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Abstract—A fundamental problem in many scenarios is to match
entities across two data sources. It is frequently presumed in prior
work that entities to be matched are of comparable granularity. In
this work, we address one-to-many or poly-matching in the scenario
where entities have varying granularity. A distinctive feature of
our problem is its bidirectional nature, where the ‘one’ or the
‘many’ could come from either source arbitrarily. Moreover, to deal
with diverse entity representations that give rise to noisy similarity
values, we incorporate novel notions of receptivity and reclusivity
into a robust matching objective. As the optimal solution to the
resulting formulation is proven computationally intractable, we
propose more scalable yet still performant heuristics. Experiments
on multiple real-life datasets showcase the effectiveness and out-
performance of our proposed algorithms over baselines.

Index Terms—Entity resolution, matching, one-to-many.

I. INTRODUCTION

ENTITY matching needs to take into account the varying
granularity of entities. By ‘entity’, we refer to a data record

within a collection. This work is concerned with matching en-
tities from two collections that are respectively duplicate-free.1

Conceptually, what constitutes an entity may differ in granularity
across data sources. Consider a product with color variants.
One e-commerce site may consider a single record for the
product, while another may have multiple records for each color
variant individually. Hence, an entity from the former (coarser
granularity) may match multiple entities from the latter (finer
granularity). For other examples, a chapter in a textbook may
span multiple chapters in another; different organizations define
job roles by carving out scopes of responsibility differently.

In such scenarios, using Bipartite matching with one-to-one
constraint is inappropriate. For multi-granular entities, poly-
matching (Poly) allows an entity of coarser granularity (denoted
host) from one source to match multiple entities of finer gran-
ularity (denoted clients) from the other source. Prior works [1]
often designate one source for hosts and the other for clients,
which is an overly restrictive requirement.
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Fig. 1. A bidirectional poly-matching between the lens accessories categories
in Amazon and Lazada.

A more general formulation is bidirectional poly-matching
(BiPoly), where host or client alike could come from any source.
Consider an example matching of entities (product categories)
from two e-commerce taxonomies in Fig. 1. Amazon’s Lens
Hoods is equivalent to Lazada’s Lens Hoods (prefixes to
category names are omitted for brevity). In turn, Amazon’s
Lens Accessories consists of Lazada’s Lens Caps and
Lens Cases, whereas Amazon’s Filter Sets and UV
Filters are parts of Lazada’s Filters.

We assume as input similarity weights between any pair of
entities across sources. In practice, similarity weights could
be noisy as they are often derived from entity descriptions
(e.g., product titles). Instead of naively maximizing the sum
of weights, we propose a more robust objective that further
incorporates two types of rewards. Reclusivity encourages en-
tities to refrain from participating in less rewarding matching.
Receptivity induces more connected components of smaller sizes
while discouraging large clusters.

Contributions and Organization. In summary, the main con-
tributions of this paper are as follow:
� Bidirectional poly-matching constraint (Section II-A): We

introduce the problem of BiPoly-matching for multi-
granular entities. To our best awareness, the bidirection-
ality is novel, inducing a more general formulation than
previously known poly-matchings.

� Robust objective (Section II-B): We propose a robust
optimization objective by incorporating receptivity and
reclusivity to adjust for the number of false positives and
negatives arising from noisy similarity.

� Optimal solution (Section III): We express an optimal for-
mulation for robust BiPoly using Integer Linear Program-
ming (ILP), which subsumes bipartite and poly-matchings
as special cases. We further prove that this formulation is
computationally intractable.
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� Approximation algorithms (Section IV): We develop two
greedy algorithms, one has a known approximation bound
while the other is more efficient.

� Experiments (Sections V and VI): We conduct experiments
to demonstrate the effectiveness of our algorithms against
baselines, and study their scalability.

We cover the related literature in Section VII and discuss the
key findings as well as future work in Section VIII.

II. PROBLEM FORMULATION

We are given two sets of entities, the left set L =
{l1, l2, . . . , lm} and the right setR = {r1, r2, . . . , rn}, that con-
tain m and n records respectively. Informally, our objective is
to find all pairs of matching multi-granular entities, ρ ⊆ L×R,
such that for every pair 〈l, r〉 ∈ ρ we can say that either l is a
part of r, l consists of r, or l is equivalent to r.

We identify an entity matching by similarity function h :
L×R → [0, 1]. For any r ∈ R and l ∈ L, h(r, l) is defined
as h(l, r). h(l, r) ranges from 0 (l and r are not related) to 1
(highly related). Ideally, 〈l, r〉 ∈ ρ if and only if h(l, r) ≈ 1. In
practice, we deal with similarity functions – assumed specified
as input – that often produce high similarity scores for entities
that ought not to be included in ρ (i.e., false positives) or low
similarity scores for entities that ought to be included in ρ (i.e.,
false negatives). Therefore we introduce constraints and a robust
objective function.

A. Matching Constraints

Let G(L,R) be a bipartite graph over the left L and right
R entity sets, L ∩R = ∅. All pairs of entities between two
parts are connected by an edge: 〈l, r〉 ∈ E(G). Each edge is
weighted by the similarity score h(l, r). Any ρ ⊆ E(G) is a
matching. We call a graph Gρ(L,R) with edges from ρ a
matching-induced subgraph or simply matching subgraph. For
any l ∈ L, let ρl = {〈u, r〉 ∈ ρ|u = l}. Analogously, for any
r ∈ R, let ρr = {〈l, u〉 ∈ ρ|u = r}. ρu is essentially the set
of all the edges connected with u. Since L ∩R = ∅, ρu is
unambiguously defined over any u ∈ L ∪R.

