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Abstract—With the soaring adoption of in-ear wearables, the
research community has started investigating suitable in-ear heart
rate (HR) detection systems. HR is a key physiological marker
of cardiovascular health and physical fitness. Continuous and
reliable HR monitoring with wearable devices has therefore gained
increasing attention in recent years. Existing HR detection systems
in wearables mainly rely on photoplethysmography (PPG) sensors,
however, these are notorious for poor performance in the presence
of human motion. In this work, leveraging the occlusion effect that
enhances low-frequency bone-conducted sounds in the ear canal,
we investigate for the first time in-ear audio-based motion-resilient

HR monitoring. We first collected HR-induced sounds in the ear
canal leveraging an in-ear microphone under stationary and three
different activities (i.e., walking, running, and speaking). Then,
we devised a novel deep learning based motion artefact (MA)
mitigation framework to denoise the in-ear audio signals, followed
by an HR estimation algorithm to extract HR. With data collected
from 20 subjects over four activities, we demonstrate that hEARt,
our end-to-end approach, achieves a mean absolute error (MAE)
of 3.02 ± 2.97 BPM, 8.12 ± 6.74 BPM, 11.23 ± 9.20 BPM and
9.39 ± 6.97 BPM for stationary, walking, running and speaking,
respectively, opening the door to a new non-invasive and affordable
HR monitoring with usable performance for daily activities. Not
only does hEARt outperform previous in-ear HR monitoring
work, but it outperforms reported in-ear PPG performance.

Index Terms—earable, heart rate, motion artefact, in-ear audio

I. INTRODUCTION

Heart rate (HR) is an excellent indicator of fitness level,

and is strongly associated with cardiovascular disease and

mortality risk. HR monitoring can help design workout routines

to maximize training effect, and, more importantly, serves as an

early biomarker for heart disease since cardiovascular fitness

is a key predictor of cardiovascular disease. Additionally, heart

rate variability (HRV), the change in time between successive

beats, is a predictor of physical and mental health. HRV, a

proxy for autonomic nervous system behaviour, is predictive

of aerobic fitness when measured during both maximal and

sub-maximal exercise [1]. Thus measuring HR under motion

is critical for monitoring human health and wellbeing.

Electrocardiographic (ECG) telemetry monitoring is the

standard for HR and HRV monitoring. However ECGs need to

This work is supported by ERC through Project 833296 (EAR), U.K.
EPSRC Centre for Doctoral Training in Sensor Technologies for a Healthy
and Sustainable Future (EP/S023046/1), the Cambridge Trust, Nokia Bell
Labs through a donation and the Singapore Ministry of Education (MOE)
Academic Research Fund (AcRF) Tier 1 grant (Grant ID: 21-SIS-SMU-036,
001124-00001).

be connected to the body with leads making them unsuitable

for realistic and mobile settings. Although attempts to devise

portable ECG, such as ECG chest straps, have been introduced,

they remain cumbersome, uncomfortable, and inconvenient.

New smartwatches include a single-lead ECG, however they

require the user to remain still and to close the ECG circuit with

their fingers. They are thus unable to monitor continuously.

Recent trends in wearables have led to a proliferation of stud-

ies investigating different sensors on smartwatches, earables,

and other wearables for HR monitoring. Photoplethysmography

(PPG) sensors, which measure light scatter as a result of

blood flow, are most commonly adopted due to their non-

invasiveness, easy implementation and low cost. Although PPG

is effective and accurate for HR measurements under stationary

conditions [2], it is sensitive to motion artefacts (MAs) caused

by users’ body movement or physical activities [2]–[4]. Due

to these MAs, the research community has yet to find an

agreement on the goodness of wrist-worn PPG (e.g. PPG on

smartwatch). While the topic has been widely investigated [2]–

[4], a consensus on the best commercially available device to

monitor the wearer’s HR whenever motion is concerned, is

yet to be found. Moreover, intense motion, like walking and

running, yields substantial deviations from ground-truth (GT),

resulting in average errors up to 30% across a wide-spectrum

of wrist-worn devices [2]. Dealing with interference from MAs

is thus an open and challenging problem in HR estimation.

Due to the limitations of wrist-based PPG, researchers have

started investigating alternative wearables for HR monitoring

under motion. With the rapid spreading of ear-worn wearables

(earables) in daily life [5], earables can be a portable and

non-invasive means of continuous HR detection. Particularly,

due to their pervasiveness during physical activity (specifically

while walking and running), the earable form factor can be

exploited for HR monitoring while under motion. Research

has started to emerge in earable-based PPG for continuous

HR sensing [6]. However, despite being a promising modality,

real world performance of earable PPG under motion is still

poor [3], [7]. Indeed, similar to what is observed for wrist-worn

devices [2], errors around 30% have been reported [7].

Current commercial earables are equipped with multiple

sensors, including outer and inner ear microphones which fulfil

fundamental functionalities of the device (e.g., speech detection

and active noise cancellation). Recently, Martin and Voix [8]

proposed to measure HR using a microphone placed in the

human ear canal. When the ear canal opening is sealed by the
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earbuds, the cavity formed between the ear tip and eardrum

enables an enhancement of low-frequency sounds, called the

occlusion effect [9]. As a result, heartbeat-induced sounds

that propagate to the ear canal through bone conduction are

amplified and can be leveraged for HR estimation. Their results

show an error of 5.6% for HR determination under stationary

conditions. However, [8] only demonstrated the feasibility of

measuring HR with in-ear microphones while an individual is

stationary: how in-ear microphone HR measurement performs

under active scenarios remains unclear and unexplored.

