
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2023 

Constructing cyber-physical system testing suites using active Constructing cyber-physical system testing suites using active 

sensor fuzzing sensor fuzzing 

Fan. ZHANG 

Qianmei. WU 

Bohan. XUAN 

Yuqi. CHEN 

Wei. LIN 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
ZHANG, Fan.; WU, Qianmei.; XUAN, Bohan.; CHEN, Yuqi.; LIN, Wei.; POSKITT, Christopher M.; SUN, Jun; and 
CHEN, Binbin.. Constructing cyber-physical system testing suites using active sensor fuzzing. (2023). 
IEEE Transactions on Software Engineering. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8279 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Fan. ZHANG, Qianmei. WU, Bohan. XUAN, Yuqi. CHEN, Wei. LIN, Christopher M. POSKITT, Jun SUN, and 
Binbin. CHEN 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/8279 

https://ink.library.smu.edu.sg/sis_research/8279


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Constructing Cyber-Physical System
Testing Suites using Active Sensor Fuzzing

Fan Zhang, Qianmei Wu, Bohan Xuan, Yuqi Chen, Wei Lin,
Christopher M. Poskitt, Jun Sun and Binbin ChenB

Abstract—Cyber-physical systems (CPSs) automating critical
public infrastructure face a pervasive threat of attack, motivating
research into different types of countermeasures. Assessing the
effectiveness of these countermeasures is challenging, however,
as benchmarks are difficult to construct manually, existing
automated testing solutions often make unrealistic assumptions,
and blindly fuzzing is ineffective at finding attacks due to the
enormous search spaces and resource requirements. In this work,
we propose active sensor fuzzing, a fully automated approach for
building test suites without requiring any a prior knowledge about
a CPS. Our approach employs active learning techniques. Applied
to a real-world water treatment system, our approach manages to
find attacks that drive the system into 15 different unsafe states
involving water flow, pressure, and tank levels, including nine
that were not covered by an established attack benchmark. Fur-
thermore, we successfully generate targeted multi-point attacks
which have been long suspected to be possible. We reveal that
active sensor fuzzing successfully extends the attack benchmarks
generated by our previous work, an ML-guided fuzzing tool, with
two more kinds of attacks. Finally, we investigate the impact of
active learning on models and the reason that the model trained
with active learning is able to discover more attacks.

Index Terms—Cyber-physical systems, fuzzing, testing, ma-
chine learning, metaheuristic optimisation.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs) are highly integrated
systems where computing, communication and physical

process are deeply intertwined, each potentially involving
different spatial and temporal scales, modalities, and interac-
tions [1]. By embedding perception, communication and com-
putation elements in physical devices, CPSs manage to realize

Manuscript received April 19, 2021; revised August 16, 2021.(Correspond-
ing author:Binbin Chen)

Fan Zhang is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China, with the ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou 311200,
China, with the Key Laboratory of Blockchain and Cyberspace Governance
of Zhejiang Province, Hangzhou 310027, China, with the Jiaxing Research
Institute, Zhejiang University, Jiaxing 314000, China, and also with the
Zhengzhou Xinda Institute of Advanced Technology, Zhengzhou 450000,
China (e-mail: fanzhang@zju.edu.cn).

Qianmei Wu and Bohan Xuan are with the College of Computer Science
and Technology, Zhejiang University, Hangzhou 310027, China (e-mail:
qianmei@zju.edu.cn; xuanbohan@zju.edu.cn).

Yuqi Chen is with the School of Information Science and Tech-
nology at ShanghaiTech University, Shanghai 201210, China (email:
chenyq@shanghaitech.edu.cn)

Wei Lin and Binbin Chen are with the the Information Sys-
tems Technology and Design pillar, Singapore University of Tech-
nology and Design, 8 Somapah Road, Singapore 487372 (email:
wei lin@mymail.sutd.edu.sg;binbin chen@sutd.edu.sg)

Christopher M. Poskitt and Jun Sun are with the School of Computing and
Information Systems, Singapore Management University, 80 Stamford Road,
Singapore 178902 (email: cposkitt@smu.edu.sg;junsun@smu.edu.sg)

the distributed perception of external environment, trusted data
transmission and processing of intelligent information. With
the feedback of the Cyber part, CPSs construct a series of real-
time control mechanisms of the Physical part. These complex
systems are now ubiquitous in modern life, with examples
found in fields as diverse as aerospace, autonomous vehicles,
and medical monitoring. CPSs are also commonly used to
automate aspects of critical civil infrastructure, such as water
treatment or the management of electricity demand [2]. Given
the potential to cause massive disruption, such systems have
become prime targets for cyber attackers, with a number of
successful cases reported in recent years [3], [4].

This pervasive threat faced by CPSs has motivated research
and development into a wide variety of attack defense mecha-
nisms, including techniques based on anomaly detection [5]–
[15], fingerprinting [16]–[19], and monitoring conditions or
physical invariants [20]–[27]. The practical utility of these
different countermeasures ultimately depends on how effective
they are at their principal goal: detecting and/or preventing
attacks. Unfortunately, assessing this experimentally is not
always straightforward, even with access to an actual CPS,
because of the need for realistic attacks to evaluate them
against. Herein lies the problem: where exactly should such
a set of attacks come from?

A typical solution is to use existing attack benchmarks
and datasets, as have been made available by researchers for
different CPS testbeds [28], [29], and as have been used in
the evaluation of different countermeasures, e.g., [7], [12],
[13]. Across these examples, attackers are typically assumed
to have compromised the communication links to some extent,
and thus can manipulate the sensor readings and actuator
commands exchanged across the network. The aforementioned
attacks are usually manually generated by engineers with
sufficient expertise in the CPS, or through invited hackathons
to discover new attacks from those without insider bias [30].
Unfortunately, constructing such benchmarks requires a great
deal of time and expertise. And generalizing them from one
CPS to another is a forlorn hope due to the distinct structures,
components and complexities of different systems [31].

Using symbolic execution and simulation techniques to
explore the state space of the system is also a solution to verify
hybrid systems. S-TaLiRo [32] is used for falsification of
hybrid systems with temporal logic specifications. Breach [33]
is capable of reachability analysis to explore the state space
of the system and could be integrated with other tools such
as dReach and Simulink. In this paper, we propose active
sensor fuzzing, an automated, machine learning (ML) guided

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

approach for constructing ‘test suites’ (or benchmarks) of CPS
network attacks, without requiring any specific system exper-
tise including the normal operational ranges of sensors. Our
approach consists of two broad steps: learning and fuzzing.
In the learning part, we construct a series of classification
models for predicting future actuator configurations and re-
gression models for predicting future sensor readings. Instead
of exploiting traditional online learning, we leverage active
learning [34], a form of supervised ML that iteratively re-
trains a model on examples that are estimated to maximally
improve it. Since online learning requires enormous search
space and resource costs for acquiring new training data,
we apply the concept of active learning that selects training
data which would improve the model most and accordingly
search the vectors that tends to maximally change the actuator
configurations (i.e., the output of the model). Retraining the
model with such vectors could maximally improve our model.
By this way, we can save time and effort in acquiring new
training data. In the fuzzing part, we fuzz the sensor readings
over the network to fool the system to automatically generate
attack sequences that drive the system into a targeted unsafe
state. This fuzzing is guided by the learnt model: potential
manipulations of the sensors are searched for (e.g., with a
genetic algorithm [35] or simulated annealing algorithm [36]),
and then the model predicts which of them would drive the
CPS closest to the unsafe state. Combining learning and
fuzzing, our approach intelligently and automatically construct
attacks the would drive the system into different categories of
unsafe physical states and hence can be utilized as ‘test suites’.

Our design for active sensor fuzzing was driven by four
key requirements. First, that it should be general, in the
sense that it is not devised for specific CPS, but is able to
apply in a variety of sensors and actuators. Second, that the
approach should be comprehensive, in that the suites of attacks
it constructs should systematically cause different categories
of unsafe states for CPS, rather than just a select few. Third,
that it should be efficient, with each attack achieving its goal
quickly (within an acceptable and reasonable time interval),
posing additional challenge for countermeasures. Finally, that
it should be practical, in that it is straightforward to implement
for real CPSs without any formal specification or specific
technical expertise, and that the ‘test suites’ of attacks are
of comparable quality to expert-crafted benchmarks, thus a
reasonable basis for assessing attack defense mechanisms.

To evaluate our approach against these requirements, we
implemented it for a real-world CPS testbed: the Secure Water
Treatment (SWaT) testbed [37]. SWaT is a fully operational
water treatment plant consisting of 42 sensors and actuators,
able to produce five gallons of drinking water per minute.
The design of the testbed was based on real-world industrial
purification plants and distribution networks, and thus reflect
many of their complexities. The evaluation shows that active
sensor fuzzing could automatically identify suites of attacks
that drove SWaT into 15 different unsafe states involving
water flow, pressure and tank levels. Furthermore, it covered
nine unsafe states beyond those in an established expert-
crafted benchmark [29] and two unsafe states beyond those
constructed by another intelligent fuzzing framework [38].

Finally, we study the difference between the models trained
with and without active learning. We show how active learning
improves the model performance and helps construct attack
suites.

In summary, we make the following contributions.
• We propose active sensor fuzzing, which makes use of

ML models and metaheuristic methods for automatically
constructing test suites (or benchmarks) of network at-
tacks for different CPSs. We utilize active learning to
improve the accuracy of our models and the performance
of the attack suites.

• We implement active sensor fuzzing for a real-world CPS
testbed, identifying attacks that drive it into 15 different
unsafe states, including nine that were not present in an
expert-crafted benchmark and two that were not covered
by an existing fuzzing framework.

• We successfully launch targeted attacks and multi-point
attacks, which to the best of our knowledge, is never
achieved automatically before.

• We analyze the impact of active learning on those trained
models and try to explain why active learning can result
in better performance in constructing attack suites.

This paper is an extension of our previous publication [38]
by complementing the original framework with a new option
of the victim components in the system: sensor readings. The
attacks that involved manipulating sensor readings were not
evaluated in the previous work, which means a huge class
of real-world attacks were not possible to find. Meanwhile,
sensor-manipulating attacks are important to include in test
suites. When we override the sensor readings, the system itself
will automatically assign the corresponding actuator config-
urations to get back to its ’normal’ states. Such procedures
are more covert, especially when the system is deployed with
some intrusion detection systems (IDS). So the benchmarks
based on sensor readings are more likely to achieve the
attack goal without triggering any defense mechanisms. Apart
from the new attack targets, We learn some extra models
to better illustrate the relation between actuators and sensors
and introduce a new search algorithm to guide the fuzzing
process. We also introduce the active learning technique into
the process of learning to generate a more accurate model.
Furthermore, we complement the original attack benchmarks
by implementing two sophisticated attacks: targeted and multi-
point attack.

II. BACKGROUND AND MOTIVATIONAL EXAMPLE

Here, we clarify our assumptions of CPSs and fuzzing,
before introducing our real-world CPS case study, SWaT. We
discuss an example of active sensor fuzzing on SWaT.

CPSs and Fuzzing. We define CPSs as systems in which
algorithmic control and physical processes are tightly inte-
grated. Concretely, we assume that they consist of computa-
tional elements (the ‘cyber’ part) such as programmable logic
controllers (PLCs), distributed over a network, and interacting
with their processes via sensors and actuators (the ‘physical’

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Fig. 1. The Secure Water Treatment (SWaT) testbed

part). The operation of a CPS is controlled by its PLCs, which
receive readings from sensors that observe the physical state,
and then compute appropriate commands to send along the
network to the relevant actuators. We assume that the sensors
read continuous data (e.g., temperature, pressure, flow) and
that the states of the actuators are discrete.

