several evaluation metrics. Approaching this direction leads to inconsistencies for fair
comparison because their search base has different snippets, and different metrics may indicate
different results. Furthermore, different queries for the same task make the retrieved results vary.
These problems motivate researchers to build benchmarks for code search using common search
bases and metrics or to have the same queries and answer code snippets. Therefore, the ideal
benchmarks should provide the dataset, metrics, and sample results that lead the users to a fair
comparison in the code search evaluation phase.

Several code search benchmarks have been proposed recently. For instance, Li et al. [145] in-
troduced a benchmark in the field of code search by providing the results of their neural code
search approaches [33, 233]. The benchmark consists of a dataset as a natural language query
(from Stack Overflow) and code snippet pairs about Android software development (from GitHub).
They further employed two neural code search engines named NCS [233] and UNIF [33] to build
the benchmark providing the results. Another benchmark, CosBench [301], combines a search base
(from GitHub), query and answer pairs (from Stack Overflow), and a set of metrics. To show the
usefulness of the benchmark, they employed four information retrieval based [165, 169, 201, 290]
and two learning-based [80, 308] approaches to compare in the evaluation. A recent deep learning
approach [149] has leveraged this benchmark to study user query and source code interactions.

There is another notable benchmark dataset: Project CodeNet [213]. This dataset stands out
from other similar datasets, as it is exceptionally large with code samples written in more than
50 programming languages. The code samples in Project CodeNet are also extensively annotated,
providing information such as code size, memory footprint, and CPU runtime. The dataset also
includes benchmarks that potentially can be leveraged to evaluate new code search approaches
built upon AI techniques.

7 EVALUATION

Evaluating the performance of the approaches provides an overview of how efficient and accurate
the code search engine is compared to others or over a particular dataset. In particular, code search
approaches should be evaluated in several different aspects, such as the accuracy of the relevancy
between the query and retrieved source code, the time consumed for the retrieval, or if the results
pass specific test cases. To quantify such aspects, researchers leverage several ways (e.g., system-
atic assessment or live study) to measure the satisfactory performance of the approaches. This
section investigates the different evaluation methods and the metrics used within the code search
approaches.

7.1 Evaluation Methods

The evaluation methods are essential when disseminating the results of a particular approach.
The research community has invested considerable efforts to find appropriate ways to measure
the various performances. Evaluation of classical search engines has been limited toward manual
relevancy checks by domain experts [172]. Similarly, code search engines’ performance was man-
ually measured (e.g., [96, 236, 274] in the early stage until researchers found systematic ways to
remove the subjective bias. Since then, systematic evaluation methods (e.g., comparison against
the state-of-the-art approaches and models) were used to provide a more precise evaluation of the

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:22 K. Kim et al.

Fig. 6. Distribution of evaluation methods and metrics used in code search studies.

proposed approach [33]. Moreover, other methods, such as controlled user study/interview, pro-
vide opinions and insights from experts, developers, or a more significant portion of people capable
of providing adequate evaluation [93, 279]. Recently, with the development forum’s high growth,
the live study method is being applied to leverage crowd knowledge [253]. Figure 6(a) presents how
many approaches take certain evaluation methods, and Table 8 of Appendix A.3 demonstrates the
details of each approach.

7.1.1 Manual Assessment. One of the practical evaluation methods, known as manual internal
assessment, requires the researchers’ manual efforts. In this method, the researchers manually
validate the results returned by the code search engines, determining their relevance to the user
query and assigning a score for each of them. However, this method is known to be inefficient and
expensive [160] (i.e., the evaluation’s manual process is quite time consuming). Furthermore, as
the evaluation subjects are usually the authors, it may have a subjective bias.

7.1.2 Systematic Assessment. To overcome the potential issues of bias in the manual assess-
ment, researchers undertook a systematic evaluation of the results. The essential systematic eval-
uation consists of a comparison against other state-of-the-art approaches and models. For ex-
ample, researchers (e.g., [34, 169, 217]) utilize the dataset (e.g., queries and search space) and
configure similar environments (e.g., computing power, parameters) used in other state of the
art. Yet, a significant challenge when conducting the systematic assessment lies in the lack of a
replication package of the state of the art [157]. Another challenge is the non-agnostic nature
of search engines (i.e., specific target programming languages or different software paradigms).
Similarly, the learning-based approaches [33, 80, 233] utilize specific learning models or a combi-
nation of models from different approaches to bring new insights into the learning algorithm’s
characteristics.

7.1.3 Controlled User Study/Interview. Practical evaluation of a new approach can be challeng-
ing, as there might not be state-of-the-art techniques available to compare. To address this issue,
researchers [141, 169, 177, 282] conducted a controlled user study/interview session that provides
researchers with opinions and insights on the approach from real-world users who are likely to be
domain experts. As there is no standard or defined process/rule on the number or occupation of in-
volved users, type of queries, or topics, researchers have tried to involve as many users as possible
to understand the generic opinions. This type of evaluation can be subjective, but the results are
acceptable if the evaluation method is designed concretely with a solid rationale and the users are
professionals within the software domain. Large industrial entities like Microsoft tend to leverage
this method to evaluate their approaches [113].

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:23

7.1.4 Live Study. The goal of a live study is to evaluate the approach in the real world where
any user (professional or otherwise) would use and evaluate the results. These users generally
are in the form of utilizing the users of popular developer forums. For example, Sirres et al. [253]
took the questions from Stack Overflow as their testing queries and posted the code snippets from
their code search engine CoCaBu as the answer. The public (i.e., developers from Stack Overflow)
judges the questions and answers by voting and commenting in the system. Researchers utilize
this method on various platforms (e.g., Stack Overflow and GitHub).

7.2 Evaluation Metrics

There exist several metrics to assess code search engines. We split them into four dimensions:
overall performance, ranking, retrieval time, and others (e.g., simple counting, statistical metrics,
and user satisfaction). These metrics are adopted for various purposes, such as to measure how
the results of a code search engine are relevant for a given query, how fast it can perform, or how
much query range it can cover. Figure 6(b) shows the distribution of the metrics for assessing code
search approaches. The overall performance metrics are primarily based on utilizing the confusion
matrix. Table 9 of Appendix A.3 illustrates the list of performance metrics mainly used in the code
search domain.

Precision [11] concerns multiple codes relevant to a query, whereas Mean Average Preci-

sion (MAP) measures the average. Recall [11] quantifies the number of correct predictions made
out of all positive examples in the dataset. F-measure [277] is the harmonic mean of the pre-
cision and recall. Similarly, Normalized Discounted Cumulative Gain (NDCG) [118] mea-
sures the performance considering the recommended candidates’ order (weight-based). Accu-
racy [11] is the proportion of correct predictions (both true positives and true negatives) among
the total number of cases. SuccessRate [11] measures the percentage of queries for which more
than one correct result could exist in the results. A ROC curve [64] is created by plotting
the true-positive rate against the false-positive rate with various thresholds. Furthermore, two
approaches leveraged false-positive and false-negative rates to check the errors of the search
engine.

The ranking metrics primarily consider the location of the correct answers among the results.
Several approaches are evaluated by checking the rank of the correct answers manually. FRrank
(also known as best hit rank) is the rank of the first hit result in the result list [214]. Rank of the first
correct (RFC) and Expected Reciprocal Rank (ERR) are measured to check if the user should
review a specific number of results. Mean Reciprocal Rank (MRR) [11] is the average of the
reciprocal ranks of results for a set of queries. The reciprocal rank of a query is the inverse of the
rank of the first hit result. Differently, one paper [22] measured the quality of a candidate ranking
against users’ opinions to prove the ranking performance. Table 10 of Appendix A.3 shows the
ranking metrics utilized within the code search field.

The metrics used to evaluate code search approaches vary based on the context of the approach.
Table 11 of Appendix A.3 introduces all the details of the other metrics that have been used within
the code search. Other metrics include retrieval time; several statistical tests like mean squared
error; and relevancy score-based and measuring metrics such as Kendall’s correlation coefficient,
Spearman’s correlation coefficient, Pearson’s correlation coefficient, and the Mann-Whitney U test.
Furthermore, user studies in code search utilized user satisfaction metrics such as experience score
and mouse clicks. Other quality capturing metrics such as the METEOR score and BLEU-4, rate of
passing the test cases, and query coverage, as well as metrics based on an external library (specif-
ically, org.eclipse.compare-plug-in), are also shown to be used in particular code search ap-
proaches (e.g., [40, 223, 235]).

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:24 K. Kim et al.

8 OPEN ISSUES AND POTENTIAL RESEARCH DIRECTIONS

Researchers have put tremendous effort into the field to avoid serving a poor-quality code search
engine that can drag developers out, as documented in many published studies. Despite these
proposed approaches and advancements, the following open issues we discovered may impede
rapid and efficient software development.

Specific Tasks vs. Code Search Techniques. Given a wide variety of existing approaches to
each code search procedure, developers may not be sure which one is the best code search tech-
nique for their specific tasks. For instance, developers who are new to their field may need a code
search engine that can adequately reformulate their queries because of their lack of knowledge.
Some developers need a feedback-driven code search engine to address multiple and complex re-
quirements. As another example, code-to-code search approaches can be utilized to refactor the
existing code by finding either syntactically or semantically similar code snippets. These task-
characteristic pairs should be analyzed, and as a result, the best way to address a specific task
remains an open issue.

Vocabulary Mismatch Problem. One of the crucial issues that affect information retrieval,
in general, is the VMP. During our review process, we found out that the VMP applies to most
of the code search techniques as well. Specifically, techniques investigated in multiple sections
(i.e., Sections 5.1, 5.3, and 5.4) focus on addressing this specific problem. The VMP states that the
likelihood of two people choosing the same keyword for a familiar concept is only between 10% and
15% [69]. Recently, researchers have focused on addressing this with learning-based techniques,
especially to lower the gap between NL and code. However, we observed that the recent results of
the approaches indicate that the VMP within the code search needs further efforts on tokenization
and translation of NL to code to improve the retrieval performance.

Benchmarks. A trustworthy conclusion for the code search will be drawn with a high-quality
benchmark [12], yet there is a glaring lack of such a benchmark for code search engines. Our in-
vestigation on the dataset (Section 6) for evaluations of each technique explicitly revealed that
there exist many different and individually collected datasets. However, these recent benchmarks
also have open issues: (1) these are not validated yet by code search researchers, (2) they focus
on learning-based approaches (i.e., classical and learning-based approaches are different), and (3)
they still need standard and concrete metrics to test various approaches. Furthermore, other con-
siderations, such as different NL queries for a specific set of tasks, should provide a similar set of
results. Every user has a unique way of describing a problem, especially when representing in NL.
Thus, generating a set of techniques that would consider different NL representations for the same
set of questions would provide a more normalized set of results.

Extensibility. Software development consists of using multiple different programming lan-
guages for developing one full product. Consequently, code search approaches do not always prove
to be a good solution because of their limitation on specific programming languages. We substan-
tiate this in our taxonomy, and Tables 2 through 7 of Appendix A.214 show this information as the
last column. The extensibility of code search approaches toward all viable programming languages
is an important issue that is yet to be addressed in the domain. Note that the literature reviewed
in this survey always retrieves/targets one language at a time. Applying a particular search ap-
proach to different programming languages (i.e., multi-language) would provide more usefulness
and convenience.

Usability. We observed that specific code search approaches such as binary code search are
limited in their usability in a real-world scenario while reviewing binary code search approaches

14https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://github.com/FalconLK/BigCodeSearch/blob/main/Survey_Appendix.pdf

Big Code Search: A Bibliography 25:25

in Section 5.5. Although finding similar binary code is useful for specific domains such as vulner-
ability detection, code search is rather severely limited. This is mainly because a majority of the
approaches rely on an essential assumption that the binary code is not obfuscated. Furthermore,
the rise in compiler-level optimization or even hardware-specific optimization would prevent dis-
assembly techniques from limiting the searching capabilities of code search approaches.

Replicability. Although this survey encompasses many approaches that support code search,
most do not have publicly available replication packages. This poses an obstacle for developers who
need to apply such an approach. A shared replication package helps developers in two significant
ways, as (1) a time-efficient way to deploy and test the approach and (2) a reference implementation
to check for errors and issues. Reimplementation of an approach is a time-consuming and error-
prone task, even if the approach is well explained. Therefore, sharing source code can improve
efficiency in the field of code search.

Multi-Modal Query Supported Code Search. Code search techniques can utilize multiple
query models. For example, such techniques could allow users to input different formats of queries,
such as free-form text, query language, and input-output examples, at the same time. The more
detailed information the user provides, the higher the probability that the tool could give accu-
rate recommendations; however, this direction is not addressed in previous studies according to
our taxonomy illustrated in Section 5. Thus, we need a new code search system that can support
multi-modal queries and may bring substantial improvements.

9 CONCLUSION

Through the comprehensive study undertaken in this survey, we expect it to serve as a thorough
introduction for newcomers, helping them familiarize themselves in the field. At the same time, the
practitioners can extend their understanding toward identifying techniques based on the context
of their exploration. Moreover, existing code search researchers can identify the different contri-
butions and advances made within the different categories. To this end, we undertook a procedure-
driven systematic literature review process to identify 137 code search approaches that form the
bases of our operational taxonomy. The taxonomy classifies all the approaches to permit a fair
comparison and identifies potential future research areas that can be explored. Furthermore, the
survey shed light on the existing open issues within the code search, such as the lack of a standard
benchmark that provides a fair evaluation between various code search engines. Additionally, the
survey established the directions that researchers can tackle further in code search. Finally, our
procedure-driven systematic literature review provideed an analysis on each phase, and it should
deliver insights for the overall field.

A APPENDIX

This section includes supplementary information for our survey.

A.1 Paper Collection and Review Schema

This section contains Figure 7 showing the cumulative number of papers published ranging from
2005 to 2020 and Table 1, which presents the publication venues of code search studies.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:26 K. Kim et al.

Fig. 7. The cumulative number of papers published ranged from 2005 to 2020.