In this work, we focus on in-ear HR estimation under both

stationary and active scenarios (e.g., walking, running and

speaking). The biggest hurdle to accurate HR measurement

is motion-induced interference, which is amplified by the

occlusion effect along with the heart sounds [10]. Removing

such interference is non-trivial and poses three challenges. First,

the strength of heartbeats is much weaker than the foot strikes,

so heartbeat signals are buried in the walking signals. Second,

since HR and walking frequency (i.e. cadence) are similar

(both around 1.5-2.3 Hz [11]), it is hard to separate them in

the frequency domain. Third, due to the proximity of the ear

to the human vocal system, human speech and its associated

jaw movements can overwhelm the heartbeat-induced sound.

To address these challenges, we propose a processing

pipeline for accurate HR detection in the presence of MAs,

namely, walking, running and speaking. Different from previous

audio-based HR estimation works [6], [8], [12], [13], we also

validate the functioning of our technique in the presence of

speech, showing how the proposed approach can successfully

deal with speaking activities. With data collected from 20

subjects, we demonstrate that an in-ear microphone can be

a viable sensor for HR estimation under motion cases with

good performance. Specifically, with mean absolute percentage

error (MAPE) less than 10% while stationary, walking and

running, this system is accurate according to ANSI standards

for HR accuracy for a physical monitoring device [2], [14].

Additionally, because of the artifacts considered, the vantage

points (the ears), and the device form-factor (earables), our

work is directly comparable to [7]. Notably, we significantly

outperform in-ear PPG [7] (65% and 67% improvement) for

walking and running. This result hints at the great potential

of in-ear microphones for cardiovascular health monitoring,

even under challenging scenarios. Moreover, compared to PPG,

microphones are more energy efficient [15], [16] and affordable

offering additional appeal for continuous HR estimation.

The contribution of this work can be summarized as follows:

(i) We explore HR estimation with in-ear microphones and

present an analysis of the interference imposed by common

human activities. (ii) We propose a novel pipeline for HR

estimation under MAs, consisting of a CNN-based module

using U-Net architecture to enhance audio-based heart sounds

(HS) with ECG as a reference, and an estimation module using

signal processing to estimate HR from cleaned signals. We

further leverage transfer learning that pre-trains the model using

a large HS dataset and fine-tunes it using our data to effectively

capture HS related information, and handle the limited data size.

To the best of our knowledge, no previous works have attempted

to clean and enhance audio-based HS captured by earables

using ECG signals. (iii) We built an earbud prototype with good

signal-to-noise ratio (SNR) and collected data from 20 subjects.

Results show that we can achieve mean absolute errors of 3.02

± 2.97 BPM, 8.12 ± 6.74 BPM, 11.23 ± 9.20 BPM and 9.39

± 6.97 BPM for stationary, walking, running and speaking,

respectively, demonstrating the effectiveness of the proposed

approach in combating MAs.

II. PRIMER

In this section, we present the mechanism by which HS are

collected in the ear and the challenges of achieving accurate

and portable in-ear HR estimation under motion conditions.

A. In-ear Heart Sound Acquisition

Ear Canal

Cochlear

Occlusion 

device

Microphone Occlusion effect that increases 

sound pressure level

Bone conducted 

sound

Fig. 1: The occlusion effect and the anatomy of the ear.

Bone conduction, a physiological phenomenon whereby

sound is conducted through the bones directly to the inner

ear, causes vibrations in the walls of the ear [9]. When the ear

canal is occluded, the increase in impedance at the entrance

of the ear canal results in an amplification of low frequency

sounds conducted by the bones [9]. This effect, illustrated

in Figure 1, is known as the occlusion effect. Since bone

conveys low-frequency sounds [17], the bone-conducted HS

are amplified in the occluded ear canal [8]. HS can thus be

detected using a microphone placed inside the occluded ear

canal. An example showing the HS captured by the internal

microphone is shown in Figure 2. Clearly, the two sounds in

the cardiac cycle (S1 and S2) can be captured using the in-ear

microphone, thus indicating the potential of in-ear microphones

for HR monitoring. The correlation between the in-ear captured

audio and the ECG signal is also evident in Figure 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

S2

S1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

T

R

P

Q S

Fig. 2: The (left) sound signal captured by the internal

microphone and the (right) corresponding ECG signal.

B. Motion Artefacts Analysis and Challenges

In-ear microphone based HR estimation suffers from human

MAs since the occlusion effect not only amplifies the heartbeat-

induced sound, but also enhances other bone-conducted sounds
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Fig. 3: Time domain representations and spectrograms of audio

signals captured by the in-ear microphone.

and vibrations inside the body [10], [18]. Figures 3a to 3d

illustrates the recorded audio signals from the in-ear micro-

phone while stationary, walking, running and speaking within

a seven second window. Figures 3e to 3h are spectrograms

of the activities shown over a longer timescale so that trends

in HR can be seen. The heartbeat is clearly observable when

an individual is stationary in Figure 3a, with frequency lying

around 1.2Hz and its 1st and 2nd harmonics clearly observable

in Figure 3e. Contrastingly, it is completely overwhelmed by

the amplified step sounds in Figure 3b (note the different

scales of the y-axis), with the periodic peaks corresponding

to the sound of foot strikes that propagate through the human

skeleton, resulting in a significantly higher energy observed

around 1.7Hz (the cadence) in Figure 3f. Though the HR and

its harmonics are still observable, it is difficult to estimate HR

directly from the raw corrupted audio signals. Furthermore,

it is evident that the periods of HS and walking are similar,

resulting in an overlap in the frequency domain, making it

challenging to split the HS and walking signals and estimate

the HR either in time domain or frequency domain.