These characteristics together make CPSs very difficult to
reason about: while individual control components (e.g., PLC
programs) may be simple in isolation, reasoning about the
behavior of the whole system can only be done with consid-
eration of how its physical processes evolve and interact. This
often requires considerable domain-specific expertise beyond
the knowledge of a typical computer scientist, which is one
of our principal motivations for achieving full automation.

Fuzzing, which plays a key role in our solution, is in general
an automated testing technique that attempts to identify poten-
tial crashes or assertion violations by generating diverse and
unexpected inputs for a given system [39]. Many of the most
well-known tools perform fuzzing on programs, e.g., [40],
[41], but in the context of CPSs, we consider fuzzing at the
network level.

SWaT Testbed. One CPS that satisfies the aforementioned
assumptions, and thus will form the case studies of this paper,
is Secure Water Treatment (SWaT) [37], testbed built for
cyber-security research. (Due to the impact of COVID-19
pandemic, we do not evaluate our approach on WADI testbed
like our previous submission [38] did.) SWaT (Figure 1) is a
fully operational water treatment plant with the capability of
producing five gallons of safe drinking water per minute. The
testbed is scaled-down versions of actual water treatment plant
in a city, and exhibit many of their complexities.

SWaT treats water across six distinct but co-operating
stages, involving a variety of complex chemical processes.
Each stage is controlled by a dedicated Allen-Bradley Con-
trolLogix PLC, which communicates with the sensors and
actuators relevant to that stage over a ring network, and with
other PLCs over a star network. Each PLC cycles through
its program, computing the appropriate commands to send
to actuators based on the latest sensor readings received as
input. The system consists of 42 sensors and actuators in
total, with sensors monitoring physical properties such as tank
levels, flow, pressure, and pH values, and actuators including
motorized valves (for opening an inflow pipe) and pumps (for
emptying a tank). A historian regularly records the sensor
readings and actuator commands during SWaT’s operation,

MV101

FIT101 LIT101 P101

FIT201

MV201

LIT301

Fig. 2. Some interconnected components of SWaT’s first three stages

facilitating data logs for offline analyses and machine learning.
The sensors in the testbed are associated with manufacturer-

defined ranges of safe values, which in normal operation, they
are expected to remain within. If a sensor reports a (true)
reading outside of this range, we say the physical state of
the CPS has become unsafe. If a level indicator transmitter,
for example, reports that the tank in stage one has become
more than a certain percentage full (or empty), then the
physical state has become unsafe due to the risk of an overflow
(resp. underflow). Unsafe pressure states indicate the risk of
a pipe bursting, and unsafe levels of water flow indicate the
risk of possible cascading effects in other parts of the system.

A number of countermeasures have been developed to
prevent SWaT from entering unsafe states. Ghaeini and Tip-
penhauer [42], for example, monitor the network traffic with a
hierarchical intrusion detection system, and Ahmed et al. [16],
[17] detect attacks by fingerprinting sensor and process noise.
Other approaches learn models from physical data logs, and
use them to evaluate whether or not the current state represents
normal behavior or not: most (e.g., [7], [12], [43]) use unsu-
pervised learning to construct these models, although Chen et
al. [23], [25] use supervised learning by automatically seeding
faults in the control programs (of a high-fidelity simulator).
Feng et al. [44] also generate invariants, but use an approach
based on learning and data mining that can capture noise in
sensor measurements more easily than manual approaches.

Active Sensor Fuzzing Example. To illustrate how our
approach works in practice, we informally describe how it
is able to automatically find an attack for overflowing a tank
in the first stage of SWaT. Figure 2 depicts the relationship
between some interconnected components across the first three
stages. It includes some sensors: Level Indicator Transmit-
ters (LITs) for reporting the levels of different tanks; and Flow
Indicator Transmitters (FITs) for reporting the flow of water
in some pipes. It also includes some actuators: Motorized
Valves (MVs), which if open, allow water to pass through; and
a Pump (P101), which if on, pumps water out of the preceding
tank. The physical flow of water throughout this subpart of
the system is controlled by some inter-communicating PLCs.
If the value of LIT301 becomes too low, for example, the PLC
controlling valve MV201 will open it. Furthermore, the PLC
controlling pump P101 will switch it on to pump additional
water through, causing the value of LIT301 to rise.

Before launching our fuzzer, two choices must be made:
first, what is the attack goal (characterized as a fitness func-
tion); and second, which search algorithm should be used to
identify actuator configurations that achieve it? As our goal
is to overflow the tank monitored by LIT101, we must define

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

m
o

d
el

 1

m
o

d
el

 2

proposed sensor values

< s0, s1, s2, … >

proposed sensor values

< s0, s1, s2, … >

current actuator config

< a0, a1, a2, … >

current actuator config

< a0, a1, a2, … >

current sensor values

< s'0, s'1, s'2, … >

predicted actuator config

< a'0, a'1, a'2, … >

predicted sensor values

< s*0, s*1, s*2, … >

predicted sensor values

< s*0, s*1, s*2, … >

Fig. 3. Inputs/outputs of the learnt models

a fitness function on the sensor readings that is maximized
as we get closer to overflowing the tank. A simple function
achieving this takes as input a vector of predicted sensor
states ⟨LIT101,LIT301, . . . ,FIT101,FIT201, . . . ⟩ and re-
turns simply the value of LIT101. Initially, we randomly search
through the space of sensor readings since we do not assume
any prior knowledge.

Upon launching the fuzzer, several different values of the
system’s sensors are (randomly) generated and sent to override
the current sensor readings. For each set of ‘fake’ values, two
models are used to predict the future sensor values. Note that
for assessing the effects of the attacks, separate variables are
used to record ‘true’ sensor readings rather than the ’fake’
sensor values we generate. Specifically, one model is used to
predict the future actuator configurations that the PLC will
issue according to the spoofed sensor readings, and another
model, as same as the model trained in our previous publica-
tion [38], would predict the corresponding changes of sensor
readings according to the actuator configurations. Note that
the change of sensor readings can also be predicted with one
model, which takes the ’fake’ sensor values, the ’true’ sensor
values and the current actuator configurations as the input.
The intuition of training two models is that we can observe
how different states of sensor readings affect the evolution of
actuators and furthermore have a clearer understanding about
the interaction among the different components of the CPS.

Our fitness function is maximized by future states with the
highest LIT101 readings, which in Figure 2, would result from
a configuration of actuators where MV101 is open, P101 is
off, P102 is off, and P601 is on (as water will be flowing into
the tank, and the pumps will not be removing it). Note that
P102 and P601 are not pictured: the former is a backup pump
(redundancy for P101); the latter is a pump for driving in water
from stage 6. Such actuator configurations can be achieved
when the readings of FIT101 and LIT101 are low, the readings
of FIT201 and LIT301 are high, so that the PLC will open
MV101 and P601 to supply LIT101 and close P101, P102
and MV201 to prevent the overflow of LIT301. With suit-
able sensor readings identified: FIT101 0.00, LIT101 400.00,
FIT201 3.00, and LIT301 1100.00, the relevant commands
will be issued by PLCs: OPEN MV101, OFF P101, OFF P102,
and ON P601. Eventually, LIT101 will reach its upper unsafe
range (risk of overflow), i.e., the attack goal.

III. HOW SENSOR FUZZING WORKS

Our approach for automatically finding network attacks
on CPSs consists of two broad steps in turn: learning and
fuzzing. In the first step, we learn two models of the CPS
that can predict the effects of sensor readings and actuator
configurations based on the physical state respectively, as
summarized in Figure 3.

Let x[n] denote a plant state at time n. Let s[n] = S(x[n]) be
the equation denoting the relation between the plant state x[n].
Let a[n] = A(x[n]) denote the actuator configuration of x[n].
Let x[n+1] = f(x[n], a[n]) denote the dynamical evolution of
the plant state at time n+1 in terms of its state and actuator
input at time n. The first model tries to learn the composition
of S and f, it takes as input the current configuration of
all actuators and proposed readings of the sensors, returning
as output a prediction of the actuator configurations that
would result from adopting those readings for a fixed time
interval. The second model tries to learn the composition
of f and A, it takes all of the true sensor readings and the
actuator configurations predicted by the first model as input
and outputs the prediction of the true sensor values after a
fixed time interval. Notice that we can also train a single
model which takes the configuration of actuators and proposed
sensor readings and directly predicts the future sensor values.
However, with training two models , we are able to further
analyze the inner relation among the different devices (e.g.,
sensors and actuators) of the CPS that can later be used to
inform which combination of sensor readings is likely to drive
the system closer to a targeted unsafe state.

Unlike actuator configurations, which are composed of
discrete states, the sensor reading is a continuous value.
Considering the precision of the target CPS testbed, the
search space of sensor readings is enormous; hence blindly
manipulating the sensor reading has limited effectiveness to
generate the meaningful attacks suites. Therefore, in addition
to the normal training procedure, we also consider utilizing
online active learning to overcome the huge search space.
Active learning is a form of supervised ML technology, which
is proposed to overcome the high cost of labeling by iteratively
selecting unlabeled data from the data pool and re-training the
model. It is proven [31] that active learning is useful to reduce
the training overhead and enhance the model performance.
In our approach, we adapt the Expected Behavior Change
Maximization (EBCM) framework from [31]. The intuition
is that exploring different behavior in a particular context is
more informative. To learn aforementioned models, we extract
a time series of sensor and actuator data from the system logs
and apply a suitable machine learning algorithm.

The second step of our approach searches for sensor
readings to fuzz the sensor with that will drive the CPS
into an unsafe physical state. The sub-steps of this part are
summarized in Figure 4. To find the right combination of
sensor readings, our approach applies search algorithms over
the space of sensor readings, returning the configuration that
is predicted by the cascaded model (of the first step) to
drive the CPS the closest to an unsafe state. We explore
different search algorithms for this task, including random,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

search for sensor 
reading maximising 

fitness function

apply sensor 
reading by fuzzing 

network

unsafe
 states?

after fixed time interval

no

yes

attack 
found!

generate sensor 
readings

use model to predict 
their effects on the 

state

apply fitness 
function on 

predicted states

select fitness configuration or continue searching

some search algorithm (e.g. GA, SA, random)

Fig. 4. Overview of our ML-guided sensor fuzzing (details of any particular
search algorithm are omitted here)

but also metaheuristic (e.g., genetic algorithms and simulated
annealing) given that the search space of sensor readings
can grow quite large (Since each sensor reading is stored in
single-precision floating-point format in PLC). We use fitness
functions to evaluate predicted sensor states with respect to
the attack goal.

Assumptions. Given that active sensor fuzzing, ultimately,
is intended to generate attacks for evaluating CPS defense
solutions, it is important to detail our assumptions about
systems and attackers, thus characterizing the kinds of attacks
that will be found (and just as importantly, those that will not
be).

In the learning phase of our approach, we assume the
integrity of the data that the machine learning models are
trained on (i.e., an attacker has not manipulated the learning
of the model). In the fuzzing phase, we search for network
attacks that could be executed by attackers that are able
to compromise the communication links between PLCs and
sensors. In particular, we assume that attackers can monitor
all genuine sensor readings and actuator commands, and can
manipulate the readings of arbitrary sensors at will. Notice that
in order to make our attacks more stealthy, all the modified
sensor readings are within the range when the system runs
without tampering. Furthermore, we assume that the genuine
readings originating from any sensors can be intercepted and
blocked from ever reaching the PLCs. Note that while in
general we assume a rather powerful attacker, it is possible to
use our technique with more restricted capabilities too (e.g.,
particular sensors or stages only), in order to test defense
mechanisms in a more realistic context.

