
152

Revisiting the Identification of the Co-evolution of

Production and Test Code

WEIFENG SUN and MENG YAN, Chongqing University, China

ZHONGXIN LIU and XIN XIA, Zhejiang University, China

YAN LEI, Chongqing University, China

DAVID LO, Singapore Management University, Singapore

Many software processes advocate that the test code should co-evolve with the production code. Prior work

usually studies such co-evolution based on production-test co-evolution samples mined from software repos-

itories. A production-test co-evolution sample refers to a pair of a test code change and a production code

change where the test code change triggers or is triggered by the production code change. The quality of the

mined samples is critical to the reliability of research conclusions. Existing studies mined production-test co-

evolution samples based on the following assumption: if a test class and its associated production class

change together in one commit, or a test class changes immediately after the changes of the asso-

ciated production class within a short time interval, this change pair should be a production-test
co-evolution sample. However, the validity of this assumption has never been investigated.

To fill this gap, we present an empirical study, investigating the reasons for test code updates occurring

after the associated production code changes, and revealing the pervasive existence of noise in the production-

test co-evolution samples identified based on the aforementioned assumption by existing works. We define a

taxonomy of such noise, including six categories (i.e., adaptive maintenance, perfective maintenance, correc-

tive maintenance, indirectly related production code update, indirectly related test code update, and other rea-

sons). Guided by the empirical findings, we propose CHOSEN (an identifiCation metHod Of production-teSt

co-EvolutioN) based on a two-stage strategy. CHOSEN takes a test code change and its associated produc-

tion code change as input, aiming to determine whether the production-test change pair is a production-test

co-evolution sample. Such identified samples are the basis of or are useful for various downstream tasks. We

conduct a series of experiments to evaluate our method. Results show that (1) CHOSEN achieves an AUC of

0.931 and an F1-score of 0.928, significantly outperforming existing identification methods, and (2) CHOSEN

can help researchers and practitioners draw more accurate conclusions on studies related to the co-evolution

of production and test code. For the task of Just-In-Time (JIT) obsolete test code detection, which can help

detect whether a piece of test code should be updated when developers modify the production code, the

test set constructed by CHOSEN can help measure the detection method’s performance more accurately,

only leading to 0.76% of average error compared with ground truth. In addition, the dataset constructed by

This work was supported in part by the National Key Research and Development Project (No. 2021YFB1714200), the Funda-

mental Research Funds for the Central Universities (No. 2022CDJDX-005), the Chongqing Technology Innovation and Ap-

plication Development Project (No. CSTB2022TIAD-STX0007 and No. CSTB2022TIAD-KPX0067), the National Natural Sci-

ence Foundation of China (No. 62002034), and the Natural Science Foundation of Chongqing (No. cstc2021jcyj-msxmX0538).

Authors’ addresses: W. Sun, M. Yan (corresponding author), and Y. Lei, School of Big Data & Software Engineering,

Chongqing University, Chongqing, China; emails: {weifeng.sun, mengy, yanlei}@cqu.edu.cn. Z. Liu and X. Xia, Zhejiang

University, Lingyin Street, Hangzhou, Zhejiang, 310013, China; emails: liu_zx@zju.edu.cn, xin.xia@acm.org; D. Lo, Singa-

pore Management University, 80 Stamford Road, 178902, Singapore; email: davidlo@smu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/09-ART152 $15.00

https://doi.org/10.1145/3607183

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 152. Pub. date: September 2023.

https://orcid.org/0000-0001-6013-1369
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0002-1981-1626
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0003-4504-6806
https://orcid.org/0000-0002-4367-7201
mailto:permissions@acm.org
https://doi.org/10.1145/3607183
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607183&domain=pdf&date_stamp=2023-09-30

W. Sun et al.

CHOSEN can be used to train a better obsolete test code detection model, of which the average improvements

on accuracy, precision, recall, and F1-score are 12.00%, 17.35%, 8.75%, and 13.50% respectively.

CCS Concepts: • Software and its engineering→ Software evolution; Software version control; Em-

pirical software validation;

Additional Key Words and Phrases: Empirical software engineering, mining software repositories, software

evolution, software testing

ACM Reference format:

Weifeng Sun, Meng Yan, Zhongxin Liu, Xin Xia, Yan Lei, and David Lo. 2023. Revisiting the Identification of

the Co-evolution of Production and Test Code. ACM Trans. Softw. Eng. Methodol. 32, 6, Article 152 (Septem-

ber 2023), 37 pages.

https://doi.org/10.1145/3607183

1 INTRODUCTION

A software system must evolve or it will become less useful over time [42, 55, 74, 88]. During evo-
lution, the production code is constantly modified and updated to address new requirements or
possible issues that may arise. Test code, as an essential artifact, should co-evolve with the produc-
tion code to ensure that the associated production code meets specification, which is referred to
as co-evolution of production and test code [81], hereon PT co-evolution. Despite the importance of
PT co-evolution, developers may forget or ignore updating test code, which brings in obsolete test

code [81], thereby increasing the cost of development and maintenance [50, 65].
PT co-evolution has been attracting continued interest from both academia and industry. On the

one hand, researchers [42, 55, 88] have proposed various visualization techniques to display pro-
duction and test file changes over time (PT co-evolution) and group files that change together. Such
visualizations can help analysts recognize different PT co-evolution scenarios, obtaining relevant
observations. Further, Wang et al. have proposed a state-of-the-art method for Just-In-Time (JIT)

obsolete test code detection (OTCD), named SITAR [81]. SITAR enables learning a model from
the historical data of PT co-evolution in a project and helps detect whether a piece of test code
should be updated when developers modify the production code.

Identifying and mining production-test co-evolution samples is the basis of existing studies related
to PT co-evolution, such as PT co-evolution visualization [42, 55, 88] and JIT obsolete test code
detection [81]. A production-test co-evolution sample, hereon PT co-evolution sample, refers to a
pair of a test code change and a production code change where the test one triggers or is triggered
by the production one. Unfortunately, given a test code change and a production code change, it is
hard to automatically determine whether they co-evolve or not, because (1) associating a test code
snippet with a production code snippet is already a non-trivial task if there are no explicit links
between them (e.g., their names follow some conventions), and (2) precisely determining whether
a test code co-evolves with its associated production code requires comprehending their changes
and understanding their relationship, which is also difficult.

To enable the mining of PT co-evolution samples, existing works related to PT co-evolution widely
use the following strategies to identify PT co-evolution samples: (1) focusing on unit test classes and
taking advantage of naming conventions to ease the association of test and production classes—for
example, given a unit test class FooTest, only its tested production class (i.e., Foo) will be consid-
ered when constructing PT co-evolution samples (for convenience, hereon, we refer to such tested
production code as associated production code) and (2) collecting PT co-evolution samples based on
the following assumption [42, 55, 81, 88]:

https://doi.org/10.1145/3607183

Revisiting the Identification of the Co-evolution of Production and Test Code

Fig. 1. False co-evolution example in easy-rules project.

Assumption 1.

If a test class and its associated production class change together in one commit [42, 55, 88],

or a test class changes immediately after the changes of the associated production class within

a short time interval (denoted byT), this change pair should be a production-test co-evolution

sample [81].

For example, in Wang et al.’s work [81], if a test class is updated within 48 hours after the change
of its associated production class, such change pair is considered as a PT co-evolution sample.

However, we find that even if we only focus on unit test classes and associate test and production
classes based on naming conventions, the widely used assumption (shown in Assumption 1) does
not always hold. For example, Figure 1 shows a commit collected from the easy-rules [24] project,
where a test class (i.e., JexlActionTest) and its associated production class (i.e., JexlAction) change
simultaneously. In the production class (Listing 1), a developer modified the logger message by
updating “evaluate” to “execute” to help users understand the JexlException. In Listing 2, the test
code encapsulated the technical facts (i.e., “System.out”) into the new Jexl namespaces. Note that PT

co-evolution implies that production code modifications and test code modifications are necessarily
correlated couplings; i.e., the test code change triggers or is triggered by the production one. For
the above-mentioned example, although the production code and test code are modified with a
similar purpose (to facilitate future project maintenance), the content of their modifications is
not related. In other words, the inference that the production code modifying the logger message
of the JexlException must cause the test code to encapsulate the technical facts does not hold.
Figure 2 shows another example. Specifically, in the production code (Listing 3), the developer

W. Sun et al.

Fig. 2. False co-evolution example in java-faker project.

made two changes: they replaced the private field fakeValuesService with faker and modified
the constructor to initialize faker. Meanwhile, in Listing 4, the test code extracted the method with
the @Before annotation1 into a base test class and inherited from that base class. This modification
of the test code is a code refactoring activity, which aims to improve test code readability, reduce
code duplication, and facilitate future maintenance of the test cases’ common behavior. In contrast,
the changes made to the production code involve the updates of a private property and a method,
which should not result in the test code removing the faker or before method. Therefore, the
changes made to the test code are independent of the changes made to the production code. Overall,
we can see that in each example, the test code change is not triggered by the production code
change.

These examples mean that the PT co-evolution samples collected by prior work based on
Assumption 1 may contain noise, or in other words, false positives. Like any data-driven task,
existing studies related to PT co-evolution are highly data dependent. For example, for JIT obso-
lete test code detection [81], in order to learn complex features of production code changes, we
require large production-test change pairs that have been labeled as either PT co-evolution or PT

non-co-evolution. As for PT co-evolution visualization [42, 55, 88], developers and test engineers
rely on different PT co-evolution scenarios mined from PT co-evolution samples. Moreover, some
linking methods use PT co-evolution samples to construct the traceability between test code and
production code (hereafter called test-to-code traceability) by assuming that test code and their as-
sociated production code usually co-evolve together throughout time [66, 83]. However, the noise
might potentially impact the data quality and subsequently pose a threat to prior work’s findings
and conclusions. Data quality is an integral component of any data-driven system. The misinfor-
mation or noise can make benchmark performance results misleading [37, 70]. This can cause ob-
solete test code detection models to fail to generalize to real-world scenarios if they have not been
trained with realistic, high-quality data. Furthermore, false positives may make linking methods
incorrectly construct test-to-code traceability or confuse developers when identifying co-evolution

1Annotating a public void method with @Before causes that method to be run before the test method.

Revisiting the Identification of the Co-evolution of Production and Test Code

scenarios in PT co-evolution visualization. Motivated by this, this work revisits the identification
of the co-evolution of production and test code. To keep in line with prior work, we also focus on
unit test classes and use naming conventions to associate test and production code. First, we in-
vestigate to what extent the assumption shown in Assumption 1 is satisfied through an empirical
study. Specifically, we carefully select 44 projects with good testing efforts [62] from GitHub, con-
struct a total of 33,567 PT co-evolution samples based on the assumption, and manually inspect a
statistically significant sample made up of 380 PT co-evolution candidates, representing the popula-
tion with 95% confidence and 5% margin of error. The results show that depending on the selected
time intervalT , 11.34% to 96.40% of the constructed PT co-evolution samples are false positives; i.e.,
the test code change is not triggered by the associated production code change. Then, based on
our inspection, we define a taxonomy of the cases where the assumption shown in Assumption 1
does not hold. The taxonomy consists of six categories: adaptive maintenance, perfective mainte-
nance, corrective maintenance, indirectly related production code update, indirectly related test
code update, and other reasons.

The empirical study shows that the assumption of prior studies does not always hold in practice
and the methods used by prior work to identify PT co-evolution samples may introduce noise. This
prompted us to investigate what is the impact of such noise to the conclusion of the downstream
tasks. We select the JIT OTCD task [81] as the example, because this task can help demonstrate the
impact of noise in a quantitative manner. OTCD can remind developers to update obsolete tests
just after they change the production code, which can help developers (1) find the obsolete tests
that would not fail and (2) find the obsolete tests that would fail without executing them. Specif-
ically, we manually re-label 741 production-test change pairs collected and labeled by the iden-
tification method of SITAR (the state-of-the-art JIT OTCD method) and investigate the impacts
of the mislabeled pairs on prior work’s conclusions. From the results, the production-test change

pairs mislabeled by the existing method significantly impact the detection performance. The max-
imum precision decline is 13.33%. To reduce such noise, we propose an identifiCation metHod Of
production-teSt co-EvolutioN, namely CHOSEN. Besides time intervals often adopted by previ-
ous works, CHOSEN attempts to understand the relationship between production and test code
changes. Specifically, given a test code change chanдet , CHOSEN first constructs its production-

test change pair 〈chanдep , chanдet 〉, where chanдep is the latest change of the associated production
code that occurs in the same commit of or before chanдet . Then, CHOSEN determines whether
chanдet is triggered by chanдep based on the time interval between chanдet and chanдep and five
fine-grained strategies learned from our empirical study (e.g., production-test change pair with
non-semantic relevance is not co-evolving).

We evaluate the effectiveness of CHOSEN on PT co-evolution identification by comparing the
PT co-evolution samples identified by CHOSEN with manually labeled ground truth (another set of
380 samples re-selected and labeled). The results show that CHOSEN achieves an F1-score of 0.928
and an area under the precision-recall curve (AUC) of 0.931, significantly better than existing
identification methods. Moreover, we demonstrate how CHOSEN can be used to facilitate the
downstream tasks related to co-evolution of production and test code. We select the OTCD task as
the representative. Specifically, we first leverage CHOSEN to re-label 741 production-test change
pairs collected and labeled by the identification method of SITAR and investigate the usefulness of
CHOSEN in the OTCD task. Experimental results show that (1) measuring the OTCD model on
the test set labeled by existing identification methods leads to average performance errors of 6.01%,
8.40%, 6.96%, and 3.61% in terms of accuracy, precision, recall, and F1-score, respectively—in con-
trast, those errors are only 0.68%, 0.99%, 0.62%, and 0.76% on the test set labeled by CHOSEN, and
(2) after training the OTCD model on the training set labeled by CHOSEN, the model’s precision,
recall, and F1-score are improved by 17.35%, 8.75%, and 13.50%, respectively.

W. Sun et al.

In summary, this article makes the following contributions:

(1) We conduct an empirical study to investigate the validity of the assumption that is widely
used by prior work [42, 55, 81, 88] (i.e., if a test class changes together or immediately

after the changes of an associated production class within a short time interval,

this change pair should be a production-test co-evolution sample) to collect and label
production-test co-evolution samples. Results show that 11.34% to 96.40% of the PT co-evolution

samples constructed by such assumption are false positives.
(2) We perform an in-depth analysis on the cases where the assumption used by prior work

does not hold and summarize six types of test code change patterns that are not triggered
by the changes of the associated production code. To the best of our knowledge, this is the
first work that investigates such test code change patterns.

(3) We propose a method, namely CHOSEN, based on our empirical study’s findings to identify
production-test co-evolution samples. Experimental results show that, compared to existing
identification methods, CHOSEN achieves a significantly better F1-score and AUC. More-
over, for the task of JIT obsolete test code detection, the test set labeled by CHOSEN can help
measure the detection model’s performance more accurately, and the training set labeled by
CHOSEN can help improve the performance of the detection model.