The heartbeats are further affected by foot strikes during

running (Figure 3c) which exhibit far stronger energy than any

of the other activities, with high energy at 2.6Hz (Figure 3g)

again corresponding to the cadence. The speech sound in

Figure 3d also shows strong noise amplitudes due to the

proximity of the ear and human vocal system, making the

heartbeat-induced sound indiscernible. As in Figure 3f, the

frequency components span over 1Hz to 4Hz and mask the

HS, due to the jaw movement during speaking which creates

vibrations and obscures the heart signals [19].

III. MOTION-RESILIENT HR ESTIMATION

Typical signal processing techniques have shown effective-

ness in HR estimation in the stationary case [8]. However, they

do not adequately isolate the HS from the corrupted audio under

MAs. As previously discussed, motion-artefact elimination is

a non-trivial problem. Typical signal processing techniques

for denoising are more effective under certain signal-to-noise

ratios (SNR) and errors increase with decreasing SNR [20], [21].

Additionally, the differences in the user’s anatomy (different

ear canal shapes, different earbud fit levels and thus changes in

the resultant amplification) result in differences in the captured

audio sounds, and this variability is poorly captured and

processed using signal processing. Due to the recent successes

witnessed by deep learning (DL) for denoising in numerous

fields [22], [23], we propose a novel pipeline using DL to

eliminate MAs in audio and estimate HR. In the following

sections, we first present a signal processing approach for HR

estimation, and then the proposed DL pipeline for MA removal.

A. Signal Processing for HR Estimation

The initial phase of our work involved the development of

a signal processing pipeline for HR estimation. This aims to

provide an efficient and computationally effective HR detection

method, and to explore the potential of typical signal processing

techniques in HR estimation under MAs.

First, we compute the Hilbert transform of the audio to

calculate the HR envelope. We then compute the spectrum of

the envelope using Fast Fourier Transform (FFT) and detect the

dominant peaks which are converted to the HR. This approach

shows good performance on a clean and stationary signal (see

Section V-B). However, when audio signals are corrupted with

motions, dominant peaks in the spectrum correspond to motions,

rather than the HR, thus introducing errors in HR estimation.

More sophisticated denoising techniques are thus required to

obtain clean HS under motion. The discrete wavelet transform

(DWT) is therefore used to remove artefacts from the audio to

isolate HS. Specifically, we filter out detail coefficients from

the DWT based on signal variance, thus removing the noise

components with a high variance from the mean.

Though denoising can yield a relatively clean HS signal,

the denoised signals are still interfered by the MAs to some

extent, due to the underlying complexity of the artefacts, and

the closely overlapping frequency ranges of the artifacts and

the HS. Therefore, we propose a frequency spectrum searching

algorithm to estimate the HR from the denoised signal to

account for the remaining MAs. Instead of searching the FFT

peaks over the full frequency range of the denoised audio,

we only search the HR peaks in a small frequency range

corresponding to the range of allowable human HRs and the

HR in the previous window. This guarantees that peaks in

HR-unrelated frequency ranges are not taken as HR and the

HR is temporally dependent on previous ones.

However, this system has limitations including error propa-

gation due to temporal dependencies of the algorithm and a

lack of robustness to changes in signal properties. It was also

unable to reconstruct the clean audio, meaning that the data

could not be used for metrics other than heart rate. Thus, we

acknowledge that a more sophisticated approach to the problem,

specifically to addressing signal denoising, is required.

B. Overview of the Deep Learning-Based Pipeline

An overview of hEARt, our designed motion-resilient HR

monitoring system, is given in Figure 4. Audio signals captured

inside the occluded ear canal are used for HR estimation, which

is performed in three stages: pre-processing, MA elimination

and HR estimation. Pre-processing aims at removing the

frequency components unrelated to HS. For MA elimination,
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Windowing and
segmentation

STFT and mel
spectrogram

Signal
reconstruction Peak detection

Heart rate

Output ECG Input audio Pre-processing Denoising Heart Rate Estimation

Downsampling Heart sound
mapping CNN

Fig. 4: hEARt system flowchart.

we proposed a CNN-based network to map spectrograms of

the noisy HS signal to spectrograms of its corresponding ECG

(a clean heart signal) during the training phase, thus producing

an output synthesized ECG. Our problem is thus framed as a

denoising problem, but also as a synthesis problem. We adopted

a U-Net encoder-decoder architecture for denoising since audio

(and specifically HS) is commonly represented in image form

as spectrograms [24]–[26]. Initially developed for biomedical

image segmentation, U-Net shows great potential in image

denoising and super resolution [24], [27]. It captures important

features in audio spectrograms via an encoder, and reconstructs

the corresponding clean heart signal via salient representations

via a decoder. More importantly, the skip connections in U-

Net allow the reuse of feature maps to enhance the learning

of the original information, making it suitable for denoising.

Evidence shows that U-Net performs well with limited training

data, which matches our case [28], while complex network

structures [29], [30] could easily suffer from overfitting. Finally,

HR is estimated using peak detection on the clean signals.

C. Pre-processing

The HS captured by the in-ear microphone are low frequency

signals with a bandwidth of less than 50 Hz. To prepare the

audio signals for processing, we downsample the audio from

22 kHz to 1 kHz and segment the audio into 2s windows, each

with a 1.5s overlap with the previous window. 2s windows

were selected to ensure the presence of multiple heart beats (at

least 2) within a window, enabling the system to learn inter-

beat properties. Each window is bandpass filtered between

0.5 Hz and 50 Hz using a fourth order butterworth filter

to remove the DC offset and high frequency signals. This

attenuates the frequency components not of interest for HR

calculation, including music and ambient noise. Additionally,

due to occlusion of the ear canal, the majority of external

noise is suppressed and not captured by the internally facing

microphone. However, as outlined in Section II-B, MAs and

other interfering signals lie overlapping frequency ranges with

HS, therefore requiring additional processing.