Table 1. Publication Venues of Code Search Studies

Category Abbreviation Full Name Count

C
o

n
fe

re
n

ce

ICSE International Conference on Software Engineering 20
ASE Automated Software Engineering 13
MSR International Conference on Mining Software Repositories 8
SUITE Workshop on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation 5
PLDI ACM SIGPLAN Conference on Programming Language Design and Implementation 4
OOPSLA Object-Oriented Programming, Systems, Languages, and Applications 4
RSSE International Workshop on Recommendation Systems for Software Engineering 4
SANER IEEE International Conference on Software Analysis, Evolution, and Reengineering 3
COMPSAC Annual Computer Software and Applications Conference 3
CSMR-WCRE IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering 3
ESEC/FSE European Software Engineering Conference and Symposium on the Foundations of Software Engineering 2
SAC ACM Symposium on Applied Computing 2
WWW The World Wide Web Conference 2
SBES Brazilian Symposium on Software Engineering 2
SCAM International Working Conference on Source Code Analysis and Manipulation 2
VL/HCC Visual Languages and Human-Centric Computing 2
ISSTA International Symposium on Software Testing and Analysis 1
MAPL ACM SIGPLAN International Workshop on Machine Learning and Programming Languages 1
FASE International Conference on Fundamental Approaches to Software Engineering 1
RecSys ACM Conference on Recommender Systems 1
ACIIDS Intelligent Information and Database Systems 1
UIST ACM Symposium on User Interface Software and Technology 1
WEH International Workshop on Exception Handling 1
SBCARS Brazilian Symposium on Software Components, Architectures, and Reuse 1
ACL Annual Meeting of the Association for Computational Linguistics 1
ICoICT International Conference on Information and Communication Technology 1
WSDM ACM International Conference on Web Search and Data Mining 1
ICCIT International Conference on Computer and Information Technology 1
CCS ACM SIGSAC Conference on Computer and Communications Security 1
RCoSE International Workshop on Rapid Continuous Software Engineering 1
Programming International Conference on the Art, Science, and Engineering of Programming 1
Internetware Asia-Pacific Symposium on Internetware 1
MOBILESoft International Conference on Mobile Software Engineering and Systems 1
IWSC International Workshop on Software Clones 1
SERVICES IEEE World Congress on Services 1
ASC ACM Southeast Conference 1
ICSEW International Conference on Software Engineering Workshops 1
IJCNN International Joint Conference on Neural Networks 1
CIRCLE CEUR Workshop 1

Subtotal (Conference) 102

Jo
u

rn
al

TSE IEEE Transactions on Software Engineering 3
EMSE Empirical Software Engineering 3
JSS Journal of Systems and Software 3
IEEE Access IEEE Access 3
SPE Software: Practice and Experience 3
TOSEM ACM Transactions on Software Engineering and Methodology 2
ASE Journal Automated Software Engineering Journal 2
IST Information and Software Technology 2
TSC IEEE Transactions on Services Computing 2
SCIS Science China Information Sciences 2
JIFS Journal of Intelligent & Fuzzy Systems 1
ISF Information Systems Frontiers 1
JPCS Journal of Physics: Conference Series 1
PACMPL Proceedings of the ACM on Programming Languages 1
IEEE Software IEEE Software 1
KBS Knowledge-Based Systems 1
KIES International Journal of Knowledge-Based and Intelligent Engineering Systems 1
WUJNS Wuhan University Journal of Natural Sciences 1
JIT Journal of Internet Technology 1
SEKE International Journal of Software Engineering and Knowledge Engineering 1

Subtotal (Journal) 35
Total 137

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:27

A.2 Taxonomy of Code Search Techniques

This section presents detailed information reflecting the proposed taxonomy. Each of Tables 2
through 7 classifies all the investigated techniques based on their characteristics.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:28 K. Kim et al.

Ta
bl

e
2.

D
is

se
ct

io
n

of
C

od
e

Se
ar

ch
Te

ch
n

iq
u

es
B

as
ed

on
St

at
ic

In
fo

rm
at

io
n

C
at

eg
o

ry
A

p
p

ro
ac

h
O

u
tp

u
t

D
at

as
et

In
d

ex
in

g
In

p
u

t
R

et
ri

ev
al

P
re

se
n

ta
ti

o
n

L
an

g
u

ag
es

GeneralCode

APIUsage

SpecificOpenSourceProjects

SuperRepositories

DeveloperQ&A

Language/APIDocumentation

Others

Inverted

Database(B+Tree)

GraphIndex

FilePrefix

NaturalLanguage

CodeFragment

Input/Ouput

SoftwareSpecification

QueryLanguage

Binary

Class/InterfaceType

TextualSimilarity

GraphSimilarity

Solver

TypeLinks

EmbeddingVectorSimilarity

SearchEngine

Idea

IDEExtension

K
ey

w
o

rd
b
as

ed

Js
ea

rc
h

[2
51

]
✓

✓
✓

✓
✓

Ja
v
a

C
o

C
aB

u
[2

53
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

M
u

ra
k

am
i

et
al

.[
19

2]
✓

✓
✓

✓
✓

✓
Ja

v
a

M
cM

il
la

n
et

al
.[

18
3]

✓
✓

✓
✓

✓
✓

Ja
v
a

E
x
em

p
la

r
[7

7,
78

,1
80

]
✓

✓
✓

✓
✓

✓
Ja

v
a

E
x
am

p
le

O
v
er

fl
o
w

[3
11

]
✓

✓
✓

✓
✓

✓
Ja

v
a

Se
le

n
e

[1
91

,2
72

]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

So
C

eR
[1

14
]

✓
✓

✓
✓

✓
✓

P
y

th
o

n

St
ru

ct
u

re
b
as

ed

A
ro

m
a

[1
66

]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a,

Ja
v
aS

cr
ip

t,
P

y
th

o
n

P
ro

sp
ec

to
r

[1
71

]
✓

✓
✓

✓
✓

Ja
v
a

P
o

rt
fo

li
o

[4
5,

18
1,

18
4]

✓
✓

✓
✓

✓
✓

✓
C

,C
+

+
,J

av
a

X
Sn

ip
p

et
[2

36
]

✓
✓

✓
✓

✓
✓

Ja
v
a

PA
R

SE
W

eb
[2

74
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

C
h

an
et

al
.[

36
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

R
A

C
S

[1
51

]
✓

✓
✓

✓
✓

✓
✓

✓
✓

Ja
v
aS

cr
ip

t

Y
O

G
O

[2
12

]
✓

✓
✓

✓
✓

✓
P

y
th

o
n

,J
av

a

A
k

h
in

et
al

.[
4]

✓
✓

✓
✓

✓
✓

C
o

o
g

le
[2

35
]

✓
✓

✓
✓

✓
Ja

v
a

M
en

d
el

[1
63

]
✓

✓
✓

✓
✓

H
su

an
d

L
in

.[
10

0]
✓

✓
✓

✓
✓

✓
Ja

v
a

So
u

rc
er

er
[1

2]
✓

✓
✓

✓
✓

✓
Ja

v
a

M
u

ra
k

am
i

et
al

.[
19

2]
✓

✓
✓

✓
✓

✓
Ja

v
a

B
ar

b
o

sa
et

al
.[

17
,1

8]
✓

✓
✓

✓
✓

✓
Ja

v
a

A
U

Se
ar

ch
[1

0]
✓

✓
✓

✓
✓

Ja
v
a

M
A

P
O

[2
96

]
✓

✓
✓

✓
✓

Ja
v
a

SU
SH

I
[1

98
]

✓
✓

✓
✓

✓
✓

✓
A

n
d

ro
id

P
ro

p
E

R
-D

o
c

[1
73

]
✓

✓
✓

✓
✓

Ja
v
a

P
R

IM
E

[1
86

]
✓

✓
✓

✓
✓

✓
Ja

v
a

L
ib

Fi
n

d
er

[2
06

]
✓

✓
✓

✓
✓

Ja
v
a

SW
IM

[2
14

]
✓

✓
✓

✓
✓

✓
C

#

A
P

IR
E

C
[1

94
]

✓
✓

✓
✓

✓
✓

Ja
v
a

L
ee

et
al

.[
14

0]
✓

✓
✓

✓
✓

Ja
v
a

In
te

rf
ac

e
d

ri
v
en

St
ra

th
co

n
a

[9
5–

97
]

✓
✓

✓
✓

L
em

o
s

et
al

.[
14

4]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

Se
m

an
ti

c
b
as

ed

A
N

N
E

[2
79

]
✓

✓
✓

✓
✓

✓
Ja

v
a

C
o

d
eM

at
ch

er
[1

59
]

✓
✓

✓
✓

✓
✓

H
il

l
et

al
.[

92
]

✓
✓

✓
✓

✓
Ja

v
a

JE
C

O
[9

]
✓

✓
✓

✓
✓

Ja
v
a

V
in

ay
ak

ar
ao

[2
78

]
✓

✓
✓

✓
✓

✓
Ja

v
a

M
cM

il
la

n
et

al
.[

18
2]

✓
✓

✓
✓

✓
✓

Ja
v
a,

C
#

L
an

ce
r

[3
15

]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

T
es

t
R

ec
o

m
m

en
d

er
[2

09
]

✓
✓

✓
✓

✓
✓

Ja
v
a

C
o

n
st

ra
in

ts
b
as

ed

Sa
ts

y
[2

60
–

26
2]

✓
✓

✓
✓

✓
✓

✓
✓

Ja
v
a,

C

E
x
te

n
d

ed
Sa

ts
y

[2
63

]
✓

✓
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

Q
u

eb
io

[1
21

]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

E
x
te

n
d

ed
Q

u
eb

io
[4

3]
✓

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

C
lo

n
e

b
as

ed

K
ei

v
an

lo
o

et
al

.[
12

7]
✓

✓
✓

✓
✓

C
o

d
eN

u
an

ce
[1

62
]

✓
✓

✓
✓

R
ah

m
an

an
d

R
o
y

[2
18

]
✓

✓
✓

✓
✓

✓
Ja

v
a

M
U

SE
[1

88
]

✓
✓

✓
✓

Ja
v
a

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:29

Ta
bl

e
3.

D
is

se
ct

io
n

of
C

od
e

Se
ar

ch
Te

ch
n

iq
u

es
B

as
ed

on
D

yn
am

ic
In

fo
rm

at
io

n

C
at

eg
o

ry
A

p
p

ro
ac

h
O

u
tp

u
t

D
at

as
et

In
d

ex
In

p
u

t
R

et
ri

ev
al

P
re

se
n

ta
ti

o
n

L
an

g
u

ag
e

GeneralCode

TestCase/TestCode

SpecificOpenSourceProjects

SuperRepositories

Database(B+Tree)

GraphIndex

FilePrefix

NaturalLanguage

CodeFragment

QueryLanguage

TestCase

Class/InterfaceType

SoftwareSpecification

TextualSimilarity

GraphSimilarity

TestCase/TestedInput

LinearProgramming

SearchEngine

Idea

IDEExtension

T
es

t
d

ri
v
en

C
o

d
eG

en
ie

[1
37

–
13

9,
14

1]
✓

✓
✓

✓
✓

Ja
v
a

L
em

o
s

et
al

.[
14

3]
✓

✓
✓

✓
✓

✓
Ja

v
a

C
o

d
e

C
o

n
ju

re
r

[1
11

,1
17

]
✓

✓
✓

✓
✓

Ja
v
a

E
Q

M
IN

E
R

[1
20

]
✓

✓
✓

✓
✓

✓
✓

C

S6
[2

8,
29

,2
23

–
22

6]
✓

✓
✓

✓
✓

Ja
v
a

K
es

se
l

an
d

A
tk

in
so

n
[1

29
]

✓
✓

✓
✓

✓
✓

H
U

N
T

E
R

[2
87

]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

E
x
ec

u
ti

o
n

b
as

ed
C

o
d

eH
in

t
[7

1]
✓

✓
✓

✓
✓

✓
Ja

v
a

D
y

C
L

IN
K

[2
65

]
✓

✓
✓

✓
✓

✓
M

y
SQ

L

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:30 K. Kim et al.

Ta
bl

e
4.