To capture the relations of is equivalent to between L and R
entities, it is apt to employ one-to-one constraint [2], [3].

Definition II.1 (Bipartite Matching). ρ ⊆ E(G) is a bipar-
tite (one-to-one) matching in G(L,R) if and only if ∀u ∈
L ∪R, |ρu| ≤ 1.

This is the most restrictive constraint. Fig. 2 illustrates a toy
example involvingL = {A,B,C,D} andR = {1, 2, 3, 4}. The
adjacency matrix specifies the similarity between any pair of
entities. Based on these scores, the maximum weight bipartite
matching is ρ = {〈A, 2〉, 〈B, 3〉, 〈C, 1〉, 〈D, 4〉}.

As bipartite matching is inappropriate for multi-granular re-
lations of consists of or is part of, we introduce poly-matching
to relax the one-to-one constraint [3], [4], [5].

Definition II.2 (Poly-Matching). ρ ⊆ E(G) is a poly-
matching in G(L,R) if and only if ∀l ∈ L, |ρl| ≤ 1. When the
constraint is imposed on the L, we say the left L is matched into
the right R.

Fig. 2. Results based on max-weighted Bipartite, Poly (one-to-many) and the
BiPoly constrained matching.

Following this, entities on the right can be matched to multiple
entities on the left, but entities on the left can be matched to at
most one entity on the right (what constitutes ‘left’ or ‘right’ is
specific to the domain at hand). In Fig. 2, poly-matching allows
A and D on the left to match the same entity on the right 1.
Ditto, we have ρ3 = {〈B, 3〉, 〈C, 3〉}.

In addition to is equivalent to, Poly captures either consists
of or is part of, but not both. Our proposed bidirectional poly-
matching allows the matching to work in both directions.

Definition II.3 (Bidirectional Poly-Matching). ρ ⊆ E(G) is
BiPoly inG(L,R) if and only if∀〈l, r〉 ∈ ρ, |ρl| = 1 ∨ |ρr| = 1.

Fig. 1 depicts exactly this kind of matching. BiPoly is also
the least restrictive matching as its solution space entails that of
Bipartite and Poly as shown in Fig. 2.

B. Objective Function

Having identified possible matching space P, we seek to find
ρ ∈ P, which maximizes a particular objective function.

Max-Weight. The classical objective is to maximize the total
similarity score, known as the maximum weight objective.

ρ = argmax
ρ′∈P

∑
〈l,r〉∈ρ′

h(l, r) (1)

In practice, the similarity measure h(l, r) (e.g., cosine simi-
larity) is imperfect. In most cases, the entity representations used
to measure that similarity (e.g., product title) are highly noisy.
For instance, entities of a domain may contain a generic word
(e.g., camera) which results in non-zero similarity. Applying a
max-weight objective on noisy similarity may result in false
positives from ‘over-estimated’ similarity or false negatives
from ‘under-estimated’ similarity.

Robust. To address this, we develop a robust version of the
constraint objective. It introduces incentives that can be adjusted
independently to reduce the number of false positives and nega-
tives cooperatively. The rewards are cast upon the connected
components in ρ ∈ P. Any matching-induced subgraph Gρ

consists of one or more connected components. We distinguish
between two types of connected components. A component is
reclusive if it contains exactly one entity u, i.e., |ρu| = 0. Oth-
erwise, it is receptive, i.e., for each entity u in that component,
we have |ρu| ≥ 1.



TABLE I
SUMMARY OF NOTATIONS

We define the robust objective with the reclusivity incentive
function FΩ and receptivity incentive function FH :

ρ = argmax
ρ′∈P

∑
〈l,r〉∈ρ′

h(l, r) + FH (C(Gρ)) + FΩ

(
C̄(Gρ)

)
,

(2)
where C( · ) and C̄( · ) are the sets of receptive and reclusive
components in a given graph respectively.

In some low similarity cases, we may discourage matching
as they could be incidental. In other cases, we may encourage
matching if similarity scores are systematically low.FΩ provides
an incentive to each reclusive component. This reward can be
positive, which encourages entities to stay reclusive unless they
can form a match that captures a similarity score higher than
the incentive. Alternatively, this reward can be negative, which
discourages reclusivity.

Among receptive components, there is a trade-off between a
smaller number of connected components of larger cardinalities,
or a larger number of components of smaller cardinalities. IfFH

offers positive rewards, the outcome tends towards more recep-
tive components, which contain fewer entities. The converse
applies to negative rewards.

Together, FΩ and FH lend greater robustness to noisy simi-
larity by steering the matching away from pure max-weight. In
Section III, we define these functions concretely. In Section V-E,
we discuss in detail the effects of reclusivity and receptivity in
the experimental settings.

III. LINEAR PROGRAMMING MODELS

To articulate a concrete definition of robust BiPoly (other
formulations represent special cases), we propose a binary linear
program that lends itself to an optimal solution.

A. Formulation

A matching-induced subgraph has multiple connected com-
ponents. For each component, we designate one node as the host
and the rest as clients, indicated by the binary variable: vu = 1
if u is the host and vu = 0 if u is a client. A reclusive component
has one host and no client. In a receptive component of one edge,
either end-point can be the host. In a larger receptive component,
the host is either the only left entity or the only right entity. These
variables and other notations are summarized in Table I. To dif-
ferentiate reclusive from a receptive host, we use binary variable

zu, i.e., (vu = 1, zu = 1) if u is receptive and (vu = 1, zu = 0)
if u is reclusive. For any client, (vu = 0, zu = 0).