We process the GT similarly. The ECG, sampled at 130 Hz,

is bandpass filtered between 10 and 50 Hz and upsampled to

1 kHz. The highpass cutoff for the ECG was selected to be

10 Hz as this was empirically found to emphasise the peaks

in the ECG (the QRS complex) while attenuating the P and T

waves (as seen in Figure 2). Since we are only interested in

capturing the beats and the inter-beat timing (for measuring

HR, and in future, HRV), only the QRS complex is of interest.

D. Motion Artefact Elimination

1) Spectrogram Generation: The MA elimination subsystem

takes as input pre-processed audio signals, and outputs cleaned

heart signals. To do so, it uses the GT ECG signal to supervise

the denoising of the heart signals. We compute log-mel

spectrograms of the windowed audio and ECG signals using

short-time Fourier transform (STFT), with a window size of

256 samples and hop length of 32 samples. 1024 FFT bins are

used with zero padding and a Hann window. Thereafter, the

log-mel spectrogram is computed using 64 mel bins. Log-mel

spectrograms were chosen over spectrograms since they provide

more detailed information in the low frequency region, where

HS frequencies reside. The resulting log-mel spectrogram is a

64x64 matrix for each window. Since audio is captured in both

ears, a spectrogram is computed for each channel and stacked

together to form one 64x64x2 input. The output is a single

channel ECG spectrogram. The spectrograms are normalised

between 0 to 1, to aid network training. Normalisation is carried

out by dividing by a constant value, to maintain the difference

in the signal amplitude for different activities.

2) Network Structure: Figure 5 provides the architecture

of the denoising U-Net. In the encoder (or contraction path),

the model consists of repeated 3x3 convolutions (with a ReLU

activation function), batch normalisation and max pooling

blocks with a stride of 2 to downsample the data. After pooling,

dropout is applied with a rate of 0.1 to avoid overfitting. Each

time the data is downsampled, the number of feature maps is

doubled to enable the network to learn complex structures in

the data. In the decoder (expansion path), the data undergoes

successive up-convolutions where the number of feature maps

is halved at each step. After each up-convolution, the feature

maps are merged with the corresponding map from the encoder

and then undergo convolution and batch normalisation layers

as in the encoder. In the final layer, a 1x1 convolution is used

to map the feature maps into a single 64x64 output image.

64 128 256 512 1024 512 256 128 64

Conv 3x3

Batch
Norm

Max Pool 2x2
Transposed Conv 2x2

Skip connection

Conv 1x1

Fig. 5: U-Net autoencoder architecture.

3) Transfer Learning: On account of the small dataset,

transfer learning is used to improve the results of the HS

denoising. To achieve this, the model is pre-trained using the

PASCAL HS dataset [31], where log-mel spectrograms of HS

are used as both input and label to the network. By doing

this, we aim to improve the ability of the network to extract

representative audio features and encodings related to HS. The

pre-trained model weights are set as the initialization weights
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for the CNN, which is fine-tuned using our data. This helps

leverage and transfer the knowledge learnt about HS using

PASCAL, as well as avoiding overfitting on a small dataset.

4) Training: The input audio spectrograms and their cor-

responding ECG spectrograms are used to train the network.

We use leave-one-out cross validation for testing whereby each

subject is held out as the test-set and a model trained on

the other 19 users. The model is trained empirically for 100

epochs using the Adam optimizer with a learning rate of 0.001

and batch size of 64. When choosing training parameters, our

objective was to strike a good balance between performance

and computational complexity.

The system uses mean square error (MSE) or L2 loss

(Equation (1)). This loss minimises the distance between the

GT ECG spectrogram (yij) and the noisy audio spectrogram

(ŷij), where i and j represent the time and frequency index

respectively, and T and F represent the total number of bins

over the time and frequency dimensions respectively.

MSE =
1

TF

∑
(yij − ŷij)

2 (1)

5) Signal Reconstruction: We convert the reconstructed

clean spectrograms to time-domain waveforms for HR esti-

mation. The Griffin-Lim algorithm [32] is used for spectrum

inversion due to its ability to reconstruct signals from spectro-

grams without phase information. The converted waveforms are

then merged into a continuous time-series signal by averaging

the overlapping regions.

E. Heart Rate Estimation

HR estimation is performed in an 10s long window, where

each window has a 5s overlap with the previous window [33].

Each window undergoes the Hilbert transform to compute the

envelope of the signal. Thereafter, a Gaussian moving average

filter smooths out small ripples and peaks in the signal. Peak

detection is calculated on the resultant signal, and the timings

between consecutive peaks are used to compute the average

heart rate for the window. Finally, a moving average window

of 5 samples is used to remove outliers from the predictions.

IV. IMPLEMENTATION

In this section we present the implementation details of

our system, describing our prototype and the methodology we

followed to run our data collection campaign.

A. Prototyping

Although in-ear microphones have been integrated into

existing commercial earbuds (e.g., AirPods Pro), no API is

available to access the microphone output. To gather data and

understand the potential of our approach, we developed our

earbud prototype by customizing existing earbuds (Figure 6).

Specifically, we embedded two analogue omnidirectional

MEMS microphones (Knowles SPU1410LR5H-QB [15]) into a

pair of wired earbuds, as shown in Figure 6a. The microphones

were selected due to their flat frequency response from 10 Hz to

10 kHz which encompasses the frequency range of HS, speech

and MAs. The microphones were connected to a differential

circuit for common mode rejection of power line noise and other

noise sources and sampled by an audio codec (ReSpeaker Voice

Accessory Hat [34]) onto a Raspberry Pi 4B. For portability, the

circuitry and Raspberry Pi were placed in a chest bag which was

worn by participants during the experiments (Figure 6b). This

ensured that the device did not interfere with the participant’s

natural movement during the tasks.