D
is

se
ct

io
n

of
C

od
e

Se
ar

ch
Te

ch
n

iq
u

es
B

as
ed

on
Qu

er
y

R
ef

or
m

u
la

ti
on

C
at

eg
o

ry
A

p
p

ro
ac

h
O

u
tp

u
t

D
at

ab
as

e
In

d
ex

In
p

u
t

R
et

ri
ev

al
P

re
se

n
ta

ti
o

n
L

an
g
u

ag
e

GeneralCode

APIUsage

SpecificOpenSourceProjects

SuperRepositories

DeveloperQ&AorTutorial

Language/APIDocumentation

CodeClone

Challenge/Competition

Inverted

Database(B+Tree)

ID-based

Positional

NaturalLanguage

CodeFragment

QueryLanguage

TextualSimilarity

MatrixComputation

GraphSimilarity

EmbeddingVectorSimilarity

SearchEngine

Idea

IDEExtension

Fe
ed

b
ac

k
d

ri
v
en

M
ic

a
[2

64
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

SA
S

[1
]

✓
✓

✓
✓

✓
Ja

v
a

C
o

n
q

u
er

[2
30

]
✓

✓
✓

✓
✓

Ja
v
a

E
x
te

n
d

ed
C

o
n

q
u

er
[9

3]
✓

✓
✓

✓
✓

Ja
v
a

W
an

g
et

al
.[

28
4]

✓
✓

✓
✓

✓
C

,C
+

+

C
o

d
eE

x
ch

an
g
e

[1
77

]
✓

✓
✓

✓
✓

✓
Ja

v
a

C
o

d
eL

ik
eT

h
is

[1
76

]
✓

✓
✓

✓
✓

✓
Ja

v
a

IN
Q

R
E

S
[1

64
]

✓
✓

✓
✓

✓
Ja

v
a

C
o

so
ch

[1
50

]
✓

✓
✓

✓
✓

Ja
v
a

C
o

n
te

x
tu

al
Se

ar
ch

[9
1]

✓
✓

✓
✓

✓
Ja

v
a

R
ef

o
q

u
s

[8
5]

✓
✓

✓
✓

✓
✓

Ja
v
a,

C
+

+

A
L

IC
E

[2
55

]
✓

✓
✓

✓
✓

✓
Ja

v
a

SN
IP

R
[2

39
]

✓
✓

✓
✓

D
ee

pA
P

IR
ec

[3
9]

✓
✓

✓
✓

✓
Ja

v
a

A
Q

R

Q
E

C
K

[2
01

]
✓

✓
✓

✓
✓

✓
✓

A
n

d
ro

id

Y
an

g
an

d
T

an
[3

02
]

✓
✓

✓
✓

✓
Ja

v
a

D
u

rã
o

et
al

.[
61

]
✓

✓
✓

✓
✓

✓
Ja

v
a

N
L

P
2C

O
D

E
[3

4]
✓

✓
✓

✓
✓

✓
Ja

v
a

SC
P

[2
54

]
✓

✓
✓

✓
✓

✓
Ja

v
a,

C
,C

+
+

Q
E

x
p

an
d

at
o

r
[2

41
]

✓
✓

✓
✓

✓
Ja

v
a

F
W

SM
F

[2
42

]
✓

✓
✓

✓
✓

✓
Ja

v
a

C
o

d
eX

[2
40

]
✓

✓
✓

✓
✓

✓
N

/A

Sn
ip

p
et

G
en

[1
05

,2
94

,3
04

]
✓

✓
✓

✓
✓

✓
C

#

C
o

d
eG

en
ie

2.
0

[1
42

]
✓

✓
✓

✓
✓

✓
Ja

v
a

C
o

C
aB

u
[2

53
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

Fa
C

oY
[1

33
]

✓
✓

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

C
o

d
eH

o
w

[1
69

]
✓

✓
✓

✓
✓

✓
C

#

R
A

C
K

[2
20

,2
21

]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

N
L

P
2A

P
I

[2
16

]
✓

✓
✓

✓
✓

✓
Ja

v
a

N
Q

E
[1

60
]

✓
✓

✓
✓

✓
✓

✓
A

n
d

ro
id

SE
N

SO
R

Y
[2

]
✓

✓
✓

✓
✓

✓
Ja

v
a

Q
E

SR
[1

22
]

✓
✓

✓
✓

✓
✓

✓
A

n
d

ro
id

,J
av

a

Q
E

C
C

[1
09

]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

G
K

SR
[1

07
]

✓
✓

✓
✓

✓
✓

C
#,

Ja
v
a,

A
n

d
ro

id

Q
E

SC
[1

08
,3

17
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

Q
L

A
u

to
Q

u
er

y
[2

82
]

✓
✓

✓
✓

✓
✓

C
,C

+
+

Sn
ip

M
at

ch
[2

92
]

✓
✓

✓
✓

✓
Ja

v
a

A
Q

R
,a

u
to

m
at

ic
q

u
er

y
re

fo
rm

u
la

ti
o

n
;Q

L
,q

u
er

y
la

n
g
u

ag
e.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:31

Ta
bl

e
5.

D
is

se
ct

io
n

of
Le

ar
n

in
g-

B
as

ed
C

od
e

Se
ar

ch
Te

ch
n

iq
u

es

C
at

eg
o

ry
A

p
p

ro
ac

h
O

u
tp

u
t

D
at

as
et

In
d

ex
In

p
u

t
R

et
ri

ev
al

P
re

se
n

ta
ti

o
n

L
an

g
u

ag
e

GeneralCode

APIUsage

SpecificOpenSourceProjects

SuperRepositories

DeveloperQ&A

Language/APIDocumentation

CodeClone

Challenge/Competition

ExistingBenchmark

Inverted

GraphIndex

NaturalLanguage

CodeFragment

TextualSimilarity

GraphSimilarity

MatrixComputation

EmbeddingVectorSimilarity

SearchEngine

Idea

IDEExtension

M
ac

h
in

e
le

ar
n

in
g

M
M

M
F

[2
91

]
✓

✓
✓

✓
✓

Ja
v
a

Su
ri

se
tt

y
[2

68
]

✓
✓

✓
✓

✓
✓

R
O

SF
[1

19
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

So
u

rc
e

Fo
ra

g
er

[1
24

]
✓

✓
✓

✓
✓

✓
C

/C
+

+

Z
o

u
et

al
.[

31
8]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

C
o

d
eK

er
n

el
[8

1]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

C
O

D
E

C
[1

90
]

✓
✓

✓
✓

✓
✓

✓
Ja

v
a

E
x
A

ss
is

t
[1

97
,1

99
]

✓
✓

✓
✓

✓
✓

Ja
v
a

C
o

d
eM

F
[1

02
]

✓
✓

✓
✓

✓
C

#,
SQ

L

N
eu

ra
l

n
et

w
o

rk

N
g
u

y
en

et
al

.[
20

0]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

C
O

D
E

n
n

[8
0]

✓
✓

✓
✓

✓
Ja

v
a

M
P

-C
A

T
[8

6]
✓

✓
✓

✓
✓

P
y

th
o

n

C
SD

A
[2

28
]

✓
✓

✓
✓

✓
Ja

v
a

C
A

R
L

C
S-

C
N

N
[2

46
]

✓
✓

✓
✓

✓
Ja

v
a

B
V

A
E

[4
2]

✓
✓

✓
✓

✓
C

#,
SQ

L

SC
O

R
[3

]
✓

✓
✓

✓
✓

✓
Ja

v
a

SL
A

M
PA

[3
16

]
✓

✓
✓

✓
✓

Ja
v
a

SC
S

[1
12

]
✓

✓
✓

✓
✓

P
y

th
o

n

N
C

S
[2

33
]

✓
✓

✓
✓

✓
✓

✓
A

n
d

ro
id

U
N

IF
[3

3]
✓

✓
✓

✓
✓

✓
✓

A
n

d
ro

id

Fu
ji

w
ar

a
et

al
.[

68
]

✓
✓

✓
✓

✓
Ja

v
a

M
M

A
N

[2
80

]
✓

✓
✓

✓
✓

C

A
d

aC
S

[1
54

]
✓

✓
✓

✓
✓

Ja
v
a

C
o

aC
o

r
[3

05
]

✓
✓

✓
✓

✓
P

y
th

o
n

,C
#

C
O

D
E

-N
N

[1
15

]
✓

✓
✓

✓
✓

C
#,

SQ
L

Y
e

et
al

.[
30

7]
✓

✓
✓

✓
✓

P
y

th
o

n
,S

Q
L

T
ra

n
S3

[2
85

]
✓

✓
✓

✓
✓

P
y

th
o

n

Y
in

et
al

.[
30

9]
✓

✓
✓

✓
✓

P
y

th
o

n
,S

Q
L

C
D

R
L

[1
04

]
✓

✓
✓

✓
✓

Ja
v
a

Sc
h

u
m

ac
h

er
et

al
.[

24
3]

✓
✓

✓
✓

✓
P

y
th

o
n

H
E

C
S

[1
46

]
✓

✓
✓

✓
✓

P
y

th
o

n
,C

#

M
SR

[5
9]

✓
✓

✓
✓

✓
✓

Ja
v
a

P
SC

S
[2

67
]

✓
✓

✓
✓

✓
P

y
th

o
n

,J
av

aS
cr

ip
t,

Ja
v
a

H
ey

m
an

an
d

C
u

ts
em

[8
9]

✓
✓

✓
✓

✓
P

y
th

o
n

C
O

IL
[1

49
]

✓
✓

✓
✓

✓
✓

Ja
v
a

C
o

N
C

R
A

[5
2]

✓
✓

✓
✓

✓
P

y
th

o
n

,S
Q

L

C
O

SE
A

[2
81

]
✓

✓
✓

✓
✓

P
y

th
o

n
,S

Q
L

D
G

M
S

[1
55

]
✓

✓
✓

✓
✓

✓
✓

✓
Ja

v
a,

P
y

th
o

n

A
P

IR
ec

-C
ST

[4
0]

✓
✓

✓
✓

✓
Ja

v
a

Z
h

ao
an

d
Su

n
[3

14
]

✓
✓

✓
✓

✓
P

y
th

o
n

,S
Q

L

C
R

aD
L

e
[7

9]
✓

✓
✓

✓
✓

P
y

th
o

n

N
JA

C
S

[1
03

]
✓

✓
✓

✓
✓

C
#,

SQ
L

,J
av

a,
P

y
th

o
n

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:32 K. Kim et al.
Ta

bl
e

6.
D

is
se

ct
io

n
of

B
in

ar
y

C
od

e
Se

ar
ch

Te
ch

n
iq

u
es

A
p

p
ro

ac
h

O
u

tp
u

t
D

at
as

et
In

d
ex

In
p

u
t

R
et

ri
ev

al
P

re
se

n
ta

ti
o

n
L

an
g
u

ag
e

BinaryCode

SpecificOpenSourceProjects

SuperRepositories

Others

Inverted

GraphIndex

Binary

TextualSimilarity

GraphSimilarity

ExecutionTrace

EmbeddingVectorSimilarity

SearchEngine

T
ra

ce
le

ts
[4

9]
✓

✓
✓

✓
✓

✓
✓

B
in

ar
y

(x
86

)
R

en
d

ez
v
o

u
s

[1
30

]
✓

✓
✓

✓
✓

✓
✓

✓
C

,C
+

+
B

IN
G

O
[3

7]
✓

✓
✓

✓
✓

✓
B

in
ar

y
C

B
IN

G
O

-E
[3

00
]

✓
✓

✓
✓

✓
✓

B
in

ar
y

C
G

em
in

i
[2

99
]

✓
✓

✓
✓

✓
✓

B
in

ar
y

C

Ta
bl

e
7.

D
is

se
ct

io
n

of
C

od
e

Se
ar

ch
fo

r
G

U
Is

A
p

p
ro

ac
h

In
p

u
t

D
at

as
et

In
d

ex
In

p
u

t
R

et
ri

ev
al

P
re

se
n

ta
ti

o
n

L
an

g
u

ag
e

Sketches/GUI

SpecificOpenSourceProjects

SuperRepositories

Inverted

Database(B+Tree)

GraphIndex

SketchFile

NaturalLanguage

CodeFragment

TextualSimilarity

GraphSimilarity

SearchEngine

IDEExtension

G
U

IF
et

ch
[2

2]
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

G
U

I
SU

SI
E

[2
27

]
✓

✓
✓

✓
✓

✓
Ja

v
a

G
U

I
X

ie
et

al
.[

29
7]

✓
✓

✓
✓

✓
✓

✓
✓

Ja
v
a

G
U

I

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:33

A.3 Evaluation

This section demonstrates various evaluation methods and metrics used in the field of code search
per each approach, which are presented in Tables 8 through 11.

Table 8. Evaluation Methods Used in Code Search Techniques

Evaluation Method Techniques

Manual assessment Prospector [171], Strathcona [95–97], Jsearch [251], XSnippet [236],

Coogle [235], PARSEWeb [274], Contextual Search [91], McMillan

et al. [183], Wang et al. [286], Selene [191, 272], PropER-Doc [173], Ex-

emplar [77, 78, 180], Example Overflow [311], Mentor [170], Barbosa

et al. [17, 18], Chan et al. [36], Yang and Tan [302], PRIME [186],

SCP [254], CodeHint [71], CodeGenie 2.0 [142], Tracelets [49], Keivanloo

et al. [127], JECO [9], Vinayakarao [278], RACS [151], CODE-NN [115],

SWIM [214], BINGO [37], QualBoa [57], FWSMF [242], Source For-

ager [124], LibFinder [206], Gemini [299], CoCaBu [253], FaCoY [133],

SLAMPA [316], Quebio [121], GUIFetch [22], CodeNuance [162], AL-

ICE [255], ExAssist [197, 199], BINGO-E [300], Xie et al. [297], Huang

et al. [110], SoCeR [114], YOGO [212], CodeMatcher [159], CODEC [190],

Extended Quebio [43], AUSearch [10]

Systematic assessment Strathcona [95–97], XSnippet [236], PARSEWeb [274], Example Over-

flow [311], Chan et al. [36], Yang and Tan [302], SCP [254], Keivanloo

et al. [127], CODE-NN [115], LibFinder [206], Gemini [299], CoCaBu [253],

FaCoY [133], SLAMPA [316], BINGO-E [300], Xie et al. [297], Code-

Matcher [159], CODEC [190], Extended Quebio [43], CodeGenie [137–139,

141], SNIFF [38], S6 [223–225], MMMF [291], Hill et al. [92], Hsu and

Lin [100], Portfolio [45, 181, 184], Wang et al. [283], McMillan et al. [182],

Satsy [260–262], Rahman and Roy [218], Lemos et al. [144], Code-

How [169], DyCLINK [265], QECK [201], QExpandator [241], ROSF [119],

Extended Satsy [263], APIREC [194], Niu et al. [203], CodeLikeThis [176],

NLP2CODE [34], SnippetGen [105, 294, 304], RACK [220, 221], IN-

QRES [164], NLP2API [216, 217], QECC (InstaRec) [109], Zou et al. [318],

CODEnn [80], BVAE [42], NCS [233], Lee et al. [140], Lancer [315],

Aroma [166], Cosoch [150], NQE [160], SENSORY [2], QESR [122],

GKSR [107], QESC [108, 317], CodeKernel [81], SCOR [3], UNIF [33],

MMAN [280], CoaCor [305], Yin et al. [309], CodeMF [102], CSDA [228],

CARLCS-CNN [246], AdaCS [154], Ye et al. [307], TranS3 [285],

CDRL [104], HECS [146], MSR [59], PSCS [267], COIL [149], COSEA [281],

DGMS [155], APIRec-CST [40], Zhao and Sun [314], CRaDLe [79],

NJACS [103], CodeGenie 2.0 [142], RACS [151], Source Forager [124],

ALICE [255], Sourcerer [12], Durão et al. [61], APPROX [20], Lemos

et al. [143], Rendezvous [130], Extended Conquer [93], ANNE [279],

Nguyen et al. [200], DeepAPIRec [39], Li et al. [152], PCR [196], MP-

CAT [86], Schumacher et al. [243], Heyman and Cutson [89], CoNCRA [52]

Controlled user study/interview XSnippet [236], LibFinder [206], CoCaBu [253], CodeGenie [137–139, 141],

Portfolio [45, 181, 184], McMillan et al. [182], CodeHow [169], QECK [201],

QExpandator [241], Niu et al. [203], CodeLikeThis [176], NLP2CODE [34],

INQRES [164], CodeKernel [81], Exemplar [77, 78, 180], GUIFetch [22], Co-

deNuance [162], ALICE [255], SnipMatch [292], Wang et al. [284], Test

Recommender [209], CodeExchange [177], MUSE [188], AutoQuery [282],

HUNTER [287]

Live study CoCaBu [253], SnipMatch [292], CodeExchange [177], TranS3 [285]

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:34 K. Kim et al.