(4) Finally, we built a dataset with over 46K production-test change pairs, including more than
1K manually labeled pairs (380 pairs for empirical studies, 380 pairs to verify CHOSEN

effectiveness, and 741 pairs to demonstrate the usefulness of CHOSEN for downstream
tasks). We open these data and our scripts for follow-up work.2

The article is organized as follows: In Section 2, we describe the empirical study that is performed
to explore to what extent Assumption 1 is satisfied. We demonstrate the impacts of mislabeled
pairs on prior work’s conclusions and elaborate on our co-evolution sample identification method in
Section 3. Section 4 evaluates the effectiveness of our method on co-evolution identification and the
usefulness of CHOSEN on downstream tasks related to production-test co-evolution. In Section 5,
we discuss the limitations of this article, the implications for researchers and practitioners, and the
threats to validity. Section 6 presents a brief review of related work. Finally, Section 7 concludes
the article and mentions future work.

2 EMPIRICAL STUDY

The goal of the empirical study is to investigate the validity of the assumption that test code and
associated production code are co-evolving if a test class and its associated production class change
together in one commit [42, 55, 88], or a test class changes immediately after the changes of the
associated production class within a short time interval (denoted by T). We first build a dataset
of PT co-evolution samples based on the assumption. Then, some samples are randomly selected
and manually labeled to check whether the test code update is attributable to the change of the
associated production code. For the samples where the test code change is not triggered by the
associated production code change, we further analyze the reasons behind the test code change.
This empirical study helps us answer the following two research questions:

RQ1.1: Are production-test change pairs whose test class changes immediately after the changes of

associated production class always PT co-evolution samples? This RQ aims to investigate to
what extent the assumption (shown in Assumption 1) is satisfied.

2https://anonymous.4open.science/r/CHOSEN-DE81.

https://anonymous.4open.science/r/CHOSEN-DE81

Revisiting the Identification of the Co-evolution of Production and Test Code

RQ1.2: What types of test code updates are not triggered by the changes of their associated production

code? This research question aims to characterize the cases where the assumption (shown
in Assumption 1) does not hold.

2.1 Data Collection and Cleaning

2.1.1 Project Selection. In terms of project selection, we first follow and clone the available
projects used by Wang et al. [34, 81]. These projects are all Apache Software Foundation (ASF)

Java projects. Considering that only using the ASF projects to construct a dataset may introduce
data bias, thereby missing some PT co-evolution practices that do not appear in the ASF projects,
we further supplement 1,500 Java projects used by Wen et al. [82]. After filtering out duplicate
projects, we obtain a total of 1,952 projects. Next, we select the project using the following criteria:
(1) Project Directory Layout. We only consider Java projects managed by Maven. Maven projects
follow the standard directory layout [31], which allows us to conveniently find its associated pro-
duction code using naming convention. (2) Popularity. The number of stars [27] of a repository
reflects its popularity on GitHub. Following previous research [82], we select projects with more
than 10 stars to avoid possible irrelevant/toy projects. (3) Long change history. Following previous
work [56–58, 75], we exclude projects with a commit history of fewer than 3 years to ensure that
the selected projects are well maintained. (4) Compilability. The selected projects can be compiled,
and all test cases can be run successfully, allowing us to obtain the project’s test coverage and per-
form subsequent testing analysis. In order to run the test cases, we need to manually restore the
compilation environment of the project, which is time-consuming and resource-intensive. There-
fore, we select one project from 1,952 projects in a random manner and verify whether the project
satisfies the aforementioned criteria. The project that meets the criteria is retained; otherwise, it
is discarded. We utilized a server with two 32-core processors and 256GB memory to compile the
projects efficiently. We hired three experienced master students to perform compilation. During
the project selection process, we attempted to compile a total of 487 projects but successfully com-
piled only 150. The entire compilation process, including setting up the environment, debugging
errors, configuring test coverage tools, running all unit test cases, and collecting coverage infor-
mation, required approximately 3 weeks of effort in total. Despite the considerable effort, applying
rigorous project selection criteria is necessary to guarantee the reliability and validity of our em-
pirical study.

We expect to build a dataset from projects with the best testing efforts [62]. To this end, a
preliminary analysis is conducted to evaluate how well these projects are tested. Based on previous
studies [62], a project can be considered extensively tested if it meets the following conditions: (1)
ratio of changes occurring in test and production code is over 20%, (2) ratio between the amount of
test and production code is over 25%, and (3) branch coverage determined with Jacoco [29] is over
67%. Due to test failure and compilation errors, we record branch coverage on each project’s final
version rather than on all versions. The results of three metrics are presented in Table 1. Finally,
we retain 44 projects satisfying the above threshold among 150 projects.

2.1.2 Dataset Construction. Following previous work [81], we utilize the following strategies to
associate test and production classes: (1) File Path Matching. The mined project needs to follow the
standard directory layout [31], where src/main stores production files and src/test stores test
files. (2) File Name Matching. The naming convention is used to identify the associated production
class by removing the “Test” prefix/suffix of the test class’s name. Subsequently, we construct
the PT co-evolution samples based on the assumption shown in Assumption 1. For a test code
change test , the production code change that occurs in the same commit of or before test will be
paired with test . Note that previous studies adopt different settings for the time intervalT between

W. Sun et al.

Table 1. Statistics of Evaluation Results for 150 Projects

Metrics
Per Project

Mean Median Std. Dev.

Branch Coverage 54.18% 54.00% 25.63%

LOCprod 77,980,339 10,514,949 202,116,309

LOCtest 21,080,109 3,894,575 49,098,123
LOCt est

LOCtot al
28.69% 27.42% 17.56%

Chanдetest 6,584 2,988 9,606

Chanдeprod 1,448 652 2,095
Chanдet est

Chanдetot al
21.39% 21.13% 12.03%

Fig. 3. An example to illustrate production-test change link.

production code change and test code change. Thus, we relax the restriction on T to explore the
amount of noise introduced depending on different time intervals.

Here we introduce an example to illustrate the sample construction. On the timeline (as shown
in Figure 3), each circle represents a file modification, and the changes that occur in the same
commit are put in the same vertical line. Among these file changes, suppose {a, d , e} (solid circles)
denotes the updates of production class Foo, while {b, c , f } (dashed circles) denotes the changes of
test class FooTest. For b, its updates are traced back to a, because b immediately follows a. The
change c would be paired with d since production and test modifications are involved in the same
commit. Before the change f , there are three production code modifications, i.e, {a,d , e}, while only
e would be paired with f . This is because f is committed after e , which is a later modification of
Foo. As a result, e should be considered a co-evolved production change of f , rather than a and d .

To ensure that the test code is a unit test class, all file names over the history are stored to
check whether the production file exists in the project’s historical structure. We keep the code
changes that involve at least one Abstract Syntax Tree (AST) operation using GumTreeDiff [43]
to filter out the changes that only modify comments or formats. Finally, from the 44 projects, we
extract 33,567 co-evolution samples and analyze 380 randomly sampled change pairs, representing
the population with 95% confidence and 5% margin of error.

2.2 Analysis of Production-test Change Pairs

We invite three volunteers with research experience related to software evolution and 5 years
of Java programming experience, including one PhD student and two master’s students. Then,
the 380 samples are distributed to these three volunteers respectively. During the analysis of
production-test change pairs, each volunteer needs to manually review 380 samples, summarize
the reasons for test code changes, and ultimately agree on the reasons. For each sample, we pro-
vide commit messages, code diffs, and changed files to volunteers and allow them to search the
corresponding Git repository. We provide instructions to guide volunteers to label each sample as
follows: (1) reviewing the commit messages and changed files to understand the change intention

Revisiting the Identification of the Co-evolution of Production and Test Code

Fig. 4. The distribution of PT co-evolution samples constructed based on Assumption 1.

and the context of the sample, respectively; (2) checking code diffs and analyzing the correlation
between the production-test changes; (3) according to such correlation analysis, judging whether
the production changes trigger the test changes, and if so, label this sample as positive, otherwise
negative; and (4) for each negative sample in our empirical study, summarizing the reason for its
test change and defining a tag to represent the reason. When analyzing a change pair, each volun-
teer first defines the tag independently. Subsequently, the volunteer compares it with the shared
tags. If similar tags exist, the volunteer adopts the tags that have been defined, and otherwise
adds the newly defined tag into the shared tags. Fleiss Kappa [45] is used to measure the overall
agreement between these tags. The Kappa value is 0.78, indicating substantial agreement. Once
the volunteers did not agree on the tags of a change pair, the pair would be discussed to reach a
common decision. In previous empirical works [79, 80], when the manual analysis work is nearing
its end, researchers claim that the collected cards/tags reach saturation when new cards/tags do
not appear anymore. We found that after analyzing approximately 80% of the change pairs, the vol-
unteers did not add new tags. Thus, motivated by previous works [79, 80], we believe our manual
analysis has reached saturation.

After having tagged all samples, we organize the tags into several groups through card sort-
ing [54] to form a taxonomy of test code change patterns. We apply open card sort [73] to sort
index cards into categories. Specifically, each card has a title (name of the category). We carefully
read the title and the tag (concrete reasons for test code update) to determine whether the tag
belongs to this title. All the groups with low-level subcategories will be aggregated into high-level
subcategories. In the end, all analytical work was completed in 2 weeks.

2.3 RQ1: Categories of Test Code Update

In this section, we provide the results of our empirical study to answer RQ1.1 and RQ1.2.
First, we count the distribution of 33,567 PT co-evolution samples constructed based on Assump-

tion 1. The results are shown in Figure 4, where the x-axis represents the time intervalT between
production code change and test code change, and the y-axis is the number of PT co-evolution

samples. From Figure 4, we can observe that consistent with the previous observations [81], when
T = 0s , the constructed PT co-evolution samples are the most. As T increases, the number of post-
poned PT co-evolution samples decreases. In addition, there are some PT co-evolution candidates in

W. Sun et al.

Table 2. Sample Distributions According to Time Interval

Time Interval Total Samples Co-evolution Non-co-evolution
Nco/N Nnon_co/N Nco/Sum(Nco)

(T) (N) (Nco) (Nnon_co)

T = 0 194 172 22 88.66% 11.34% 89.12%

0 < T ≤ 12h 24 11 13 45.83% 54.17% 5.70%

12h < T ≤ 24h 7 1 6 14.29% 85.71% 0.52%

24h < T ≤ 48h 7 1 6 14.29% 85.71% 0.52%

48h < T ≤ 480h 37 4 33 10.81 % 89.19% 2.07%

T > 480h 111 4 107 3.60% 96.40% 2.07%

Sum 380 193 187 50.79% 49.21% —

which the time interval between production changes and corresponding test changes is more than
4 days. Overall, most test changes occur within a short time interval when the production code
changes.

Then, according to the constructed 33,567 PT co-evolution samples, we adopt a stratified sampling
way to randomly select 380 change pairs (representing the population with 95% confidence and 5%
margin of error). Specifically, we calculate the ratio of samples grouped by the time intervals T
to the total samples and randomly select change pairs based on the ratio to ensure that the time
distribution properties of the 380 samples are consistent with the original set. The subsequent
empirical study is performed based on the selected 380 samples.

RQ1.1: Are production-test change pairs whose test class changes immediately after the
changes of associated production class always PT co-evolution samples?

Table 2 provides the number of true-positive and false-positive samples and shows the distribu-
tions of PT co-evolution samples (last column). The change pairs are grouped by the time intervals
T between the production code change and the test code change. T is set as 0s , 12h, 24h, 48h, and
480h.

From Table 2, we can find that (1) the false-positive rates range from 11.34% to 96.40% for dif-
ferent time interval and (2) when T becomes large, the percentage of PT co-evolution samples de-
creases. Additionally, most PT co-evolution occurs within a small time interval (i.e.,T < 12h). When
T exceeds 480 hours, a production-test change pair is not likely to be a PT co-evolution sample.

Overall, although PT co-evolution is common, many test code changes are not triggered by the
production code changes. In addition, when production code and test code are modified in a small
time interval, they are more likely to construct a PT co-evolution sample. However, Table 2 reveals
that a production-test change pair for which the T is small is not necessarily a PT co-evolution

sample. For example, even forT = 0s , the false-positive rate is more than 11%. We perform a closer
inspection on the PT co-evolution samples with T > 480h and find that most of them add or delete
files.

Depending on the selected time intervalT , 11.34% to 96.40% of the constructed PT co-evolution

samples are false positives; i.e., their test code changes are not triggered by their associated pro-
duction code changes.

RQ1.2: What types of test code updates are not triggered by the changes of their associated
production code?

RQ1.1 has confirmed that there exist some change pairs where the test code change is not attrib-
utable to the change of their associated production code. For these change pairs, the assumption
(shown in Assumption 1) does not hold. To answer RQ1.2, we further analyze these change pairs

and define a taxonomy, which summarizes the change patterns of these change pairs accounting
for six categories.

Revisiting the Identification of the Co-evolution of Production and Test Code

Fig. 5. RQ1.2: Taxonomy of test update unrelated to corresponding production modification.

As shown in Figure 5, the taxonomy involves maintenance [39], indirectly related produc-

tion code updates, indirectly related test code updates, and others, where maintenance ac-
tivities are further subdivided into (1) adaptive maintenance, which introduces new features
into the system and keeps software usable in a changed or changing environment; (2) perfective

maintenance, which improves the performance or maintainability of the system; and (3) correc-

tive maintenance, which fixes discovered bugs and errors in a program. These three categories
are consistent with previous studies, such as [59, 64]. More concrete change patterns are denoted
either as intermediate nodes or leaves. The intermediate nodes or leaves are always located to the
right of the parent node. For each change pattern, we present the specific number (immediately
following the pattern name), along with the descriptions of its representative examples.

(1) Adaptive Maintenance (54): The maximum number of test code updates in this category is
related to changes of used test framework/library, accounting for 44.44% = 24/54. One example
is from the Cactoos project, in which for the test code CycledTest [19], the developer updated the
package imports, replacing “junit.Test” with “junit.jupiter.api.Test,” and removed the public modi-
fier for each test method. JUnit Jupiter, as the critical component of JUnit 5, does not require test
methods to be public [30]. As a result, the developers modified the test code to meet the feature
of the new testing framework. In contrast, the corresponding production code Cycled [14] carried
out an API replacement due to refactoring activities in the other production code IterableOf. In-
terestingly, we also notice that some test code changes introduce new test methods that are not
caused by the associated production code. For example, the test code EntryStreamTest [26] added
a new test case, while the production code EntryStream [25] just updated import statements. We
further checked the commit message and found that the test methods are added to improve the

branch coverage of the project.
(2) Perfective Maintenance (62): In this category, test code is updated to facilitate the future

maintenance of test code. One of the change patterns is cleaning up redundant test code. In

W. Sun et al.

the Commons-collections project [20], the production code changes and test code changes were
added in the same commit with the message “Remove redundant generic type arguments.” How-
ever, the test code and the production code modified different objects. For example, the production
code StaticHasher modified a TreeSet type variable, while the test code StaticHasherTest
modified an ArrayList type variable. PT co-evolution needs to meet the condition: the test code
change triggers or is triggered by the production code change. For the above example, there is no
coupling correlation between the variable modified by the test code and that of the production
code. In other words, we cannot infer that the modification made by StaticHasher to remove the
generic parameters of TreeSet caused the modification made by StaticHasherTest to remove
the generic parameters of ArrayList. Thus, such production-test change is not an example of
PT co-evolution, but rather a cleanup activity by developers for code units containing redundant
generic type parameters. A more frequent test code change pattern is modifier changes to local

variables and method parameters. For this pattern, the most common action is adding the “fi-
nal” modifier. Final variables are read-only by design. When changing a final variable’s value, the
compiler will throw an error. For example, the test code ValidateTest [23] added the “final” modi-
fier to the custom variable, but the corresponding production code Validate [16] underwent code
refactoring: using Objects.requireNonNull() instead of custom conditional statements check-
ing whether an object is empty.