A. Step One: Learning a Prediction Model

Data Collection. Our method requires a dataset from which
the relationship between actuators, sensor readings and the
evolution of the physical states can be learnt. A suitable raw
format for such data is a time series of sensor readings and
actuator configurations, recorded at regular intervals during the
regular operation of the CPS. The required size of the time
series depends upon how many ‘modes’ of behavior the system

exhibits, and how quickly the effects of actuator commands are
propagated through the physical state. In general, logs from
several days of operation may be sufficient to span enough of
the system’s normal operational behavior.

Since our method is aimed at engineers or researchers who
are seeking to assess the defenses of a CPS (i.e., not an external
attacker), we assume that such data is readily available, e.g.,
from the system’s historian. But in principle, it could also be
collected by monitoring the network traffic.

For SWaT, time series datasets are already available on-
line [29], and were obtained by running the testbeds non-stop
for seven days without any interruption from attacks or faults.
The datasets include the states of all sensors and actuators as
recorded by the historians every 1s.

Training a Model. Our method builds two models cascaded
together as Figure 3 depicts. In this paper, we consider three
different ML algorithms that are popular and well-suited for
the particular form of training data—a time series of actuator
states and (continuous) sensor values. First, we consider a
Long Short-Term Memory (LSTM) network [45], a deep learn-
ing model with an architecture that supports the learning of
longer-term dependencies in the data for both models. Second,
we consider a Support Vector Classification (SVC) [46] for the
first model to predict the states of the actuators. Most of the ac-
tuators can only be in one of two states (i.e., 0 for off, 1 for on),
and thus we can consider it as a binary classification problem,
where each class represents one physical states of the actuator.
For the second model, whose outputs are sensor readings,
we choose Support Vector Regression (SVR) model [47], an
extension of support vector machines for handling continuous
values.

To apply these ML algorithms to a dataset, the sen-
sor and actuator values must be extracted from the
raw logs into a fixed vector format. As we want to
learn the relation between actuator states and the evolu-
tion of sensor values, a possible form of the vector is
⟨⟨s0, s1, . . . , a0, a1, . . . ⟩, ⟨s′0, s′1, . . . , a′0, a′1, . . . ⟩⟩, where the
si and ai are the readings/states of sensors and actuators at
time point t, and the s′i and a′i are the readings/states of the
same sensors and actuators but at time point t+i for some fixed
time interval i. Depending on the particular algorithm, the
sensor values may also need to be normalized. After extracting
as many vectors as possible from the raw data, as is typical
in learning, the algorithm should only be trained on a fixed
portion of them (e.g., 80%), leaving the remainder as test data
for assessing the accuracy of the learnt model’s predictions.

We trained one set of LSTM and SVC/SVR models using
standard Python library implementations: the Keras neural
networks API [48] and scikit-learn [49] respectively. We
extracted vectors for training from days 2–5 of the SWaT
dataset, with vectors from the remaining days reserved for
testing the learnt models. Our two LSTM models (model 1
and model 2) used a traditional architecture consisting of an
LSTM layer followed by a dense, fully-connected layer, and
took approximately 17 hours of training on a server with four
TITAN Xp GPUs. The training of SVC and SVR models took
approximately 3 hours and 7 hours, repectively. The accuracy

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I
THE ACCURACY (%) OF MODEL 1 AND MODEL 2 APPLYING THREE ML

TECHNOLOGIES

LSTM SVC SVR
Model 1 98.8% 98.2% —

Model 1-AL 99.2% 99.0% —
Model 2 96.3% — 95.1%

Algorithm 1: Expected Behavior Change Maximiza-
tion

Input: Prediction model Ms, prediction time ts
Output: Feature vector pf

1 Sniff current sensor readings and actuator
configurations and construct a feature vector po based
on their values;

2 Wait for ts seconds then observe the value vs of s;
3 Let P := ⟨⟩; [empty sequence]
4 Let D := ⟨⟩;
5 repeat
6 Construct a new vector p from po by randomly

manipulating sensor values of po;
7 vp := Ms(p);
8 P := P⌢⟨p⟩; [Include the new vector into P ]
9 D := D⌢⟨|vs − vp|⟩; [Include the value difference

into D]
10 until timeout;
11 Select a feature vector pf from P using Roulette

Wheel Selection with corresponding values in D;
12 return feature vector pf ;

of each model is given in Table I. Note that upon testing of
model 2, which outputs continuous values, the accuracy is
measured with a tolerance between the actual and predicted
values of 5%.

We remark that in our SWaT implementations, in addition
to learning models able to predict all the sensor values and
actuator configurations ⟨s′0, s′1, s′2, . . . , a′0, a′1, a′2, . . . ⟩, we also
learnt a series of simpler models that predict only a single
sensor reading or actuator status. These models are useful in
later experiments (Section IV) when the fuzzer is attempting
to drive one sensor in particular to an unsafe state, since they
can provide the necessary predictions more efficiently, and are
also faster to learn (5-10 minutes on an off-the-shelf laptop).
Furthermore, for SVC/SVR, it allowed us to vary the time
interval in predictions for different sensors. While most were
set at 1s (as for LSTM), we found that we needed a larger
interval of 7s in SVC for the valves and the pumps and 100s
in SVR for the water tank level sensors, due to the fact that
the actuators take a certain time to open/close and tank levels
change more slowly. (This is only an issue for SVC/SVR, since
the architecture of LSTM is specially designed to handle long
lags between events.)

As for the active learning part, we adopt the EBCM al-
gorithm in [31] which samples examples estimated to cause
maximally different behavior from the current state of the
system. We only apply active learning on model 1 since

applying it on model 2 would take a lot longer time (the change
of water levels is much slower than the change of the states of
actuators). It is unreasonable to assume that the attacker can
access the CPS and manipulate its data for such amount of
time without triggering any alarms. Algorithm 1 summarizes
the steps of EBCM. We first construct a new feature vector by
sampling the true sensor readings and actuator configurations.
Then the sensor readings are randomly manipulated and a
vector that would have led to a maximally different actuator
states than the original is chosen as the output. We use Roulette
Wheel Selection [35] to choose the feature vector from a set of
several to ensure some variation. Each candidate is assigned a
probability of being selected based on its ‘fitness’. Herein we
encode the actuator states with a vector consists with 0/1, and
calculate the difference between two sets of actuator states with
hamming distance. The ‘fitness’ of each candidate is defined
as the difference between what the actuator configurations
actually are and what the current model predict for the
candidate.

In our active learning setting, the initial models are trained
using the data only from day 2, day 3 and half of day
4. Then the active learning process will be repeated for
10 rounds. In each round, a set of sensor readings will be
generated according to the EBCM algorithm and the prediction
of the model. The genuine sensor readings will be replaced
by the falsified ones and the actuators will respond to the
new readings. We wait for 10 seconds to ensure that all the
actuators complete the on/off operations and collect the new
sensor readings and actuator states. Such procedure will be
repeated for 10 times in each round and the model will be
updated according to the newly collected data when a round
is finished. The whole active learning procedure will take
approximately 20 minutes (10 rounds*100 seconds/rounds,
added up with the time to generate sensor readings), which
is a acceptable time compared with the training period. The
accuracies of the pre-trained models are 90.4% and 84.2% for
LSTM and SVC, respectively. The performances with active
learning are also given in Table I. We can conclude that
with fewer data samples, models with better performance are
achieved while using active learning.

B. Step Two: Fuzzing to Find Attacks

Fitness Functions. We use fitness functions to quantify how
close some (predicted) sensor readings are to an unsafe state
we wish to reach. Intuitively, a fitness function takes a vector
of sensor values as input, and returns a number that is larger
the ‘closer’ the input is to an unsafe state. The goal of a search
algorithm is then to find sensor readings that are predicted (by
the LSTM/SVM models) to bring about genuine sensor states
that maximize the fitness function.

Fitness functions are manually defined for the CPS un-
der consideration, and should characterize precisely what an
unsafe state is. There is a great deal of flexibility in how
they are defined: it is possible to define them in terms of
the unsafe ranges of individual sensors, of groups of related
sensors, or of different combinations therein. In this paper,
we perform sensor fuzzing using fitness functions for the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

individual sensors in turn, to ensure a suitable variety of
attacks, and to avoid the problem of a single sensor always
dominating (e.g., because it is easier to attack).

Defining a fitness function for a single sensor s is straight-
forward. If its unsafe range consists of all the values above a
certain threshold, then a suitable fitness function would be the
sensor reading s itself, since maximizing it brings it closer
to (or beyond) that threshold. If its unsafe range consists
of values below a certain threshold, then a suitable fitness
function would be the negation of the sensor reading, −s.

A general fitness function can be defined for any group of
the system’s sensors. Let vs denote the current value of sensor
s, Ls denote its lower safety threshold, Hs denote its upper
safety threshold, and rs = Hs − Ls denote its range of safe
values. Let

ds =

{
min (|vs − Ls| , |vs −Hs|) Ls ≤ vs ≤ Hs

0 otherwise

i.e., the absolute distance of the sensor reading from the nearest
safety threshold. Then, the fitness function for a set S of the
CPS’s sensors is

∑
s∈S

1
ds/rs

. This function tends to infinity
as individual sensor readings get closer to either their lower
or upper safety thresholds. In other words, the fitness function
returns an increasingly large number as the system moves in
the direction of an unsafe state.

For SWaT, we defined fitness functions on a per-sensor
basis, and treated the values above and below these thresholds
as two separate cases. We did this for two reasons: first,
to ensure that sensor fuzzing can find attacks that violate
each sensor in both ways (where applicable); and second,
as it increases the diversity of attacks in cases it is much
easier to attack a sensor in one direction. We remark that a
preliminary investigation found more general fitness functions
(e.g., favoring any kind of attack) not to be useful for SWaT,
as the attacks found by fuzzing were dominated by sensors
that were easier to drive to unsafe ranges, such as the water
flow indicators in the first stage.

Searching and Fuzzing. Note that as described in our active
fuzzing example (see Section 2), in the context of sensor
fuzzing, the sensor value injection will influence the state
of actuators firstly. Afterward, these actuators will drive the
’true’ sensor reading to the unsafe state it’s going to reach,
i.e.,, lower or upper safety thresholds. In addition to the
single-point attack presented in our previous paper [38], we
also perform targeted and multi-point attacks (see Section 4.2
RQ3). In order to generate the attack benchmarks, we consider
three different algorithms for searching across the space of
sensor readings. First, we consider a simple random search, in
which several combinations of sensor readings are randomly
generated. The network is then fuzzed to apply the readings
that is predicted (by the LSTM/SVM model) to maximize the
fitness function.