To indicate connectivity within receptive components, for
every 〈l, r〉 ∈ E(G), we introduce two mutually exclusive vari-
ables xl→r and xr → l that indicate whether l and r are con-
nected 〈l, r〉 ∈ ρ, the subscript arrow indicates the direction:
from a client to the host. For example, xl→r = 1 means host r
accepts a request from client l.

To arrive at a robust BiPoly matching, we seek a configuration
that fulfills the following linear program.

max
∑
l∈L

∑
r∈R

h(l, r) (xl→r + xr→l)

+
∑

u∈L∪R
ωu (vu − zu) +

∑
u∈L∪R

ηuzus.t. (3)

∑
l∈L

xr→l + vr = 1 ∀r ∈ R (4)

∑
r∈R

xl→r + vl = 1 ∀l ∈ L (5)

xr→l ≤ vl ∀l ∈ L,∀r ∈ R (6)

xl→r ≤ vr ∀l ∈ L,∀r ∈ R (7)

∑
l∈L

xl→r ≥ zr ∀r ∈ R (8)

∑
r∈R

xr→l ≥ zl ∀l ∈ L (9)

xl→r ≤ zr ∀l ∈ L, ∀r ∈ R (10)

xr→l ≤ zl ∀l ∈ L,∀r ∈ R (11)

xl→r, xr→l ∈ {0, 1} ∀l ∈ L, ∀r ∈ R

vu, zu ∈ {0, 1} ∀u ∈ L ∪R

The first line of (3) subject to the constraints reproduces the
max-weight objective in (1).

The first part of the second line is a formulation of FΩ from
(2). Each entity u is offered a reclusivity reward ωu ∈ [−1, 1] (a
parameter to be specified), which is earned only ifu is a reclusive
host, i.e., (vu = 1, zu = 0). Ifωu > 0, this incentivizes u to stay
reclusive unless it can form a match that captures a similarity
score higher than the incentive. When ωu < 0, it tends to form a
match, with ωu compensating for low similarity scores. ωu = 0
is neutral.

In turn, the second part presents a concrete formulation of
FH in (2). We introduce a receptivity reward ηu ∈ [−1, 1] (a
parameter), earned only if u is a receptive host. When ηu > 0,
more receptive components are encouraged to be formed, which
may as a by-product reduce the cardinality of other receptive
components. Ifηu < 0, it consumes a part of the similarity within
each component, thus, discouraging any connection from being
formed, which may drive entities to join other components. ηu =
0 is neutral.

While unique rewards for every node u are possible, in prac-
tice we experiment with a simpler framework where rewards are



tied for each part of G(L,R): ωl = ωL and ηl = ηL, ∀l ∈ L,
analogously ωr = ωR and ηr = ηR, ∀r ∈ R.

(4) and (5) ensure that entities can either be host or client,
and a client’s request can only be accepted by a single host.
(6) and (7) state that only hosts can accept requests. These jointly
enforce the bidirectional one-to-many restriction. (8) through
(11) ensure that zu = 1 if and only if u is a host that has accepted
one or more clients.

BiPoly-matching presents the loosest constraint setting. To
recover poly-matching, we add linear constraint xl→r = 0
for all 〈l, r〉 ∈ E(G) blocking all the client requests from
the left part of the graph L. To recover bipartite matching
from poly-matching, we restrict the number of incoming re-
quests for each host to at most one:

∑
r∈R xr→l ≤ 1 for all

l ∈ L.

B. Computational Intractability

We show that the robust BiPoly-matching problem is NP-
hard by proving that the uncapacitated facility location problem
(UFLP) [1] (known to be NP-hard) is reducible to our problem.
In UFLP, we are given a set of customers P and a set of
facilities O. Each facility o ∈ O incurs a fixed opening cost
εo ∈ R+ and cost kop ∈ R+ of serving customer p ∈ P . A
solution to the problem assigns every customer to a facility.
To encode this assignment, we use a set of binary variables:
αop = 1 if facility o ∈ O serves customer p ∈ P , αop = 0 oth-
erwise. A binary variable βo tracks opened facilities, βo = 1 if
facility o ∈ O is open, and βo = 0 otherwise. The objective is
to find a solution that minimizes the total cost of serving and
opening:

min
∑
p∈P

∑
o∈O

kopαop +
∑
o∈O

εoβo s.t. (12)

∑
o∈O

αop = 1 ∀p ∈ P

αop ≤ βo ∀o ∈ O,∀p ∈ P

βo, αop ∈ {0, 1} ∀o ∈ O,∀p ∈ P

We formally identify an instance of the UFLP problem by a
tuple UFLP(O,P,K,E), where K = {kop|o ∈ O, p ∈ P} and
E = {εo|o ∈ O}.

Lemma III.1. Given UFLP(O,P,K,E), δ ∈ R>0 and
μ ∈ R, let μ+ δK = {μ+ δkop|o ∈ O, p ∈ P} and δE =
{δεo}o∈O, then a solution that minimizes the objective
of UFLP(O,P,K,E) also minimizes the objective of
UFLP(O,P, μ+ δK, δE) and vice versa.