Table 9. Relevancy Metrics Used for Evaluating Code Search Techniques

Metric Techniques

Precision Durão et al. [61], MMMF [291], Hill et al. [92], Portfolio [45, 181, 184], Exem-
plar [77, 78, 180], Mentor [170], Chan et al. [36], McMillan et al. [182], Yang
and Tan [302], Satsy [260–262], Rendezvous [130], Keivanloo et al. [127], Rahman
and Roy [218], JECO [9], Vinayakarao [278], AutoQuery [282], FWSMF [242], Zou
et al. [318], SLAMPA [316], ALICE [255], CodeKernel [81], SoCeR [114], AUSe-
arch [10]

Precision@k Satsy [260–262], SCP [254], QECK [201], QExpandator [241], ROSF [119], Extended
Satsy [263], BINGO [37], SnippetGen [105, 294, 304], LibFinder [206], CoCaBu [253],
FaCoY [133], QECC (InstaRec) [109], CODEnn [80], Lee et al. [140], SENSORY [2],
SCOR [3], CodeMatcher [159], CODEC [190], CDRL [104], HECS [146], MSR [59],
COSEA [281]

MAP SCP [254], Extended Satsy [263], QualBoa [57], Source Forager [124], SCOR [3], Zhao
and Sun [314]

MAP@k Rahman and Roy [218], RACK [220, 221], NLP2API [216, 217], QESR [122],
GKSR [107], QESC [108, 317], COIL [149]

Recall Strathcona [95–97], Sourcerer [12], Durão et al. [61], MMMF [291], Hill et al. [92],
Selene [191, 272], Mentor [170], Chan et al. [36], Yang and Tan [302], Satsy [260–
262], Rendezvous [130], CodeGenie 2.0 [142], Rahman and Roy [218], JECO [9],
Vinayakarao [278], Lemos et al. [144], AutoQuery [282], FWSMF [242], FaCoY [133],
Zou et al. [318], SLAMPA [316], ALICE [255], CodeKernel [81]

Recall@k SCP [254], LibFinder [206], NLP2API [216, 217], QECC (InstaRec) [109], CO-
DEnn [80], Aroma [166], SCOR [3], CodeMatcher [159], CodeMF [102], MP-
CAT [86], CARLCS-CNN [246], HECS [146], Heyman and Cutson [89], CRaDLe [79],
NJACS [103]

Accuracy Tracelets [49], Rahman and Roy [218], DeepAPIRec [39], NQE [160], Schumacher
et al. [243]

Accuracy@k SWIM [214], APIREC [194], Nguyen et al. [200], LibFinder [206], INQRES [164], Yin
et al. [309], PCR [196], CoNCRA [52], APIRec-CST [40]

SuccessRate Jsearch [251], HUNTER [287], CodeNuance [162], PSCS [267]

SuccessRate@k RACS [151], RACK [220, 221], NLP2API [216, 217], CODEnn [80], SLAMPA [316],
Lancer [315], MMAN [280], Li et al. [152], CODEC [190], CSDA [228], AdaCS [154],
TranS3 [285], CDRL [104], COIL [149], DGMS [155]

NDCG Exemplar [77, 78, 180], Wang et al. [284], Extended Satsy [263], SnippetGen [105, 294,
304], Ye et al. [307], TranS3 [285], COSEA [281], Zhao and Sun [314]

NDCG@k Wang et al. [284], QECK [201], ROSF [119], Niu et al. [203], RACK [220, 221], QECC
(InstaRec) [109], Cosoch [150], SENSORY [2], QESR [122], GKSR [107], QESC [108,
317], Li et al. [152], MSR [59]

F-measure Durão et al. [61], Contextual Search [91], MMMF [291], Hill et al. [92], Chan et al. [36],
Rendezvous [130], AutoQuery [282], ALICE [255], CodeKernel [81]

ROC curve Tracelets [49], Gemini [299], Quebio [121]

Sensitivity EQMINER [120], Extended Satsy [263]

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

Big Code Search: A Bibliography 25:35

Table 10. Ranking Metrics Used for Evaluating Code Search Techniques

Metric Techniques

MRR Strathcona [95–97], CodeHow [169], CODE-NN [115], Extended Satsy [263],

CoCaBu [253], Zou et al. [318], CODEnn [80], BVAE [42], SLAMPA [316],

Lancer [315], Cosoch [150], NQE [160], UNIF [33], MMAN [280], CoaCor [305],

Yin et al. [309], CodeMatcher [159], CODEC [190], CodeMF [102], MP-CAT [86],

CARLCS-CNN [246], AdaCS [154], Ye et al. [307], TranS3 [285], CDRL [104],

HECS [146], PSCS [267], Heyman and Cutson [89], CoNCRA [52], COSEA [281],

DGMS [155], APIRec-CST [40], CRaDLe [79], NJACS [103]

MRR@k RACK [220, 221], NLP2API [216, 217], CSDA [228], COIL [149]

FRank PARSEWeb [274], XSnippet [236], SNIFF [38], McMillan et al. [183], Example Over-

flow [311], SWIM [214], BINGO [37], Quebio [121], CODEC [190], CodeMF [102],

CSDA [228], HECS [146]

FRank@k UNIF [33]

Simple rank Prospector [171], PRIME [186], BINGO [37], Huang et al. [110]

ERR Niu et al. [203]

Significance and cohesiveness PropER-Doc [173], GUIFetch [22]

Table 11. Supplementary Metrics Used for Evaluating Code Search Techniques

Metric Type Metric Approach

Statistical test

Correlation analysis GUIFetch [22], SCOR [3], Xie et al. [297]

Mean squared error Xie et al. [297]

Hypothesis test Contextual Search [91], Portfolio [45, 181, 184], Exemplar [77,

78, 180], McMillan et al. [182], Lemos et al. [143], SCP [254],

Wang et al. [284], CodeGenie 2.0 [142], Lemos et al. [144], Code-

Exchange [177], MUSE [188], CODE-NN [115], Niu et al. [203],

ANNE [279], CodeLikeThis [176], LibFinder [206], QESC [108,

317]

User satisfaction
Experience score CodeHint [71], Extended Conquer [93], Test Recom-

mender [209], CodeExchange [177], CodeHow [169],

MUSE [188], ANNE [279], CodeLikeThis [176], NLP2CODE [34]

Mouse click Example Overflow [311]

Counting
Absolute matching Code Conjurer [111, 117], PRIME [186], Lemos et al. [144], Dy-

CLINK [265], Quebio [121], GUIFetch [22], YOGO [212], Schu-

macher et al. [243]

Top-k recommendation INQRES [164], NCS [233], NQE [160], ExAssist [197, 199],

BINGO-E [300], Extended Quebio [43]

Time Retrieval/implementation time Prospector [171], Jsearch [251], XSnippet [236], CodeGe-

nie [137–139, 141], Code Conjurer [111, 117], S6 [223–225],

Wang et al. [286], APPROX [20], Wang et al. [283], Snip-

Match [292], Chan et al. [36], Satsy [260–262], Ren-

dezvous [130], CodeHint [71], Tracelets [49], CodeEx-

change [177], AutoQuery [282], HUNTER [287], Dy-

CLINK [265], Extended Satsy [263], SWIM [214], APIREC [194],

ANNE [279], Source Forager [124], LibFinder [206], Gem-

ini [299], Quebio [121], CodeNuance [162], Lancer [315],

Aroma [166], DeepAPIRec [39], BINGO-E [300], Li et al. [152],

CodeMatcher [159], CODEC [190], MP-CAT [86], AdaCS [154],

PSCS [267], APIRec-CST [40], Extended Quebio [43]

Other metrics

External library Coogle [235]

Rate of passing test cases S6 [223–225], APIRec-CST [40]

BLEU BVAE [42], CoaCor [305]

METEOR BVAE [42]

Query coverage CodeGenie 2.0 [142], Keivanloo et al. [127]

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:36 K. Kim et al.

REFERENCES

[1] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. 2010. Searching API usage examples in code repositories with

sourcerer API search. In Proceedings of the ICSE Workshop on Search-Driven Development: Users, Infrastructure, Tools

and Evaluation. 5–8.

[2] Lei Ai, Zhiqiu Huang, Weiwei Li, Yu Zhou, and Yaoshen Yu. 2019. Sensory: Leveraging code statement sequence

information for code snippets recommendation. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and

Applications Conference, Vol. 1. IEEE, Los Alamitos, CA, 27–36.

[3] S. Akbar and A. Kak. 2019. SCOR: Source code retrieval with semantics and order. In Proceedings of the 2019 IEEE/ACM

16th International Conference on Mining Software Repositories (MSR’19). 1–12.

[4] M. Akhin, N. Tillmann, M. Fähndrich, J. de Halleux, and M. Moskal. 2012. Search by example in TouchDevelop:

Code search made easy. In Proceedings of the 2012 4th International Workshop on Search-Driven Development: Users,

Infrastructure, Tools, and Evaluation. IEEE, Los Alamitos, CA, 5–8.

[5] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018. A survey of machine learning for

big code and naturalness. ACM Computing Surveys 51, 4 (2018), 1–37.

[6] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning to represent programs with graphs.

arXiv:1711.00740 (2017).

[7] Ambient Software Evolution Group. 2022. IJaDataset 2.0. Retrieved June 25, 2023 from https://onedrive.live.com/

?authkey=%21AKDB2aMepVDO8as&id=8BFCB70AA333DB15%21260605&cid=8BFCB70AA333DB15&parId=root&

parQt=sharedby&o=OneUp.

[8] Ambient Software Evolution Group. 2022. BigCloneBench. Retrieved June 26, 2023 from https://github.com/

clonebench/BigCloneBench.

[9] A. Arwan, S. Rochimah, and R. J. Akbar. 2015. Source code retrieval on StackOverflow using LDA. In Proceedings of

the 2015 3rd International Conference on Information and Communication Technology (ICoICT’15). 295–299.

[10] M. H. Asyrofi, F. Thung, D. Lo, and L. Jiang. 2020. AUSearch: Accurate API usage search in GitHub repositories with

type resolution. In Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution, and

Reengineering (SANER’20). 637–641.

[11] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval, Vol. 463. ACM, New York, NY.

[12] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes. 2006.

Sourcerer: A search engine for open source code supporting structure-based search. In Companion to the 21st ACM

SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and Applications. ACM, New York, NY,

681–682.

[13] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. 2014. Sourcerer: An infrastructure for large-scale collection and

analysis of open-source code. Science of Computer Programming 79, Suppl. C (Jan. 2014), 241–259.

[14] Sushil Krishna Bajracharya and Cristina Videira Lopes. 2010. Analyzing and mining a code search engine usage log.

Empirical Software Engineering 17, 4-5 (Sept. 2010), 424–466.

[15] Sushil Krishna Bajracharya and Cristina Videira Lopes. 2012. Analyzing and mining a code search engine usage log.

Empirical Software Engineering 17, 4 (2012), 424–466.

[16] S. Baltes, R. Kiefer, and S. Diehl. 2017. Attribution required: Stack Overflow code snippets in GitHub projects. In

Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C’17).

[17] E. A. Barbosa, A. Garcia, and M. Mezini. 2012. Heuristic strategies for recommendation of exception handling code.

In Proceedings of the 2012 26th Brazilian Symposium on Software Engineering. 171–180.

[18] E. A. Barbosa, A. Garcia, and M. Mezini. 2012. A recommendation system for exception handling code. In Proceedings

of the 2012 5th International Workshop on Exception Handling (WEH’12). 52–54.

[19] Ohad Barzilay, Christoph Treude, and Alexey Zagalsky. 2013. Facilitating crowd sourced software engineering via

stack overflow. In Finding Source Code on the Web for Remix and Reuse. Springer, New York, NY, 289–308.

[20] S. Bazrafshan, R. Koschke, and N. Gode. 2011. Approximate code search in program histories. In Proceedings of the

2011 18th Working Conference on Reverse Engineering. 109–118.

[21] Kent Beck. 2003. Test-Driven Development: By Example. Addison-Wesley Professional.

[22] Farnaz Behrang, Steven P. Reiss, and Alessandro Orso. 2018. GUIFetch: Supporting app design and development

through GUI search. In Proceedings of the 5th International Conference on Mobile Software Engineering and Systems.

ACM, New York, NY, 236–246.

[23] Sumit Bhatia, Suppawong Tuarob, Prasenjit Mitra, and C. Lee Giles. 2011. An algorithm search engine for software

developers. In Proceedings of the 3rd International Workshop on Search-Driven Development: Users, Infrastructure, Tools,

and Evaluation. ACM, New York, NY, 13–16.

[24] T. F. Bissyande, F. Thung, D. Lo, Lingxiao Jiang, and L. Reveillere. 2013. Orion: A software project search engine

with integrated diverse software artifacts. In Proceedings of the 2013 18th International Conference on Engineering of

Complex Computer Systems (ICECCS’13). 242–245.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://onedrive.live.com/?authkey=%21AKDB2aMepVDO8as&id=8BFCB70AA333DB15%21260605&cid=8BFCB70AA333DB15&parId=root&parQt=sharedby&o=OneUp
https://github.com/clonebench/BigCloneBench

Big Code Search: A Bibliography 25:37

[25] Bitbucket. 2022. Home Page. Retrieved June 26, 2023 from https://bitbucket.org.