Second, we consider a genetic algorithm (GA) [35], a
metaheuristic search inspired by the “survival of the fittest”
principle from the theory of natural selection. The high-
level steps of our particular GA for finding sensor reading
configurations are summarized in Algorithm 2. In [38],the

Algorithm 2: GA for Sensor Readings
Input: Vector of actuator configurations A, prediction

cascaded model M , fitness function f , population
size n, no. of parents k, mutation probability pm

Output: Vector of sensor readings
1 Randomly generate population P of n sensor readings;
2 Compute fitness of each candidate c ∈ P with f(M(c, A));
3 repeat
4 Select k parents from P using Roulette Wheel Selection;
5 Generate new candidates from parents using crossover;
6 Generate new candidates from parents using

floating-point mutation with probability pm;
7 Compute fitness of new candidates c with f(M(c, A));
8 Replace P with the n fittest of the new and old

candidates;
9 until timeout;

10 return candidate c ∈ P that maximizes f(M(c, A));

actuator configurations are chosen as the fuzzing targets, which
can be encoded as bit vectors. However, in this paper we
fuzz sensor readings, which are usually stored as floating-point
numbers. Although we can map these floats into discrete space
and encode them afterwards, it may not be effective (due to
the complication of encoding floating number operations using
bit vector operators). Therefore, we adapt our GA algorithm
to deal with floating-point data. The implementation of the
GA algorithm can be described as follows: First, a population
of sensor reading configurations is randomly generated. Note
that all the generated sensor readings are within the range of
the minimum to the maximum readings from the data logs
we collect (See Section III-A) for each individual sensor. The
inspiration of this setting is that all the fuzzed sensors readings
have appeared during the normal operations of the testbed. So
that the attack may bypass some simple defense mechanisms
that only based on the sensor readings. Next, we calculate the
fitness of each candidate in the population by: (1) applying
the cascaded model; then (2) applying the fitness function to
the resulting predicted state.

At this point we enter the main loop, in which the fittest
candidates are selected for generating “offspring” from. We
select the candidates using roulette wheel selection [35], which
assigns to each candidate a probability of being selected based
on its fitness. If fi is the fitness of one of the n candidates,
then its probability of being selected is fi/

∑n
j=1 fj . Next,

we sample candidates based on the probabilities using the
following implementation. First, a random number is generated
between 0 and the sum of the candidates’ fitness scores.
Then, we iterate through the population, until the accumulated
fitness score is larger than that number. At this point we stop,
selecting the last candidate as a “parent”. We repeat this until
we have selected k parents (possibly including duplicates).

From the parents, we generate new candidates (offspring)
by applying crossover and mutation. For the former, we have

x
′

A = αxB + (1− α)xA

x
′

B = αxA + (1− α)xB
(1)

where α is a random number between 0 and 1.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Algorithm 3: SA for Sensor Readings
Input: Vector of actuator configurations A, prediction

cascaded model M , fitness function f , initial
temperature Tin, minimum temperature Tmin, no. of
initial solutions n, no. of inner iterations k,
temperature constant t

Output: Vector of sensor readings
1 Randomly generate set S of n sensor reading configurations;
2 Compute fitness of each candidate c ∈ S with f(M(c, A));
3 Select c ∈ S that maximizes f(M(c, A));
4 Set initial temperature T as T = Tin;
5 repeat
6 repeat
7 Generate a random noise ∆c;
8 Generate a new candidate cnew by adding ∆c to c;
9 if f(M(cnew, A)) > f(M(c, A)) then

10 c = cnew;
11 else
12 Generate a random number r between 0 an 1;
13 if r < exp((f(M(cnew, A))− f(M(c, A)))/T )

then
14 c = cnew;
15 else
16 continue;

17 until iteration k is reached;
18 Update T with new temperature T/(1 + t);
19 until timeout or T < Tmin;
20 return the final candidate c;

For the latter, we have

x
′

A =

{
xA + k · (xmax − xA) · r, rand ()%2 = 0
xA − k · (xA − xmin) · r, rand ()%2 = 1

(2)

where k is 0.2, r is a random number between 0 and 1,
xmax and xmin are the maximum value and the minimum
value of the corresponding sensor in the historian data logs,
respectively.

The fitness of all the new candidates is calculated, then the
n fittest candidates from the old and the new candidates are
carried forward as the new population, with the other, less fit
candidates all eliminated. This iteration continues until a fixed
timeout is reached. The fittest sensor reading configuration is
then returned, and the relevant genuine sensor readings are
overwritten by the falsified ones.

Our third searching algorithm is simulated anneal-
ing (SA) [36], a metaheuristic method models a physical
process where a solid is heated and then slowly cools down
to decrease defects to solve optimization problems. The high-
level steps of our particular SA for finding sensor readings are
summarized in Algorithm 3. The details of how we implement
SA algorithm can be described as follows: First, we randomly
generate a set of sensor reading configurations (like GA, all the
sensor readings are in the normal range). Next, we calculate
the fitness of each individual configuration by : (1) applying
the cascaded model; then (2) applying the fitness function to
the resulting predicted state. We single out the configuration
with the maximum fitness and set it as our first solution.

Then we enter the main loop. We generate a new solution by
randomly adding up a tiny noise ∆c to the previous solution.
The fitness fnew of the new solution will be calculated. If

the fnew is larger than the fitness of the previous solution
fold, the previous solution will be replaced by the new one.
Else, we generate a random number r between 0 and 1. If r is
smaller than exp(fnew − fold)/T ), the previous solution will
also be replaced by the new one. Else, the solution remains
unchanged. Such procedure will be repeated for k times. Then
the temperature T will be updated with a lower temperature
T/(1 + t). After this, we enter the next loop. The main loop
continues until a fixed timeout is reached or T is lower than
the minimum temperature Tmin.

In our GA implementation, we set the population size as
n = 100, number of parents as k = 100, the crossover
probability as 0.5, and the mutation probability as 0.1. These
parameters were chosen to ensure that the algorithm will
converge before the 10s timeout. Furthermore, we cap the
maximum number of iterations at 100 (if reached before the
timeout). In our SA implementation, we set the initial temper-
ature as Tin = 1, minimum temperature as Tmin = 7 · 10−3,
the number of initial solutions n as 100, the number of inner
iterations k as 10, the temperature constant t as 1. These
parameters were also chosen to ensure the time constraint. For
the random search, the maximum number of the generated
combinations is set to 1000. For the GA and SA searches,
we set a timeout of 10s, after which the best sensor reading
found so far would be the one that is applied. While this 10s
timeout is clearly longer than the 1s prediction time interval
of our models (except for the 100s time interval for tank
levels in SVM), the predictions are still meaningful because
the physical states of the testbeds evolve so slowly in the
meantime. For CPSs that change faster, a longer prediction
time interval may need to be considered for the search to
remain practically useful.

Once our random, GA or SA search algorithm identifies
the fittest sensor readings, we use the Python package py-
comm [50] to fuzz the sensor readings over the network. As
long as the system continues to approach the targeted unsafe
state, the sensor readings are held; otherwise, the search is
repeated to identify a more fruitful configuration.

IV. EVALUATION

We evaluate the effectiveness of active sensor fuzzing on
the SWaT testbeds (Section II).

A. Research Questions

Our evaluation addresses six research questions based
on our original design requirements for active sensor
fuzzing (Section I):

RQ1 (Efficiency): How quickly is active sensor fuzzing
able to find an attack?

RQ2 (Comprehensiveness): How many unsafe states can
the attacks of active sensor fuzzing cover?

RQ3 (Complexity): Is active sensor fuzzing able to gener-
ate sophisticated attacks?

RQ4 (Setup):Which combination of model and search al-
gorithm is most effective?

RQ5 (Comparisons): How do the attacks compare against
those of other approaches or those in benchmarks?

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

RQ6 (Improvement): How active sensor fuzzing comple-
ments our original fuzzing framework ?

B. Experiments and Discussion
RQs 1–2 consider whether active sensor fuzzing achieves its
principal goal of finding network attacks. We assess this from
two different angles: first, in terms of how quickly it is able
to drive the CPS into a particular unsafe state; and second,
in terms of how many different unsafe states the attacks can
cover. RQ 3 investigates whether active sensor fuzzing is able
to generate sophisticated attacks, i.e., targeted and multi-point
attacks. RQ 4 considers how different setups of active sensor
fuzzing (i.e., different models or search algorithms) impact
its ability to find attacks. RQ 5 compares the effectiveness
of active sensor fuzzing against two other approaches: the
baseline of randomly manipulating sensor readings without
reference to a model of the system, and an established,
manually constructed benchmark of attacks [29]. Finally,
RQ6 clarifies how the new features induced in active sensor
fuzzing complement our previous work, which uses ML-
guided fuzzing to mutate actuator states [38], and discusses
how they promote the predictive models and the procedure of
finding attacks in the context of cyber physical systems.

We design four experiments for the SWaT testbed to evalu-
ate our research questions. The programs we built to perform
these experiments and all supplementary material are available
online to download [51].

Experiment #1: RQs 1, 2&4. In our first experiment, we sys-
tematically target the different possible unsafe sensor ranges
in SWaT, using our tools in six different model/search setups:
LSTM-GA, LSTM-SA, LSTM-Random, SVR-GA, SVR-SA
and SVR-Random (Each model setup contains models trained
with and without active learning, see Section 3). Our goal is
to collate the data and obtain an overall picture of how the
different ML-guided setups perform, how quickly attacks are
found, and how many different unsafe states are covered.

For each of the setups and fitness functions (usually two
per sensor, targeting the lower and upper safety thresholds
separately), we ran the experiment as follows. First, we “reset”
the testbed by operating it normally until all sensors entered
their safe ranges. Upon reaching this state, we launched the
fuzzer with the given setup and fitness function, and let it
run without interference for up to 20 minutes (long enough
to ensure that over/underflow attacks are able to complete). If
the unsafe state targeted by the fitness function was reached
within that time, we disabled the fuzzer and recorded the time
point at which the transition to unsafe state occurred. (If other
sensors happen to enter their unsafe states along the way, we
record this too, but do not disable the fuzzer for them.) Once
the fuzzer was disabled, the testbed was allowed to reset and
return to a safe state. We repeated these steps 5 times for
every combination of fuzzer setup and fitness function, and
recorded the median so as to remove biases resulting from
differences in starting states. Note that in this experiment, we
did not specifically target overflow or underflow attacks. So
our tool would automatically choose the nearest unsafe state
as the goal.

Results. The results of this experiment are given in the first
twelve rows of Table II. The rows denote the different fuzzing
setups (model trained with active learning is indicated by
their subscripts AL), whereas the columns denote the different
possible unsafe states for each sensor. These include: Flow
Indicator Transmitters (FITs), which measure water flow in
pipes and can become too High or Low; a Differential Pressure
Sensor (DPIT), which can become too High or Low; and Level
Indicator Transmitters (LITs), which measure the water levels
of tanks, and can indicate a risk of Overflow or Underflow.
We do not include the Analyzer Indicator Transmitters (AITs),
which measure properties such as pH, as the testbeds currently
take raw water from the mains (i.e., already close to pH 7); as
a result, the readings barely vary during the plant’s operation.
The numbers indicate the amount of time taken, in seconds, for
a particular fuzzing setup to reach an unsafe state (RQ1); they
are the medians obtained from 5 repetitions per combination
of fuzzing setup and fitness function. Numbers indicated with
an asterisk (∗) indicate that one or more repetitions that
were unable to reach the unsafe state within 20 minutes.
Furthermore, 1200+ indicates that despite approaching the
given unsafe state, none of the repetitions were able to cross
the threshold. The dashes (—) indicate which sensors never
approached an unsafe state. From Table II, we can conclude
that active sensor fuzzing is able to find attacks that drive
SWaT into 15 different unsafe states involving water flow,
pressure, and tank levels (RQ2).