Proof: Subject to the constraints of Program 12, we have:

min
∑
p∈P

∑
o∈O

(μ+ δkop)αop +
∑
o∈O

δεoβo

= min
∑
p∈P

∑
o∈O

μαop +
∑
p∈P

∑
o∈O

δkopαop +
∑
o∈O

δεoβo

= min
∑
p∈P

∑
o∈O

δkopαop +
∑
o∈O

δεoβo

= min
∑
p∈P

∑
o∈O

kopαop +
∑
o∈O

εoβo

�
UFLP is usually defined over non-negative serving cost. The

shifted cost μ+ δK could be negative. This alters neither the
solution space nor the minimizing solution.

The following corollary helps to satisfy the constraints when
reducing an instance of UFLP to a Robust BiPoly.

Corollary III.1.1. For any non-degenerate UFLP(O,P,
K,E), there exists UFLP(O,P,K ′, E ′) that has the same min-
imizing solutions as the original UFLP. Furthermore k′op ∈
(−τ, 0] for all k′op ∈ K ′ and ε′o ∈ [0, τ) for all ε′o ∈ E ′, where
τ−1 = 2|O|.

Proof. The proof is an immediate consequence of the lemma,
let δ = τ(1 + max(K,E))−1 and μ = −δmax(K). �

We assume that any instance of UFLP has service and opening
costs that satisfy this corollary. Therefore, opening costs and
total serving cost per client are predictably bounded. Carefully
choosing the weights for an instance of Robust BiPoly, one can
always get a solver for a one-sided poly-matching as in UFLP.
The following theorem details how the weight should be chosen
for the reduction.

Theorem III.2. Robust BiPoly-matching is NP-hard.
Proof. Assume that the robust BiPoly-matching is solvable

in polynomial time. To arrive at a contradiction, we intend to
show that any UFLP(O,P,K,E) can be solved using the robust
BiPoly-matching as stated in Program (3). We, thus, create the
following instance of the robust BiPoly–matching:

L
def
= O and R

def
= P

ωl
def
= 0 and ηl

def
= −εl ∀l ∈ L

ωr = ηr
def
= −1 ∀r ∈ R

h(l, r) = h(r, l)
def
= −klr ∀l ∈ L,∀r ∈ R

Subject to the constraints of Program 3, we want to solve the
following maximization problem:

max
∑
o∈O

∑
p∈P

−kop (xo→p + xp→o)−
∑
o∈O

εozo −
∑
p∈P

vp,

or its corresponding minimization problem (equivalent to robust
BiPoly):

min
∑
o∈O

∑
p∈P

kop (xo→p + xp→o) +
∑
o∈O

εozo +
∑
p∈P

vp.

For every o ∈ O and p ∈ P , let x̄o→p, x̄p→o, v̄o, v̄p, z̄o, and
z̄p be a minimizing solution of this problem, then we have:
v̄p = 0, v̄o = 1, z̄p = 0, and x̄o→p = 0. Let us show this by
contradiction. Assume for some p′, v̄p′ = 1. The cases are: (I)
p′ is receptive host or (II) reclusive host, as in Fig. 3.

I. If p′ is a receptive host, then it accepts clients’ requests
(zp′ = 1), ∃o ∈ O, x̄o→p′ = 1. Let Op′ = {o ∈ O|x̄o→p′ = 1},
the contribution of the connected component associated with
p′ to the objective function is Δb = 1 +

∑
o∈Op′

kop′ > 0.5

(see Corollary III.1.1). If we set x̄o′→p′ = 0 and v̄o = 1 for all
o ∈ O′

p, x̄p′→o′ = 1 and z̄o′ = 1 for some o′ ∈ O (to satisfy the



Fig. 3. Illustration of the proof: (a) - receptive host I, (b) - reclusive host II,
(c) - a solution with a lower objective.

constraints we also set vp′ = zp′ = 0), the contribution decreases
to Δa = ko′p′ + εo′ < 0.5 < Δb, contradicting the assumption
of this being a minimizing solution.

II. Ifp′ is a reclusive host (zp′ = 0), then its contribution to the
objective is Δb = 1, we can improve the solution by connecting
p′ to some o′ ∈ O by settingxp′→o′ = 1 (to satisfy the constraints
we also set vp′ = zp′ = 0 and vo′ = zo′ = 1). The contribution
of p′ to the objective then decreases and becomes at most Δa =
ko′p′ + εo′ < 0.5 (see Corollary III.1.1). Since Δb > Δa, we,
therefore, arrive at the contradiction.

Since v̄p = 0 for all p ∈ P , the other equalities follow from
the constraints. If we include these equalities in the program, we
get an equivalent minimization problem:

min
∑
o∈O

∑
p∈P

kopxp→o +
∑
o∈O

εozo. (13)

After removing the inconsequential constraints, Program 13 has
the following constraints:∑

o∈O
xp→o = 1 ∀p ∈ P

xp→o ≤ zo ∀o ∈ O,∀p ∈ P,

Which recovers exactly UFLP formulation as in Program 12
(up to variable names). Therefore, robust BiPoly-matching can
be used to solve any instance of the UFLP. Since UFLP is NP-
hard [1], [6], this contradicts the premise of the proof. �

IV. GREEDY APPROXIMATIONS

As the linear program may not be tractable for large data sizes,
we present two greedy approximations.