In 13 commits, test code is updated due to code refactoring activities, such as the test code
TestDefaultParametersManager [15] utilizing the Lambda expression to replace anonymous
internal classes, making the code more concise and compact. Yet, the function parameters of
DefaultParametersManager [11] added the final modifier. When multiple test classes contain the
same property (e.g., test cases), developers usually extract commonalities and form a new test class
inherited or imported by the test classes. For instance, a commit [17] extracted common divide-by-
fraction test cases to CommonTestCases. Another test code change [22] attempted to encapsulate
commonly used asserts (e.g., assertFalse) in a test helper class. Then, Transform2STest directly
called the encapsulated method rather than writing redundant test asserts. In contrast, the produc-
tion code Transform2S [21] performed a perfective maintenance activity: removing redundant
local variables. In addition, this category involves adding generic type arguments, formatting

imports, reordering test cases, enriching print information, and enriching test name to

improve readability.
(3) Corrective Maintenance (31): The test code updates fixing functional and non-functional

faults lie in this category. Overall, many test code modifications are due to Checkstyle [28] or
SonarQube [33] warnings. It is worth noting that Suppress Warnings is different from the Fix

Checkstyle/SonarQube Warnings pattern. For example, the test code TestBinaryAnd added the
annotation of “@SuppressWarnings(“unchecked”)” to ignore all unchecked warnings coming from
that class [3]. However, the source of warning remains. The corresponding production code [1]
added the missing annotation “@Override.”

(4) Indirectly Related Production Code Updates (29): For a test code FooTest, we indicate
the other production class that is depended on by FooTest but is not its associated production code
(i.e., class Foo) as indirectly related production code. This category groups test code changes trig-
gered by the modifications of their indirectly related production code. We observed that test code
usually calls methods in non-associated production code to complete testing state initialization.
This category includes the cases where the test code updates are triggered by the changes of such
methods. For example, TimeSeries changed the function signature from valueOf to numOf, re-
sulting in an update to the test code InSlopeRuleTest [13]. The production code InSlopeRule lo-
cated in the same commit [12] modified the import information by replacing “org.ta4j.core.Num.Ab
stractNum.NaN” with “org.ta4j.core.Num.NaN.NaN.”

Revisiting the Identification of the Co-evolution of Production and Test Code

An example of this category comes from the Joda-time project. A commit [4] was created to fix
a bug of Days.daysBetween. However, the commit did not make any changes to Days; instead, the
BaseSingleFieldPeriod was updated. In the test code TestDays, the developers added more test
cases for the target method Days.daysBetween. We carefully check the implementation details of
the target method and observe that it directly called the BaseSingleFieldPeriod.between, and
then performed a type conversion of the returned result. In essence, the application logic of the tar-
get method is realized by between. Therefore, the updates of BaseSingleFieldPeriod have prob-
abilities to introduce the modifications of TestDays. Another example is from the Commons-csv
project [2], where a commit modified both the production code and the test code. For the produc-
tion class CSVParser, developers only deleted some obsolete code. In contrast, a lot of contents that
are related to the CSVFormat in the test class are modified. After a closer inspection of CSVFormat,
we find that it performed a code refactoring activity in this commit, resulting in updates to all code
that used this production class.

(5) Indirectly Related Test Code Updates (9): The test code that is dependent on the target
test code is denoted as indirectly related test code. Similar to category 4, test code updates due to the
refactoring activities of other test code account for the major part, especially for test code with
inheritance/dependent relationships. For instance, a commit [8] modified the function signature,
leading to the updates of all the test code (such as GraggBulirschStoerStepInterpolatorTest)
that uses this function. The corresponding production code GraggBulirschStoerStep
Interpolator [7] changed the function access rights from “protected” to “public.”

(6) Others (2): The test code updates that are designed to trigger production bugs/errors are
placed in this category. In the commons-compress project, a test method testCompress264 [6]
was added with the commit message “add a (failing) Unit Test.” As the comments show, the
“COMPRESS-264” issue would be triggered by the added test case. In the next commit, the de-
veloper fixed this issue and updated the name of the test case. Obviously, the test code update in
this case is not caused by the modifications of associated production code; instead, it would trigger
subsequent production code changes. However, the corresponding production code ZipFile [5]
extracted the custom exception code to a new helper class.

For the change pairs where the test code changes are not triggered by the changes of their
associated production code, the reasons for their test code updates are varied, from which perfec-
tive maintenance accounts for the major part. Besides, other file changes (e.g., indirectly related
test and production code) may also cause test code updates. Assumption 1 attributes test code
changes to updates of associated production code without comprehending their changes and
understanding their relationship, thus introducing false positives.

3 CO-EVOLUTION IDENTIFICATION METHOD

Our empirical study has confirmed that the assumption of prior studies does not always hold in
practice and the methods used by prior work to identify PT co-evolution samples may introduce
noise. This motivates us to explore whether the introduced noise has a significant impact on the
conclusions of the downstream tasks. As opposed to visualization, the detection task allows us
to measure the impact of noise quantitatively and will therefore be adopted as the experimental
object. Obviously, conducting studies based on a manually labeled dataset can mitigate this threat.
But this requires expensive human resources and time costs. In addition, it is not feasible to rely
only on manually labeled data for machine-learning- and deep-learning-based methods, which
usually require a large number of samples to train good models. Based on the findings from our
empirical study, we propose a method to identify PT co-evolution samples accurately. We refer to
this approach as CHOSEN, an identifiCation metHod Of production-teSt co EvolutioN.

W. Sun et al.

3.1 RQ2: Impact of Noise on JIT Detection Methods

We select the JIT OTCD [81] as the example task. Prior work showed that developers may for-
get/ignore updating test code [50, 81]. OTCD can remind developers to update obsolete tests just
after they change the production code, which can help developers (1) find the obsolete tests that
would not fail and (2) find the obsolete tests that would fail without executing them. Thus, OTCD
can be beneficial for improving test coverage and reducing test costs. Our empirical study has con-
firmed that SITAR’s identification method [81] would introduce some noise. Hence, we perform a
preliminary experiment to answer the following questions:

RQ2: What is the impact of noise on existing JIT OTCD methods?
Experiment Settings. Since SITAR has no publicly available tools or source code, we imple-

mented SITAR based on their descriptions and obtained similar detection performance on the
dataset provided by Wang et al. Following Wang et al. [81], we adopt random forest [53] with de-
fault hyper-parameters set by scikit-learn as the detection model. We make our re-implementation
publicly available for further inspection.3

Data Collection. Since the experiment requires manually labeled datasets, we select three
projects on which SITAR achieves good, moderate, and poor detection performance, namely Flink,
Log4j2, and jsoup, respectively. This selection way can verify that the effect of noise is universal,
regardless of whether the detection method performs well or poorly. Moreover, we observe that
most test modification time remains in the initial phase of the project history for the provided
dataset [34]. Then, we construct the product-test change pairs for each latest version of the project,
strictly following the steps in the paper [81].

Data Splitting. We divide the production-test change pairs into positive and negative samples
using SITAR’s identification method. Unlike SITAR, which randomly splits change pairs to obtain
the training set and test set, we sort samples in the ascending order of production change commit
and put the first 80% samples into the training set; meanwhile, we shuffle the remaining 20% sam-
ples into the test set. This way ensures that all production code updates in the training set occurred
before those in the test set, similar to prior studies [49, 87]. Subsequently, we randomly sample 132,
262, and 347 pairs from the test set for jsoup, log4j2, and Flink, respectively, which represent the
population with a 95% confidence level and 5% margin of error. Given that our empirical study has
confirmed that SITAR’s identification method introduces some noise, we refer to these sampled
test sets as noise test sets. To establish the ground truth, we manually relabel the sampled noise
test set and refer to the resulting test sets as the annotated test set.

Evaluation Metrics. Following the previous work [81], we compare SITAR’s performance on
the noise test set and the annotated test set in terms of accuracy, precision, recall, and F1-score
to quantify the effect of noise on the detection method. Considering the randomness of random
forest, we ran each experiment 10 times to obtain averages for analysis. In addition, we compute
p-value (probability value) and examine the significance of the performance differences.

Results. Table 3 presents the average performances of SITAR on the noise/annotated test set,
where the last column gives the calculated p-values. On the annotated test sets of the three projects,
SITAR’s precision decreases by at most 13.33% and recall increases. The p-values are less than
0.05 in terms of all evaluation metrics, implying that the differences in detection performance are
significant on these test sets. The above observations can be explained as follows. The precision
metric is computed by T P

P
, where TP and P refer to the number of true positives and the total

number of positive predictions, respectively. Since the classifier stays unchanged, P is equal for

3https://anonymous.4open.science/r/CHOSEN-DE81.

https://anonymous.4open.science/r/CHOSEN-DE81

Revisiting the Identification of the Co-evolution of Production and Test Code

Table 3. Performance of Detection Method Trained on Noise Training Set, Tested on Noise

vs. Annotated Test Set

Projects Metrics
Annotated Test Set Noise Test Set Error p-value

(x) (y) (|y − x |) (y vs. x)

Jsoup

Acc. 58.64% 54.55% 4.09% < 0.05
Prec. 38.63% 51.96% 13.33% < 0.001
Rec. 50.24% 45.81% 4.43% < 0.05
F1. 43.68% 48.69% 5.01% < 0.001

Log4j2

Acc. 60.73% 57.29% 3.44% < 0.05
Prec. 51.11% 57.94% 6.83% < 0.05
Rec. 67.17% 60.22% 6.95% < 0.05
F1. 58.05% 59.06% 1.01% < 0.001

Flink

Acc. 66.34% 55.85% 10.49% < 0.05
Prec. 72.52% 77.56% 5.04% < 0.001
Rec. 57.69% 48.20% 9.49% < 0.001
F1. 64.26% 59.45% 4.81% < 0.001

both test sets. After relabeling the test set (i.e., removing noise), the size of positive samples would
become smaller than before, leading to a decrease in terms of precision.

Explanation. It is important to note that there is a discrepancy between our obtained detection
performance and published results [81]. This is because (1) the sizes of our used datasets are differ-
ent—our newly constructed dataset contains the latest commits of each project, and thus contains
more samples, and (2) SITAR split their dataset randomly, which may lead to information leakage,
whereas we use the production modification time to split our dataset.

The noise causes detection performance on the testing set to be significantly different from
its actual performance, with an average difference of 6.01%, 8.40%, 6.96%, and 3.61% in accuracy,
precision, recall, and F1-score, respectively.

3.2 Proposed Approach

3.2.1 Problem Formulation. Given a production-test change pair 〈chanдep , chanдet 〉, where
chanдet is the test code change and chanдep is the latest change of the associated production
code that occurs in the same commit of or before chanдet , CHOSEN determines whether chanдet

is triggered by chanдep , i.e., a positive/co-evolution sample.

3.2.2 Usage Scenario. Practitioners and researchers can use CHOSEN to construct PT co-

evolution samples accurately. Such samples are the basis of or are useful for various downstream
tasks.

JIT obsolete test code detection [81]. CHOSEN can be used to assist developers in perform-
ing JIT obsolete test code detection [81]. The test set built from CHOSEN can measure the perfor-
mance of models more accurately. The dataset constructed by CHOSEN can train a better detec-
tion model.

Mining co-evolution scenarios [42, 55, 88]. Based on the PT co-evolution samples constructed
by CHOSEN, developers and test engineers can explore different PT co-evolution scenarios, includ-
ing synchronous and phased, to gain insight into the testing process. For detailed instances and
explanations of synchronous and phased PT co-evolution, please refer to the literature [88].

W. Sun et al.

Fault localization [72]. Considering the bug fixing cases, these often occur with additions/-
modifications of tests (to validate the repair action). Thus, when a test execution fails, CHOSEN

can roughly locate the class-level fault production code by identifying the production code that
often evolves in concert with the failure test case.

Linking production and test code [83]. CHOSEN has the potential to establish relevance
links between tests and code units. Given a series of candidate links {〈t ,p1〉, 〈t ,p2〉, . . . , 〈t ,pn〉},
where t refers to the test code and pi represents various production code, developers can utilize
CHOSEN to mine the amount of co-evolution of production and test code for each candidate link.
Intuitively, the greater the number of co-evolutions, the greater the likelihood of correlation, as the
co-evolution of tests and code units reflects a probable link between them. The rationale is that the
PT co-evolution sample refers to a pair of a test code change and a production code change where
the test code change triggers or is triggered by the production code change, which means that
there is a relevance coupling between them. For example, when developers fix bugs in production
code, they usually introduce or modify test code to evaluate the fixed parts. Similarly, when devel-
opers implement a new feature or update an existing one, they may introduce or update test code
related to that feature simultaneously or later. Even if the identified PT co-evolution by CHOSEN

is irrelevant (i.e., false positives), these should be eliminated by the number of PT co-evolutions as
it is unlikely that the same irrelevant changes will be repeated. Thus, the more frequently t and pi

co-evolve, the stronger the relevance coupling between them. In other words, pi is more likely to
be the associated production code of t .

3.2.3 Approach. Our method includes two stages, namely initial label estimation and multi-
strategy-based label determination.

Stage 1: Initial label estimation: Based on our empirical observations, when a test class is
updated within 12 hours (94.82% of PT co-evolution samples are less than 12h) after modifying its
associated production code, CHOSEN regards it as an initial positive sample. Otherwise, it is an
initial negative sample.

Stage 2: Multi-strategy-based label determination: Through Stage 1, an initial label is as-
signed to each production-test change pair. Subsequently, we propose five strategies to adjust the
label of change pair based on the experience gained from our empirical studies.

Strategy 1: The type of the associated production code change or the test code change is
non-modification type and there are no production/test changes between their commits −→
“POSITIVE.” Intuitively, the deletion and addition of the test file should be closely related to the
associated production file. Hence, the non-modification types (e.g., ADD or DELETE) of production-

test change pairs are likely to be PT co-evolution samples. Our empirical investigation also confirms
this intuition: among the four non-modification change pairs with T > 12h, all the change pairs
are PT co-evolution samples. For more details, please refer to our empirical study dataset.4 Besides,
we have added a constraint that there are no production/test changes between their commits

Strategy 2: There are additional production code modifications between production code
change commit and test code change commit −→ “NEGATIVE.” As shown in Table 2, the Ts
of 94.82% of co-evolution samples are committed less than 12 hours apart. Once there are multiple
production code modifications before the test updates, it is reasonable to consider that earlier
production change is insufficient to introduce test modifications.

Strategy 3: The changes of the production or test code involve only import changes, and
the intersection of import modification is empty −→ “NEGATIVE.” As shown in Figure 5, the
test code change patterns involve some modifications related to import activities, such as updates

4https://anonymous.4open.science/r/CHOSEN-DE81.

https://anonymous.4open.science/r/CHOSEN-DE81

Revisiting the Identification of the Co-evolution of Production and Test Code

of used test libraries/frameworks, removal of redundant imports, and formatting imports.
We observe that a commit might update the import statements in multiple files. However, these
modifications are not related to each other, such as [18]. Hence, for Strategy 3, we aim to adjust
the label of production-test change pairs containing changes of import statements. CHOSEN needs
first to ensure that the production or test code only modifies the import statements. Once the
intersection regarding import changes is empty, CHOSEN identifies this production-test change

pair as a negative sample.
Strategy 4: There is no semantic relevance between the changes of the production and test

code.−→ “NEGATIVE.” Generally, test code is responsible for validating whether the production
code behaves as expected, which means that test code should be semantically related to the asso-
ciated production code, for example, adding a new test method to cover a production method or
updating test asserts to validate production code changes. Hence, we consider the initial positive
change pairs with no semantic relevance as non-co-evolution samples.