[26] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning

Research 3 (March 2003), 993–1022.

[27] Alessandro Bozzon, Marco Brambilla, and Piero Fraternali. 2010. Searching repositories of web application models.

In Web Engineering. Springer, Berlin, Germany, 1–15.

[28] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung, Joshua Kaplan, Christopher

Coleman, Ferdi Adeputra, and Joseph J. LaViola Jr. 2010. Code bubbles: Rethinking the user interface paradigm of

integrated development environments. In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering, Vol. 1. 455–464.

[29] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua Kaplan, Christopher

Coleman, Ferdi Adeputra, and Joseph J. LaViola Jr. 2010. Code bubbles: A working set-based interface for code un-

derstanding and maintenance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

2503–2512.

[30] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of opportunistic

programming: Interleaving web foraging, learning, and writing code. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. ACM, New York, NY, 1589–1598.

[31] John R. Brown and R. H. Hoffman. 1972. Evaluating the effectiveness of software verification: Practical experience

with an automated tool. In Proceedings of Fall Joint Computer Conference, Part I. 181–190.

[32] Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning from examples to improve code completion

systems. In Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering. 213–222.

[33] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code

search. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering. ACM, New York, NY, 964–974.

[34] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code snippet content assist via natural language

tasks. In Proceedings of the 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME’17).

628–632.

[35] Claudio Carpineto and Giovanni Romano. 2012. A survey of automatic query expansion in information retrieval.

ACM Computing Surveys 44, 1 (2012), Article 1, 50 pages.

[36] Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API subgraph via text phrases. In Proceed-

ings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM, New York,

NY, 1–11.

[37] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo:

Cross-architecture cross-os binary search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering. 678–689.

[38] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. 2009. SNIFF: A search engine for Java using free-form queries.

In Fundamental Approaches to Software Engineering. Springer, Berlin, Germany, 385–400.

[39] Chi Chen, Xin Peng, Jun Sun, Zhenchang Xing, Xin Wang, Yifan Zhao, Hairui Zhang, and Wenyun Zhao. 2019.

Generative API usage code recommendation with parameter concretization. Science China Information Sciences 62, 9

(2019), 192103.

[40] Chi Chen, Xin Peng, Zhenchang Xing, Jun Sun, Xin Wang, Yifan Zhao, and Wenyun Zhao. 2020. Holistic combination

of structural and textual code information for context based API recommendation. arXiv:2010.07514 [cs] (2020). https:

//arxiv.org/abs/2010.07514v1.

[41] Hao Chen, Shi Ying, Jin Liu, and Wei Wang. 2004. SE4SC: A specific search engine for software components. In

Proceedings of the 2004 4th International Conference on Computer and Information Technology (CIT’04). IEEE, Los

Alamitos, CA, 863–868.

[42] Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and summarization of source code. In

Proceedings of the 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE’18). 826–831.

[43] Zhengzhao Chen, Renhe Jiang, Zejun Zhang, Yu Pei, Minxue Pan, Tian Zhang, and Xuandong Li. 2020. Enhancing

example-based code search with functional semantics. Journal of Systems and Software 165 (2020), 110568.

[44] Tabnine. 2022. Home Page. Retrieved April 1, 2022 from https://www.codota.com/.

[45] Collin McMillan. 2011. Finding relevant functions in millions of lines of code. In Proceedings of the 33rd International

Conference on Software Engineering. ACM, New York, NY, 1170–1172.

[46] Megan Conklin. 2007. Project entity matching across FLOSS repositories. In Open Source Development, Adoption and

Innovation (IFIP—The International Federation for Information Processing). Springer, Boston, MA, 45–57.

[47] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine Learning 20, 3 (1995), 273–297.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://bitbucket.org
https://arxiv.org/abs/2010.07514v1
https://www.codota.com/

25:38 K. Kim et al.

[48] B. Dagenais and M. P. Robillard. 2012. Recovering traceability links between an API and its learning resources. In

Proceedings of the 2012 34th International Conference on Software Engineering (ICSE’12). 47–57.

[49] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation. ACM, New York, NY, 349–360.

[50] Janet E. Davidson and Robert J. Sternberg (Eds.). 2003. The Psychology of Problem Solving. Cambridge University

Press.

[51] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems. 337–340.

[52] Marcelo de Rezende Martins and Marco Aurélio Gerosa. 2020. CoNCRA: A convolutional neural networks code

retrieval approach. In Proceedings of the 34th Brazilian Symposium on Software Engineering. ACM, New York, NY,

526–531.

[53] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman. 1990. Indexing

by latent semantic analysis. Journal of the American Society for Information Science 41, 6 (Sept. 1990), 391–407.

[54] U. Dekel and J. D. Herbsleb. 2009. Improving API documentation usability with knowledge pushing. In Proceedings

of the 2009 IEEE 31st International Conference on Software Engineering. 320–330.

[55] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. 2001. FAMIX 2.1—The FAMOOS Information Exchange Model.

Technical Report. University of Bern.

[56] Luca Di Grazia and Michael Pradel. 2023. Code search: A survey of techniques for finding code. ACM Computing

Surveys 55, 11 (2023), 1–31.

[57] T. Diamantopoulos, K. Thomopoulos, and A. Symeonidis. 2016. QualBoa: Reusability-aware recommendations of

source code components. In Proceedings of the 2016 IEEE/ACM 13th Working Conference on Mining Software Reposito-

ries (MSR’16). 488–491.

[58] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013. Feature location in source code: A

taxonomy and survey. Journal of Software: Evolution and Process 25, 1 (2013), 53–95.

[59] Donzhen Wen, Liang Yang 0003, Yingying Zhang, Yuan Lin, Kan Xu, and Hongfei Lin. 2020. Multi-level semantic

representation model for code search. In Proceedings of the Joint Conference of the Information Retrieval Communities

in Europe (CIRCLE’20).

[60] Horatiu Dumitru, Marek Gibiec, Negar Hariri, Jane Cleland-Huang, Bamshad Mobasher, Carlos Castro-Herrera, and

Mehdi Mirakhorli. 2011. On-demand feature recommendations derived from mining public product descriptions. In

Proceedings of the 33rd International Conference on Software Engineering. 181–190.

[61] Frederico A. Durão, Taciana A. Vanderlei, Eduardo S. Almeida, and Silvio R. de L. Meira. 2008. Applying a semantic

layer in a source code search tool. In Proceedings of the 2008 ACM Symposium on Applied Computing. ACM, New

York, NY, 1151–1157.

[62] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2015. Boa: Ultra-large-scale software repository

and source-code mining. ACM Transactions on Software Engineering Methodology 25, 1 (2015), Article 7, 34 pages.

[63] Françoise Détienne and Frank Bott. 2001. Software Design—Cognitive Aspects. Springer-Verlag.

[64] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861–874.

[65] Gerhard Fischer, Scott Henninger, and David Redmiles. 1991. Cognitive tools for locating and comprehending soft-

ware objects for reuse. In Proceedings of the 13th International Conference on Software Engineering. 318–328.

[66] Denis Foo Kune and Yongdae Kim. 2010. Timing attacks on pin input devices. In Proceedings of the 17th ACM Con-

ference on Computer and Communications Security. 678–680.

[67] W. B. Frakes and B. A. Nejmeh. 1986. Software reuse through information retrieval. ACM SIGIR Forum 21, 1 (1986),

30–36.

[68] Yuji Fujiwara, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. 2019. Code-to-code search based on deep neural

network and code mutation. In Proceedings of the 2019 IEEE 13th International Workshop on Software Clones (IWSC’19).

1–7.

[69] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais. 1987. The vocabulary problem in

human-system communication. Communications of the ACM 30, 11 (1987), 964–971.

[70] Mark Gabel and Zhendong Su. 2010. A study of the uniqueness of source code. In Proceedings of the 18th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. 147–156.

[71] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik Sen. 2014. CodeHint: Dynamic and

interactive synthesis of code snippets. In Proceedings of the 36th International Conference on Software Engineering.

ACM, New York, NY, 653–663.

[72] Rosalva E. Gallardo-Valencia and Susan Elliott Sim. 2009. Internet-scale code search. In Proceedings of the 2009 ICSE

Workshop on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation. IEEE, Los Alamitos, CA, 49–52.

[73] Gitlab. 2022. Kernel.org Git Repositories. Retrieved January 26, 2023 from https://git.kernel.org.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://git.kernel.org

Big Code Search: A Bibliography 25:39

[74] Google. 2022. Home Page. Retrieved June 26, 2023 from https://www.google.com.

[75] Google Code Jam. Home Page. 2022. Retrieved April 1, 2022 from https://developers.googleblog.com/2023/05/

celebrate-googles-coding-competitions.html.

[76] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman. 2014. Lean GHTorrent: GitHub data

on demand. In Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, New York, NY.

[77] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshyvanyk, and Chad Cumby. 2010. EXEMPLAR: EX-

Ecutable exaMPLes ARchive. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering,

Vol. 2. ACM, New York, NY, 259–262.

[78] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby. 2010. A search engine for finding highly

relevant applications. In Proceedings of the ACM/IEEE 32nd International Conference on Software Engineering, Vol. 1.

475–484.

[79] Wenchao Gu, Zongjie Li, Cuiyun Gao, Chaozheng Wang, Hongyu Zhang, Zenglin Xu, and Michael R. Lyu. 2020.

CRaDLe: Deep code retrieval based on semantic dependency learning. arXiv:2012.01028 (2020).

[80] X. Gu, H. Zhang, and S. Kim. 2018. Deep code search. In Proceedings of the 2018 IEEE/ACM 40th International Confer-

ence on Software Engineering (ICSE’18). 933–944.

[81] X. Gu, H. Zhang, and S. Kim. 2019. CodeKernel: A graph kernel based approach to the selection of API usage examples.

In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19). 590–

601.

[82] Florian S. Gysin. 2010. Improved social trustability of code search results. In Proceedings of the 32nd ACM/IEEE Inter-

national Conference on Software Engineering, Vol. 2. ACM, New York, NY, 513–514.

[83] Florian S. Gysin and Adrian Kuhn. 2010. A trustability metric for code search based on developer karma. In Proceed-

ings of 2010 ICSE Workshop on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation. ACM, New

York, NY, 41–44.

[84] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia, and Tim Menzies. 2013. Automatic

query reformulations for text retrieval in software engineering. In Proceedings of the 2013 International Conference

on Software Engineering. IEEE, Los Alamitos, CA, 842–851.

[85] Sonia Haiduc, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Andrian Marcus. 2013. Query

quality prediction and reformulation for source code search: The Refoqus tool. In Proceedings of the 2013 International

Conference on Software Engineering. IEEE, Los Alamitos, CA, 1307–1310.

[86] Rajarshi Haldar, Lingfei Wu, Jinjun Xiong, and Julia Hockenmaier. 2020. A Multi-perspective architecture for seman-

tic code search. arXiv:2005.06980 [cs] (2020).

[87] Vincent J. Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks the best choice for modeling

source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 763–773.

[88] S. Henninger. 1994. Using iterative refinement to find reusable software. IEEE Software 11, 5 (Sept. 1994), 48–59.

[89] Geert Heyman and Tom Van Cutsem. 2020. Neural code search revisited: Enhancing code snippet retrieval through

natural language intent. arXiv:2008.12193 (2020).

[90] Emily Hill. 2010. Integrating Natural Language and Program Structure Information to Improve Software Search and

Exploration. University of Delaware.

[91] Emily Hill, Lori Pollock, and K. Vijay-Shanker. 2009. Automatically capturing source code context of NL-queries for

software maintenance and reuse. In Proceedings of the 31st International Conference on Software Engineering. IEEE,

Los Alamitos, CA, 232–242.

[92] Emily Hill, Lori Pollock, and K. Vijay-Shanker. 2011. Improving source code search with natural language phrasal rep-

resentations of method signatures. In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering. IEEE, Los Alamitos, CA, 524–527.

[93] Emily Hill, Manuel Roldan-Vega, Jerry Alan Fails, and Greg Mallet. 2014. NL-based query refinement and contextu-

alized code search results: A user study. In Proceedings of 2014 Software Evolution Week: IEEE Conference on Software

Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE’14). 34–43.

[94] Reid Holmes. 2009. Do developers search for source code examples using multiple facts? In Proceedings of the 2009

ICSE Workshop on Search-Driven : Users, Infrastructure, Tools, and Evaluation. IEEE, Los Alamitos, CA, 13–16.

[95] Reid Holmes and Gail C. Murphy. 2005. Using structural context to recommend source code examples. In Proceedings

of the 27th International Conference on Software Engineering. ACM, New York, NY, 117–125.

[96] Reid Holmes, Robert J. Walker, and Gail C. Murphy. 2005. Strathcona example recommendation tool. In Proceedings of

the 10th European Software Engineering Conference Held Jointly with the 13th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, New York, NY, 237–240.

[97] R. Holmes, R. J. Walker, and G. C. Murphy. 2006. Approximate structural context matching: An approach to recom-

mend relevant examples. IEEE Transactions on Software Engineering 32, 12 (2006), 952–970.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://www.google.com
https://developers.googleblog.com/2023/05/celebrate-googles-coding-competitions.html

25:40 K. Kim et al.

[98] Adrian Holovaty and Jacob Kaplan-Moss. 2009. The Definitive Guide to DJANGO: Web Development Done Right.

Apress.

[99] James Howison, Megan Squire, and Kevin Crowston. 2008. FLOSSmole: A collaborative repository for FLOSS research

data and analyses. International Journal of Information Technology and Web Engineering 1 (Sept. 2008), 17–26.

[100] Sheng-Kuei Hsu and Shi-Jen Lin. 2011. A block-structured model for source code retrieval. In Intelligent Information

and Database Systems, Ngoc Thanh Nguyen, Chong-Gun Kim, and Adam Janiak (Eds.). Springer, 161–170.

[101] Sheng-Kuei Hsu and Shi-Jen Lin. 2011. A block-structured model for source code retrieval. In Intelligent Information

and Database Systems. Springer, Berlin, Germany, 161–170.