A. Set Cover-Based Approximation

Algorithm. Let us consider the following minimization prob-
lem subject to the constraints of the robust BiPoly-matching:

min
∑
l∈L

∑
r∈R

(1− h(l, r)) (xl→r + xr→l) (14)

+
∑

u∈L∪R
(1− ωu) (vu − zu) +

∑
u∈L∪R

(1− ηu) zu

= min
∑
l∈L

∑
r∈R

(xl→r + xr→l) +
∑

u∈L∪R
vu −

∑
u∈L∪R

ηuzu

−
∑

u∈L∪R
ωu (vu − zu)−

∑
l∈L

∑
r∈R

h(l, r) (xl→r + xr→l)

= min
∑
l∈L

(
vl +

∑
r∈R

xl→r

)
+
∑
r∈R

(
vr +

∑
l∈L

xr→l

)

−
∑

u∈L∪R
ηuzu −

∑
u∈L∪R

ωu (vu − zu)

−
∑
l∈L

∑
r∈R

h(l, r) (xl→r + xr→l) .

Substituting the variable summations with (4) and (5) shows
that this minimization problem is equivalent to robust BiPoly,
with the objective value shifted by n+m. Furthermore, it
has non-negative variable weights and can be converted to an
instance of weighted set cover. In weighted set cover, we aim
to cover all the nodes in L ∪R with the sets that yield minimal
total cost. The collection of covering sets and their weights are
defined as follows:

S = SL ∪ SR, where
SL =

{{l} ∪ e
∣∣ l ∈ L, e ∈ 2R

}
SR =

{{r} ∪ e
∣∣ r ∈ R, e ∈ 2L

}
(15)

ws =⎧⎪⎪⎨
⎪⎪⎩
1− ωu if {u} = s
2−max(ηl, ηr)−h(l, r) if {l}=s ∩ L and {r}=s ∩R
|s|−ηl−

∑
r∈s\{l} h(l, r) if s ∈ SL \ SR and {l}=s ∩ L

|s|−ηr−
∑

l∈s\{r} h(l, r) if s ∈ SR \ SL and {r}=s ∩R

The weighted set cover is related to the connected component
interpretation of the robust BiPoly outlined in Section III-A. S
defines a set of all possible connected components in G(L,R)
w.r.t. BiPoly as in Definition II.3. SL identifies all possible
connected components between the hosts from L and the clients
from R including closed hosts, SR does the same for the hosts
from R. Weights W = {ws}s∈S are mapped to the contribu-
tions of these components as in the robust BiPoly. The first
case for ws identifies the contribution of reclusive hosts, the
second counts the minimal contribution of the interchangeable
host-client pairs, and the last two identify the contribution of
the components that have multiple clients. Though the solution
space is larger for the weighted set cover than for robust BiPoly,
one can show that at least one of the minimizing solutions of
the set cover consists of disjoint sets, thus, is convertible to a
minimizing robust BiPoly solution.

BiPoly Set Cover (BiPoly.S) adapts the greedy solver as in [7].
At each iteration, the procedure finds set s ∈ S minimizing its
per node weightws/|s| to cover nodes yet not assigned. To avoid
enumerating all possible sets as defined in (15), for each node
u ∈ L ∪R we maintain a list of potential clients in descending
order of similarity h(u, · ). At each round of the procedure, we
retrieve a minimizing set in polynomial time. This is shown in
Algorithm 1.

Complexity Analysis. The complexity of Algorithm 1 can be
split into two parts: sorting clients for each host, which accounts
for O(nm log nm) in worst-case, and selecting a minimizing
set from S . The worst case is when every viable combination of
hosts and clients is evaluated, but only a singleton host would
ultimately be selected in the round, and we always select a host



Algorithm 1: Greedy Algorithm for BiPoly.S.

from the bigger part. Let a = min(n,m), b = max(n,m), and
k = b− a, then the computations for the first k iterations can
be bounded by O(a

∑k
i=1(2b− i+ 1)) or O(ab2). For the next

2a iterations the procedure alternates between selecting hosts
from L and R, thus, the number of operations for every two
consecutive rounds can be bounded (up to a constant) by 2a(n+
m), 2(a− 1)(n+m), 2(a− 2)(n+m) and so on, which in
total is bounded by O((m+ n)

∑a
i=1 i) or O(a2(m+ n)). The

worst case complexity of BiPoly.S is O((n+m)3). However,
the empirical evaluation on real-world data (see Fig. 8) suggests
that the running time behaves like O((n+m)2).

Approximation Bound. BiPoly.S has an approximation guar-
antee [8]: log(n+m) to an optimal solution of (14). Let gmin

greedy

be the objective value with the greedy solution, gmin
opt be the

optimal objective value, then:

gmin
greedy ≤ gmin

opt log (n+m).

As the maximization objective is shifted by n+m, we derive a
lower bound for a greedy solution ggreedy of Program 3:

ggreedy ≥ gopt log (n+m) + (n+m) (1− log (n+m)) ,

where gopt is the optimal objective value for robust BiPoly.

B. CENTER-Based Approximation

Algorithm. We propose another greedy method that has a
lower worst-case complexity but without a lower bound guaran-
tee. We consider our task as a form of clustering for duplicate
detection [9]. Although the clustering methods outlined in [9] do
not adopt any constraints, one work, in particular, CENTER [10]

Algorithm 2: Greedy Algorithm for BiPoly.C.

can produce “one-to-many” clusters. The algorithm works by
iterating over the pairs of nodes of an arbitrary graph. The pairs
are sorted by distance. When node u appears in the scan for the
first time, it is marked as a cluster center (host in our terms). All
subsequent nodes v that appear in pair 〈u, v〉 are assigned to u
(in our terms, v becomes a client of host u).