To measure the semantic relevance between the test and the production code changes, we col-
lect the changed contents of the class body, remove the changes of comments or format as well as
the import statement, and tokenize collected changed contents by spaces and punctuation. CHO-

SEN regards a production-test change pair as a negative sample, when the tokenized change set of
production and test code has nothing in common.

Strategy 5: The type of modification involves annotations, modifiers, and refactoring op-
erations −→ “NEGATIVE.” The empirical study shows that certain modification activities should
not cause PT co-evolution. Among 22 false positives withT = 0s , 10 (45.5%) samples are the change
pattern of “Variable Modifier Modification” (as shown in Figure 5). Additionally, the mainte-
nance activities can update the annotations in the test code, such as adding some missing anno-

tations and suppressing warnings. Moonen et al. have indicated that even though refactorings
are behavior preserving, they potentially invalidate tests [65]. Hence, we consider a change pair

as a negative sample when the test code only contains refactoring actions. We utilize the Refactor-
ingMiner [77, 78] to mine refactorings of two given revisions of the project. Compared to other
refactoring detection tools (such as RefDiff [71]), RefactoringMiner has some unique features: (1)
it does not depend on the similarity threshold of the code, (2) it supports low-level refactoring
that occurs within the method body, and (3) it can detect nested refactoring operations in a single
commit. The experimental results also show that RefactoringMiner achieves the highest average
precision and recall in identifying refactoring operations [77]. For the test code change, we first
extract its modification list. If the modification list is empty after removing all the modifications
related to refactoring operations, we classify the change pair as a negative sample.

Algorithm 1 provides details of Stage 2. We suppose a production-test change pair {proi , testi ,
taдi }, where the elements in the triple refer to the associated production code change, test code
change, and the label estimated by Stage 1, respectively. We collect the changed lines for testi , indi-
cated by chanдetest . When the taдi is NEGATIVE, CHOSEN checks the file change type of proi and
testi . Once one of the change types is not MODIFY and the change pair has no other production/test
changes between their commits, it is identified as a PT co-evolution sample (lines 2–4). We consider
those initial positive samples satisfying Strategy 2 as negative samples (line 6–8). The remaining
positive samples would be applied to Strategy 3, Strategy 4, and Strategy 5. Specifically, we use
the GumTree to extract the edit actions of proi and testi , denoted actionpro and actiontest , respec-
tively. When the actionpro or actiontest only involves import edits and the intersection of import
edits is empty, we identify the change pair as a negative sample (lines 9–15). We exclude from the
co-evolution set those samples owing the non-semantic relevance using Strategy 4 (lines 16–20).
When actionpro or actiontest is caused by annotation or modifier activities, we adjust the change

pair’s label. Furthermore, RefactoringMiner [77, 78] is utilized to mine refactorings of two given

W. Sun et al.

ALGORITHM 1: IDENTIFICATION METHOD

Input: Samples /*The dataset to be filtered*/
δ /*A predefined parameter*/

Output: possample , neдsample ={}, {}
1: for (each element 〈proi , testi , taдi 〉, where i ∈ [1,n]) do

2: if (taдi ∈ {NEGATIVE} and typepro or typetest � {MODIFY} and HasNonProBetween
(proi ,testi) then

3: possample ← 〈prodi ,testi ,‘POSITVE’〉
4: end if

5: if (taдi ∈ {POSITVE}) then

6: if (HasProBetween(proi ,testi)) then

7: neдsample ← 〈proi , testi , ‘NEGATIVE’〉
8: end if

9: if (getChangeType(proi) or getChangeType(testi) ∈ {Import}) then

10: Importpro ← getDiffToken(proi)
11: Importtest ← getDiffToken(testi)
12: if getIntersectionRatio(Importpro , Importtest) == 0 then

13: neдsample ← 〈proi , testi ,‘NEGATIVE’〉
14: end if

15: end if

16: Contentpro ← getDiffToken(proi)
17: Contenttest ← getDiffToken(testi)
18: if (getIntersectionRatio(Contentpro ,Contenttest) ≤ δ) then

19: neдsample ← 〈proi , testi ,‘NEGATIVE’〉
20: end if

21: if (getChangeType(proi) or getChangeType(testi) ∈ {Modifier, Annotation} and

getChangeType(testi)) ∈ {Refactoring}) then

22: neдsample ← 〈proi , testi ,‘NEGATIVE’〉
23: end if

24: end if

25: end for

26: Return possample , neдsample

revisions of a project. RefactoringMiner can obtain the set of changed rows (denoted Re ftest) due
to refactoring. If chanдetest ⊆ Re ftest , the change pair can be considered a negative sample (lines
21–23).

4 EVALUATION

We conduct a series of experiments to evaluate the performance of our proposed identification
method. This section provides details about the experimental settings and results.

4.1 Research Questions

Given a production-test change pair, we expect that CHOSEN can precisely determine whether
the test code co-evolves with the production code. Thus, it is required to examine the effectiveness
of CHOSEN in identifying PT co-evolution samples. To demonstrate that our proposed method
remains available for downstream tasks, we further explore the performance of our approach in

Revisiting the Identification of the Co-evolution of Production and Test Code

other tasks, e.g., JIT OTCD. The experimental studies help us answer the following four research
questions:

• RQ3: How effective is CHOSEN at identifying PT co-evolution?
• RQ4: How useful is CHOSEN in JIT OTCD?
	 RQ4.1: Could the test set constructed by CHOSEN be used to measure the performance of the

detection method more accurately?
	 RQ4.2: Could the dataset constructed by CHOSEN be used to train a better OTCD model?
	 RQ4.3: How does CHOSEN perform on other projects?

4.2 RQ3: The Effectiveness of CHOSEN

4.2.1 Baselines. We implement two baselines to compare with our method:
Random guess (RG). Random guess is a particular baseline that directly employs the data

distribution obtained from our empirical study to identify PT co-evolution samples. This baseline is
usually used when there is no previous method for the research question [84]. Specifically, the ratio
of co-evolution samples in our empirical study is 51.05%, and then, the RG baseline will randomly
select approximately 51.05% of production-test change pairs as positive samples. Note that the AUC
of RG is always 0.5 [84]. To reduce the bias of randomly selecting, we run each experiment 10 times
and report the average results.

SITAR’s identification method (SITAR_IM), following Assumption 1. Recently, Wang
et al. [81] proposed SITAR, a machine-learning-based approach, to detect whether a piece of test
code should be updated when developers modify the production code. SITAR consists of two com-
ponents: (1) the construction of PT co-evolution samples (positives) and PT non-co-evolution samples

(negatives) and (2) designing several structural code features and training a detector to detect ob-
solete test code, based on the mined samples. SITAR uses the following strategies to identify PT

co-evolution samples: (1) positive sample, if a test class is updated within 48 hours since its associ-
ated production class is changed, and (2) negative sample, if the test code has not changed within
480 hours. Since Wang et al. [81] does not name the component of identifying PT co-evolution sam-

ples, we name it as SITAR_IM for the sake of description. In this article, unless otherwise specified,
SITAR refers to the obsolete test code detection method, and SITAR_IM refers to the method for
identifying PT co-evolution samples in SITAR.

4.2.2 Experimental Setup. The design and settings of the experiments are described in this
section.

Data Collection. We propose CHOSEN based on 380 labeled samples used in the empirical
study. Evaluating CHOSEN on these observed samples would lead to overfitting, which is unde-
sirable. Thus, following Section 2.1, we re-select and label another set of 380 samples from the
33,567 production-test change pairs while ensuring that there is no overlap or duplicate samples
between these 380 samples and that of our empirical study. These 380 samples will be used as
ground truth to verify the effectiveness of CHOSEN and RG. Notably, SITAR_IM does not pro-
vide an identification strategy for change pairs with 48h < T < 480h. Therefore, we filter the
380 samples, retaining only the change pairs that satisfy SITAR_IM’s identification requirements.
In summary, we re-collect and label 380 samples for RQ3. We compare the effectiveness of CHO-

SEN and RT on the 380 samples while comparing the effectiveness of CHOSEN and SITAR_IM
on the filtered dataset consisting of 343 samples.

Evaluation Metrics. We use accuracy, precision, recall, F1-score, and AUC [69] as evaluation
measures. The accuracy directly reflects the amount of noise introduced. The precision and recall
allow us to evaluate the proportion of true positives among all positive predictions and all positive
examples retrieved, respectively. Since precision and recall are tradeoffs, the F1-score is a valuable

W. Sun et al.

Table 4. Effectiveness of CHOSEN vs. RG and SITAR_IM

Method Acc.
Positive Negative

AUC
Prec. Rec. F1. Prec. Rec. F1.

RG 48.68% 46.39% 49.72% 48.00% 51.08% 47.74% 49.35% 50.00%

CHOSEN 92.89% 89.29% 96.69% 92.84% 96.74% 89.45% 92.95% 93.07%

Improvement 90.81% 92.46% 94.44% 93.41% 89.41% 87.37% 88.35% 86.13%

SITAR_IM 81.63% 73.95% 99.44% 84.82% 99.05% 62.65% 76.75% 81.04%

CHOSEN 92.71% 89.18% 97.74% 93.26% 97.32% 87.35% 92.06% 92.54%

Improvement 13.57% 20.59% −1.70% 9.95% −1.75% 39.42% 19.95% 14.19%

Table 5. The Confusion Matrix of CHOSEN vs. RG and SITAR_IM

Actual Classification

of 380 Samples

CHOSEN Prediction RG Prediction
Positive Negative Positive Negative

Positive 175 6 90 91
Negative 21 178 104 95

Actual Classification

of 343 Samples

CHOSEN Prediction SITAR_IM Prediction
Positive Negative Positive Negative

Positive 173 4 176 1
Negative 21 145 62 104

metric as it enables us to figure out which methods handle the tradeoff best. Finally, we employ
the AUC since it provides a threshold-independent perspective of each technique’s performance.

4.2.3 Answer to RQ3. How effective is CHOSEN at identifying PT co-evolution? Table 4
provides the performance comparison of CHOSEN and the baseline methods, including RG and
SITAR_IM, when determining whether a change pair is a PT co-evolution sample (positive: co-
evolution pair, negative: non-co-evolution pair). Table 5 reports the confusion matrix of CHOSEN,
RG, and SITAR_IM. In Table 4, we display the precision, recall, and F1-score of compared methods
on both positive and negative classes. Since accuracy and AUC have identical values for both cat-
egories, we present them in a separate column. Accuracy measures the overall correctness of the
classifier’s predictions, regardless of the class label, and therefore is the same for both classes [76].
Additionally, to calculate AUC [48] metrics for different identification methods, we assigned a
prediction probability of 1.0 to positive predictions and 0.0 to negative predictions, as the identifi-
cation methods, including CHOSEN, do not provide prediction probabilities for the identification
results. Using the assigned prediction probabilities and information in the confusion matrix (Ta-
ble 5), we determined AUC values for each identification method. Our results indicate that AUC
values are the same for both positive and negative categories in this article. In terms of identifying
PT co-evolution samples, results show that CHOSEN achieves 93.07% of AUC and improves over
RG by 86.13% and 93.41% in terms of AUC and F1-score, respectively. Because SITAR_IM does not
identify production-test change pairs with 48h < T < 480h, we filter out such change pairs from
the 380 samples to compare with SITAR_IM. Table 4 shows that, although CHOSEN performs
slightly worse on recall, the F1-score and AUC of CHOSEN are 93.26% and 92.54%, respectively,
improving by 9.95% and 14.19%. The above results can be explained as follows. SITAR_IM identi-
fies all PT co-evolution samples that occur within 48 hours as positive samples, thereby obtaining
a high recall value. Its disadvantage is that it does not distinguish PT co-evolution samples and

Revisiting the Identification of the Co-evolution of Production and Test Code

Table 6. Selected Projects for Evaluation

Project From #Commits #Files #KLoC

ActiveMQ [81] 10,951 4,322 408.5

BioJava [35, 81] 6,540 1,298 145.1

CloudStack [81] 34,641 5,811 683.0

Math [81] 6,622 1,165 149.7

dnsjava [81, 83] 2,031 280 33.1

Geode [81] 10,735 9,018 1,381.1

Gson [62, 81] 1,485 208 25.3

James [81] 12,939 5,447 446.6

JRuby [81] 50,346 1,750 264.0

PMD [62, 81] 17,768 3,289 348.5

Storm [81] 10,462 2,434 300.6

Usergrid [81] 10,954 2,097 175.2

IzPack [35, 81] 5,667 1,112 105.3

Zeppelin [81] 5,012 916 158.0

non-co-evolution samples when the time interval is short, introducing noise. Since CHOSEN iden-
tifies PT co-evolution samples case by case, it can achieve higher precision by better distinguishing
PT co-evolution samples and non-co-evolution samples when the time interval is less than 48 hours.
In terms of identifying PT non-co-evolution samples, results show that CHOSEN improves over
RG by 88.35% in terms of F1-score. Although CHOSEN performs slightly worse on precision than
SITAR_IM, the recall and F1-score of CHOSEN are 87.35% and 92.06%, respectively, improving by
39.42% and 19.95%. The above results can be explained as follows. SITAR_IM directly identifies the
production-test change pair withT > 480h as PT non-co-evolution sample. Our empirical study has
confirmed that when theT exceeds 480 hours, the change pair has a high probability of being a PT

non-co-evolution sample (more than 95%), so SITAR_IM has a high precision value. In contrast, the
recall value of SITAR_IM is much lower than that of CHOSEN, since SITAR_IM does not consider
the negative samples that occurred within 48 hours.

Our CHOSEN can effectively identify PT co-evolution. It improves SITAR_IM and RG by 13.57%
and 90.81%, respectively, in terms of accuracy, and by 9.95% and 93.41%, respectively, in terms of
F1-score. Moreover, CHOSEN can effectively identify PT non-co-evolution. It improves SITAR_IM
and RG by 39.42% and 87.37%, respectively, in terms of recall, and by 19.95% and 88.35%, respec-
tively, in terms of F1-score.

4.3 RQ4: The Usefulness of CHOSEN in JIT OTCD

4.3.1 Experimental Setup. We provide more details of the design and settings of the experiments
in this section.

Data Collection. To answer RQ4.1 and RQ4.2, we have followed the dataset used in RQ2 (more
descriptions in Data Splitting of Section 3.1). As for RQ4.3, we select the 14 projects widely used
in PT co-evolution-related research studies [35, 81, 83]. Table 6 summarizes the detailed information
of these 14 projects. We construct production-test change pairs for each project and undersample
the majority class to balance the sample label distributions. We adopt the same way of splitting
data as mentioned in Section 3.1. We adopt SITAR_IM to divide the dataset to obtain the noise
training set and noise test set. Then, the noise training set and noise test set after applying

W. Sun et al.

Table 7. Performances of Detection Method Trained on Noise Training Set, Tested on

Noise vs. CHOSEN Test Set

Projects Metrics
Annotated Test Set Noise Test Set CHOSEN Test Set Error Error p-value

(x) (y) (z) (|y − x |) (|z − x |) (y vs. x)

Jsoup

Acc. 58.64% 54.55% 59.32% 4.09% 0.68% < 0.05
Prec. 38.63% 51.96% 38.61% 13.33% 0.02% < 0.001
Rec. 50.24% 45.81% 51.71% 4.43% 1.47% < 0.05
F1. 43.68% 48.69% 44.21% 5.01% 0.53% < 0.001

Log4j2

Acc. 60.73% 57.29% 59.47% 3.44% 1.26% < 0.05
Prec. 51.11% 57.94% 48.52% 6.83% 2.59% < 0.05
Rec. 67.17% 60.22% 67.25% 6.95% 0.08% < 0.05
F1. 58.05% 59.06% 56.37% 1.01% 1.68% < 0.001

Flink

Acc. 66.34% 55.85% 66.25% 10.49% 0.09% < 0.05
Prec. 72.52% 77.56% 72.87% 5.04% 0.35% < 0.001
Rec. 57.69% 48.20% 57.38% 9.49% 0.31% < 0.001
F1. 64.26% 59.45% 64.20% 4.81% 0.06% < 0.001

Average 6.24% 0.76%

our proposed method are indicated as CHOSEN training set and CHOSEN test set, respectively.
A dataset with the prefix annotated means that the dataset has been relabeled manually.