For the unsafe states of FIT or DPIT, the median time for
active sensor fuzzing to successfully launch the attack across
different setups (models and search algorithms) is essentially
the same. However, when the search algorithm is random,
some repetitions fails to reach the unsafe states (the number
indicated with an asterisk (∗)). While almost every repetition
equipped with certain searching strategy manages to cross the
safety boundary. The only exception is one repetition of which
the setup is LSTM-SA (the corresponding number is indicated
with an asterisk as shown in Table II). In this repetition,
the search algorithm of SA failed to generate an appropriate
solution before the maximum iteration was reached.

When the attack targets are LITs, the ML-GA and ML-
SA setups noticeably outperform their Random variants at
driving every SWaT’s water tank level into an unsafe state
for both overflow and underflow attacks (Table II). For LIT
sensors under a relatively simple circumstance (i.e., LIT101),
the Random setups are still able to cross the safety boundary
within the given time but take more time than those using
metaheuristic algorithms. For the sensors under the complex
circumstances (i.e., LIT301 and LIT401, which are relevant
to three or four of the six stages), the Random setups fail to
reach the threshold (indicated with 1200+) when targeting the
underflow states. Meanwhile, ML-GA and ML-SA setups are
able to generate at least one successful attack within the given
time, which proves the superiority of applying metaheuristic
search in the setup of active sensor fuzzing (RQ4). We thus
have the following conclusion:

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE II
RESULTS: MEDIAN TIME TAKEN (S) TO DRIVE SWAT’S FLOW, DIFFERENTIAL PRESSURE, AND LEVEL INDICATOR TRANSMITTERS INTO UNSAFE STATES

Flow (High) Flow (Low) Pr. (L) Tanks (Overflow) Tanks (Underflow)

FI
T

10
1

FI
T

20
1

FI
T

60
1

FI
T

10
1

FI
T

20
1

FI
T

30
1

FI
T

40
1

FI
T

50
1

D
PI

T
30

1

L
IT

10
1

L
IT

30
1

L
IT

40
1

L
IT

10
1

L
IT

30
1

L
IT

40
1

O
ur

w
or

k

SVM-GA 14 9 18 14 8 18 16 5 14 353 519 497 550 576 751∗

SVMAL-GA 12 11 18 13 7 16 15 5 14 340 431 484 538 534 744∗

SVM-SA 13 15 18 14 8 19 16 6 13 407 477∗ 503 571∗ 585 802∗

SVMAL-SA 15 12 17 14 8 17 16 5 11 391 472 452 526 571 793∗

SVM-Random 15 13∗ 21∗ 15 9∗ 20∗ 15 5 14∗ 520 577 681 655 — —
SVMAL-Random 16 14 19∗ 15 7 17∗ 15 5 12 512∗ 669∗ 682∗ 607∗ — 1200+

LSTM-GA 14 21 18 14 8 19 15 5 13 396 443 483 527 548 739∗

LSTMAL-GA 10 17 16 15 8 17 14 4 13 366 405 478 509 502 737∗

LSTM-SA 17∗ 11 17 13 7 20 16 5 12 370 525 507 533∗ 570∗ 772∗

LSTMAL-SA 15 12 17 13 7 16 14 5 10 381 539 499 514 533 750∗

LSTM-Random 12∗ 19∗ 19∗ 15 9 18 16 6 11∗ 662∗ 730 614∗ 679∗ — 1200+
LSTMAL-Random 14 17 17∗ 14∗ 8 18 15 5 13∗ 614∗ 719∗ 599∗ 623∗ 1200+ —

O
th

er

Random (No Model) 16∗ 17∗ 22∗ 14∗ 9∗ — — 6∗ 14∗ — — — — — 1200+
Benchmark [29] 14 18 — 14 18 — — — — 454∗ 771∗ 1200+ — — 1200+

Smart Fuzzing [38] 13 10 16 13 7 16 14 5 11 333 439 681 511 1200+ 1200+

If attacks can only occur under strict conditions,
an accurate prediction model and a sophisticated
search algorithm (e.g., GA or SA) are required for
generating attacks.

Experiment #2: RQs 3&4. To further investigate the ability of
our tool to find attacks, our second experiment studies whether
active sensor fuzzing is able to generate more sophisticated
and restricted benchmarks. In our experiment #1, we attack
each individual sensor separately and do not aim any specific
unsafe states. While in some real-world attack scenarios, the
attackers are meant to drive the system out of some certain
threshold (e.g., cause the water tank to overflow rather than
underflow), or drive multiple components of the system into
dangerous states at the same time (e.g., drive multiple water
tanks to overflow or underflow simultaneously). Therefore, we
design two sub-experiments to evaluate whether our tool still
work given the aforementioned restriction.

Considering the complexity induced by different combina-
tions of sensors, we single out three water tank level indicator
transmitters (LIT101, LIT301 and LIT401), which work in
three different stages of SWaT, as our victim sensors. The
reason is that the overflow and underflow of water tanks usu-
ally cause more damage in real-world CPSs, hence the attack
benchmarks of these three sensors are more representative.

The first sub-experiment aims to launch targeted attacks. We
ran the experiment as follows. For each sensor, we separately
targeted overflow and underflow states. The setting of target
states could be achieved by modifying ds of the fitness
function:

ds =


|vs − Ls| Ls ⩽ vs, target = underflow

|vs −Hs| vs ⩽ Hs, target = overflow

0 otherwise

(3)

We chose the LSTM models retrained with active learning
as our ML-guiding tool. We launched the fuzzer and let it

run as described in Experiment #1. For every combination
of fuzzer setup and fitness function, we repeated the steps
10 times and recorded how many times the water level
successfully reached the specified states.

Results. The results of this sub-experiment are given in the
first three rows of Table III. We record the success rate for
each sensor to reach each specified unsafe states. The intuition
is that from the success rate we can infer the difficulty to
construct a certain attack suite for our tool. From the table, we
find that when our tool is applied with GA or SA searching
algorithm, it could drive three water tanks into any unsafe
states we assign with a high success rate. The repetitions under
Random setup were still able to across the safety boundary, but
with a relatively low success rate. Especially when the attack
can only occur under strict conditions (i.e., the underflow
attack of LIT301 and LIT401). Such findings further proves
the necessity of utilizing a more sophisticated search algorithm
if the attacker want to launch more sophisticated attacks. We
thus have the following conclusions:

When equipped with the sophisticated search algo-
rithm (e.g., GA or SA), our tool is able to launch
targeted attack with high success rate.

TABLE III
RESULTS: SUCCESS RATE (%) OF LAUNCHING ATTACKS TOWARDS

TARGETED UNSAFE STATES (OVERFLOW OR UNDERFLOW)

Overflow Underflow

L
IT

10
1

L
IT

30
1

L
IT

40
1

L
IT

10
1

L
IT

30
1

L
IT

40
1

Our work
LSTMAL-GA 100 100 90 100 90 80
LSTMAL-SA 100 100 100 100 90 70

LSTMAL-Random 60 50 50 50 10 10

Other Random (No Model) 10 0 0 10 0 0

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE IV
RESULTS: SUCCESS RATE (%) OF LAUNCHING MULTI-POINT ATTACKS WITH DIFFERENT COMBINATIONS OF UNSAFE STATES

LLL LLH LHL LHH HLL HLH HHL HHH

Our work

SVM-GA — 84 88 64 — 80 80 88
SVMAL-GA 4 88 88 92 — 84 88 92

SVM-SA — 72 80 64 — 76 76 96
SVMAL-SA — 84 80 84 4 76 84 96

SVM-Random — 8 4 4 — 4 4 12
SVMAL-Random 4 8 4 12 — 8 4 20

Other Random (No Model) — 4 — — — — 4 8

The second sub-experiment aims to investigate the ability
of our tool to attack multiple components of the CPS at the
same time. We ran the experiment as follows. Three LITs
were chosen as our multi-point attack targets. Each sensor had
two unsafe states (underflow and overflow), so there were 8
combinations of unsafe states in total. For each combination,
we manually set up the fitness function

∑
s∈S

1
ds/rs

where S
included LIT101, LIT301 and LIT401. We chose the SVM
models as our ML-guiding tool. Then We launched the fuzzer
and let it run as described in Experiment #1. Notice that we
only stopped the fuzzer when all the unsafe states of different
sensors were reached or timeout. For every combination of
fuzzer setup and fitness function, we repeated the steps 25
times and recorded the number of times that the attack
successfully drove SWAT into multi-point unsafe states.

Results. The results of this experiment are given in the
first six rows of Table IV. We record the success rate of
launching the specified multi-point attacks. For each sensor,
we use L to denote that the water level reaches the lower
threshold (i.e., underflow) and H to denote that the water
level reaches the upper threshold (i.e., overflow). We use three
letters to represent three unsafe states for each sensor (e.g.,
LLH represents that LIT101 is underflow, LIT301 is underflow
and LIT401 is overflow). From Table IV, we can conclude that
our tool is able to find multi-point attacks for six combinations
of unsafe states out of eight. Focus on the success rate, we find
that the ML-GA and ML-SA setups outperform their Random
variants in most cases. Furthermore, when the model is trained
with active learning, the fuzzer is able to generate attacks with
a higher success rate. Note that when the unsafe state targets
are set to LLL or HLL, almost every repetition fails to cross the
safety boundary. We find such failures result from the control
logic of SWaT. When the underflow of LIT401 is chosen as
the target states, the most efficient way to achieve the attack
goal is to set the tank level of LIT401 to a large number. The
CPS would close P301 and open P401 and the water in LIT401
will be pumped out without being pumped in. However, when
P301 is close, there will be no way for the water in LIT301
to be pumped out, hence the underflow of LIT301 would be
hard to reach. Therefore, under the setup of LLL and HLL, it
is unrealistic to generate a successful attack in most cases. The
only three successful repetitions occurred when the tank levels
of LIT301 were low enough that they could reach the lower
boundary within a short period of time. Such a contradiction
does not appear in LHH or HHH attacks, because the CPS
does not forbid P301 to open when LIT301 is low. Therefore,

the attack benchmark can successfully drive the water level of
LIT401 to reach the upperbound. We thus have the following
conclusion:

Active learning and metaheuristic search algorithms
improve the success rate when launching multi-point
attacks.

Experiment #3: RQ 5. Our third experiment seeks to compare
the results of our active sensor fuzzing setups against those
of other approaches. We make a comparison against two
different baselines. First, we compare against an automatic
approach in which all of the “smartness” is removed, and the
manipulation to the sensor values are simply generated and
applied randomly, without reference to any prediction model
for the testbed (in contrast to LSTM-Random, SVM-Random).
Second, and in contrast, we compare against the attacks of
an established, expert-crafted benchmark [29], which were
systematically derived from an attack model. For the different
attacks derived from these two sources, this experiment is
roughly similar to the first: launch them, and record which
sensors are driven into unsafe ranges (and at which time
points). The idea of the experiment is to establish where
the effectiveness of active sensor fuzzing can be positioned
between two extremes: a simplistic, uninformed search on the
one hand; and an expert-crafted, comprehensive benchmark on
the other.

We ran the experiment as follows. For the random baseline,
we wrote a program to randomly generate 10 distinct sets of
sensor readings. For each set in turn, we began by ‘resetting’
SWaT to a normal state, using the same procedure as the
previous experiment. Once in such a state, we then fuzzed
the network to manipulate the sensor readings with the given
random configuration for 20 minutes. If during the run any
real sensor readings were driven into an unsafe range, we
recorded the sensors (and ranges) in question, and the time
points at which they first became unsafe. After the run, the
system was allowed to reset, before repeating the process for
the other randomly generated configurations.