BiPoly CENTER (BiPoly.C) adapts the algorithm to work
with nodes from two partitions and asserts that for any host,
the clients must come from the opposing partition. Scanning
pair 〈u, v〉, we mark both nodes as pending if they are unseen,
and only when one of these nodes is encountered again, it
is promoted to a host and the other to a client. This process
produces bidirectional one-to-many disjointed sets where the
host and clients are from different partitions.

To further improve the performance, BiPoly.C applies robust-
ness by introducing the reclusitivity and receptivity rewards
to deter or incentivize hosts and clients from forming. This
is outlined in Algorithm 2. Enclosed within is the method
ResolvePending, which helps to resolve any remaining
pending-pending pairs in P by assigning host and client to the
nodes in the pair that minimizes the overall cost.

Complexity Analysis. As BiPoly.C is a single pass algorithm,
it only takes O(nm) to iterate over all the sorted node pairs.
The sorting can be done in O(nm log nm). The method Re-
solvePending is a linear procedure which in the worst case
requires O(nm) iterations. The worst-case complexity of the
algorithm is O(nm log nm), which puts it in the same category
as Bipartite greedy. This is supported by the empirical evidence
on real-world data (see Fig. 8).



TABLE II
SUMMARY OF BLOCKING DATASETS

V. EXPERIMENT: BLOCKING SCENARIO

The first experimental scenario we investigate is matching
products across two data sources. In a strategy called blocking,
we first match a category from one source to another category
from another source. Once the two categories are aligned, we
only need to compare the products across these two categories.
In this case, the multi-granular entities that BiPoly matching
applies to refer to the product categories.

A. Datasets

As blocking on multi-granular entities is novel, we gather two
real-world datasets with ground truths2 as in Table II.

Cross-Platform. The first dataset concerns matching product
categories across two e-commerce platforms. It hasm = 94 cat-
egories from Amazon US (the left setL) and n = 173 categories
from Lazada (the right set R).

Determining whether two categories match must go beyond
superficial names and necessarily be informed by whether
they contain the same products. We employ Mechanical Turk
(MTurk) to manually identify matching products, and assess the
matching of categories indirectly by how the latter facilitates
the former. MTurk workers were instructed to select whether
a candidate product matches the target product, where two
products are considered a match only if they have the same
brand, model, type, size, color, etc. Each task was assigned to
three workers and the majority vote was accepted. Let eL (resp.
eR) be the union of products under the category entities in L
(resp. R). In total, 992 product matches are identified out of
15,516 pairs labeled, sampled from |eL| = 6, 913 products from
Amazon and |eR| = 166, 307 from Lazada.

Multi-Lingual. The second dataset again concerns category
entities, but the respective sources correspond to two regional
platforms of Amazon, namely the US (the left set L) and
China (the right set R). Product categorization differs vastly
between both regions. Amazon uses a unique identifier (UID)
that is consistent across regions, making it feasible to identify
matching product pairs. In the case of Amazon China, we use
machine translation with Microsoft Azure Translator to produce
the English representations for similarity measurement with
Amazon US vocabulary. In total, this dataset involves m = 119
categories from the US covering |eL| = 710, 475 products and
n = 169 categories from China covering |eR| = 20, 000, with
2,315 matching product pairs identified by UID.

By way of example, Fig. 4 shows a visualization of the ground
truth matching results for Cross-Platform and Multi-Lingual.
The left nodes are magenta squares, and the right nodes are green

2These datasets and the ground truths are available at https://code.preferred.
ai/BiPoly.

Fig. 4. Theoretical maximum coverage results for robust BiPoly for the various
datasets.

circles. The multiple connected components, with a mixture of
left nodes and right nodes as hosts, indicate the BiPoly effect.
The singletons advocate for the robust objective, as the maxi-
mum weight objective would have linked up some singletons.

The representation of a product entity is its title, while that
of a category entity is a bag of words of product titles within
the category. To derive the similarity weights for matching
h(l, r), we apply three common normalized similarity functions
and select the best tradeoff (see below). These are Jaccard
Coefficient, Szymkiewicz–Simpson coefficient [11], and TFIDF
cosine similarity.

B. Evaluation Measures

We employ metrics commonly associated with blocking [12].
Two categories from different sources are well-aligned if they
collectively contain the ground-truth product pairs.

Coverage. We define a blocking ρ’s goodness in terms of
coverage, how well it recovers ground-truth product pairs.

product-pairs(ρ) =
{〈a, b〉 ∣∣ a ∈ el, b ∈ er, 〈l, r〉 ∈ ρ

}
coverage(ρ) =

∑
〈a,b〉∈product-pairs(ρ) g(a, b)∑

〈a,b〉∈product-pairs(L×R) g(a, b)
(16)

Tradeoff. Without blocking, we would compare all |eL| × |eR|
pairs of products. With category matching as a blocking strategy,
we compare only products across matched categories (much
fewer). We can define reduction due to a category matching
outcome ρ as follows.

reduction(ρ) = 1−
∑

〈l,r〉∈ρ |el| · |er|
|eL| · |eR| (17)

The higher the reduction, the fewer product pairs that need to be
compared, the more efficient is the product-to-product matching.
We have found that most of the methods we tested achieve a
reduction of over 70%.