(a) (b)

Fig. 6: (a) Prototype and (b) participant wearing the device.

Although the occlusion effect implies the possibility of

detecting bone-conducted sounds from the ear canal, measuring

HS with an in-ear microphone is extremely challenging.

Unlike walking, which generates strong vibrations, heart beat

movement is subtle, resulting in very weak HS. As shown in

Figure 7a, when using the earbud equipped with a silicon ear

tip, it is difficult to identify heart beats from the signal. We

overcome this challenge by replacing the silicon ear tip with

a foam ear tip, which (1) largely suppresses/absorbs external

sounds, resulting in a lower noise floor; (2) ensures a better

sealing of the ear canal, thereby winning more amplification

gain from the occlusion effect (shown in Figure 7b). With this

upgrade, our prototype is able to measure HS with good SNR.

(a) (b)

Fig. 7: Comparison of signals collected when occluding the

ear-canal with (a) a silicon ear tip and (b) a foam ear tip.

B. Data Collection

We used an ECG chest strap (Polar H10 [35]) to measure

the GT heart signal. We extracted the raw ECG from the Polar

H10 and use it as both the clean heart signal for the CNN and

to calculate the GT HR. The microphone data was sampled at

22050 Hz and the ECG at 130 Hz. Due to the difference in the

sampling rates, there is a maximum of a 150ms delay between

the audio and the ECG signal. However, since HR estimation

is performed in 10s windows, this delay is negligible. We

synchronized the data by aligning the timestamps of the ECG

signal with the timestamps of the audio file.
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We invited 20 participants (13 males and 7 females) for data

collection1. In addition to the stationary case, we considered

three activities that are regarded as active or, that, because

of their nature, interfere with the in-ear microphone: walking,

running, and speaking. These activities were also selected as

they match the conditions in [7] used to study in-ear PPG.

While wearing our earbud prototype and the chest strap, the

participants kept stationary for 30 seconds to obtain a reference

HR. Then, they performed each of the tasks continuously for

2 minutes [36]. The 30 second stationary reference is only

used for the baseline signal processing approach, and is not

used in the hEARt system. When performing the walking

and running activities, participants were allowed to pick a

comfortable pace, and were instructed to move freely within a

5x4 m area. For the speaking activity, they were given a passage

to read out loud. We processed a total of 160 minutes of in-ear

audio corresponding to four tasks across all participants. Data

collection was done in the atrium of a busy building, and as

such data was collected in the presence of uncontrolled ambient

noise, including human speech, the opening and closing of

doors and low frequency power grid hum and air conditioning.

The data collected while running for participants 2 and 14 was

excluded on account of poor data quality. This occurred because

one of the earbuds fell out during the intensive running activity.

As such, there was no seal between the ear and the earbud

meaning that the occlusion effect could not be leveraged.

The distribution of GT HR varies per activity. While

stationary, the mean HR is 70±12 BPM, with a minimum

and maximum of 45 and 114 BPM. While walking, the HR

ranges from 51 to 129 BPM with a mean HR of 86±14 BPM.

Running has the highest average HR (109±23 BPM) with the

largest range of HR (50 to 187 BPM). The HR while speaking

is similar to that while stationary with a mean of 76±12 BPM

and a range of 51 to 124 BPM.

V. PERFORMANCE EVALUATION

A. Metrics

We evaluated the performance of our system according to

the following metrics [37]:

(i) Mean Absolute Error (MAE): the average absolute

error between the GT HR (BPMtrue) and the calculated HR

(BPMcalc) for each window (i, i ∈ [1, N ]).
(ii) Mean Average Percentage Error (MAPE): the average

percentage error over each window.

(iii) Modified Bland-Altman plots: a scatter plot indicating

the difference between the two measurements (i.e. the bias

or error) for every true value (i.e. HR from the GT). A

modified Bland-Altman (BA) plot is constructed so that 95%

of the data points lie within ±1.96 standard deviations of

the mean difference between the methods [38]. BA plots are

used clinically to assess the level of agreement between two

measurement methods [38]. In this work, we compare the

calculated HR to the GT HR for each 10s window.

1The experiment has been approved by the Ethics Committee of the
institution.

B. Baseline Comparison

Table I shows the performance comparison between the

proposed DL-based hEARt system and two signal processing

approaches - (1) the proposed signal processing (SP) method

(referred to as SP) leverages the DWT for signal denoising

and extracts HR from the frequency spectrum of the denoised

signals. (2) we additionally compare our methods to the baseline

developed by Martin and Voix [8] (referred to as baseline),

which uses Hilbert transforms and peak detection for HR

estimation in the time domain, under stationary conditions. Our

proposed SP approach outperforms the baseline significantly

for stationary and running, and marginally for walking and

talking. This demonstrates that the baseline algorithm designed

for stationary is unable to generalize to motion conditions, and

an additional denoising module is required. Comparing the SP

with hEARt, we observe that hEARt outperforms SP for each of

the activities, showing that the DL based technique is better at

generalizing to the differences in the data than the SP approach.

While performance in the stationary case is comparable, with

more intense motion interfering with the HS, SP fails to

capture the HR from the signal and the performance severely

deteriorates. hEARt outperforms SP significantly with a relative

improvement of 51%, 54% and 48% for walking, running and

talking respectively, suggesting the effectiveness of hEARt in

HR estimation. Additionally, errors for the stationary, walking

and running conditions are less than 10%, meaning that the

system is accurate by ANSI standards for these activities [14].