Evaluation Metrics. Following the previous work [81], we compare SITAR’s performance in
terms of accuracy, precision, recall, and F1-score to quantify the usefulness of identification meth-
ods. Considering the randomness of random forest, we ran each experiment 10 times to obtain
averages for analysis. In addition, we compute both p-value (probability value) and effect size to
examine the significance of the performance differences. Specifically, we utilize the paired Mann
Whitney-Wilcoxon test [36] to verify whether there are statistically significant differences among
the investigated methods. The p-value is less than 0.05, implying a significant difference between
the two compared methods. Meanwhile, the non-parametric Cliff’s delta effect size is used to eval-
uate the amount of the difference5 between the two approaches.

4.3.2 Answer to RQ4.1. Could the test set constructed by CHOSEN be used to measure the
performance of the detection method more accurately? We evaluate SITAR’s detection per-
formance on the noise/CHOSEN test set. The detection performance on the annotated test set is
considered as the ground truth. Table 7 shows that the noise test set leads to average performance
errors of 6.01%, 8.40%, 6.96%, and 3.61% in terms of accuracy, precision, recall, and F1-score, respec-
tively. In contrast, those errors are only 0.68%, 0.99%, 0.62%, and 0.76% on the test set labeled by
CHOSEN. Statistical results show the p-value < 0.001 and the cliff’s delta = 0.94, meaning that
the performance errors caused by the noise test set are significantly greater than those caused by
the CHOSEN test set. Therefore, compared to SITAR_IM, CHOSEN can be used to construct a
better test set, which can more accurately measure the performance of OTCD models.

4.3.3 Answer to RQ4.2. Could the dataset constructed by CHOSEN be used to train a better
OTCD model? We trained the detection model on the noise/CHOSEN training set, respectively,
and tested them on the annotated test set. Table 8 lists the accuracy, precision, recall, and F1-score
in percentage. The improvements in terms of accuracy range from 1.30% to 18.03%, and the average
improvement is 12.00%. The range of precision improvements is between -1.71% and 30.39%. Mean-
while, START obtains a 13.50% average improvement in terms of F1-score. Overall, the CHOSEN

training set can be used to train a better detection model than the noise training set. One possible

5We use the following mapping for the values of the delta that are less than 0.147, between 0.147 and 0.33, between 0.33

and 0.474, and above 0.474 as “Negligible (N),” “Small (S),” “Medium (M),” and “Large (L)” effect size, respectively [40].

Revisiting the Identification of the Co-evolution of Production and Test Code

Table 8. Performance of Detection Method Trained on Noise vs. CHOSEN Training Set,

Tested on Annotated Test Set

Projects Metrics Noise Training Set CHOSEN Training Set Improvement

Jsoup

Acc. 58.64% 68.41% 16.66%
Prec. 38.63% 50.37% 30.39%
Rec. 50.24% 56.19% 11.84%
F1. 43.68% 53.12% 21.62%

Log4j2

Acc. 60.73% 71.68% 18.03%
Prec. 51.11% 63.05% 23.36%
Rec. 67.17% 70.95% 5.63%
F1. 58.05% 66.77% 15.02%

Flink

Acc. 66.34% 67.20% 1.30%
Prec. 72.52% 71.28% −1.71%
Rec. 57.69% 62.75% 8.77%
F1. 64.26% 66.74% 3.86%

reason is that the distribution of the dataset constructed by CHOSEN is more consistent with the
true distribution. For Flink, CHOSEN may introduce more noise when identifying change pairs

of 12h < T ≤ 48h, resulting in a slight decrease in precision.

4.3.4 Answer to RQ4.3. How does CHOSEN perform on other projects? In this section, we
present CHOSEN’s performance on other projects. Since it is too costly to manually label a test set
for each project and Section 4.3.2 has demonstrated that CHOSEN only leads to few performance
errors (< 1%), we use CHOSEN to label the test set for each project.

Table 9 reports the accuracy, precision, recall, and F1-score for all projects. We also provide the
performance improvements in terms of each metric, where positive improvements are marked in
grey. Results show that the detection models trained on CHOSEN training sets achieve average
improvements of 8.32%, 13.85%, and 9.31% in terms of accuracy, precision, and F1-score, respec-
tively. Compared with the noise training set, the CHOSEN training set can help the detection
model achieve better recall in 11 out of the 14 projects. The statistical analysis displays that the
p-values are less than 0.05, meaning that the CHOSEN training set is significantly better than
the noise training set on all metrics. The effect-size results show that the dataset constructed by
CHOSEN brings large performance differences in accuracy, medium performance differences in
precision, and small performance differences in F1-score.

The test set constructed by CHOSEN measures the performance of OTCD models more accurately

with an average error of 0.76%. The dataset constructed by CHOSEN can train a better detection

model, with performance improvements of 12.00%, 17.35%, 8.75%, and 13.50% in terms of accuracy,

precision, recall, and F1-score, respectively.

The dataset constructed by CHOSEN improves the performance of the detection model on other

projects, where the average accuracy, precision, recall, and F1-score of the model improve by 8.32%,

13.85%, 4.86%, and 9.31%, respectively.

5 DISCUSSION

In this section, we further discuss the definition of Assumption 1, the limitation of empirical study,
the limitation of our approach, the implications for practitioners and researchers, and the threats
to the validity of this work.

W. Sun et al.

Table 9. Performances of CHOSEN in 14 Programs

Project
Noise Training Set (x)

Acc. Prec. Rec. F1.vs.
CHOSEN Training Set (y)

ActiveMQ
x 57.45% 55.10% 49.13% 51.94%
y 67.82% 68.75% 57.48% 62.61%

Improvement 18.05% 24.77% 17.00% 20.54%

BioJava
x 71.59% 46.92% 43.13% 44.95%
y 77.41% 63.36% 37.95% 47.47%

Improvement 8.13% 35.04% −12.01% 5.61%

CloudStack
x 71.44% 61.98% 60.00% 60.97%
y 71.56% 62.06% 60.65% 61.35%

Improvement 0.17% 0.13% 1.08% 0.61%

Math
x 73.33% 62.80% 68.68% 65.61%
y 74.19% 64.19% 68.83% 66.43%

Improvement 1.17% 2.21% 0.22% 1.25%

dnsjava
x 64.42% 18.25% 43.33% 25.68%
y 70.96% 23.99% 47.33% 31.84%

Improvement 10.15% 31.45% 9.23% 23.98%

Geode
x 67.92% 78.01% 68.37% 72.87%
y 69.94% 81.43% 67.77% 73.97%

Improvement 2.97% 4.38% −0.88% 1.51%

Gson
x 55.27% 51.99% 46.54% 49.11%
y 66.25% 68.80% 50.38% 58.17%

Improvement 19.87% 32.33% 8.25% 18.43%

IzPack
x 62.37% 58.20% 59.71% 58.95%
y 65.79% 61.95% 63.88% 62.90%

Improvement 5.48% 6.44% 6.98% 6.71%

JRuby
x 48.33% 28.50% 36.36% 31.95%
y 48.79% 30.46% 42.27% 35.41%

Improvement 0.95% 6.88% 16.25% 10.80%

PMD
x 64.13% 64.79% 56.79% 60.53%
y 67.03% 68.63% 58.76% 63.31%

Improvement 4.52% 5.93% 3.47% 4.60%

Storm
x 62.50% 57.78% 53.39% 55.50%
y 72.50% 69.30% 66.61% 67.93%

Improvement 16.00% 19.94% 24.76% 22.40%

Usergrid
x 65.57% 41.57% 67.37% 51.41%
y 74.76% 52.67% 65.62% 58.44%

Improvement 14.02% 26.70% −2.60% 13.66%

Zeppelin
x 60.22% 42.55% 63.37% 50.91%
y 69.59% 52.71% 64.31% 57.94%

Improvement 15.56% 23.88% 1.48% 13.79%

James
x 70.18% 69.71% 70.00% 69.85%
y 72.59% 72.12% 72.52% 72.32%

Improvement 3.43% 3.46% 3.60% 3.53%

Avg.
x 63.91% 52.73% 56.16% 53.59%
y 69.23% 60.03% 58.88% 58.58%

Improvement 8.32% 13.85% 4.86% 9.31%

Statistical
results

p-value 6.1035 × 10−5 6.1035 × 10−5 0.0148 5.4697 × 10−4

cliff’s delta 0.51 0.34 0.14 0.28
Effect-size L M N S

5.1 The Definition of Assumption 1

The definition of Assumption 1 is based on prior research [42, 55, 81, 88] that employs time-based
commit analysis to identify PT co-evolution samples. Existing work argues that PT co-evolution

should occur together in one commit [42, 55, 88] or in a short time interval [81]. Actually, Assump-
tion 1 was formulated to be able to mine PT co-evolution samples, since automatically determining
PT co-evolution is a non-trivial task that requires precisely comprehending production and test
code changes. Furthermore, Assumption 1 is reasonable because it aligns with the idea that if the
modification of the production code results in obsolete test code, the obsolete test code should be
promptly updated accordingly, since obsolete test code would increase the cost of development and
maintenance [50, 65]. On the other hand, if the time interval between a production code change

Revisiting the Identification of the Co-evolution of Production and Test Code

and a test code change is too long, their modifications are likely to be uncorrelated. Careful read-
ers may wonder if the definition of Assumption 1 is a bit too strict. However, since the identified
PT co-evolution samples typically serve as the foundation for downstream tasks like JIT obsolete
test code detection and fault localization [85, 86], the strict assumption can reduce noise and is
favorable.

5.2 Limitation of Empirical Study

To enable the mining of PT co-evolution samples, existing PT co-evolution-related works widely use
the following strategies to identify PT co-evolution samples: (1) focusing on unit test classes and
taking advantage of naming conventions to ease the association of test and production classes
and (2) collecting PT co-evolution samples based on Assumption 1; i.e., if a test class and its asso-
ciated production class change together in one commit, or a test class changes immediately after
the changes of the associated production class within a short time interval (denoted by T), this
change pair should be a PT co-evolution sample. We conduct the empirical study with the goal of
investigating whether the production-test change pairs that satisfy the assumption are always PT

co-evolution samples. Therefore, we need to follow the above-mentioned assumption to construct
the PT co-evolution samples. During the construction process, we identify all test code changes for
each commit in the repository’s main branch. For each test code change, denoted as chanдetest ,
we iterate through the commits before (and including) the chanдetest to find the latest production
code changes. Note that there may be a situation where a set of changes applied to the produc-
tion class in different commits results in a change in the corresponding test class. In such case,
only the pair of the last production code change and the test code change is regarded as our PT

co-evolution candidate following this assumption. Other pairs of production code changes and test
code changes fall outside the scope of Assumption 1. It is worth mentioning that these change
pairs do not threaten the validity of our empirical findings, as the purpose of our empirical study
is to investigate whether the PT co-evolution samples that satisfy Assumption 1 introduce noise.
We plan to explore other pairs in our future work.

5.3 Limitation of Our Approach

5.3.1 The Selection of Test-to-code Traceability Link Method. CHOSEN accepts a production-
test change pair 〈chanдep , chanдet 〉 as input. To construct a production-test change pair, CHOSEN

needs to associate a production code snippet and a test code snippet. However, all existing test-to-
code traceability link techniques have weaknesses that make them unsuitable for use as a general
solution [83]. Therefore, following previous studies [81], we utilize a most common technique, i.e.,
naming convention. The specific conventions may vary between projects. However, the standard
convention is that a test class should share the same name as the associated production class, with
test prepended or appended [61, 68]. The naming convention can ensure that, for each test code
change, once a production code is found by removing the test prefix or suffix of the test code, this
production code must be the associated production code. Since Maven projects follow the standard
directory layout, we only consider the projects written in Java language and managed by Maven
in this article.

However, it does not mean that our approach only applies to Java projects. For example, main-
stream python testing frameworks (e.g., pytest [32]) also follow naming conventions, where test
methods/functions or test classes are expected to match the “test_*.py” or “*_test.py” pattern. As
for projects that do not adhere to these conventions, we can leverage other test-to-code traceabil-
ity link techniques [52, 67, 83]. For example, based on the assumption that the test code should
be similar to the associated production code, Csuvik et al. [41] use word embeddings to create
traceability links between the test classes and associated production classes. Therefore, CHOSEN

W. Sun et al.

Table 10. PT Co-evolution Identification Performance under

Different Time Intervals in 380 Samples Constructed in the

Empirical Study

Time Interval
Acc. Prec. Rec. F1.

(T)

T = 0 88.68% 88.66% 89.12% 88.89%

T = 12h 88.16% 83.94% 94.82% 89.05%

T = 24h 86.84% 81.78% 95.34% 88.04%

T = 48h 85.53% 79.74% 95.85% 87.06%

T = 480h 77.89% 70.26% 97.93% 81.82%

can be easily migrated to other languages/types of projects by accurately modeling the traceability
relationship between test and production code.

5.3.2 Interpretation of the Identification Strategies. Given a production-test change pair, we pro-
pose a two-stage identification strategy to determine whether the production code change triggers
the test code change. The proposed method is learned from the findings of the empirical study. In
this section, we will discuss the intuition and interpretation of some identification strategies.

Threshold in Stage 1. Stage 1 of CHOSEN uses the time interval to initially estimate the label
of product-test change pair. When the time interval between the test code change and the produc-
tion code change is less than a threshold T (in this article, T = 12h), CHOSEN will treat it as an
initial positive sample. Otherwise, it is an initial negative sample. The determination of the T is
based on our empirical study, in which we set different values ofT , i.e.,T = {0, 12h, 24h, 48h}, and
compare the identification performance of PT co-evolution using these values in terms of accuracy,
precision, recall, and F1-score, based on 380 labeled samples. The results of the comparison are
presented in Table 10. From Table 10, we can observe that asT increases, the recall value gradually
increases while the precision value gradually decreases. On the one hand, when T > 12h, increas-
ing theT can bring slight recall improvement, but it dramatically reduces the precision. Although
T = 0 gets the best precision performance, it is not optimal for the F1-score. On the contrary, the
best F1-score result is achieved atT = 12h. AlthoughT = 12h does not obtain satisfactory precision
results, CHOSEN can further improve the precision performance through Stage 2’s identification
strategies.