[102] Gang Hu, Min Peng, Yihan Zhang, Qianqian Xie, Wang Gao, and Mengting Yuan. 2020. Unsupervised software

repositories mining and its application to code search. Software: Practice and Experience 50, 3 (2020), 299–322.

[103] Gang Hu, Min Peng, Yihan Zhang, Qianqian Xie, and Mengting Yuan. 2020. Neural joint attention code search over

structure embeddings for software Q&A sites. Journal of Systems and Software 170 (2020), 110773.

[104] Q. Huang, A. Qiu, M. Zhong, and Y. Wang. 2020. A code-description representation learning model based on atten-

tion. In Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution, and Reengineering

(SANER’20). 447–455.

[105] Qing Huang, Xudong Wang, Yangrui Yang, Hongyan Wan, Rui Wang, and Guoqing Wu. 2017. SnippetGen:Enhancing

the code search via intent predicting. In Proceedings of the 29th International Conference on Software Engineering and

Knowledge Engineering. 307–312.

[106] Qing Huang and Guoqing Wu. 2019. Enhance code search via reformulating queries with evolving contexts. Auto-

mated Software Engineering 26, 4 (2019), 705–732.

[107] Qing Huang and Huaiguang Wu. 2019. QE-integrating framework based on GitHub knowledge and SVM ranking.

Science China Information Sciences 62, 5 (2019), 52102.

[108] Qing Huang, Yang Yang, and Ming Cheng. 2019. Deep learning the semantics of change sequences for query expan-

sion. Software: Practice and Experience 49, 11 (2019), 1600–1617.

[109] Qing Huang, Yangrui Yang, Xue Zhan, Hongyan Wan, and Guoqing Wu. 2018. Query expansion based on statistical

learning from code changes. Software: Practice and Experience 48, 7 (2018), 1333–1351.

[110] Y. Huang, Q. Kong, N. Jia, X. Chen, and Z. Zheng. 2019. Recommending differentiated code to support smart contract

update. In Proceedings of the 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC’19). 260–

270.

[111] O. Hummel, W. Janjic, and C. Atkinson. 2008. Code conjurer: Pulling reusable software out of thin air. IEEE Software

25, 5 (2008), 45–52.

[112] Hamel Husain. 2018. Towards natural language semantic code search. GitHub Blog. Retrieved June 26, 2023 from

https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/.

[113] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet

challenge: Evaluating the state of semantic code search. arXiv:1909.09436 (2019).

[114] M. M. Islam and R. Iqbal. 2020. SoCeR: A new source code recommendation technique for code reuse. In Proceedings

of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference. 1552–1557.

[115] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a neural

attention model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers). 2073–2083.

[116] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a neural

attention model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers). 2073–2083.

[117] Werner Janjic, Dietmar Stoll, Philipp Bostan, and Colin Atkinson. 2009. Lowering the barrier to reuse through test-

driven search. In Proceedings of the 2009 ICSE Workshop on Search-Driven Development: Users, Infrastructure, Tools,

and Evaluation. IEEE, Los Alamitos, CA, 21–24.

[118] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Transactions

on Information Systems 20, 4 (2002), 422–446.

[119] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo. 2016. ROSF: Leveraging information retrieval and

supervised learning for recommending code snippets. IEEE Transactions on Services Computing 12, 1 (2016), 34–46.

[120] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equivalent code fragments via random

testing. In Proceedings of the 18th International Symposium on Software Testing and Analysis. ACM, New York, NY,

81–92.

[121] Renhe Jiang, Zhengzhao Chen, Zejun Zhang, Yu Pei, Minxue Pan, and Tian Zhang. 2018. Semantics-based code

search using input/output examples. In Proceedings of the 2018 IEEE 18th International Working Conference on Source

Code Analysis and Manipulation (SCAM’18). 92–102.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/

Big Code Search: A Bibliography 25:41

[122] Huan Jin and Lei Xiong. 2019. A query expansion method based on evolving source code. Wuhan University Journal

of Natural Sciences 24, 5 (2019), 391–399.

[123] Toshihiro Kamiya. 2021. CCFinderX: An interactive code clone analysis environment. In Code Clone Analysis.

Springer, 31–44.

[124] Vineeth Kashyap, David Bingham Brown, Ben Liblit, David Melski, and Thomas Reps. 2017. Source Forager: A search

engine for similar source code. arXiv:1706.02769 (2017).

[125] Amandeep Kaur and Gaurav Dhiman. 2019. A review on search-based tools and techniques to identify bad code smells

in object-oriented systems. In Harmony Search and Nature Inspired Optimization Algorithms: Theory and Applications.

Advances in Intelligent Systems and Computing, Vol. 741. Springer, 909–921.

[126] Iman Keivanloo, Juergen Rilling, and Philippe Charland. 2011. SeClone—A hybrid approach to Internet-scale real-

time code clone search. In Proceedings of the 2011 IEEE 19th International Conference on Program Comprehension.

IEEE, Los Alamitos, CA, 223–224.

[127] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code examples. In Proceedings of the 36th

International Conference on Software Engineering. ACM, New York, NY, 664–675.

[128] I. Keivanloo, L. Roostapour, P. Schugerl, and J. Rilling. 2010. SE-CodeSearch: A scalable semantic Web-based source

code search infrastructure. In Proceedings of the 2010 IEEE International Conference on Software Maintenance. 1–5.

[129] Marcus Kessel and Colin Atkinson. 2018. Integrating reuse into the rapid, continuous software engineering cycle

through test-driven search. In Proceedings of the 2018 IEEE/ACM 4th International Workshop on Rapid Continuous

Software Engineering (RCoSE’18). 8–11.

[130] W. M. Khoo, A. Mycroft, and R. Anderson. 2013. Rendezvous: A search engine for binary code. In Proceedings of the

2013 10th Working Conference on Mining Software Repositories (MSR’13). 329–338.

[131] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011. MeCC: Memory comparison-based clone de-

tector. In Proceedings of the 2011 33rd International Conference on Software Engineering (ICSE’11). 301–310.

[132] Jinhan Kim, Sanghoon Lee, Seung-Won Hwang, and Sunghun Kim. 2010. Towards an intelligent code search engine.

In Proceedings of the 24th Conference on Artificial Intelligence.

[133] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques Klein, and Yves Le Traon. 2018.

FaCOY—A code-to-code search engine. In Proceedings of the 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE’18). 946–957.

[134] Krugle. 2022. Home Page. Retrieved June 26, 2023 from http://krugle.com.

[135] Daniel E. Krutz and Emad Shihab. 2013. CCCD: Concolic code clone detection. In Proceedings of the 2013 20th Working

Conference on Reverse Engineering (WCRE’13). 489–490.

[136] Frederick Wilfrid Lancaster and Emily Gallup. 1973. Information Retrieval On-Line. Technical Report. Melville Pub-

lishing Company.

[137] Otávio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar Masiero, and Cristina Lopes. 2009.

Applying test-driven code search to the reuse of auxiliary functionality. In Proceedings of the 2009 ACM Symposium

on Applied Computing. ACM, New York, NY, 476–482.

[138] Otávio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar Masiero, and Cristina Lopes. 2011.

A test-driven approach to code search and its application to the reuse of auxiliary functionality. Information and

Software Technology 53, 4 (2011), 294–306.

[139] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher. 2007. CodeGenie: A tool for test-

driven source code search. In Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming

Systems and Applications Companion. ACM, New York, NY, 917–918.

[140] Shin-Jie Lee, Xavier Lin, Wu-Chen Su, and Hsi-Min Chen. 2018. A comment-driven approach to API usage patterns

discovery and search. Journal of Internet Technology 19, 5 (2018), 1587–1601.

[141] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, Joel Ossher, Ricardo Santos Morla, Paulo Cesar

Masiero, Pierre Baldi, and Cristina Videira Lopes. 2007. CodeGenie: Using test-cases to search and reuse source

code. In Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering. ACM, New

York, NY, 525–526.

[142] Otávio A. L. Lemos, Adriano C. de Paula, Felipe C. Zanichelli, and Cristina V. Lopes. Thesaurus-based automatic

query expansion for interface-driven code search. In Proceedings of the 11th Working Conference on Mining Software

Repositories. ACM, New York, NY, 212–221.

[143] Otavio Augusto Lazzarini Lemos, Adriano Carvalho de Paula, Gustavo Konishi, Joel Ossher, Sushil Bajracharya, and

Cristina Lopes. Using thesaurus-based tag clouds to improve test-driven code search. In Proceedings of the 2013 VII

Brazilian Symposium on Software Components, Architectures, and Reuse. 99–108.

[144] O. A. L. Lemos, A. C. de Paula, H. Sajnani, and C. V. Lopes. 2015. Can the use of types and query expansion help

improve large-scale code search? In Proceedings of the IEEE 15th International Working Conference on Source Code

Analysis and Manipulation. 41–50.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

http://krugle.com

25:42 K. Kim et al.

[145] Hongyu Li, Seohyun Kim, and Satish Chandra. 2019. Neural code search evaluation dataset. arXiv:1908.09804 (2019).

[146] R. Li, G. Hu, and M. Peng. 2020. Hierarchical embedding for code search in software Q&A sites. In Proceedings of the

2020 International Joint Conference on Neural Networks (IJCNN’20). 1–10.

[147] Shengying Li. 2004. A Survey on Tools for Binary Code Analysis. Stony Brook University, 37–52.

[148] Sihan Li, Xusheng Xiao, Blake Bassett, Tao Xie, and Nikolai Tillmann. 2016. Measuring code behavioral similarity

for programming and software engineering education. In Proceedings of the 38th International Conference on Software

Engineering Companion. ACM, New York, NY, 501–510.

[149] W. Li, H. Qin, S. Yan, B. Shen, and Y. Chen. 2020. Learning code-query interaction for enhancing code searches. In

Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME’20). 115–126.

[150] Wei Li, Shuhan Yan, Beijun Shen, and Yuting Chen. 2019. Reinforcement learning of code search sessions. In Proceed-

ings of the 2019 26th Asia-Pacific Software Engineering Conference (APSEC’19). 458–465.

[151] Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei. 2016. Relationship-aware code search

for JavaScript frameworks. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, New York, NY, 690–701.

[152] Yang Li, Suhang Wang, Quan Pan, Haiyun Peng, Tao Yang, and Erik Cambria. 2019. Learning binary codes with

neural collaborative filtering for efficient recommendation systems. Knowledge-Based Systems 172 (2019), 64–75.

[153] Zhixing Li, Tao Wang, Yang Zhang, Yun Zhan, and Gang Yin. 2016. Query reformulation by leveraging crowd wisdom

for scenario-based software search. In Proceedings of the 8th Asia-Pacific Symposium on Internetware. ACM, New York,

NY, 36–44.

[154] Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2020. Adaptive deep code search. In Proceedings of the 28th

International Conference on Program Comprehension. 48–59.

[155] Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu, Alex X. Liu, Chunming Wu, and Shoul-

ing Ji. 2020. Deep graph matching and searching for semantic code retrieval. arXiv:2010.12908 (2020).

[156] Linus Torvalds and Junio C. Hamano. 2022. Home Page. Retrieved April 1, 2022 from https://git-scm.com/.

[157] Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2020. On the replicability and reproducibil-

ity of deep learning in software engineering. arXiv preprint arXiv:2006.14244 (2020).

[158] Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. 2020. Opportunities and challenges in

code search tools. arXiv:2011.02297 [cs] (Nov. 2020).

[159] Chao Liu, Xin Xia, David Lo, Zhiwei Liu, Ahmed E. Hassan, and Shanping Li. 2020. Simplifying deep-learning-based

model for code search. arXiv:2005.14373 (2020).

[160] Jason Liu, Seohyun Kim, Vijayaraghavan Murali, Swarat Chaudhuri, and Satish Chandra. 2019. Neural query ex-

pansion for code search. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and

Programming Languages. ACM, New York, NY, 29–37.

[161] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé. 2018. LSRepair: Live search of fix

ingredients for automated program repair. In Proceedings of the 2018 25th Asia-Pacific Software Engineering Conference

(APSEC’18). IEEE, Los Alamitos, CA, 658–662.

[162] Wenjian Liu, Xin Peng, Zhenchang Xing, Junyi Li, Bing Xie, and Wenyun Zhao. 2018. Supporting exploratory code

search with differencing and visualization. In Proceedings of the 2018 IEEE 25th International Conference on Software

Analysis, Evolution, and Reengineering. 300–310.

[163] Angela Lozano, Andy Kellens, and Kim Mens. 2011. Mendel: Source code recommendation based on a genetic

metaphor. In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering.

IEEE, Los Alamitos, CA, 384–387.

[164] Jinting Lu, Ying Wei, Xiaobing Sun, Bin Li, Wanzhi Wen, and Cheng Zhou. 2018. Interactive query reformulation for

source-code search with word relations. IEEE Access 6 (2018), 75660–75668.

[165] Meili Lu, X. Sun, S. Wang, D. Lo, and Yucong Duan. 2015. Query expansion via WordNet for effective code search.

In Proceedings of the 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering

(SANER’15). 545–549.

[166] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019. Aroma: Code recommendation via

structural code search. Proceedings of the ACM on Programming Languages 3 (2019), Article 152, 28 pages.

[167] George F. Luger, P. Johnson, C. Sterm, Jean E. Newman, and Ronald Yeo. 1994. Cognitive Science: The Science of

Intelligent Systems. Academic Press.

[168] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. 2008. Source code retrieval for bug localization using latent Dirichlet

allocation. In Proceedings of the 2008 15th Working Conference on Reverse Engineering. 155–164.

[169] Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. 2015. CodeHow: Effective

code search based on API understanding and extended Boolean model. In Proceedings of the 2015 30th IEEE/ACM

International Conference on Automated Software Engineering. 260–270.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://git-scm.com/

Big Code Search: A Bibliography 25:43

[170] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira. 2012. A source code recommender system to support newcomers.

In Proceedings of the 2012 IEEE 36th Annual Computer Software and Applications Conference. 19–24.