The results for speaking are noticeably the worst of the four

activities studied. This is consistent with Figure 3h, where it

is clear that speaking brings more severe noises than the other

activities. Perhaps against intuition, this is not on account of

speech being detected by the microphone since the frequencies

of audible human speech are significantly higher than those

of interest in the hEARt system. Rather, speaking causes

movement of the jaw and head, and deformation of the ear canal

due to jaw movement. These movements result in low-frequency

bone-conducted vibrations which could be interpreted as heart

beats. They are also non-periodic and random in nature and

are thus harder to remove, resulting in higher errors. This is

in contrast to walking and running which are largely periodic

and more homogeneous and thus easier to remove.

Table I also compares the performance of hEARt with that

of in-ear PPG (as studied by Ferlini et al [7]). It is evident from

the table that (i) although PPG is the gold-standard for HR

measurement, full-body motion causes significant degradation

in HR measurement quality and (ii) our audio-based approach

performs better than in-ear PPG. We thus believe that in-ear

audio could be used as an alternative to, or in combination

with, in-ear PPG for HR measurement through the ear.

C. hEARt Overall Performance

Figure 8 shows the qualitative assessment of hEARt in

tracking HR over time. We compared the GT HR collected

via an ECG chest-strap with the one extracted from the in-ear

audio for one participant over the four different activities. It can

be observed that the proposed approach is able to accurately
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TABLE I: Comparison between hEARt, the two baselines and

in-ear PPG in terms of MAPE (%).

Activity hEARt
Signal

Processing
Baseline [8]

In-ear

PPG [7]

Stationary 4.32 ± 3.99 4.93 ± 8.33 9.88 ± 6.93 —
Walking 9.53± 8.28 19.41 ± 16.03 20.90 ± 11.22 27.14
Running 9.80 ± 7.93 21.43 ± 15.30 34.28 ± 8.73 29.84
Speaking 12.06 ± 8.88 23.37 ± 9.39 24.23 ± 7.98 12.52

and continuously track the user’s HR during the four activities

(stationary, walking, running, and speaking), suggesting the

potential of in-ear audio for HR estimation under MA. For

speaking, the larger error is due to jaw movements. However,

the overall trend of estimated HR still aligns with GT.

Overall, the system achieves a MAE of 3.02 ± 2.97 BPM,

8.12 ± 6.74 BPM, 11.23 ± 9.20 BPM and 9.39 ± 6.97 BPM

for stationary, walking, running and speaking respectively. As

noted, we achieve the lowest performance during speaking in

terms of MAPE as shown in Table 2. Concretely, given an

average heart rate of 76 BPM (the mean HR while talking

as per Section IV-B), a MAPE of 12.06% means our system

misses (or adds) about 0.15 heart beats every second, or, 1

heart-beat every 7 seconds. Similarly, the performance achieved

for running is even more convincing: at an average heart rate

of 109 BPM, we miscompute 0.18 heart beats per second,

amounting to around 1 heart-beat every 5 seconds.
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Fig. 8: Qualitative longitudinal performance of heart rate

extraction under different activities.

D. Individual HR Estimation

Next, we evaluate our approach under different activities for

all subjects. First, we provide some insights on the population

statistics. Figure 9a reports a heatmap of the MAPE of the

audio-extracted HR for every user across the activities. Lighter

colors correspond to greater MAPE values. Running for user 2

and 14 was removed due to a poor seal, and is represented as

a white box (or NaN error). From the figure, we can extract a

number of insights: (i) errors for motion conditions are higher

than stationary. (ii) our system generalizes well to the different

activities. (iii) One user experiences overall poor performance

(user 13). This is due to a poorly fitting earbud, and poor quality

GT data. (iv) Certain users experience poor performance in a

specific activity (e.g. user 17 for walking). This is again likely

due to an incorrectly fitting earbud in one ear which loosened

during the activity, reducing the occlusion effect. These issues

would be solved by the use of wireless earbuds (ensuring that

the wires do not dislodge the earbuds during activity) and by

ensuring a higher quality earbud fit. Overall, these results prove

that the system is able to generalize to different users and that

with high quality data, good HR estimation can be achieved.

To further understand the extent to which the various

activities impact hEARt, for each of them we report the

empirical cumulative distribution function (ECDF) of the error

(Figure 9b). Looking at the ECDFs we can confirm what was

observed in the heatmap. Specifically, our approach achieves an

error of less than 12 BPM for over 60% of users for all activities.

As seen in the heatmap, most of the error observed comes

from a few specific users rather than from the population in

general. This performance on our academic prototype confirms

that in-ear audio sensing of HR offers a promising alternative

for continuous HR sensing in presence of motion.
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Fig. 9: (a) MAPE heatmap per subject and (b) empirical CDF.

E. Bland-Altman Plots

60 80

HRecg (BPM)

−20

−10

0

10

H
R

h
E
A
R
t
-
H
R

ec
g
(B
P
M
)

+1.96 SD
9.58

-1.96 SD
-10.53

-0.48
Mean

(a) Stationary

80 100

HRecg (BPM)

−20

−10

0

10

20
H
R

h
E
A
R
t
-
H
R

ec
g
(B
P
M
)
+1.96 SD

18.03

-1.96 SD
-23.37

-2.67
Mean

(b) Walking

100 150

HRecg (BPM)

−40

−20

0

20

40

H
R

h
E
A
R
t
-
H
R

ec
g
(B
P
M
)

+1.96 SD
37.63

-1.96 SD
-28.29

4.67
Mean

(c) Running

60 80

HRecg (BPM)

−20

0

20

H
R

h
E
A
R
t
-
H
R

ec
g
(B
P
M
)

+1.96 SD
28.23

-1.96 SD
-25.91

1.16
Mean

(d) Speaking

Fig. 10: Modified Bland-Altman plot of heart rate extraction.