However, higher reduction often corresponds to lower cov-
erage. Conversely, a higher coverage could be achieved by
favoring matching larger categories that might well lead to more
comparisons. Hence, a more balanced metric than coverage per
se is the tradeoff, expressed as the harmonic mean of coverage
and reduction, which has been established in product-to-product

https://code.preferred.ai/BiPoly
https://code.preferred.ai/BiPoly
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COMPARISON ON LINEAR PROGRAM

matching literature [13].

tradeoff(ρ) =
2× coverage(ρ)× reduction(ρ)

coverage(ρ) + reduction(ρ)
(18)

C. Optimal Solutions Via Linear Program

We analyze the optimal solutions under various objectives.
Max-Weight Objective. We first conduct a comparison under

the maximum weight objective (see Section II-B). The baselines
are Bipartite and Poly, which share the same objective and differ
only in constraints. Table III (rightmost columns) summarizes
the results. Evidently, constraints do matter. Due to the inherent
multi-granularity of entities, Bipartite with the most restrictive
one-to-one constraint has the lowest coverage. Poly-matching
allows one-to-many and realizes more coverage, but is still
limited by the restriction that the ’one’ must come from one
source (the source with fewer entities3). Because BiPoly factors
in the possibility for hosts to flexibly come from either source,
it attains the highest coverage. A similar trend manifests in the
Tradeoff.

For reference, Oracle indicates the theoretical maximum
achievable coverage, given that there is some inherent noise
in the data (e.g., incorrect categorization of products in the
taxonomy, noisy similarity). Evidently, the BiPoly results are
not too far off from the Oracle results.

Robust Objective. We now conduct a comparison under the
robust objective (see Section II-B). The comparable baselines
are now robust Bipartite and Poly-matching, which can be
recovered from robust BiPoly formulation by adding a few linear
constraints (see Section III-A). For completeness, we include an
additional method, namely UFLP [1], which constitutes a special
case of robust Poly when ωL = ωR = 0, η ≤ 0, and flipped
similarity coefficients (every edge is weighted by 1− h(l, r) as
opposed to h(l, r)). We report the results for the best selection of
the robust parameters (i.e.,ωL,ωR, ηL, and ηR). The parameters
are optimized simultaneously via grid search with a range from
−1 to 1 in incremental steps of 0.1. Since Bipartite and Poly
could produce only one-sided matchings, ηR does not influence
the maximizing solution and can be set arbitrarily for these
problems (we indicate this fact by a dash). As in Table III (middle

3We also investigated the reverse scenario where the ‘one’ come from the
source with more entities, which performs worse in all cases.

TABLE IV
GREEDY APPROXIMATIONS

columns), the most restrictive method, Bipartite, is the weakest.
From UFLP to Poly to BiPoly, the constraints are increasingly
flexible, and recall and tradeoff improve correspondingly to-
wards the oracular results.

We can compare like-for-like across Robust and Max-weight
in Table III to see how different objectives perform, holding
the constraints fixed. For instance, robust Bipartite outperforms
max-weight Bipartite. The same generally holds for Poly and
BiPoly as well. In particular, the robust objective makes a more
significant difference on Multi-Lingual than on Cross-Platform,
as the former has noisier similarities arising from the transla-
tion from Chinese to English when deriving similarity weights.
The robust objective, designed to counter noises, apparently
delivers on this count. BiPoly’s coverage improves from 41%
with max-weight to 47% with the robust objective, substantially
closing the gap between BiPoly and the oracle. For subsequent
discussion, we focus on the robust objective that is showing
better performance, and after all the max-weight objective could
always be recovered as a special case (ω = 0, η = 0).

D. Greedy Approximations

We present the greedy solutions in Table IV. Included as
an additional reference is k-core, a many-to-many graph-based
matching that provides a performance comparison at the same
reduction level offered by BiPoly. For one, BiPoly (as repre-
sented by one of its variants C or S) generally outperforms the
baselines. For another, we appreciate how closely the greedy
solutions approach the optimal by comparing across Tables IV
and III. Observably, they get close to the optimal on Cross-
Platform, which we attribute to its relatively ‘cleaner’ and
presumably more informative similarity weights. On the noisier
Multi-Lingual, the gap is expectedly larger, yet there is still a
credible outperformance over the baselines by BiPoly. In both
cases, the difference in tradeoff is less than coverage, as greedy
is able to match records that contain more matching entities and
only misses out on matches in records with far lower similarity.

E. Sensitivity Analysis

Fig. 6 tracks coverage and tradeoff as reclusivity ω and
receptivity η vary respectively on Multi-Lingual with BiPoly.S.



Fig. 5. Greedy matching outputs while varying reclusivity ω and receptivity η for Multi-Lingual. The first row of figures show the output when η = 0. The
second row show the output when ω = 0. tradeoff (TO) is indicated for each subfigure.

Fig. 6. Varying reclusivity ω and receptivity η for Multi-Lingual for BiPoly.S. param = ω when η = 0 and vice versa.

Varying Reclusivityω. The first row of Fig. 5 (magenta squares
are left nodes, green circles are right nodes) shows the effect of
varying ω when η = 0. To understand this intuitively, we refer
to the four illustrations corresponding to ω = {−1, 0.1, 0.4, 1}
respectively on Multi-Lingual. In the leftmost figure (ω = −1),
there is a penalty for being a reclusive host, thus there are
relatively few ‘singletons’. As we increase ω to 1, there is now a
reward for being reclusive, and thus progressively there are more
singletons to the point where there are no connected components
at all when ω = 1.