Strategy 1 in Stage 2. The determination of Strategy 1 is based on the findings of our empiri-
cal study. We retain the production-test change pairs constructed in the empirical study satisfying
Strategy 1 and obtain a total of 6,253 non-modification change pairs (i.e., the production changes
or test changes are non-modification types). We observe some interesting facts regarding non-
modification change pairs. We find that most change pairs involve the same non-modification
type of change for both production and test code, with 5,185 samples (82.92%). For the remain-
ing 1,068 samples, we randomly select 10 change pairs. By manually checking and analyzing test
change reasons, such selected samples are all PT co-evolution samples. Obviously, considering only
the change pairs of which the non-modification type change must occur and must be the same
on both production changes and test changes as PT co-evolution samples, we may ignore some
positives.

We further analyze the above-mentioned observations. On the one hand, some change pairs of
different non-modification types are due to the modification type of production or test change
being RENAME and COPY. Github offers five types of file change, including MODIFY, ADD, DELETE,
RENAME, and COPY. RENAME is usually caused by changes to the file path, which can be seen as the

Revisiting the Identification of the Co-evolution of Production and Test Code

Fig. 6. PT co-evolution example of production code modifications leading to test class deletion in

commons-compress project.

deletion of files located in the old path and the addition of files located in the new path. Meanwhile,
COPY operation adds a new file in the target file path. Secondly, some change pairs are due to
developers modifying the production code resulting in the addition of a test class (which accounts
for 678/1,068 cases). For example, in the ta4j project, the production code XorRule removed the
check method and added a new isSatisfied method [9]. Three days later, the developers added
a new test class XorRuleTest and a test case that tests the focal method isSatisfied [10]. In
addition, we observe some uncommon cases where the developer simply removed the test class
without removing the production class, accounting for 8.80% (55/6,253). As shown in Figure 6,
before the code is committed, the production code defines the BLOCK_SIZES variable to store a set
of block sizes. When the production code accepts a block size that does not fall within the specified
range, an IllegalArgumentException is thrown, which is also tested by the corresponding test
case. Subsequently, the developer removed the conditional statement that threw the exception and
added the Parameters inner class and the BlockSize enumeration class to enforce the use of a
predefined block size. The changes to the production code make the test case redundant, and the
test class contains only one test case. As a result, the developer directly deleted the entire test class.

Strategy 2 in Stage 2. For Strategy 2, we define a production-test change pair as a PT non-co-

evolution sample when there are additional production code modifications between the production
code change commit and test code change commit. The definition of Strategy 2 is based on the

W. Sun et al.

following reasons: (1) Consistent with problem formulation (as described in Section 3.2.1).
Strategy 2 allows us to focus on the co-evolution of the test changes with the most recent pro-
duction changes. (2) Mapping to the PT co-evolution distribution of empirical study. Our
empirical study shows that PT co-evolution usually occurs in a short time interval (T), and the
number of PT non-co-evolution samples increases significantly whenever T increases slightly (as
shown in Table 2). Thus, when there are multiple production code modifications prior to the test
changes, it is reasonable to consider that the earlier production modifications are associated with
the test modifications with low confidence. Strategy 2 ensures that CHOSEN constructs the PT co-

evolution samples as precisely as possible. However, there may be multiple consecutive production
code changes that occur in different commits and are associated with a test code update. In such
a case, the last production and test code change must be a PT co-evolution sample, but CHOSEN

would identify other change pairs as negatives, which may sacrifice some recall results while en-
suring high precision performance. Improving the recall performance of CHOSEN in identifying
PT co-evolution samples will be part of our future work.

5.4 Limitation of CHOSEN Application

Following previous research [42, 55, 81, 88], CHOSEN focuses on unit test classes and identifies
the PT co-evolution samples where test modifications are triggered by production modifications.
Interestingly, in our empirical research, we observe some cases where test code changes trigger
subsequent production code modifications (i.e., category 6 in the taxonomy). Although such cases
are not many, accounting for only 0.53%, limited by our study scope, CHOSEN cannot identify
them. However, our qualitative analysis can offer insight for future researchers to address this
limitation. As mentioned in Section 2.3, developers may, in order to fix a bug in production code,
add a failed test case that triggers the bug [6]. Generally, with the addition of failed test cases,
developers would explicitly describe modification intentions in commit messages and comments
and assign an ID to denote the bug. When subsequent developers fix the production bug, they
can refer to the previously defined bug ID in the corresponding commit message. This insight
inspires us to identify test modifications that may trigger subsequent production modifications by
extracting their comments and commit messages. Then, developers can use the assigned bug ID
to traverse the commit history to search for production modifications.

5.5 Implications

Identifying PT co-evolution samples is crucial for helping developers understand the co-evolution
process of a project (e.g., how source code entities co-evolve). Furthermore, the mined PT co-

evolution samples can be used in downstream tasks to further facilitate co-evolution in a project,
such as JIT OTCD. Our large-scale study in RQ1 confirms that the assumption used in the literature
for identifying co-evolution samples is not always held, and even when production code changes
and test code changes happen simultaneously, they are not necessarily PT co-evolution samples. In
other words, production code changes do not always result in updates of corresponding test code.
Therefore, we are not claiming it is a bad practice to not update test code as a consequence of
production code changes. Additionally, our qualitative analysis reveals that the factors leading to
test code updates are diverse, providing us with some lessons learned. In the following, we discuss
the implications for researchers and/or practitioners from our findings.

5.5.1 Implications for Practitioners. Diversity of test code updates. Software engineers and
developers should be aware that test code updates can be diverse and not always triggered by
production code changes. Our empirical study has shown that a considerable number of test code
changes are related to factors such as test framework updates, refactoring, or bug fixing within

Revisiting the Identification of the Co-evolution of Production and Test Code

the test code itself. In addition to the test code updates due to adaptive, perfective, and corrective
maintenance activities, there are also indirectly related production code updates and indirectly
related test code updates. Therefore, it is important to not solely rely on production code changes
as an indicator of when to update test code and to attribute test code changes simply to production
code changes. Additionally, developers should consider monitoring and analyzing the test code
changes to ensure that the tests remain relevant and effective in detecting defects. Overall, being
proactive in maintaining and updating test code can help to catch issues early and reduce the cost
and effort of fixing bugs later in the development cycle.

Diversity of software artifact co-evolution, including indirectly related production/test

code. We observed a series of cases where test code updates are due to other software artifacts,
e.g., indirectly related production code and indirectly related test code. For example, a function sig-
nature change of an indirectly related production code leads to the modifications of a series of test
files that call the method [13]. Similarly, for a test class with an inheritance relationship, changes
in the parent class may cause updates in the subclass [8]. This highlights that when developers
update source code entities, they also need to consider the impact of other code entities that are
associated or inherited. The implications of this finding for software engineers and developers are
significant. It suggests that developers should broaden their scope when updating software arti-
facts and be mindful of the potential ripple effects on other code entities. Specifically, they need to
consider how updates to indirectly related code artifacts may affect the behavior and functionality
of the entire system. This broader perspective can improve the quality and stability of software
systems and reduce the potential for unexpected bugs and errors. By recognizing the diversity of
co-evolution and adopting a more holistic approach to software updates, developers can enhance
their software development skills and produce more robust and reliable software systems.

5.5.2 Implications for Researchers. PT co-evolution identification is still an open problem.

Existing studies related to PT co-evolution, including this article, have primarily focused on code
changes at the class level. However, there are still significant challenges and gaps in understand-
ing method-level PT co-evolution. Therefore, further exploration of method-level PT co-evolution

is necessary to provide better solutions for developers. Researchers can work toward developing
new techniques and tools that can help identify finer-grained co-evolution between production
code and test code, as well as the impact of test code changes on production code and vice versa,
ultimately facilitating the PT co-evolution process. As discussed in Section 1, a major research chal-
lenge in identifying and mining PT co-evolution samples is how to associate a test code snippet
and a production code snippet. In this article, we utilize the naming convention (NC) approach,
which exhibits high precision, particularly in projects that strictly adhere to naming conventions.
However, NC’s performance is limited in projects that do not follow naming conventions. There-
fore, there are many research opportunities here for researchers to further improve PT co-evolution

identification by constructing more accurate test-to-code traceability links.
The dataset of other code entities’ co-evolution is necessary. Our empirical study shows

that the assumption used in previous studies for constructing PT co-evolution samples does not al-
ways hold and may introduce noise. However, manually collecting PT co-evolution samples is time-
consuming for researchers. Therefore, we propose a method for automatically identifying PT co-
evolution samples (i.e., CHOSEN). CHOSEN achieves promising performance (accuracy: 92.89%)
and has the potential to help researchers construct high-quality PT co-evolution samples from the
large amount of historical data stored in GitHub and other version control systems. However, soft-
ware is multi-dimensional, and so is the development process behind it. This multi-dimensionality
lies in the fact that other artifacts are required to develop high-quality source code, such as require-
ments, documentation, and so forth [63]. Our qualitative analysis has shown that there are various

W. Sun et al.

forms of co-evolution scenarios, such as the co-evolution of test code with indirectly related pro-
duction code and the co-evolution of test code with indirectly related test code. Therefore, in the
future, it is necessary to construct standard datasets of different forms of co-evolution to facilitate
researchers to perform co-evolution-related work.

5.6 Threats to Validity

Despite our best efforts, we are aware of some threats to validity. In this section, we briefly discuss
them, which are grouped into the following categories.

5.6.1 Threats to Internal Validity. Internal validity threats concern factors internal to our study
that could influence our results.

Manual Analysis. The use of manual analysis could suffer from subjectivity bias for interpreta-
tion in determining the test update reasons. To mitigate this threat, we employed three volunteers
to conduct a two-phase check. All test update reasons have a full inter-rater agreement.

Saturation Evaluation. To determine whether our manual analysis achieved saturation, we
followed the common practice of previous studies [79, 80]: near the end of the manual analysis,
the cards/tags collection can be considered saturation when new cards/tags no longer appear.
Similarly, we found that after analyzing about 80% of the changed pairs, volunteers did not add
any new tags. Thus, we claimed that our manual analysis had reached saturation. Additionally,
we randomly selected 10% of the PT non-co-evolution samples from the evaluation dataset
constructed by RQ3. Upon analysis of these test change reasons, we found that the test change
patterns were always found in the taxonomy, providing further evidence that our manual analysis
had reached saturation.

Dependent Tools. The detection of refactoring operations relies entirely on off-the-shelf tools,
and to reduce the risk of tools, we choose state-of-the-art detection tools, which have wide applica-
tion and high accuracy. Our method implementations involve the GumTree tool whose potential
threat [44] may limit the effectiveness of our approach.

Test-to-code Traceability Construction. The third threat to internal validity is that construct-
ing the production-test change pair may introduce traceability noise, i.e., the production code
that is not the associated production code of the test code. Following previous work [81, 88, 89],
we adopt the naming convention, a very high precision traceability technique in class level [83],
with the goal of containing minimal traceability noise, although this technique can have a poor
recall. On the other hand, this technique is ineffective if the project does not adhere to the naming
conventions. Notwithstanding these limitations, as discussed in Section 5.3.1, CHOSEN remains
easily transferable to projects that use other programming languages and do not follow naming
conventions.

Identification Strategies and the Mapping to the Taxonomy. Our empirical findings in-
form the five identification strategies we propose. Strategies 1 and 2 are determined based on the
distribution of PT co-evolution samples, while Strategies 3, 4, and 5 are derived from the summa-
rized taxonomy. This article focuses on the co-evolution of a test class and its associated produc-
tion class. Consequently, we developed strategies to identify PT non-co-evolution samples based
on the maintenance activities of test code in the taxonomy, including adaptive maintenance, per-
fective maintenance, and corrective maintenance. Other code artifacts, such as indirectly related
production code as well as indirectly related test code, resulting in test code updates, are beyond
the scope of this article. RefactoringMiner can detect most test change patterns related to mainte-
nance activities of test code in taxonomy, such as extracting methods, renaming methods/classes,
and adding/removing annotations [77]. We define Strategy 4 to ensure that test and production
changes are semantically relevant. However, some change patterns, such as “fix test code faults,”
are not covered by CHOSEN. Detecting and implementing these uncovered change patterns and

Revisiting the Identification of the Co-evolution of Production and Test Code

other test update categories will be part of our future work. CHOSEN is limited in identifying
cases where test modifications trigger production modifications, but we provide possible solutions
in Section 5.4. Finally, a potential threat to the validity of our study is that we only consider the
last change to a production code as a possible pair to a subsequent change to the related test class.
This may result in overlooking potential PT co-evolution patterns that occur with multiple changes
to the production code. Although CHOSEN may not capture the full extent of PT co-evolution, it
ensures that the identified PT co-evolution samples are sufficiently accurate. To address the limita-
tion, future work could explore more sophisticated techniques to identify and track co-evolution
patterns across multiple changes to production code, which may involve analyzing code changes
at a finer-grained level or using more advanced machine learning techniques.

5.6.2 Threats to External Validity. External validity is specifically about to what extent our ex-
perimental results can be generalized.

Subject Selection. The main threats to validity come from the subjects. An external threat is
the representativeness of the projects since we have no clear evidence as to how representative
the selected projects are. However, the adopted projects are widely used in co-evolution-related
research, and the labeled sample size (more than 1K) is large enough to demonstrate our approach’s
generality. As explained by Kalliamvakou et al. [51], relying solely on the number of stars to select
popular projects may not accurately reflect a project’s true popularity, which can be influenced
by factors other than project quality, such as social networks and marketing efforts. To mitigate
this potential threat, we applied multiple strict selection criteria, including a long change history
and compilability, and manually verified if the star count of these projects increased within a short
period of time. Moreover, the selected project list is obtained from previous studies [81, 82] and is
widely used in the software engineering community.

Evaluation Dataset. To avoid overfitting, CHOSEN has been evaluated on a different set of 380
samples from the 33,567 production-test change pairs while ensuring that there are no overlap or
duplicate samples between these 380 samples and that of our empirical study. Careful readers may
wonder, even though the two datasets are different, whether they may represent similar informa-
tion since both are statistically significant samples of the original dataset. However, in evaluating
the CHOSEN’s usefulness in JIT OTCD, we select and label three projects, of which Flink and
Log4j2 are not among the 44 projects of the empirical study. For the Flink and Log4j2 datasets
(a total of 609 labeled change pairs), the experimental results further confirm the effectiveness of
CHOSEN in identifying PT co-evolution samples: Table 7 shows that the test set constructed by
CHOSEN more accurately measures the performance of the OTCD model with an average error
of 0.80%, while SITAR_IM leads to an error of 6.00%. We also acknowledge the fact that the eval-
uation of CHOSEN requires more projects as well as a larger labeled dataset. We are actively
working on addressing these limitations in our continuing work.

6 RELATED WORK

6.1 Establishing Traceability Links between Production Code and Test Code

Previous works have proposed methods to establish traceability between production and test code.
Given a test class, Qusef et al. [67] exploited dynamic slicing to identify a set of candidate produc-
tion classes. Then, external and internal textual information associated with the classes was used
to identify the final set of tested classes. White et al. [83] utilized a wide range of techniques to
establish links between tests and tested code, as well as between test classes and tested classes.
At the method level, developers can utilize various tools and frameworks to annotate tests with
links to the method under test. One such framework is EzUnit [38], which performs a static analy-
sis and suggests methods called by a test for annotation. When an error occurs in the test, EzUnit

W. Sun et al.

highlights the linked methods. Ghafari et al. [47] also work at the method level, where they decom-
pose test cases into sub-scenarios to identify the tested function, using static data flow analysis.
These tools and techniques provide valuable insights for establishing traceability at the method
level.