To further analyze the results, we leverage modified BA

plots. We report the BA plots (i.e. the agreement between the

HR calculated with hEARt and that obtained from the GT chest

strap) for each condition in Figure 10. Specifically, Figure 10a

reports the agreement while stationary. It is clear that the bias

between the two measurements is minimal, with very low mean

(only -0.48 BPM) and narrow limits of agreement (dashed red

lines). Notably, the majority of the data points fall inside the

limits of agreement, denoting the two measurements are in

agreement. On the other hand, with more intense activities like

walking and running (Figure 10b and Figure 10c respectively),

wider limits of agreement are present, representing a greater

standard deviation in the HR estimation. Interestingly, while

overall the mean errors remain low (-2.67 BPM for walking and

-2.41 BPM for running), our approach exhibits a larger error for

estimation as HR increases. We observed this phenomenon both

for walking (Figure 10b) and running (Figure 10c) motions.

Notably, especially in the running case, this is observed when

the frequency of the running overlaps with the HR values.

The spurious MA-induced spikes trigger a harsher response
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by hEARt that tries to remove the noisy peaks, thus leading

to an underestimation of HR above 120 BPM. Additionally,

another factor to explain the higher errors biased towards

higher heart rates could be traced back to the imbalance of

our dataset, where lower HR values are predominant. Finally,

in Figure 10d, the mean error is again low but with fairly wide

limits of agreement. This wide standard deviation again points

towards the complexity of the speaking activity, meaning that

extrapolating useful heart signals to compute HR from in-ear

audio signals is a very challenging task, never tackled before.

Nonetheless, our approach still performs well.

F. Long-term tracking performance

The results of the previous sections were obtained from

experiments run under controlled conditions. To assess the real

world effectiveness of the designed system, we collected an

hour of data from one subject under conditions of daily life.

During this time, the subject was instructed to undergo their

activity as normal. This activity included working in an office,

walking around, speaking (while working) and taking a short

jog. The results of HR prediction for this study are given in

Figure 11. From the figure, it is clear that the system is able

to accurately predict HR even in uncontrolled environments

as the trends of the two lines closely match. However, as was

seen in the BA plots in Section V-E, the system underestimates

the higher heart rates. This is likely due to the distributions of

heart rates in the dataset where the average HR is 85 BPM.
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Fig. 11: Longitudinal heart rate tracking. Coloured boxes

indicate the different activities. A: Working while sitting. B:

Walking. C: Running. D: Working while standing.

The MAE of this longitudinal study is 4.96 BPM, which is

a MAPE of 5.34%. To further break this down, the MAPE of

activities A, B, C and D are 4.41%, 5.59%, 9.51%, and 5.94%

respectively. If we compare these results to those in Table I,

we can see that all activities have comparable performance to

that of the controlled experiments. The results of this study

prove that the model is generalizable to different conditions

and to different activities. It also shows that the model is able

to make accurate predictions even under conditions of mixtures

of activities. Thus this study acts as a proof of concept of the

in-the-wild feasibility of the hEARt system.

G. Power and Latency Measurements

To provide a full system analysis, we assess the power

consumption and latency of the system implemented on a

Raspberry Pi4. The trained hEARt CNN was converted to

TensorFlow lite and deployed on the device. This mimics

a stand-alone earable system whereby processing is done

on device. Table II provides a breakdown of the operation

times for the various system components. Signal denoising

was performed on a 2s window and HR extraction on a 10s

window, as detailed in Section III. Processing a 10s window

takes the system 54.35ms, implying that a new HR can be

predicted by the system every 5s (due to the 5s second

overlap). This latency is an adjustable parameter of the system

based on the overlap ratio. The system power consumption is

given in Table III. Overall, the system (including microphone

sampling, denoising and HR prediction) consumes 701mW. The

microphone sampling runs continuously, but the hEARt system

is only active for 65.04ms for each estimate, and an estimate is

made every 5s. Thus, the average energy consumed per second

is (2871−2775)mW×1s+(3547−2871)mW×65.04ms/5 =
104.79mJ . In context, if run on a wireless earbud such as the

Apple Airpod Pro (with a battery capacity of 43mAh2), hEARt

could operate continuously for a time T = 43mAh×5V
104.79mJ

=
2.05hr. While this may seem like a short operating time, this

system has been implemented on a power hungry Raspberry Pi

without optimizing for energy consumption. By implementing

the model on a low power microcontroller, power consumption

will be reduced. Additionally, when converting the denoising

CNN to Tensorflow Lite, optimizations and quantization were

not applied. The model can thus be further optimized to

reduce energy consumption and latency, thus lowering energy

expenditure. However, ultimately this gives an indication of

how hEARt could feasibly be implemented on a commercial

earbud.

TABLE II: Latency.

Operation (window) Latency (ms)

Preprocessing (2s) 1.66
Denoising (2s) 7.66

Reconstruction (10s) 17.96
HR extraction (10s) 0.48

Total (10s) 65.04

TABLE III: Power con-

sumption.

Operation Power (W)

RasPi (Baseline) 2.775
RasPi+Mic 2.871
Full system 3.547

VI. DISCUSSION

While we acknowledge the merits of PPG-based HR mon-

itoring and are aware of the wealth of information PPG

carries, there is great value in showing the potential of a lesser

explored modality: in-ear microphones. In-ear microphones

offer substantial advantages over PPG, including their price tag

and prevalence in high-end earbuds and hearing aids, due to

their importance in adaptive noise cancellation. Microphones

are also relatively power efficient sensors [15], requiring less

current than PPG (especially when used with high intensity

configurations to increase SNR) [16]. Concretely, the micro-

phone we use [15] has a current draw of 0.12mA, more than

10 times less than that of a state-of-the-art wearable dedicated

PPG module, the MAXM86161, which draws 1.62mA [16].