For the benchmark [29], we manually extracted all attack
sequences that were intended drive the system into unsafe
physical states. For each of these six attacks in turn, we
fuzzed the network manually to recreate the attack sequence,
overriding the sensor and actuator states as prescribed by the
benchmark. If during the run any (actual) sensor readings were
driven into an unsafe range, we recorded the sensors and time
points at which they first became unsafe. This was repeated

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

10 times for each attack sequence.
Results. The results of this experiment are given in the

bottom rows of Tables II. The numbers indicate the time at
which sensor entered an unsafe state for the first time. For
“Random (No Model)”, they are the medians across runs for
10 randomly generated sensor readings; for “Benchmark”, they
are the medians across 10 repetitions for each of attacks that
target some unsafe state. By comparing these numbers with
active sensor fuzzing (RQ5), we show that our approach drives
more of the sensors to unsafe states and does so faster.

The comparison with Random (No Model) makes clear that
most of the attacks are not possible to find by “accident”,
or just by simply fuzzing at random without any artificial or
human intelligence. At the other end, the comparison with the
SWaT benchmark illustrates that active sensor fuzzing was
able to drive the system to nine additional types of unsafe
states that were not covered by the benchmark. Also, its com-
parable attacks were slower than those of active sensor fuzzing.
Most of our attacks achieves the shortest time while attacking
the LITs (Especially under the setup of LSTMAL-GA). The
comparison suggests that our approach could complement the
benchmark and improve its comprehensiveness and efficiency.

Active sensor fuzzing complemented an established
benchmark by covering nine additional unsafe
states.

Apart from the comparison of the ability to generate basic
attacks (i.e., single-point and attacks without targeting any
specified states) of other approaches. We also seek to find
out whether those approaches can perform more sophisticated
attacks as our tool does. The manually crafted benchmark [29]
does not give any implementations on how to launch those
sophisticated attacks, so we compare against the Random
approach.

We ran the experiment as follows.We generated 10 distinct
sets of sensor readings for the experiment of targeted attacks
and 20 sets for the experiment of multi-point attacks. Then
the network was fuzzed to manipulate the sensor readings.
The fuzzer only stopped when the assigned unsafe states were
reached or the 20 minutes timeout. We then recorded the
number of sensor reading sets that successfully drove the
system across the safety boundary.

Results. The results of the random baseline is given in the
last row of Table III and Table IV. For the targeted attack, only
one repetition drives LIT101 to overflow and one repetition
drives LIT101 to underflow while others fail to attack. For the
multi-point attack, the repetition do not success under most
cases. Only by little chance could the randomly generated
attack suite succeed in driving all three tanks to unsafe
states simultaneously. Compared with the random approach
combined with any prediction models (e.g., LSTM-Random,
SVM-Random), it is clear that the “smartness” induced by
those prediction model make the attack suites more feasible.
We thus have the following conclusions:

Experiment #4: RQ 6. In our fourth experiment, we reveal
and analyze how active learning benefit the fuzzing framework
compared with our previous work [38]. In this work, we apply

new prediction models in the step of learning. Therefore, we
design this experiment to figure out the influence of these
changes.

First, we study whether active sensor fuzzing can com-
plement the attack benchmarks generated by the original
fuzzing framework. We singled out the attack with the best
performance (attacks with shortest time to drive the system
into an unsafe state) of each individual sensor from our
original fuzzing tool [38]. The results are given in the last
row of Table II, indicated by “Smart Fuzzing”. In our original
fuzzing framework, there are 13 kinds of attack benchmarks
generated for SWaT in total. In this work, with applying active
learning, our framework successfully generates attack suites
that can drive the system reach two more unsafe states within
the given time (i.e., the underflow thresholds of LIT301 and
LIT401). Thus, we have the following conclusion:

Active sensor fuzzing complemented the original
approach and discovered two more attacks within
the given time.

Next, we explain why active learning could promote the
procedures of attack discovery. From the aforementioned ex-
periments (see Table I, II, III and IV), we can conclude that
active learning enhances the prediction models to construct so-
phisticated attack suites in less time. For a better understanding
of the effect of active learning, we use feature importance [52],
a technique that calculates a score for all the input features
for a prediction model based on how they influence the result,
to interpret the original model and the model trained with
active learning. The intuition is that under most cases, the
components of CPS evolve according to their related sensor
values (e.g., a pump opens when the tank level is high and
closes when the tank level is low). Thus, by calculating the
feature importance before and after active learning, we can find
out which sensor plays an essential role while the prediction
model generates its output, and how active learning influence
these feature importance.

We calculated feature importance based on the model we
used. For the linear SVC model, we took the absolute value of
the model’s weight for the feature as its importance. For the
LSTM model, we referred to [53] and used the prediction loss
after shuffling a certain feature as its importance. We picked
MV101, a motorized valve in stage 1, as an example to explain
the impact of active learning.

Results. The calculated feature importance of the SVC
model and the LSTM model that predict the evolution of
MV101 are given in Figure 5 and Figure 6, respectively.
In Figure 5, compared to the original model, the feature
importance of LIT101 (marked in red color) is significantly
larger than these of other sensors. In Figure 6, the feature
importance of LIT101 is ranked first for the active learning
model, while ranked second for the original model. After
analyzing the logic of the Swat testbed, we found that the
behavior of MV101 is determined by the status of LIT101, i.e.,
MV101 closes when LIT101 is high and opens when LIT101 is
low. The larger the feature importance is, the higher probability
the corresponding sensor is selected to be manipulated in the
fuzzing phase. Therefore, active learning is substantial for

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

LI
T1

01
M

V1
01

P2
01

LI
T4

01
FI

T1
01

FI
T6

01
UV

40
1

M
V3

03
M

V2
01

P5
01

Feature

0.0

0.5

1.0

1.5

2.0

Im
po

rta
nc

e

(a) The original model

LI
T1

01
FI

T1
01

M
V1

01
LI

T3
01

LI
T4

01
FI

T2
01

FI
T4

01
FI

T3
01

FI
T5

01
P2

03

Feature

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Im
po

rta
nc

e
(b) The model trained with active learn-
ing

Fig. 5. The feature importance of the SVC model that predicts the evolution
of MV101 which is trained (a) normally and (b) with active learning
techniques

M
V1

01
LI

T1
01

FI
T2

01
LI

T3
01

FI
T1

01
P2

03
LI

T4
01

FI
T5

01
FI

T3
01

M
V2

01

Feature

0.0
0.2
0.4
0.6
0.8
1.0

Im
po

rta
nc

e

(a) The original model

LI
T1

01
M

V1
01

FI
T1

01
FI

T2
01

LI
T3

01
LI

T4
01

P5
01

FI
T5

01
M

V2
01

M
V3

03

Feature

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Im
po

rta
nc

e

(b) The model trained with active learn-
ing

Fig. 6. The feature importance of the LSTM model that predicts the
evolution of MV101 which is trained (a) normally and (b) with active
learning techniques

finding the important targeted sensor and improves the success
rate to launch an attack.

We thus have the following conclusions:

Active learning is effective at finding the critical
sensors for manipulation.

C. Discussion on attack detection mechanism

Some hybrid systems have built-in attack detection mecha-
nisms, such as invariant monitoring [54]. These mechanisms
statistically analyze whether all system states obey a set of
predefined rules. For example, if the valve MV101 is open,
the reasonable range of water flow indicator FIT101 is 0.4-2.0.
If the actual reading falls outside of this range, the detection
mechanism will trigger an alarm. Other mechanisms conduct
statistical tests based on the likelihood of an observation given
an internal state of the system. If these mechanisms are well-
designed and the attacker has no means of compromising or
falsifying the data, our approach is unlikely to generate any
possible attack vectors. However, if the rules or statistical tests
are insufficient to cover all vulnerabilities, then active fuzzing
could be able to detect some vulnerabilities.

D. Threats to Validity

Finally, we remark on some threats to the validity of
our evaluation and approach. First, our approach was only
performed on one testbed. Second, our approach was imple-
mented for a CPS testbed: while it is a real, fully operational
plants based on the designs of industrial ones, it is still smaller,
and our results may therefore not scale-up (this is difficult to
test due to the confidentiality surrounding plants in cities).
Finally, the initial states of the testbeds were not controlled,
other than to be within their normal ranges, meaning that our
performance results may vary lightly.

V. RELATED WORK

In this section, we highlight a selection of the literature
that is particularly relevant to some of the main themes of this
paper: constructing attacks, fuzzing, and assessing robustness.
We remark that related works on attack defense mechanisms
are discussed earlier in the paper in Section I, with some
mechanisms specific to SWaT discussed in Section II.

A number of papers have considered the systematic con-
struction or synthesis of attacks for CPSs in order to test (or
demonstrate flaws in) some specific attack detection mecha-
nisms. Liu et al. [55], for example, target electric power grids,
which are typically monitored based on state estimation, and
demonstrate a new class of data injection attacks that can
introduce arbitrary errors into certain state variables and evade
detection. Huang et al. [56] also target power grids, presenting
an algorithm that synthesises attacks that are able to evade
detection by conventional monitors. The algorithm, based on
ideas from hybrid systems verification and sensitivity analysis,
covers both discrete and continuous aspects of the system.
Urbina et al. [57] evaluate several attack detection mechanisms
in a comprehensive review, concluding that many of them are
not limiting the impact of stealthy attacks (i.e., from attackers
who have knowledge about the system’s defenses), and suggest
ways of mitigating this. Sugumar and Mathur [58] address the
problem of assessing attack detection mechanisms based on
process invariants: their tool simulates their behavior when
subjected to single stage single point attacks, but must first be
provided with some formal timed automata models. Cárdenas
et al. [59] propose a general framework for assessing attack
detection mechanisms, but in contrast to the previous works,
focus on the business cases between different solutions. For
example, they consider the cost-benefit trade-offs and attack
threats associated with different methods, e.g., centralized
vs. distributed.

Fuzzing has been a popular research topic in security
and software engineering for many years, but the goals of
previous works tend to differ from ours, which is a general
approach/tool for discovering CPS network attacks. Fuzzing
has previously been applied to CPS models, but for the goal
of testing them, rather than finding attacks. CyFuzz [60] and
DeepFuzzSL [61] are two such tools, which offer support for
testing Simulink models of CPSs. American fuzzy lop [41]
targets programs, and uses GAs to increase the code coverage
of tests and find more bugs. Cha et al. [40] also target
software, using white-box symbolic analysis on execution
traces to maximize the bugs it finds in programs. Grammar-
based fuzzers (e.g., [62], [63]) generate complex structured
input, such as HTML-JavaScript for testing web browsers,
with formal grammars. A number of works (e.g., [64]) have
targeted the fuzzing of network protocols in order to test their

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

intrusion detection systems. In contrast, our work starts from
the assumption that an attacker has already compromised the
network, and uses ML-guided fuzzing to find the different
ways that such an attacker might drive the system to an unsafe
state. The attacks that it uncovers then form test suites for
attack detection mechanisms. The work of Chen et al. [31],
which also introduces active learning to guide the fuzzing
process, is close to our fuzzing framework. But in contrast to
our work, the framework of [31] constructs regression models
and fuzzes based on the network payloads of CPSs.