Other test-to-code traceability approaches assume that a test should be similar to the corre-
sponding tested unit. Kicsi et al. [52] utilized Latent Semantic Indexing (LSI) on source code to
establish traceability links between test classes and production classes. The experimental results
show that the ground-truth link is ranked top between 30% and 62% and suggests a low recall, with
no investigation of precision. Csuvik et al. [41] used word embeddings instead of LSI in the same
approach and achieved better precision. Although naming convention can achieve good traceabil-
ity accuracy on the class level since developers usually follow naming conventions for test classes,
on the method level, there are various guidelines for naming test methods, leading to challenges
in achieving accurate traceability. Madeja and Poruban [61] investigated and found that only 49%
of tests’ name included the full name of the focal method, while 76% of tests’ name contained a
partial name of a focal method. This paper mainly focuses on the PT co-evolution at the class level,
so we adopt the naming convention with the goal of containing minimal traceability noise. Differ-
ent from these traceability studies, our purpose is not to associate production code and test code,
but to identify whether test code changes are triggered by production code changes.

6.2 Co-evolution of Production and Test Code

Levin and Yehudai studied co-evolution with semantic changes [59]. They focused on the co-
evolution caused by specific maintenance activities, using the number of different types of ac-
tivities as change features to mine the pattern of PT co-evolution. Unlike their work, we explore
test code updates occurring after the changes of the associated production code, composing six
root categories. Moreover, Alenezi et al. [35] have presented statistical evidence of a significant
relationship between production code and its associated test suites. Specifically, they utilized sev-
eral metrics used to determine the size of production code or tests, such as the number of classes,
lines of code (LOC), number of methods, and number of packages, to understand and identify
how test cases evolve during production code changes (releases) in terms of size and complexity.
Instead, our study focuses on accurately identifying production-test co-evolution samples, where
test code change triggers or is triggered by production code change. Previous researchers have
investigated the nature of the co-evolution between production code and test code (i.e., synchro-
nous or phased) [60, 88, 89]. In [60], Lubsen et al. used association rule mining to examine the
PT co-evolution in two case studies: an open-source system and an industrial software system.
In [89] and [88], the researchers proposed three views, which are change history view, growth
history view, and test coverage evolution view, and combined them to study how production-
test co-evolves over time. Further, they demonstrated and validated the use of such views on two
open-source cases and one industrial case, drawing several relevant observations about the test-
ing processes used in development. However, the above-mentioned studies [60, 88, 89] are con-
ducted based on identified and mined PT co-evolution samples. To this end, they directly identified
those production-test change pairs where the test class changes and its associated production
class changes together in one commit as production-test co-evolution samples. However, our em-
pirical study has shown that such an identification method would introduce noise, which may
pose a threat to their conclusions. To mitigate this threat, we propose CHOSEN to identify PT co-

evolution samples accurately. We believe that CHOSEN can enhance the validity of existing works
related to PT co-evolution.

Marsavina et.al. [62] run each modified test case to identify all the entities from the produc-
tion code covered by the test, thereby constructing PT co-evolution samples dynamically. Based

Revisiting the Identification of the Co-evolution of Production and Test Code

on PT co-evolution samples, co-evolution patterns are mined by ChangeDistiller [46]. Intuitively,
compared with static analysis, a dynamic solution may better identify PT co-evolution samples.
However, dynamic methods need to run tests to collect coverage information and are therefore
more expensive [50]. Additionally, dynamic methods can achieve high recall but may sacrifice
precision since they identify all the entities in the production code accessed by the test [62]. In
contrast, CHOSEN is a lightweight static approach that identifies PT co-evolution samples with
high precision. We believe CHOSEN and dynamic methods can complement each other. Wang
et al. [81] conducted a large-scale empirical study (including 975 open-source Java projects) to
understand the practice of PT co-evolution. To ease test maintenance whenever the production
code changes, they further proposed a machine-learning-based approach named SITAR for JIT
obsolete test code detection. In their approach, SITAR focuses more on changing lines of code
in programming language constructs. SITAR consists of two components: (1) the construction of
PT co-evolution samples (positives) and PT non-co-evolution samples (negatives) and (2) designing
several structural code features and training detectors to detect obsolete test code based on the
mined PT co-evolution samples. In Section 3.1, we have demonstrated that SITAR’s identification
method of PT co-evolution samples introduces noise, which causes SITAR’s detection performance
on the testing set to be significantly different from its actual performance. Compared with SITAR,
our work focuses on constructing the PT co-evolution samples. Moreover, CHOSEN can measure
the performance of OTCD models more accurately, and the dataset constructed by CHOSEN can
train a better detection model (as shown in Section 4.3).

7 CONCLUSION AND FUTURE WORK

This article explores the reasonableness of the assumption that is widely used by prior works to
collect and label production-test co-evolution samples: if a test class and its associated production
class change together in one commit, or a test class changes immediately after the changes of asso-
ciated production class within a short time interval, this change pair should be a production-test co-

evolution sample. To this end, we conduct an empirical study and demonstrate that the assumption
does not always hold in practice and the methods used by prior work to identify PT co-evolution

samples would introduce noise. Therefore, we propose an identification method of PT co-evolution,
namely CHOSEN. We evaluate the effectiveness of CHOSEN on a manually labeled dataset. The
results show that CHOSEN can more accurately identify PT co-evolution samples. In addition, We
demonstrate that CHOSEN can be used to facilitate the downstream tasks. For the obsolete test
code detection task, the test set labeled by CHOSEN can help accurately measure the detection
model’s performance with only 0.76% errors, and the training set labeled by CHOSEN can help
improve the performance of the detection model. When the cost of manual labels is unaffordable,
we recommend that researchers construct PT co-evolution samples through our method, thereby
improving the validity of the findings. Limited by our study scope, CHOSEN cannot identify the
case where production modifications are triggered by test modifications (in our empirical study,
two samples satisfy this pattern, accounting for 0.53%). Therefore, one important direction for fu-
ture work is on the extension of CHOSEN to identify PT co-evolution where test modifications
trigger production modifications. In addition, it would be very promising to adopt other state-of-
the-art linking methods that associate production code and test code to construct production-test
change pairs, thereby further improving the generalizability of CHOSEN.

REFERENCES

[1] 2011. A Commit in Commons-functor Project, BinaryAnd.java. https://github.com/apache/commons-functor/

commit/cb42eacc6a82f98da131f32972915f6cde609fd9.

[2] 2012. A Commit in Commons-csv Project. https://github.com/apache/commons-csv/commit/

6a34b823c807325bc251ef43c66c307adcd947b8.

https://github.com/apache/commons-functor/commit/cb42eacc6a82f98da131f32972915f6cde609fd9
https://github.com/apache/commons-functor/commit/cb42eacc6a82f98da131f32972915f6cde609fd9
https://github.com/apache/commons-csv/commit/6a34b823c807325bc251ef43c66c307adcd947b8
https://github.com/apache/commons-csv/commit/6a34b823c807325bc251ef43c66c307adcd947b8

W. Sun et al.

[3] 2012. A Commit in Commons-functor Project, TestBinaryAnd.java. https://github.com/apache/commons-functor/

commit/22ec28d8aabe5dcdf9f4723f573395822611f6b5.

[4] 2013. A Commit in Joda-time Project. https://github.com/JodaOrg/joda-time/commit/

3a413d7844c22dc6ddd50bf5d0d55ff3589e47ac.

[5] 2014. A Commit in Commons-compress Project, ZipFile.java. https://github.com/apache/commons-compress/

commit/885d2053f4fc29d986904c9b8cfe69bcfbe7b361.

[6] 2014. A Commit in Commons-compress Project, ZipFileTest.java. https://github.com/apache/commons-compress/

commit/bc741b19e88749d66b03bf8dc292f3ae0fc74156.

[7] 2015. A Commit in Commons-math Project, GraggBulirschStoerStepInterpolator.java. https://github.com/

apache/commons-math/commit/8e0b98bf6bd30713d94b72c7c410addb26c3c472.

[8] 2015. A Commit in Commons-math Project, GraggBulirschStoerStepInterpolatorTest.java. https://github.com/

apache/commons-math/commit/bf803b119be94bfd71902ea5db06075aada82672.

[9] 2015. A Commit in ta4j Project, XorRule.java. https://github.com/ta4j/ta4j/commit/

db5576521118459df4b36120ed9e7b7fae5aedca.

[10] 2015. A Commit in ta4j Project, XorRuleTest.java. https://github.com/ta4j/ta4j/commit/

1b3f7949962d01e3d5724437d1fc4d301c124c3b.

[11] 2018. A Commit in Commons-configuration Project, DefaultParametersManager.java. https://github.com/apache/

commons-configuration/commit/fa5dbfaf68973a204dc09acb42909ff5bd39ff70.

[12] 2018. A Commit in ta4j Project, InSlopeRule.java. https://github.com/ta4j/ta4j/commit/

590cab635abe3fbdb30d2a0bed66bee8421c254e.

[13] 2018. A Commit in ta4j Project, InSlopeRuleTest.java. https://github.com/ta4j/ta4j/commit/

590cab635abe3fbdb30d2a0bed66bee8421c254e.

[14] 2019. A Commit in Cactoos Project, Cycled.java. https://github.com/yegor256/cactoos/commit/

b092754a6e18a39951e27733490be1961dadfeb0.

[15] 2019. A Commit in Commons-configuration Project, TestDefaultParametersManager.java. https://github.com/

apache/commons-configuration/commit/63bb3e88d13e6447f64bac47fcfd71b60c5a4c3e.

[16] 2019. A Commit in Commons-lang Project, Validate.java. https://github.com/apache/commons-lang/commit/

37442639705892348d2cd6d7717fff4d9841ca09.

[17] 2019. A Commit in Commons-numbers Project. https://github.com/apache/commons-numbers/commit/

7427fd0639557f25a2d7274597be70882527ffd0.

[18] 2019. A Commit in Dubbo Project. https://github.com/apache/dubbo/commit/

c91618b05f6137b291134ef10ebd28a918193ecd.

[19] 2020. A Commit in Cactoos Project, CycledTest.java. https://github.com/yegor256/cactoos/commit/

97454478d07f360b68ff98504e803f26d6777ae9.

[20] 2020. A Commit in Commons-collections Project. https://github.com/apache/commons-collections/commit/

1d26ffda9302433fda227c5724d2f5cd499b0148.

[21] 2020. A Commit in Commons-geometry Project, Transform2S.java. https://github.com/apache/commons-geometry/

commit/38f25f8fe5eccdde5213555b0a97f46214b37277.

[22] 2020. A Commit in Commons-geometry Project, Transform2STest.java. https://github.com/apache/commons-

geometry/commit/b36deb014b5c0a2332d225d871db14a58def5200.

[23] 2020. A Commit in Commons-lang Project, ValidateTest.java. https://github.com/apache/commons-lang/commit/

485876f9c2d90b211b5776567086ec0700767f3c.

[24] 2020. A Commit in Easy-rules Project. https://github.com/j-easy/easy-rules/commit/

1a0660140c6786458a92b28c4f650b1c5e0c40bc.

[25] 2020. A Commit in Streamex Project, EntryStream.java. https://github.com/amaembo/streamex/commit/

836a2e5240321cdf2d6e54239110f62f94a540bb.

[26] 2020. A Commit in Streamex Project, EntryStreamTest.java. https://github.com/amaembo/streamex/commit/

acd58e99a9ebfeed2c289f50f37a9516c50e72be.

[27] 2021. About Stars (GitHub). https://help.github.com/articles/about-stars/.

[28] 2021. Checkstyle. http://checkstyle.sourceforge.net/.

[29] 2021. Jacoco. https://github.com/jacoco/jacoco.

[30] 2021. JUnit 5 User Guide. https://junit.org/junit5/docs/current/user-guide/.

[31] 2021. Maven-introduction to the Standard Directory Layout. https://maven.apache.org/guides/introduction/

introduction-to-the-standard-directory-layout.html.

[32] 2021. Pytest. https://pytest.org/en/latest/explanation/goodpractices.html#test-discovery.

[33] 2021. SonarQube. https://www.sonarqube.org/.

[34] 2021. The Dataset of SITAR. https://github.com/sqlab-sustech/Sitar-project.

https://github.com/apache/commons-functor/commit/22ec28d8aabe5dcdf9f4723f573395822611f6b5
https://github.com/apache/commons-functor/commit/22ec28d8aabe5dcdf9f4723f573395822611f6b5
https://github.com/JodaOrg/joda-time/commit/3a413d7844c22dc6ddd50bf5d0d55ff3589e47ac
https://github.com/JodaOrg/joda-time/commit/3a413d7844c22dc6ddd50bf5d0d55ff3589e47ac
https://github.com/apache/commons-compress/commit/885d2053f4fc29d986904c9b8cfe69bcfbe7b361
https://github.com/apache/commons-compress/commit/885d2053f4fc29d986904c9b8cfe69bcfbe7b361
https://github.com/apache/commons-compress/commit/bc741b19e88749d66b03bf8dc292f3ae0fc74156
https://github.com/apache/commons-compress/commit/bc741b19e88749d66b03bf8dc292f3ae0fc74156
https://github.com/apache/commons-math/commit/8e0b98bf6bd30713d94b72c7c410addb26c3c472
https://github.com/apache/commons-math/commit/8e0b98bf6bd30713d94b72c7c410addb26c3c472
https://github.com/apache/commons-math/commit/bf803b119be94bfd71902ea5db06075aada82672
https://github.com/apache/commons-math/commit/bf803b119be94bfd71902ea5db06075aada82672
https://github.com/ta4j/ta4j/commit/db5576521118459df4b36120ed9e7b7fae5aedca
https://github.com/ta4j/ta4j/commit/db5576521118459df4b36120ed9e7b7fae5aedca
https://github.com/ta4j/ta4j/commit/1b3f7949962d01e3d5724437d1fc4d301c124c3b
https://github.com/ta4j/ta4j/commit/1b3f7949962d01e3d5724437d1fc4d301c124c3b
https://github.com/apache/commons-configuration/commit/fa5dbfaf68973a204dc09acb42909ff5bd39ff70
https://github.com/apache/commons-configuration/commit/fa5dbfaf68973a204dc09acb42909ff5bd39ff70
https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e
https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e
https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e
https://github.com/ta4j/ta4j/commit/590cab635abe3fbdb30d2a0bed66bee8421c254e
https://github.com/yegor256/cactoos/commit/b092754a6e18a39951e27733490be1961dadfeb0
https://github.com/yegor256/cactoos/commit/b092754a6e18a39951e27733490be1961dadfeb0
https://github.com/apache/commons-configuration/commit/63bb3e88d13e6447f64bac47fcfd71b60c5a4c3e
https://github.com/apache/commons-configuration/commit/63bb3e88d13e6447f64bac47fcfd71b60c5a4c3e
https://github.com/apache/commons-lang/commit/37442639705892348d2cd6d7717fff4d9841ca09
https://github.com/apache/commons-lang/commit/37442639705892348d2cd6d7717fff4d9841ca09
https://github.com/apache/commons-numbers/commit/7427fd0639557f25a2d7274597be70882527ffd0
https://github.com/apache/commons-numbers/commit/7427fd0639557f25a2d7274597be70882527ffd0
https://github.com/apache/dubbo/commit/c91618b05f6137b291134ef10ebd28a918193ecd
https://github.com/apache/dubbo/commit/c91618b05f6137b291134ef10ebd28a918193ecd
https://github.com/yegor256/cactoos/commit/97454478d07f360b68ff98504e803f26d6777ae9
https://github.com/yegor256/cactoos/commit/97454478d07f360b68ff98504e803f26d6777ae9
https://github.com/apache/commons-collections/commit/1d26ffda9302433fda227c5724d2f5cd499b0148
https://github.com/apache/commons-collections/commit/1d26ffda9302433fda227c5724d2f5cd499b0148
https://github.com/apache/commons-geometry/commit/38f25f8fe5eccdde5213555b0a97f46214b37277
https://github.com/apache/commons-geometry/commit/38f25f8fe5eccdde5213555b0a97f46214b37277
https://github.com/apache/commons-geometry/commit/b36deb014b5c0a2332d225d871db14a58def5200
https://github.com/apache/commons-lang/commit/485876f9c2d90b211b5776567086ec0700767f3c
https://github.com/apache/commons-lang/commit/485876f9c2d90b211b5776567086ec0700767f3c
https://github.com/j-easy/easy-rules/commit/1a0660140c6786458a92b28c4f650b1c5e0c40bc
https://github.com/j-easy/easy-rules/commit/1a0660140c6786458a92b28c4f650b1c5e0c40bc
https://github.com/amaembo/streamex/commit/836a2e5240321cdf2d6e54239110f62f94a540bb
https://github.com/amaembo/streamex/commit/836a2e5240321cdf2d6e54239110f62f94a540bb
https://github.com/amaembo/streamex/commit/acd58e99a9ebfeed2c289f50f37a9516c50e72be
https://github.com/amaembo/streamex/commit/acd58e99a9ebfeed2c289f50f37a9516c50e72be
https://help.github.com/articles/about-stars/
http://checkstyle.sourceforge.net/
https://github.com/jacoco/jacoco
https://junit.org/junit5/docs/current/user-guide/
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://pytest.org/en/latest/explanation/goodpractices.html#test-discovery
https://www.sonarqube.org/
https://github.com/sqlab-sustech/Sitar-project

Revisiting the Identification of the Co-evolution of Production and Test Code

[35] Mamdouh Alenezi, Mohammed Akour, and Hiba Al Sghaier. 2019. The impact of co-evolution of code production and

test suites through software releases in open source software systems. International Journal of Innovative Technology

and Exploring Engineering (IJITEE) 9, 1 (2019), 2737–2739.