[171] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid mining: Helping to navigate the API

jungle. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation.

ACM, New York, NY, 48–61.

[172] Christopher D. Manning, Hinrich Schütze, and Prabhakar Raghavan. 2008. Introduction to Information Retrieval. Cam-

bridge University Press.

[173] L. W. Mar, Y. Wu, and H. C. Jiau. 2011. Recommending proper API code examples for documentation purpose. In

Proceedings of the 2011 18th Asia-Pacific Software Engineering Conference. 331–338.

[174] Gary Marchionini. 2006. Exploratory search: From finding to understanding. Communications of the ACM 49, 4 (2006),

41–46.

[175] L. Martie and A. van der Hoek. 2013. Toward social-technical code search. In Proceedings of the 2013 6th International

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE’13). 101–104.

[176] Lee Martie, André van der Hoek, and Thomas Kwak. 2017. Understanding the impact of support for iteration on

code search. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, New York,

NY, 774–785.

[177] L. Martie, T. D. LaToza, and A. van der Hoek. 2015. CodeExchange: Supporting reformulation of Internet-scale code

queries in context (T). In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE’15). 24–35.

[178] Lee Martie and André van der Hoek. 2015. Sameness: An experiment in code search. In Proceedings of the 12th

Working Conference on Mining Software Repositories. IEEE, Los Alamitos, CA, 76–87.

[179] Max Howell. 2022. Homebrew. Retrieved June 26, 2023 from https://brew.sh.

[180] C. McMillan, M. Grechanik, D. Poshyvanyk, Chen Fu, and Qing Xie. 2012. Exemplar: A source code search engine

for finding highly relevant applications. IEEE Transactions on Software Engineering 38, 5 (2012), 1069–1087.

[181] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. 2011. Portfolio: Finding relevant

functions and their usage. In Proceeding of the 33rd International Conference on Software Engineering. ACM, New

York, NY, 111–120.

[182] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B. Mobasher. 2012. Recommending source code for

use in rapid software prototypes. In Proceedings of the 2012 34th International Conference on Software Engineering

(ICSE’12). 848–858.

[183] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. 2010. Recommending source code examples via API call

usages and documentation. In Proceedings of the 2nd International Workshop on Recommendation Systems for Software

Engineering. ACM, New York, NY, 21–25.

[184] Collin Mcmillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu. 2013. Portfolio: Searching for relevant

functions and their usages in millions of lines of code. ACM Transactions on Software Engineering and Methodology

22, 4 (2013), Article 37, 30 pages.

[185] Microsoft. 2022. Microsoft Bing. Retrieved June 26, 2023 from https://www.bing.com.

[186] Alon Mishne, Sharon Shoham, and Eran Yahav. 2012. Typestate-based semantic code search over partial programs. In

Proceedings of the ACM International Conference on Object-Oriented Programming Systems Languages and Applications.

ACM, New York, NY, 997–1016.

[187] A. Mockus. 2009. Amassing and indexing a large sample of version control systems: Towards the census of public

source code history. In Proceedings of the 2009 6th International Working Conference on Mining Software Repositories.

11–20.

[188] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian Marcus. 2015. How can I use

this method? In Proceedings of the 37th International Conference on Software Engineering, Vol. 1. IEEE, Los Alamitos,

CA, 880–890.

[189] Ibrahim Jameel Mujhid, Joanna C. S. Santos, Raghuram Gopalakrishnan, and Mehdi Mirakhorli. 2017. A search engine

for finding and reusing architecturally significant code. Journal of Systems and Software 130 (Aug. 2017), 81–93.

[190] Rohan Mukherjee, Swarat Chaudhuri, and Chris Jermaine. 2020. Searching a database of source codes using contex-

tualized code search. arXiv:2001.03277 (2020).

[191] Naoya Murakami and Hidehiko Masuhara. 2012. Optimizing a search-based code recommendation system. In Pro-

ceedings of the 3rd International Workshop on Recommendation Systems for Software Engineering. IEEE, Los Alamitos,

CA, 68–72.

[192] Naoya Murakami, Hidehiko Masuhara, and Tomoyuki Aotani. 2014. Code recommendation based on a degree-of-

interest model. In Proceedings of the 4th International Workshop on Recommendation Systems for Software Engineering.

ACM, New York, NY, 28–29.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://brew.sh
https://www.bing.com

25:44 K. Kim et al.

[193] Takuma Murakami, Zhenjiang Hu, Shingo Nishioka, Akihiko Takano, and Masato Takeichi. 2004. An algebraic in-

terface for GETA search engine. In Proceedings of the Program and Programming Language Workshop.

[194] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast, Eli Rademacher, Tien N. Nguyen,

and Danny Dig. 2016. API code recommendation using statistical learning from fine-grained changes. In Proceedings

of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, New York, NY,

511–522.

[195] Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2011. A topic-

based approach for narrowing the search space of buggy files from a bug report. In Proceedings of the 2011 26th

IEEE/ACM International Conference on Automated Software Engineering (ASE’11). IEEE, Los Alamitos, CA, 263–272.

[196] T. Nguyen, P. Vu, and T. Nguyen. 2019. Personalized code recommendation. In Proceedings of the 2019 IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME’19). 313–317.

[197] T. Nguyen, P. Vu, and T. Nguyen. 2019. Recommending exception handling code. In Proceedings of the 2019 IEEE

International Conference on Software Maintenance and Evolution (ICSME’19). 390–393.

[198] Tam The Nguyen, Phong Minh Vu, and Tung Thanh Nguyen. 2019. Code search on bytecode for mobile APP devel-

opment. In Proceedings of the 2019 ACM Southeast Conference. ACM, New York, NY, 253–256.

[199] Tam The Nguyen, Phong Minh Vu, and Tung Thanh Nguyen. 2019. Recommendation of exception handling code in

mobile APP development. arXiv:1908.06567 (2019).

[200] T. Van Nguyen, A. T. Nguyen, H. D. Phan, T. D. Nguyen, and T. N. Nguyen. 2017. Combining Word2Vec with revised

vector space model for better code retrieval. In Proceedings of the 2017 IEEE/ACM 39th International Conference on

Software Engineering Companion (ICSE-C’17). 183–185.

[201] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li. 2016. Query expansion based on crowd knowledge for code search. IEEE

Transactions on Services Computing 9 (Sept. 2016), 771–783.

[202] H. Niu. 2015. Improving Code Search Using Learning-to-Rank and Query Reformulation Techniques. Master’s thesis.

Queen’s University, Canada.

[203] Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Learning to rank code examples for code search engines. Empirical

Software Engineering 22 (2017), 1–33.

[204] OpenHub. 2022. Synopsis/Black Duck Open Hub. Retrieved June 26, 2023 from https://www.openhub.net.

[205] Oracle. 2022. Java Platform, Standard Edition 7, API Specification. Retrieved June 26, 2023 from https://docs.oracle.

com/javase/7/docs/api/.

[206] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M. German, and Katsuro Inoue. 2017.

Search-based software library recommendation using multi-objective optimization. Information and Software Tech-

nology 83, Suppl. C (2017), 55–75.

[207] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008. Documenting and automating collateral

evolutions in Linux device drivers. ACM SIGOPS Operating Systems Review 42, 4 (2008), 247–260.

[208] P. Pathak, M. Gordon, and Weiguo Fan. 2000. Effective information retrieval using genetic algorithms based matching

functions adaptation. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[209] Raphael Pham, Yauheni Stoliar, and Kurt Schneider. 2015. Automatically recommending test code examples to in-

experienced developers. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,

New York, NY, 890–893.

[210] Nina Phan, Peter Bailey, and Ross Wilkinson. 2007. Understanding the relationship of information need specificity

to search query length. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval. ACM, New York, NY, 709–710.

[211] Iasonas Polakis, Georgios Kontaxis, Spiros Antonatos, Eleni Gessiou, Thanasis Petsas, and Evangelos P. Markatos.

2010. Using social networks to harvest email addresses. In Proceedings of the 9th Annual ACM Workshop on Privacy

in the Electronic Society. 11–20.

[212] Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020. Semantic code search via equational reasoning. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, New

York, NY, 1066–1082.

[213] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir Zolotov, Julian Dolby, et al.

2021. Project CodeNet: A large-scale ai for code dataset for learning a diversity of coding tasks. arXiv preprint

arXiv:2015.12655 (2021).

[214] M. Raghothaman, Y. Wei, and Y. Hamadi. 2016. SWIM: Synthesizing what I mean—Code search and idiomatic snippet

synthesis. In Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE’16). 357–

367.

[215] C. Ragkhitwetsagul. 2016. Measuring code similarity in large-scaled code corpora. In Proceedings of the 2016 Interna-

tional Conference on Software Maintenance and Evolution (ICSME’16). 626–630.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://www.openhub.net
https://docs.oracle.com/javase/7/docs/api/

Big Code Search: A Bibliography 25:45

[216] Mohammad Masudur Rahman and Chanchal Roy. 2018. Effective reformulation of query for code search using crowd-

sourced knowledge and extra-large data analytics. In Proceedings of the 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME’18). 473–484.

[217] Mohammad Masudur Rahman and Chanchal Roy. 2018. NLP2API: Query reformulation for code search using crowd-

sourced knowledge and extra-large data analytics. In Proceedings of the 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME’18). 714–714.

[218] M. M. Rahman and C. K. Roy. 2014. On the use of context in recommending exception handling code examples. In

Proceedings of the 2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation. 285–

294.

[219] Mohammad Masudur Rahman and Chanchal K. Roy. 2021. A systematic literature review of automated query refor-

mulations in source code search. arXiv preprint arXiv:2108.09646 (2021).

[220] Mohammad M. Rahman, Chanchal K. Roy, and David Lo. 2019. Automatic query reformulation for code search using

crowdsourced knowledge. Empirical Software Engineering 24, 4 (2019), 1869–1924.

[221] M. M. Rahman, C. K. Roy, and D. Lo. RACK: Code search in the IDE using crowdsourced knowledge. In Proceedings

of the 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C’17). 51–54.

[222] Karthik Ram. 2013. Git can facilitate greater reproducibility and increased transparency in science. Source Code for

Biology and Medicine 8 (Feb. 2013), 7.

[223] Steven P. Reiss. 2009. Semantics-based code search. In Proceedings of the 31st International Conference on Software

Engineering. IEEE, Los Alamitos, CA, 243–253.

[224] S. P. Reiss. 2009. Semantics-based code search demonstration proposal. In Proceedings of the 2009 IEEE International

Conference on Software Maintenance. 385–386.

[225] S. P. Reiss. 2009. Specifying what to search for. In Proceedings of the Tools and Evaluation 2009 ICSE Workshop on

Search-Driven Development: Users, Infrastructure, Tools, and Evaluation. 41–44.

[226] S. P. Reiss. 2013. Integrating S6 code search and Code Bubbles. In Proceedings of the 2013 3rd International Workshop

on Developing Tools as Plug-Ins (TOPI’13). 25–30.

[227] Steven P. Reiss, Yun Miao, and Qi Xin. 2018. Seeking the user interface. Automated Software Engineering 25, 1 (2018),

157–193.

[228] Leiming Ren, Shinmin Shan, Kai Wang, and Kun Xue. 2020. CSDA: A novel attention-based LSTM approach for code

search. Journal of Physics: Conference Series 1544 (2020), 012056.

[229] Romain Robbes and Michele Lanza. 2010. Improving code completion with program history. Automated Software

Engineering 17, 2 (2010), 181–212.

[230] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails. 2013. CONQUER: A tool for NL-based query refinement and

contextualizing code search results. In Proceedings of the 2013 IEEE International Conference on Software Maintenance.

512–515.

[231] Chanchal Kumar Roy and James R. Cordy. 2007. A survey on software clone detection research. Queen’s School of

Computing TR 541, 115 (2007), 64–68.

[232] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques. In Domain Engineering. Springer,

29–58.

[233] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. 2018. Retrieval on source

code: A neural code search. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning

and Programming Languages. ACM, New York, NY, 31–41.

[234] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How developers search for code: A case study.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, New York, NY,

191–201.

[235] Tobias Sager, Abraham Bernstein, Martin Pinzger, and Christoph Kiefer. 2006. Detecting similar Java classes using

tree algorithms. In Proceedings of the 2006 International Workshop on Mining Software Repositories. ACM, New York,

NY, 65–71.

[236] Naiyana Sahavechaphan and Kajal Claypool. 2006. XSnippet: Mining for sample code. ACM SIGPLAN Notices 41, 10

(2006), 413–430.

[237] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes. 2016. SourcererCC: Scaling

code clone detection to big-code. In Proceedings of the 38th International Conference on Software Engineering. ACM,

New York, NY, 1157–1168.

[238] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model for automatic indexing. Communica-

tions of the ACM 18, 11 (1975), 613–620.

[239] Huascar Sanchez. 2013. SNIPR: Complementing code search with code retargeting capabilities. In Proceedings of the

2013 International Conference on Software Engineering. IEEE, Los Alamitos, CA, 1423–1426.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

25:46 K. Kim et al.

[240] Abdus Satter, M. G. Muntaqeem, Nadia Nahar, and Kazi Sakib. 2017. Retrieving self-executable and functionally cor-

rect code to improve source code search. In Proceedings of the 2017 24th Asia-Pacific Software Engineering Conference

(APSEC’17). 749–750.

[241] A. Satter and K. Sakib. A search log mining based query expansion technique to improve effectiveness in code search.

In Proceedings of the 2016 19th International Conference on Computer and Information Technology (ICCIT’16). 586–591.

[242] Abdus Satter and Kazi Sakib. A similarity-based method retrieval technique to improve effectiveness in code search.

In Companion to the 1st International Conference on the Art, Science, and Engineering of Programming. ACM, New

York, NY, 1–3.

[243] Max Eric Henry Schumacher, Kim Tuyen Le, and Artur Andrzejak. 2020. Improving code recommendations by com-

bining neural and classical machine learning approaches. In Proceedings of the IEEE/ACM 42nd International Confer-

ence on Software Engineering Workshops. ACM, New York, NY, 476–482.