In the remainder of this section we reason over some

shortcomings of our work, and potential solutions. First, we

2https://www.ifixit.com/Teardown/AirPods+Pro+Teardown/127551
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are aware of the limitations that come with a simple, cheap

prototype like ours. For instance, some of the collected data

was corrupted as the subjects were unable to wear the earbuds

properly, even though they were asked to fit them tightly. This

indicates that proper sealing of the ear canal is critical. Given

that people have different shaped and sized ear canals, it is

necessary to select the optimal ear tip size for each individual to

improve performance, using an automated method of checking

the fit of the earbuds and the seal as done in [10]. The data

corruption while running was also worsened by the wires on the

earbuds which move during vigorous activity thus dislodging

the earbuds. Using a wireless prototype would thus improve

earbud fit and resulting system performance. Interestingly,

fit and positioning issues have also been reported for in-ear

PPG [7]. Though, contrary to PPG where sensor misplacement

can be hard to identify and may lead to artefacts, poor fit

is obvious with in-ear microphones [10]. Nonetheless, our

work shows the viability of using in-ear microphones for the

detection of HR, even with a far-from-optimal prototype.

We note that the MAPE in HR estimation while speaking

requires improvement to meet ANSI standards for HR monitors.

Since the system aims to determine HR under active conditions

(e.g., running), we expect the amount of speaking to be less

than in non-active scenarios, limiting the impact of those

errors especially over prolonged periods. The errors occur

since speaking introduces non-stationary noise that is different

than walking and running. Other techniques to remove non-

stationary noise can be considered, or the quantity of speaking

samples could be increased during training so that the model

can learn characteristics of these signals better.

Given that earbuds are mainly used for audio delivery, one

concern is whether music playback will affect performance.

As studied by Ma et al. [10], in music, the average energy

ratio below 50 Hz is only 1.5%. This means that music has

a negligible impact on our system as it operates on signals

below 50 Hz. To confirm this, we first superimpose music on

the collected in-ear signals and filter it with a lowpass filter

(pass band <50Hz). We then compute the Pearson correlation

between the filtered signal and original signal, yielding a

coefficient of 0.982, further proving our system’s robustness.

Finally, despite the good performance, more strategies can

be utilized for further improvement. Firstly, we expect that

fine tuning a model for each activity will improve activity

level performance. We also aim to investigate the use of a

LSTM-based model to better model dependencies between

adjacent HS. Additionally, collecting data from more subjects

encompassing a wider range of HR will improve the ability of

the model to further generalize to higher HR.

VII. RELATED WORK

Earables: Earables have attracted tremendous attention for

human sensing applications, especially for health and wellbeing

monitoring [5]. Literature has investigated earables for blood

flow and oxygen consumption [39], dietary monitoring and

swallow detection [40], blood pressure monitoring [41], step

counting [10], heart and respiratory rate tracking [8], user

identification and gesture recognition [42], etc. A paradigm

named HeadFi was proposed to turn the drivers inside existing

headphones into a sensor, with its potential validated in four

applications [42]. Using the HeadFi system, the authors perform

HR monitoring in the stationary case and with the addition of

body movement caused by taking the headphones on and off.

However, they did not study HR monitoring in the presence of

full-body motion such as running and walking, or speaking.

Heart Rate Monitoring: HR is generally measured using

electroencephalogram (EEG), ECG or PPG sensors. However,

EEG has limited applications out-of-the-clinic and ECG

requires a chest strap, making it inconvenient. PPG is the

standard for HR monitoring in wearables. However, it is

highly susceptible to MAs caused by physical activity or body

motion [37]. [2] showed that amongst consumer and research

grade wrist-worn wearables, the error of HR estimation was

30% higher during activity than at rest. A particular problem

with PPG is the signal crossover effect where the PPG sensors

lock onto a periodic signal from motion (such as walking

or running), which is mistaken as the heart signal [2], [3]

causing measurement errors. Recently, [7] reported a 27.14%,

29.84% and 12.52% error of PPG sensors in earables for

walking, running and speaking respectively, quantitatively

demonstrating the challenges of PPG in HR estimation under

motion. Acoustic sensors have also been studied for HR

measurements. Chen et al. [43] estimated HR from a small

acoustic sensor placed at the neck. [8] examines both heart

and breathing rates using microphones placed in the ear canal

while stationary. Artefacts were found due to minor movement

of the subject’s body even though all recordings are collected

with subjects remaining stationary. [44] introduces a earphone

that is equipped with an in-ear microphone to measure HR

and an IMU to measure activity level. However, the impact of

activity-induced vibrations on the in-ear HS is not investigated.

These findings imply the challenges in HR measurement from

earables under motion. We have thus presented an approach

that aims to tackle these and offer a solution to measuring HR

in realistic settings.

VIII. CONCLUSION

We proposed an approach for accurate HR estimation

using audio signals collected in the ear canal, under motion

artefacts caused by daily activities (e.g., walking, running, and

talking). Specifically, leveraging deep learning, we eliminate

the interference of motion artefacts and recreate clean heart

signals, from which we are able to determine HR. We designed

a prototype and collected data from real subjects to evaluate

the system. Experimental results demonstrate that our approach

achieves mean absolute errors of 3.02 ± 2.97 BPM, 8.12

± 6.74 BPM, 11.23 ± 9.20 BPM and 9.39 ± 6.97 BPM for

stationary, walking, running and speaking, respectively, opening

the door to new non-invasive and affordable HR monitoring

with usable performance for daily activities. We also discussed

some potential strategies to further improve the performance

in the future.
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