There are more formal approaches that could be used to
analyze a CPS and construct a benchmark of different attacks.
However, these typically require a formal specification, which,
if available in the first place, may be too simple to capture
all the complexities in the physical processes of full-fledged
CPSs. Kang et al. [65], for example, construct a discretised
first-order model of SWaT’s first three stages in Alloy, and
analyze it with respect to some safety properties. However, the
work uses very simple abstractions of the physical processes,
and only partially models the system (we consider all of
it without the need for any formal model). Castellanos et
al. [66] automatically extract models from PLC programs that
highlight the interactions among different internal entities of a
CPS, and propose reachability algorithms for analyzing the de-
pendencies between control programs and physical processes.
McLaughlin et al. [67] describe a trusted computing base for
verifying safety-critical code on PLCs, with safety violations
reported to operators when found. Etigowni et al. [68] define
a CPS control solution for securing power grids, focusing
on information flow analyses based on (potentially verifiable)
policy logic and symbolic execution. Beyond these examples,
if a CPS can be modeled as a hybrid system, there are
several formal methods that can be applied to it, including
model checking [69], [70], SMT solving [71], non-standard
analysis [72], process calculi [73], reachability analysis [74],
concolic testing [75], and theorem proving [76]. Defining
a formal model that accurately characterizes enough of the
physical process and its interactions with the PLCs is, however,
the hardest part. Active sensor fuzzing in contrast can achieve
results on real-world CPSs without the need for specifying a
model at all: it learns one implicitly and automatically from
the data logs.

VI. CONCLUSION

In this work, we proposed active sensor fuzzing, a black-
box tool to automatically generate CPS attack suites based
on manipulating sensor values. We used active learning to
overcome the enormous search space and the huge cost to
label data in the context of cyber physical system. We trained
a series of cascaded models from which the relevance between
the actuators and the sensor readings of the system could
be learnt. Online active learning was used to enhance the
performance of our models. We adapted the EBCM [31] active
learning framework, which was designed to maximize the
change of behavior patterns of CPSs. We implemented two
metaheuristic approaches to guide the fuzzing process: genetic
algorithm (GA) and simulated annealing (SA).

We than evaluated the efficiency and efficacy of our tool
on a multi-stage water purification testbed: SWaT, which
consists of multiple computation, communication and physical
processes and related components. The experiments showed
that our tool was able to find attacks that could drive the
system into 15 different unsafe states, 9 more than an expert-
crafted benchmark [43]. Furthermore, we implemented two so-
phisticated attacks: targeted and multi-point attack. We showed
that active sensor fuzzing was able to launch targeted attacks
with high success rate while guided by some sophisticated
search algorithm and a well-trained model. As for the multi-
point attacks, the benchmark generated by our tool could
also succeed in most cases, as long as the attack wasn’t in
contradiction to the control logic of the system. Finally, we
introduced how active sensor fuzzing extended our original
fuzzing framework [38]. We complement the attack bench-
marks with 2 more kinds of attack suites. Furthermore, we
analyzed how active learning could help refine the distribution
of feature importance of the prediction model. When the model
was updated, the procedure of finding attacks in the context
of CPS was also improved.

ACKNOWLEDGEMENTS

This work was supported in part by National Natural
Science Foundation of China (62227805, 62072398), by Na-
tional Key R&D Program of China (2020AAA0107700),
by SUTD-ZJU IDEA Grant for visiting professors (SUTD-
ZJUVP201901), by Alibaba-Zhejiang University Joint Insti-
tute of Frontier Technologies, by National Key Laboratory
of Science and Technology on Information System Security
(6142111210301), by State Key Laboratory of Mathematical
Engineering and Advanced Computing, and by Key Labora-
tory of Cyberspace Situation Awareness of Henan Province
(HNTS2022001).

REFERENCES

[1] US National Science Foundation, “Cyber-physical systems (CPS),”
https://www.nsf.gov/publications/pub summ.jsp?ods key=nsf18538&
org=NSF, 2018, document number: nsf18538.

[2] R. Rajkumar, I. Lee, L. Sha, and J. A. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proc. Design Automation
Conference (DAC 2010). ACM, 2010, pp. 731–736.

[3] J. Leyden, “Water treatment plant hacked, chemical mix changed for tap
supplies,” The Register, 2016, acc.: September 2019. [Online]. Available:
https://www.theregister.co.uk/2016/03/24/water utility hacked/

[4] ICS-CERT Alert, “Cyber-attack against Ukrainian critical infrastruc-
ture,” https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01, 2016,
document number: IR-ALERT-H-16-056-01.

[5] L. Cheng, K. Tian, and D. D. Yao, “Orpheus: Enforcing cyber-physical
execution semantics to defend against data-oriented attacks,” in Proc.
Annual Computer Security Applications Conference (ACSAC 2017).
ACM, 2017, pp. 315–326.

[6] Y. Harada, Y. Yamagata, O. Mizuno, and E. Choi, “Log-based anomaly
detection of CPS using a statistical method,” in Proc. International
Workshop on Empirical Software Engineering in Practice (IWESEP
2017). IEEE, 2017, pp. 1–6.

[7] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly
detection for a water treatment system using unsupervised machine
learning,” in Proc. IEEE International Conference on Data Mining
Workshops (ICDMW 2017): Data Mining for Cyberphysical and Indus-
trial Systems (DMCIS 2017). IEEE, 2017, pp. 1058–1065.

[8] F. Pasqualetti, F. Dorfler, and F. Bullo, “Cyber-physical attacks in power
networks: Models, fundamental limitations and monitor design,” in
Proc. IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC 2011). IEEE, 2011, pp. 2195–2201.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[9] E. Aggarwal, M. Karimibiuki, K. Pattabiraman, and A. Ivanov,
“CORGIDS: A correlation-based generic intrusion detection system,”
in Proc. Workshop on Cyber-Physical Systems Security and PrivaCy
(CPS-SPC 2018). ACM, 2018, pp. 24–35.

[10] W. Aoudi, M. Iturbe, and M. Almgren, “Truth will out: Departure-based
process-level detection of stealthy attacks on control systems,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018). ACM, 2018, pp. 817–831.

[11] Z. He, A. Raghavan, S. M. Chai, and R. B. Lee, “Detecting zero-
day controller hijacking attacks on the power-grid with enhanced deep
learning,” CoRR, vol. abs/1806.06496, 2018.

[12] M. Kravchik and A. Shabtai, “Detecting cyber attacks in industrial
control systems using convolutional neural networks,” in Proc. Workshop
on Cyber-Physical Systems Security and PrivaCy (CPS-SPC 2018).
ACM, 2018, pp. 72–83.

[13] Q. Lin, S. Adepu, S. Verwer, and A. Mathur, “TABOR: A graphi-
cal model-based approach for anomaly detection in industrial control
systems,” in Proc. Asia Conference on Computer and Communications
Security (AsiaCCS 2018). ACM, 2018, pp. 525–536.

[14] V. Narayanan and R. B. Bobba, “Learning based anomaly detection
for industrial arm applications,” in Proc. Workshop on Cyber-Physical
Systems Security and PrivaCy (CPS-SPC 2018). ACM, 2018, pp. 13–
23.

[15] P. Schneider and K. Böttinger, “High-performance unsupervised
anomaly detection for cyber-physical system networks,” in Proc. Work-
shop on Cyber-Physical Systems Security and PrivaCy (CPS-SPC 2018).
ACM, 2018, pp. 1–12.

[16] C. M. Ahmed, M. Ochoa, J. Zhou, A. P. Mathur, R. Qadeer, C. Murguia,
and J. Ruths, “NoisePrint: Attack detection using sensor and process
noise fingerprint in cyber physical systems,” in Proc. Asia Conference
on Computer and Communications Security (AsiaCCS 2018). ACM,
2018, pp. 483–497.

[17] C. M. Ahmed, J. Zhou, and A. P. Mathur, “Noise matters: Using
sensor and process noise fingerprint to detect stealthy cyber attacks
and authenticate sensors in CPS,” in Proc. Annual Computer Security
Applications Conference (ACSAC 2018). ACM, 2018, pp. 566–581.

[18] Q. Gu, D. Formby, S. Ji, H. Cam, and R. A. Beyah, “Fingerprinting
for cyber-physical system security: Device physics matters too,” IEEE
Security & Privacy, vol. 16, no. 5, pp. 49–59, 2018.

[19] M. Kneib and C. Huth, “Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018). ACM, 2018, pp. 787–800.

[20] A. A. Cárdenas, S. Amin, Z. Lin, Y. Huang, C. Huang, and S. Sastry,
“Attacks against process control systems: risk assessment, detection, and
response,” in Proc. ACM Symposium on Information, Computer and
Communications Security (AsiaCCS 2011). ACM, 2011, pp. 355–366.

[21] S. Adepu and A. Mathur, “Using process invariants to detect cyber
attacks on a water treatment system,” in Proc. International Conference
on ICT Systems Security and Privacy Protection (SEC 2016), ser. IFIP
AICT, vol. 471. Springer, 2016, pp. 91–104.

[22] ——, “Distributed detection of single-stage multipoint cyber attacks in a
water treatment plant,” in Proc. ACM Asia Conference on Computer and
Communications Security (AsiaCCS 2016). ACM, 2016, pp. 449–460.

[23] Y. Chen, C. M. Poskitt, and J. Sun, “Towards learning and verifying
invariants of cyber-physical systems by code mutation,” in Proc. Inter-
national Symposium on Formal Methods (FM 2016), ser. LNCS, vol.
9995. Springer, 2016, pp. 155–163.

[24] S. Adepu and A. Mathur, “Distributed attack detection in a water treat-
ment plant: Method and case study,” IEEE Transactions on Dependable
and Secure Computing, 2018.

[25] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-physical system,” in
Proc. IEEE Symposium on Security and Privacy (S&P 2018). IEEE
Computer Society, 2018, pp. 648–660.

[26] H. Choi, W. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Xinyan, “Detecting attacks against robotic vehicles: A control in-
variant approach,” in Proc. ACM SIGSAC Conference on Computer and
Communications Security (CCS 2018). ACM, 2018, pp. 801–816.

[27] J. Giraldo, D. I. Urbina, A. Cardenas, J. Valente, M. A. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-
based attack detection in cyber-physical systems,” ACM Computing
Surveys, vol. 51, no. 4, pp. 76:1–76:36, 2018.

[28] “iTrust Labs: Datasets,” https://itrust.sutd.edu.sg/itrust-labs datasets/,
2019, accessed: September 2019.

[29] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to support
research in the design of secure water treatment systems,” in Proc. In-

ternational Conference on Critical Information Infrastructures Security
(CRITIS 2016), 2016.

[30] S. Adepu and A. Mathur, “Assessing the effectiveness of attack detection
at a hackfest on industrial control systems,” IEEE Transactions on
Sustainable Computing, 2018.

[31] Y. Chen, B. Xuan, C. M. Poskitt, J. Sun, and F. Zhang, “Active fuzzing
for testing and securing cyber-physical systems,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020, pp. 14–26.

[32] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
Tools and Algorithms for the Construction and Analysis of Systems:
17th International Conference, TACAS 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26–April 3, 2011. Proceedings 17.
Springer, 2011, pp. 254–257.

[33] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems.” in CAV, vol. 10. Springer, 2010, pp. 167–170.

[34] E. Lughofer, “On-line active learning: A new paradigm to improve
practical useability of data stream modeling methods,” Information
Sciences, vol. 415, pp. 356–376, 2017.

[35] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

[36] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

[37] “Secure Water Treatment (SWaT),” https://itrust.sutd.edu.sg/
itrust-labs-home/itrust-labs swat/, 2019, accessed: September 2019.

[38] Y. Chen, C. M. Poskitt, J. Sun, S. Adepu, and F. Zhang, “Learning-
guided network fuzzing for testing cyber-physical system defences,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 962–973.