[244] Searchcode. 2022. Home Page. Retrieved June 26, 2023 from https://searchcode.com.

[245] Shailesh Kumar Shivakumar. 2021. A survey and taxonomy of intent-based code search. International Journal of

Software Innovation 9, 1 (2021), 69–110.

[246] Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. 2020. Improving code search with co-attentive

representation learning. In Proceedings of the 28th International Conference on Program Comprehension. ACM, New

York, NY, 196–207.

[247] Susan Elliott Sim, Megha Agarwala, and Medha Umarji. 2013. A controlled experiment on the process used by devel-

opers during Internet-scale code search. In Finding Source Code on the Web for Remix and Reuse. Springer, New York,

NY, 53–77.

[248] S. E. Sim, C. L. A. Clarke, and R. C. Holt. 1998. Archetypal source code searches: A survey of software developers

and maintainers. In Proceedings of the 1998 6th International Workshop on Program Comprehension. 180–187.

[249] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes. 2011. How well do search engines

support code retrieval on the Web? ACM Transactions on Software Engineering and Methodology 21, 1 (2011), Article

4, 25 pages.

[250] Herbert A. Simon and Allen Newell. 1971. Human problem solving: The state of the theory in 1970. American Psy-

chologist 26, 2 (1971), 145–159.

[251] Renuka Sindhgatta. 2006. Using an information retrieval system to retrieve source code samples. In Proceedings of

the 28th International Conference on Software Engineering. ACM, New York, NY, 905–908.

[252] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 1997. An examination of software en-

gineering work practices. In Proceedings of the 1997 Conference of the Centre for Advanced Studies on Collaborative

Research. 21.

[253] Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques Klein, Kisub Kim, and Yves Le Traon. 2018.

Augmenting and structuring user queries to support efficient free-form code search. Empirical Software Engineering

23, 5 (2018), 2622–2654.

[254] Bunyamin Sisman and Avinash C. Kak. 2013. Assisting code search with automatic query reformulation for bug

localization. In Proceedings of the 2013 10th Working Conference on Mining Software Repositories. 309–318.

[255] Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim. 2019. Active inductive logic program-

ming for code search. In Proceedings of the 41st International Conference on Software Engineering. IEEE, Los Alamitos,

CA, 292–303.

[256] SourceForge. 2022. Home Page. Retrieved June 26, 2023 from https://sourceforge.net.

[257] Stack Overflow. 2022. Home Page. Retrieved June 26, 2023 from http://stackoverflow.com.

[258] Jamie Starke, Chris Luce, and Jonathan Sillito. 2009. Working with search results. In Proceedings of the 2009 ICSE

Workshop on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation. IEEE, Los Alamitos, CA, 53–56.

[259] Kathryn Stolee and Sebastian Elbaum. 2012. Solving the Search for Suitable Code: An Initial Implementation. CSE

Technical Reports. University of Nebraska–Lincoln.

[260] Kathryn T. Stolee. 2012. Finding suitable programs: Semantic search with incomplete and lightweight specifications.

In Proceedings of the 34th International Conference on Software Engineering. IEEE, Los Alamitos, CA, 1571–1574.

[261] Kathryn T. Stolee and Sebastian Elbaum. 2012. Toward semantic search via SMT solver. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM, New York, NY, Article 25,

4 pages.

[262] Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the search for source code. ACM Transactions

on Software Engineering and Methodology 23, 3 (June 2014), Article 26, 45 pages.

[263] Kathryn T. Stolee, Sebastian Elbaum, and Matthew B. Dwyer. 2016. Code search with input/output queries. Journal

of Systems and Software 116 (June 2016), 35–48.

[264] J. Stylos and B. A. Myers. 2006. Mica: A web-search tool for finding API components and examples. In Proceedings

of Visual Languages and Human-Centric Computing (VL/HCC ’06). 195–202.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://searchcode.com
https://sourceforge.net
http://stackoverflow.com

Big Code Search: A Bibliography 25:47

[265] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail Kaiser, and Tony Jebara. 2016. Code rel-

atives: Detecting similarly behaving software. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, New York, NY, 702–714.

[266] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API documentation. In Proceedings of the

36th International Conference on Software Engineering. ACM, New York, NY, 643–652.

[267] Zhensu Sun, Yan Liu, Chen Yang, and Yu Qian. 2020. PSCS: A path-based neural model for semantic code search.

arXiv:2008.03042 (2020).

[268] S. Surisetty. 2014. Behavior-based code search. In Proceedings of the 2014 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC’14). 197–198.

[269] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia. 2014. Towards a big data curated benchmark of inter-

project code clones. In Proceedings of the 2014 IEEE International Conference on Software Maintenance and Evolution.

476–480.

[270] J. Svajlenko and C. K. Roy. 2015. Evaluating clone detection tools with BigCloneBench. In Proceedings of the 2015

IEEE International Conference on Software Maintenance and Evolution (ICSME’15). 131–140.

[271] Peter P. Swire. 2005. A theory of disclosure for security and competitive reasons: Open source, proprietary software,

and government systems. Houston Law Review 42 (2005), 1333.

[272] Watanabe Takuya and Hidehiko Masuhara. 2011. A spontaneous code recommendation tool based on associative

search. In Proceedings of the 3rd International Workshop on Search-Driven Development: Users, Infrastructure, Tools,

and Evaluation. ACM, New York, NY, 17–20.

[273] The Apache Software Foundation. 2022. asf–Revision 1910613. Retrieved June 26, 2023 from http://svn.apache.org/

repos/asf/httpd/httpd/.

[274] Suresh Thummalapenta and Tao Xie. 2007. Parseweb: A programmer assistant for reusing open source code on the

web. In Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering. ACM, New

York, NY, 204–213.

[275] Sander Tichelaar. 1999. FAMIX Java Language Plug-in 1.0. Technical Report. University of Bern.

[276] Gabriel Valiente. 2002. Algorithms on Trees and Graphs. Springer Science & Business Media.

[277] C. Van Rijsbergen. 1979. Information retrieval: Theory and practice. In Proceedings of the Joint IBM/University of

Newcastle upon Tyne Seminar on Data Base Systems, Vol. 79.

[278] Venkatesh Vinayakarao. 2015. Spotting familiar code snippet structures for program comprehension. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, New York, NY, 1054–1056.

[279] Venkatesh Vinayakarao, Anita Sarma, Rahul Purandare, Shuktika Jain, and Saumya Jain. 2017. ANNE: Improving

source code search using entity retrieval approach. In Proceedings of the 10th ACM International Conference on Web

Search and Data Mining. ACM, New York, NY, 211–220.

[280] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip Yu. 2019. Multi-modal attention net-

work learning for semantic source code retrieval. In Proceedings of the 2019 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE’19). 13–25.

[281] Hao Wang, Jia Zhang, Yingce Xia, Jiang Bian, Chao Zhang, and Tie-Yan Liu. 2020. COSEA: Convolutional code search

with layer-wise attention. arXiv:2010.09520 (2020).

[282] Shaowei Wang, David Lo, and Lingxiao Jiang. 2016. AutoQuery: Automatic construction of dependency queries for

code search. Automated Software Engineering 23, 3 (2016), 393–425.

[283] S. Wang, D. Lo, and L. Jiang. 2011. Code search via topic-enriched dependence graph matching. In Proceedings of the

2011 18th Working Conference on Reverse Engineering. 119–123.

[284] Shaowei Wang, David Lo, and Lingxiao Jiang. 2014. Active code search: Incorporating user feedback to improve code

search relevance. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering.

ACM, New York, NY.

[285] Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. 2020. TranS^3: A transformer-based framework

for unifying code summarization and code search. arXiv:2003.03238 (2020).

[286] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jeffrey Xu Yu. 2010. Matching dependence-related

queries in the system dependence graph. In Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering (ASE’10). ACM, New York, NY, 457.

[287] Yuepeng Wang, Yu Feng, Ruben Martins, Arati Kaushik, Isil Dillig, and Steven P. Reiss. 2016. Hunter: Next-generation

code reuse for Java. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, New York, NY, 1028–1032.

[288] Yuepeng Wang, Yu Feng, Ruben Martins, Arati Kaushik, Isil Dillig, and Steven P. Reiss. 2016. Hunter: Next-generation

code reuse for Java. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, New York, NY, 1028–1032.

[289] GitHub. 2022. Home Page. Retrieved June 26, 2023 from https://www.github.com.

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

http://svn.apache.org/repos/asf/httpd/httpd/
https://www.github.com

25:48 K. Kim et al.

[290] Apache. 2022. Apache Lucene. Retrieved June 26, 2023 from https://lucene.apache.org.

[291] Markus Weimer, Alexandros Karatzoglou, and Marcel Bruch. 2009. Maximum margin matrix factorization for code

recommendation. In Proceedings of the 3rd ACM Conference on Recommender Systems. ACM, New York, NY, 309–312.

[292] Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. 2012. SnipMatch: Using source code context to enhance

snippet retrieval and parameterization. In Proceedings of the 25th Annual ACM Symposium on User Interface Software

and Technology. ACM, New York, NY, 219–228.

[293] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engi-

neering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering.

1–10.

[294] Huaiguang Wu and Yang Yang. 2019. Code search based on alteration intent. IEEE Access 7 (2019), 56796–56802.

[295] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and Zhenchang Xing. 2017. What do

developers search for on the web? Empirical Software Engineering 22, 6 (Dec. 2017), 3149–3185.

[296] Tao Xie and Jian Pei. 2006. MAPO: Mining API usages from open source repositories. In Proceedings of the 2006

International Workshop on Mining Software Repositories. ACM, New York, NY, 54–57.

[297] Y. Xie, T. Lin, and H. Xu. 2019. User interface code retrieval: A novel visual-representation-aware approach. IEEE

Access 7 (2019), 162756–162767.

[298] Jinxi Xu and W. Bruce Croft. 1996. Query expansion using local and global document analysis. In Proceedings of the

19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New

York, NY, 4–11.

[299] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural network-based graph em-

bedding for cross-platform binary code similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security. ACM, New York, NY, 363–376.

[300] Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2019. Accurate and scalable cross-architecture

cross-OS binary code search with emulation. IEEE Transactions on Software Engineering 45, 11 (2019), 1125–1149.

[301] Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. 2020. Are the code snippets what we are

searching for? A benchmark and an empirical study on code search with natural-language queries. In Proceedings of

the 2020 IEEE 27th International Conference on Software Analysis, Evolution, and Reengineering. 344–354.

[302] Jinqiu Yang and Lin Tan. 2012. Inferring semantically related words from software context. In Proceedings of the 2012

9th IEEE Working Conference on Mining Software Repositories. 161–170.

[303] Jinqiu Yang and Lin Tan. 2013. SWordNet: Inferring semantically related words from software context. Empirical

Software Engineering 19, 6 (2013), 1856–1886.

[304] Yangrui Yang and Qing Huang. 2017. IECS: Intent-enforced code search via extended Boolean model. Journal of

Intelligent & Fuzzy Systems 33 (Jan. 2017), 2565–2576.

[305] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: Code annotation for code retrieval with

reinforcement learning. In Proceedings of the 2019 World Wide Web Conference. ACM, New York, NY, 2203–2214.

[306] Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. 2018. StaQC: A systematically mined question-code dataset

from Stack Overflow. In Proceedings of the 2018 World Wide Web Conference. 1693–1703.

[307] Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang. 2020. Leveraging code generation

to improve code retrieval and summarization via dual learning. In Proceedings of The Web Conference 2020. ACM,

New York, NY, 2309–2319.

[308] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word embeddings to document similarities

for improved information retrieval in software engineering. In Proceedings of the 38th International Conference on

Software Engineering. ACM, New York, NY, 404–415.

[309] Hang Yin, Zhiyu Sun, Yanchun Sun, and Wenpin Jiao. 2019. A question-driven source code recommendation service

based on Stack Overflow. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES’19). 358–359.

[310] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. 2018. Learning to mine aligned

code and natural language pairs from Stack Overflow. In Proceedings of the 2018 IEEE/ACM 15th International Con-

ference on Mining Software Repositories. IEEE, Los Alamitos, CA, 476–486.

[311] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. 2012. Example Overflow: Using social media for code recom-

mendation. In Proceedings of the 2012 3rd International Workshop on Recommendation Systems for Software Engineering

(RSSE’12). 38–42.

[312] Amy Moormann Zaremski and Jeannette M. Wing. 1995. Signature matching: A tool for using software libraries.

ACM Transactions on Software Engineering and Methodology 4, 2 (1995), 146–170.

[313] Feng Zhang, Haoran Niu, Iman Keivanloo, and Ying Zou. 2018. Expanding queries for code search using semantically

related API class-names. IEEE Transactions on Software Engineering 44, 11 (2018), 1070–1082.

[314] Jie Zhao and Huan Sun. 2020. Adversarial training for code retrieval with question-description relevance regulariza-

tion. arXiv:2010.09803 (2020).

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

https://lucene.apache.org

Big Code Search: A Bibliography 25:49

[315] Shufan Zhou, Beijun Shen, and Hao Zhong. 2019. Lancer: Your code tell me what you need. In Proceedings of the 2019

34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19). 1202–1205.

[316] S. Zhou, H. Zhong, and B. Shen. 2018. SLAMPA: Recommending code snippets with statistical language model. In

Proceedings of the 2018 25th Asia-Pacific Software Engineering Conference (APSEC’18). 79–88.

[317] Qun Zou and Changquan Zhang. 2020. Query expansion via learning change sequences. International Journal of

Knowledge-Based and Intelligent Engineering Systems 24, 2 (2020), 95–105.

[318] Yanzhen Zou, Chunyang Ling, Zeqi Lin, and Bing Xie. 2018. Graph embedding based code search in software project.

In Proceedings of the 10th Asia-Pacific Symposium on Internetware. ACM, New York, NY, 1–10.

Received 26 April 2022; revised 21 March 2023; accepted 13 April 2023

ACM Computing Surveys, Vol. 56, No. 1, Article 25. Publication date: August 2023.

	Big Code Search: A Bibliography
	Citation
	Author

	Big Code Search: A Bibliography