[36] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests for assessing randomized algorithms

in software engineering. Software Testing, Verification and Reliability 24, 3 (2014), 219–250.

[37] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo

Cavallaro, and Konrad Rieck. 2022. Dos and don’ts of machine learning in computer security. In 31st USENIX

Security Symposium (USENIX Security’22). USENIX Association, 3971–3988. https://www.usenix.org/conference/

usenixsecurity22/presentation/arp.

[38] Philipp Bouillon, Jens Krinke, Nils Meyer, and Friedrich Steimann. 2007. EzUnit: A framework for associating failed

unit tests with potential programming errors. In Agile Processes in Software Engineering and Extreme Programming, 8th

International Conference (XP’07), Proceedings (Lecture Notes in Computer Science), Vol. 4536. Springer, 101–104. https://

doi.org/10.1007/978-3-540-73101-6_14

[39] Jiachi Chen, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2021. Maintenance-related concerns for post-deployed

Ethereum smart contract development: Issues, techniques, and future challenges. Empirical Software Engineering 26,

6 (2021), 1–44.

[40] Norman Cliff. 2014. Ordinal Methods for Behavioral Data Analysis. Psychology Press.

[41] Viktor Csuvik, András Kicsi, and László Vidács. 2019. Source code level word embeddings in aiding semantic test-to-

code traceability. In Proceedings of the 10th International Workshop on Software and Systems Traceability (SST@ICSE’19).

IEEE/ACM, 29–36. https://doi.org/10.1109/SST.2019.00016

[42] Barrett Ens, Daniel Rea, Roiy Shpaner, Hadi Hemmati, James E. Young, and Pourang Irani. 2014. ChronoTwigger: A

visual analytics tool for understanding source and test co-evolution. In 2014 2nd IEEE Working Conference on Software

Visualization. IEEE Computer Society, 117–126.

[43] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-grained and

accurate source code differencing. In ACM/IEEE International Conference on Automated Software Engineering (ASE ’14).

ACM, 313–324.

[44] Yuanrui Fan, Xin Xia, David Lo, Ahmed E. Hassan, Yuan Wang, and Shanping Li. 2021. A differential testing approach

for evaluating abstract syntax tree mapping algorithms. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE’21). IEEE, 1174–1185. https://doi.org/10.1109/ICSE43902.2021.00108

[45] Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological Bulletin 76, 5 (1971), 378.

[46] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. 2007. Change distilling: Tree differencing for fine-

grained source code change extraction. IEEE Trans. Software Eng. 33, 11 (2007), 725–743.

[47] Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. 2015. Automatically identifying focal methods under test

in unit test cases. In 15th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM’15).

IEEE Computer Society, 61–70. https://doi.org/10.1109/SCAM.2015.7335402

[48] Jin Huang and Charles X. Ling. 2005. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl.

Data Eng. 17, 3 (2005), 299–310. https://doi.org/10.1109/TKDE.2005.50

[49] Qiao Huang, Xin Xia, and David Lo. 2017. Supervised vs unsupervised models: A holistic look at effort-aware just-in-

time defect prediction. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME’17). IEEE

Computer Society, 159–170. https://doi.org/10.1109/ICSME.2017.51

[50] Victor Hurdugaci and Andy Zaidman. 2012. Aiding software developers to maintain developer tests. In 2012 16th

European Conference on Software Maintenance and Reengineering. IEEE, IEEE Computer Society, 11–20.

[51] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2016. An

in-depth study of the promises and perils of mining GitHub. Empirical Software Engineering 21 (2016), 2035–2071.

[52] András Kicsi, László Tóth, and László Vidács. 2018. Exploring the benefits of utilizing conceptual information in test-

to-code traceability. In 6th IEEE/ACM International Workshop on Realizing Artificial Intelligence Synergies in Software

Engineering (RAISE@ICSE’18). ACM, 8–14. https://doi.org/10.1145/3194104.3194106

[53] Mijung Kim, Jaechang Nam, Jaehyuk Yeon, Soonhwang Choi, and Sunghun Kim. 2015. REMI: Defect prediction for

efficient API testing. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’15).

ACM, 990–993.

[54] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016. The emerging role of data scientists

on software development teams. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE’16).

IEEE, ACM, 96–107.

[55] Ahmed Lamkanfi and Serge Demeyer. 2010. Studying the co-evolution of application code and test cases. In Proceedings

of the 9th Belgian-Netherlands Software Evolution Seminar (BENEVOL’10), Vol. 16.

[56] Valentina Lenarduzzi, Antonio Martini, Davide Taibi, and Damian Andrew Tamburri. 2019. Towards surgically-precise

technical debt estimation: Early results and research roadmap. In Proceedings of the 3rd ACM SIGSOFT International

https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1007/978-3-540-73101-6_14
https://doi.org/10.1007/978-3-540-73101-6_14
https://doi.org/10.1109/SST.2019.00016
https://doi.org/10.1109/ICSE43902.2021.00108
https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1109/TKDE.2005.50
https://doi.org/10.1109/ICSME.2017.51
https://doi.org/10.1145/3194104.3194106

W. Sun et al.

Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE@ESEC/SIGSOFT FSE’19). ACM,

37–42. https://doi.org/10.1145/3340482.3342747

[57] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The technical debt dataset. In Proceedings of the 15th

International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE’19). ACM, 2–11.

https://doi.org/10.1145/3345629.3345630

[58] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2020. Some sonarqube issues have a significant but small

effect on faults and changes. a large-scale empirical study. Journal of Systems and Software 170 (2020), 110750.

[59] Stanislav Levin and Amiram Yehudai. 2017. The co-evolution of test maintenance and code maintenance through the

lens of fine-grained semantic changes. In 2017 IEEE International Conference on Software Maintenance and Evolution

(ICSME’17). IEEE, IEEE Computer Society, 35–46.

[60] Zeeger Lubsen, Andy Zaidman, and Martin Pinzger. 2009. Using association rules to study the co-evolution of produc-

tion & test code. In Proceedings of the 6th International Working Conference on Mining Software Repositories (MSR’09)

(Co-located with ICSE), Proceedings. IEEE Computer Society, 151–154. https://doi.org/10.1109/MSR.2009.5069493

[61] Matej Madeja and Jaroslav Porubän. 2019. Tracing naming semantics in unit tests of popular Github Android projects.

In 8th Symposium on Languages, Applications and Technologies (SLATE’19) (OASIcs), Vol. 74. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 3:1–3:13. https://doi.org/10.4230/OASIcs.SLATE.2019.3

[62] Cosmin Marsavina, Daniele Romano, and Andy Zaidman. 2014. Studying fine-grained co-evolution patterns of produc-

tion and test code. In 14th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM’14).

IEEE Computer Society, 195–204. https://doi.org/10.1109/SCAM.2014.28

[63] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert Hirschfeld, and Mehdi Jazayeri. 2005.

Challenges in software evolution. In 8th International Workshop on Principles of Software Evolution (IWPSE’05). IEEE,

13–22.

[64] Audris Mockus and Lawrence G. Votta. 2000. Identifying reasons for software changes using historic databases. In

2000 International Conference on Software Maintenance (ICSM’00). IEEE Computer Society, 120–130. https://doi.org/10.

1109/ICSM.2000.883028

[65] Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. 2008. On the interplay between software

testing and evolution and its effect on program comprehension. In Software Evolution. Springer, 173–202.

[66] Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh. 2014. Achievements and challenges in state-of-the-art

software traceability between test and code artifacts. IEEE Transactions on Reliability 63, 4 (2014), 913–926. https://doi.

org/10.1109/TR.2014.2338254

[67] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave Binkley. 2014. Recovering test-to-code

traceability using slicing and textual analysis. Journal of Systems and Software 88 (2014), 147–168.

[68] Bart Van Rompaey and Serge Demeyer. 2009. Establishing traceability links between unit test cases and units under

test. In 13th European Conference on Software Maintenance and Reengineering (CSMR’09), Architecture-Centric Mainte-

nance of Large-scale Software Systems. IEEE Computer Society, 209–218.

[69] Hinrich Schütze, Christopher D. Manning, and Prabhakar Raghavan. 2008. Introduction to Information Retrieval. Vol. 39.

Cambridge University Press Cambridge.

[70] Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin Xia, and Qing Wang. 2022. Are

we building on the rock? On the importance of data preprocessing for code summarization. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE’22). ACM, 107–119. https://doi.org/10.1145/3540250.3549145

[71] Danilo Silva, João Paulo da Silva, Gustavo Jansen de Souza Santos, Ricardo Terra, and Marco Tulio Valente. 2021.

RefDiff 2.0: A multi-language refactoring detection tool. IEEE Trans. Software Eng. 47, 12 (2021), 2786–2802.

[72] Jeongju Sohn and Mike Papadakis. 2022. Using evolutionary coupling to establish relevance links between tests and

code units. A case study on fault localization. CoRR abs/2203.11343 (2022). arXiv:2203.11343

[73] Donna Spencer. 2009. Card Sorting: Designing Usable Categories. Rosenfeld Media.

[74] Xiaobing Sun, Xin Peng, Hareton Leung, and Bin Li. 2016. ComboRT: A new approach for generating regression test

cases for evolving programs. Int. J. Softw. Eng. Knowl. Eng. 26, 6 (2016), 1001.

[75] Jie Tan, Daniel Feitosa, and Paris Avgeriou. 2022. Does it matter who pays back Technical Debt? An empirical study

of self-fixed TD. Information and Software Technology 143 (2022), 106738.

[76] Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. 2022. What makes a good commit message? In

44th IEEE/ACM 44th International Conference on Software Engineering (ICSE’22). ACM, 2389–2401. https://doi.org/10.

1145/3510003.3510205

[77] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner 2.0. IEEE Transactions on Software Engi-

neering 48, 3 (2022), 930–950. https://doi.org/10.1109/TSE.2020.3007722

[78] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and Danny Dig. 2018. Accurate and

efficient refactoring detection in commit history. In Proceedings of the 40th International Conference on Software Engi-

neering (ICSE’18). ACM, New York, NY, 483–494. https://doi.org/10.1145/3180155.3180206

https://doi.org/10.1145/3340482.3342747
https://doi.org/10.1145/3345629.3345630
https://doi.org/10.1109/MSR.2009.5069493
https://doi.org/10.4230/OASIcs.SLATE.2019.3
https://doi.org/10.1109/SCAM.2014.28
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/TR.2014.2338254
https://doi.org/10.1109/TR.2014.2338254
https://doi.org/10.1145/3540250.3549145
http://arxiv.org/abs/2203.11343
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206

Revisiting the Identification of the Co-evolution of Production and Test Code

[79] Zhiyuan Wan, Xin Xia, Ahmed E. Hassan, David Lo, Jianwei Yin, and Xiaohu Yang. 2020. Perceptions, expectations,

and challenges in defect prediction. IEEE Trans. Software Eng. 46, 11 (2020), 1241–1266. https://doi.org/10.1109/TSE.

2018.2877678

[80] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. 2021. How does machine learning change software development

practices? IEEE Trans. Software Eng. 47, 9 (2021), 1857–1871. https://doi.org/10.1109/TSE.2019.2937083

[81] Sinan Wang, Ming Wen, Yepang Liu, Ying Wang, and Rongxin Wu. 2021. Understanding and facilitating the co-

evolution of production and test code. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengi-

neering (SANER’21). IEEE, 272–283.

[82] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-scale empirical study on code-comment

inconsistencies. In Proceedings of the 27th International Conference on Program Comprehension (ICPC’19). IEEE/ACM,

53–64. https://doi.org/10.1109/ICPC.2019.00019

[83] Robert White, Jens Krinke, and Raymond Tan. 2020. Establishing multilevel test-to-code traceability links. In 42nd

International Conference on Software Engineering (ICSE’20). ACM, 861–872. https://doi.org/10.1145/3377811.3380921

[84] Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo, and Xinyu Wang. 2016. Predicting crashing releases of mobile

applications. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement. 1–10.

[85] Meng Yan, Xin Xia, Yuanrui Fan, Ahmed E. Hassan, David Lo, and Shanping Li. 2022. Just-in-time defect identification

and localization: A two-phase framework. IEEE Trans. Software Eng. 48, 2 (2022), 82–101. https://doi.org/10.1109/TSE.

2020.2978819

[86] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E. Hassan, and Xindong Zhang. 2020. Effort-aware just-in-time

defect identification in practice: A case study at Alibaba. In 28th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE’20). ACM, 1308–1319.

[87] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu, Baowen Xu, and Hareton Leung. 2016.

Effort-aware just-in-time defect prediction: Simple unsupervised models could be better than supervised models. In

Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’16). ACM,

157–168. https://doi.org/10.1145/2950290.2950353

[88] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011. Studying the co-evolution of pro-

duction and test code in open source and industrial developer test processes through repository mining. Empir. Softw.

Eng. 16, 3 (2011), 325–364.

[89] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie Van Deursen. 2008. Mining software repositories to

study co-evolution of production & test code. In 2008 1st International Conference on Software Testing, Verification, and

Validation. IEEE Computer Society, 220–229.

https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/ICPC.2019.00019
https://doi.org/10.1145/3377811.3380921
https://doi.org/10.1109/TSE.2020.2978819
https://doi.org/10.1109/TSE.2020.2978819
https://doi.org/10.1145/2950290.2950353