[39] A. Takanen, J. D. Demott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance, 2nd ed. Artech House, 2018.

[40] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Proc. IEEE Symposium on Security and Privacy (S&P
2015). IEEE Computer Society, 2015, pp. 725–741.

[41] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2017, accessed: September 2019.

[42] H. R. Ghaeini and N. O. Tippenhauer, “HAMIDS: hierarchical monitor-
ing intrusion detection system for industrial control systems,” in Proc.
Workshop on Cyber-Physical Systems Security and Privacy (CPS-SPC
2016). ACM, 2016, pp. 103–111.

[43] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in cyber
physical systems using recurrent neural networks,” in Proc. International
Symposium on High Assurance Systems Engineering (HASE 2017).
IEEE, 2017, pp. 140–145.

[44] C. Feng, V. R. Palleti, A. Mathur, and D. Chana, “A systematic
framework to generate invariants for anomaly detection in industrial
control systems,” in Proc. Annual Network and Distributed System
Security Symposium (NDSS 2019). The Internet Society, 2019.

[45] F. A. Gers, J. Schmidhuber, and F. A. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[46] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[47] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik,
“Support vector regression machines,” in Proc. Advances in Neural
Information Processing Systems (NIPS 1996). MIT Press, 1996, pp.
155–161.

[48] F. Chollet et al., “Keras,” https://keras.io, 2015.
[49] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,

V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in Proc.
ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, 2013, pp. 108–122.

[50] A. Ruscito, “pycomm,” https://github.com/ruscito/pycomm, 2019, ac-
cessed: September 2019.

[51] “Supplementary material,” https://sav-smu.github.io/
supplementary-material/ase2019.html, 2019.

[52] M. Wojtas and K. Chen, “Feature importance ranking for deep learning,”
Advances in Neural Information Processing Systems, vol. 33, pp. 5105–
5114, 2020.

[53] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation
importance: a corrected feature importance measure,” Bioinformatics,
vol. 26, no. 10, pp. 1340–1347, 2010.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

[54] S. Adepu and A. Mathur, “From design to invariants: Detecting attacks
on cyber physical systems,” in IEEE International Conference on Soft-
ware Quality, Reliability and Security (QRS 2017) Companion. IEEE,
2017, pp. 533–540.

[55] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security, vol. 14, no. 1, pp. 13:1–13:33, 2011.

[56] Z. Huang, S. Etigowni, L. Garcia, S. Mitra, and S. A. Zonouz,
“Algorithmic attack synthesis using hybrid dynamics of power grid
critical infrastructures,” in Proc. IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2018). IEEE Computer
Society, 2018, pp. 151–162.

[57] D. I. Urbina, J. A. Giraldo, A. A. Cárdenas, N. O. Tippenhauer,
J. Valente, M. A. Faisal, J. Ruths, R. Candell, and H. Sandberg,
“Limiting the impact of stealthy attacks on industrial control systems,”
in Proc. ACM SIGSAC Conference on Computer and Communications
Security (CCS 2016). ACM, 2016, pp. 1092–1105.

[58] G. Sugumar and A. Mathur, “Testing the effectiveness of attack detection
mechanisms in industrial control systems,” in Proc. IEEE International
Conference on Software Quality, Reliability and Security Companion
(QRS-C 2017). IEEE, 2017, pp. 138–145.

[59] A. A. Cárdenas, R. Berthier, R. B. Bobba, J. H. Huh, J. G. Jetcheva,
D. Grochocki, and W. H. Sanders, “A framework for evaluating intrusion
detection architectures in advanced metering infrastructures,” IEEE
Transactions on Smart Grid, vol. 5, no. 2, pp. 906–915, 2014.

[60] S. A. Chowdhury, T. T. Johnson, and C. Csallner, “CyFuzz: A differential
testing framework for cyber-physical systems development environ-
ments,” in Proc. Workshop on Design, Modeling and Evaluation of
Cyber Physical Systems (CyPhy 2016), ser. LNCS, vol. 10107. Springer,
2017, pp. 46–60.

[61] S. L. Shrestha, S. A. Chowdhury, and C. Csallner, “Deepfuzzsl: Gener-
ating models with deep learning to find bugs in the simulink toolchain,”
in 2nd Workshop on Testing for Deep Learning and Deep Learning for
Testing (DeepTest), 2020.

[62] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
in 21st USENIX Security Symposium (USENIX Security 12), 2012, pp.
445–458.

[63] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning
for input fuzzing,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 50–59.

[64] G. Vigna, W. K. Robertson, and D. Balzarotti, “Testing network-based
intrusion detection signatures using mutant exploits,” in Proc. ACM
Conference on Computer and Communications Security (CCS 2004).
ACM, 2004, pp. 21–30.

[65] E. Kang, S. Adepu, D. Jackson, and A. P. Mathur, “Model-based security
analysis of a water treatment system,” in Proc. International Workshop
on Software Engineering for Smart Cyber-Physical Systems (SEsCPS
2016). ACM, 2016, pp. 22–28.

[66] J. H. Castellanos, M. Ochoa, and J. Zhou, “Finding dependencies
between cyber-physical domains for security testing of industrial control
systems,” in Proc. Annual Computer Security Applications Conference
(ACSAC 2018). ACM, 2018, pp. 582–594.

[67] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel,
“A trusted safety verifier for process controller code,” in Proc. Annual
Network and Distributed System Security Symposium (NDSS 2014). The
Internet Society, 2014.

[68] S. Etigowni, D. J. Tian, G. Hernandez, S. A. Zonouz, and K. R. B. Butler,
“CPAC: securing critical infrastructure with cyber-physical access con-
trol,” in Proc. Annual Conference on Computer Security Applications
(ACSAC 2016). ACM, 2016, pp. 139–152.

[69] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proc. International Conference
on Computer Aided Verification (CAV 2011), ser. LNCS, vol. 6806.
Springer, 2011, pp. 379–395.

[70] J. Wang, J. Sun, Y. Jia, S. Qin, and Z. Xu, “Towards ’verifying’ a water
treatment system,” in Proc. International Symposium on Formal Methods
(FM 2018), ser. LNCS, vol. 10951. Springer, 2018, pp. 73–92.

[71] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for nonlinear
theories over the reals,” in Proc. International Conference on Automated
Deduction (CADE 2013), ser. LNCS, vol. 7898. Springer, 2013, pp.
208–214.

[72] I. Hasuo and K. Suenaga, “Exercises in nonstandard static analysis of
hybrid systems,” in Proc. International Conference on Computer Aided
Verification (CAV 2012), ser. LNCS, vol. 7358. Springer, 2012, pp.
462–478.

[73] R. Lanotte, M. Merro, R. Muradore, and L. Viganò, “A formal approach
to cyber-physical attacks,” in Proc. IEEE Computer Security Foundations
Symposium (CSF 2017). IEEE Computer Society, 2017, pp. 436–450.

[74] T. T. Johnson, S. Bak, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” ACM Transactions on Embedded Comput-
ing Systems (TECS), vol. 15, no. 2, pp. 1–27, 2016.

[75] P. Kong, Y. Li, X. Chen, J. Sun, M. Sun, and J. Wang, “Towards concolic
testing for hybrid systems,” in Proc. International Symposium on Formal
Methods (FM 2016), ser. LNCS, vol. 9995. Springer, 2016, pp. 460–
478.

[76] J. Quesel, S. Mitsch, S. M. Loos, N. Arechiga, and A. Platzer, “How to
model and prove hybrid systems with KeYmaera: a tutorial on safety,”
International Journal on Software Tools for Technology Transfer, vol. 18,
no. 1, pp. 67–91, 2016.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

Fan Zhang is a professor of the College of Com-
puter Science and Technology, Zhejiang University,
China. His main research interests include hardware
security, system security, web security, cryptography
and security of emerging system platforms. He is
also a visiting professor of Singapore University of
Technology and Design. He has served as the tech-
nical program committee members of many secu-
rity conferences, including DAC, AsiaCCS, FDTC,
ASHES, SPACE, AsianHOST and more. As a co-
author, he received seven best/distinguished paper

awards from conferences including COSADE, AsianHOST and Chinacrypt.
He is the program chair for the International Workshop on Security Proofs for
Embedded Systems (PROOFS) 2020. He also has a lot of journal publications
including IEEE TIFS, TPDS, IACR CHES and more. He received his Ph.D.
degree in Computer Science and Engineering from University of Connecticut.

Qianmei Wu is currently pursuing the Ph.D. de-
gree with the College of Computer Science and
Technology, Zhejiang University. She received the
bachelor’s degree from the College of Computer
Science and Technology, Jilin University, in 2020.
Her research interests include cyber-physical system
security, hardware security, cryptography.

Bohan Xuan is currently a post-graduate student
pursuing his master’s degree in Zhejiang University,
China. He received his bachelor’s degree in Zhejiang
University. His research interests include the security
of neural network and the defense and attestation of
cyber-physical systems.

Yuqi Chen is an Assistant Professor at the School
of Information Science and Technology at Shang-
haiTech University. He received his B.Sc. in com-
puter science from the South China University of
Technology in 2015 and his Ph.D. from the Singa-
pore University of Technology and Design in 2019.
Before joining ShanghaiTech, Yuqi was a Research
Scientist in the System Analysis and Verification
group at Singapore Management University. Yuqi’s
research interests lie at the intersection of software
engineering and security. He employs a range of

techniques, including testing, reverse engineering, program analysis, and
formal methods, to develop practical solutions for securing critical cyber-
physical systems.

Wei Lin is currently a PhD student in SUTD, Before
joining SUTD, he earned his master’s degree and
bachelor’s degree in National University of Singa-
pore and Nanyang Technological University, respec-
tively. His current research interests are network
security and IoT Security.

Christopher M. Poskitt is an Assistant Professor
of Computer Science (Education) at Singapore Man-
agement University (SMU), where he is a member
of the Software Analysis and Verification Group.
Prior to SMU, he held research and teaching posi-
tions at ETH Zürich, Switzerland, and the Singapore
University of Technology and Design. His research
broadly addresses the problem of engineering correct
and secure software/systems, towards which he has
co-developed techniques for testing/defending cyber-
physical systems, tools for analysing execution mod-

els of concurrency APIs, and logics for reasoning about the correctness of
graph-rewriting programs.

Jun Sun is currently a full professor at School
of Computing and Information Systems, Singapore
Management University. He received Bachelor and
PhD degrees in computing science from National
University of Singapore (NUS) in 2002 and 2006.
In 2007, he received the prestigious LEE KUAN
YEW postdoctoral fellowship. He has been a faculty
member since 2010 and was a visiting scholar at
MIT from 2011-2012. Jun’s research interests in-
clude software engineering, cyber-security and for-
mal methods. He is the co-founder of the PAT model

checker.

Binbin Chen (M’11) received the B.Sc. degree
in computer science from Peking University and
the Ph.D. degree in computer science from the
National University of Singapore. Since July 2019,
he has been an Associate Professor in the Informa-
tion Systems Technology and Design (ISTD) pillar,
Singapore University of Technology and Design
(SUTD). He currently also holds a joint appointment
as Principal Research Scientist at Advanced Digital
Sciences Center, which is a University of Illinois
research center located in Singapore. His current

research interests include wireless networks, cyber-physical systems, and
cyber security for critical infrastructures.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3309330

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


	Constructing cyber-physical system testing suites using active sensor fuzzing
	Citation
	Author

	tmp.1699605183.pdf.aFILk