This behavior is reflected by the red curves of Fig. 6 that
track various measures as ω varies. Recall and tradeoff start out
high with lots of matching, decrease as ω increases, and finally
collapse when ω > 0.5 as no matching takes place. Structurally,
the number of clusters increases with ω with less matching,
while the cardinality or the average membership size of those
clusters plummets. It is worth noting that the matching result is
unchanged ω ≤ 0.

Varying Receptivity η. The second row Fig. 5 shows the effect
of varying η when ω = 0. The four illustrations correspond to
η = {−1,−0.5, 0.5, 1}. The leftmost figure shows that when
η = −1, there is a severe penalty to being a receptive host,
and all nodes remain single. As we increase η to -0.5, there
is still some penalty, and only a few become receptive hosts,

but those few attract a lot of clients. As η increases further,
some of the formerly reclusive hosts are now incentivized to be
receptive, attracting clients either from other former reclusive
hosts or clients of other open hosts. Ultimately, the rightmost
figure shows that when η = 1, we realize as many receptive
hosts as possible, but each is part of a small 2-node cluster.
The blue curves of Fig. 6 analyze this systematically. In terms
of measures, as η goes up, recall and tradeoff initially increase
as more clusters appear and eventually decrease as clusters get
smaller in cardinality (average number of clients among open
hosts). We start out with a large number of clusters of singletons,
which reduces over time as fewer clusters of larger cardinality
form. Eventually, the number of clusters increases again, some
larger clusters break up into pairs.

F. Meta-Blocking

BiPoly is orthogonal and can be applied in conjunction with
existing blocking techniques. We introduce matching constraints
as meta-blocking techniques [14] and show that BiPoly performs
well in this scenario. BiPoly acts as an edge-centric technique,
pruning edges that are unlikely a match while maintaining the
rest. To illustrate this, we apply keyword blocking with a sample
of ten different tokens to each of the datasets followed by the
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Fig. 7. The effects of quota on noisy similarity.

various matching constraints. We measured the relative differ-
ence and averaged the results across the ten tokens. The results
are summarized in Table V. BiPoly continues to outperform the
baselines in both coverage and tradeoff while achieving an 86%
reduction over keyword blocking alone.

G. Noisy Similarity

We examine different extents of noisy similarity, and how the
robust objective helps. To simulate a noisier representation of
a category entity, we down-sample the number of product titles
being aggregated to compute a category representation at various
proportions down to a minimum of 25%. We compare the robust
Poly (best unidirectional approach) with BiPoly.S. Fig. 7 shows
the results for Multi-Lingual, averaged over ten runs for each
sample size. Robust BiPoly still outperforms robust Poly. As an
orthogonal means of countering noisy similarity, we set a quota
for the maximum clients of a host. Applying quota (tuned to
with the best results) on robust matching yields no appreciable
gain on Multi-Lingual in most cases.

VI. EXPERIMENT: ENTITY MATCHING SCENARIO

In the second scenario, we are matching directly two distinct
granularities of entities: item and category for Product Taxon-
omy, and journals and subject areas for Journal.

A. Datasets

We gather two real-world datasets with known ground truths2

as in Table VI. They encompass four large datasets for scalable
approximation solutions.

Product Taxonomy {CN, U.K., US}. Three distinct datasets
concern regional platforms of Amazon, respectively China (CN),
United Kingdom (U.K.), and United States (US). In each dataset,
there are two distinct granularities: some entities are categories,

TABLE VI
SUMMARY OF MATCHING DATASETS

while others are products. We randomly assign each root cat-
egory and its descendant categories to one of two partitions.
Subsequently, products are extracted with probability p from
each category and transferred to the opposing partition. The
objective is to match products to their original category in
the opposing partition. These large datasets are intended for
scalability study (see Section VI-B), whereby we adjust p while
holding the number of categories fixed.m andn are the numbers
of entities in the left and right partitions respectively. |eL| and
|eR| are the total number of unique products in the datasets. The
last column specifies the number of ground-truth matches.

Journal. Taken from Wikipedia, this contains all major jour-
nals and subject areas. These entities make up the distinct
granularities that we will use to determine the effectiveness of
BiPoly in a different domain. The dataset goes through the same
transformation as the Product Taxonomy datasets. The statistics
are shown in Table VI.

For these datasets, we define its goodness overall in terms of
recall, precision and F1.

We make use of the same similarity functions described in
Section V-A. For Product Taxonomy, the representation of a
category is derived only from products not included as test cases
to match, while for Journal, the representation of a subject area
is derived from journals that are not included as test cases to
match. For this case, we select the best F1 score (see below) out
of the three methods.

B. Results and Scalability

Their greater efficiencies allow the greedy solutions to scale
up to larger datasets. We study the complexity and the per-
formance degradation by the greedy methods empirically over
various sizes of the three Product Taxonomy datasets. The exper-
iments ran on a single thread on a server with 2 x AMD EPYC
7502 @ 2.50 GHz and 512 GB of RAM.

Fig. 8 (left) shows the greedy performance on various scaled
versions of Product Taxonomy (first three rows correspond to
US, U.K., China). We fix the similarity measure, ω, and η
for the rest of the runs after searching for the best combina-
tion for each method using the smallest-scaled version. The
parameters are: ω = 0.4 for bipartite, ηL = −0.9 for UFLP,
(ω = 0.7, ηL = 0.9) for Poly and (ω = 0.6, η=0.9) for BiPoly.
Fig. 8 shows that BiPoly achieves the highest F1 while Bipartite
and K-core fare the worst. The k-core algorithm did not complete
on the larger points of US (largest dataset) due to memory
constraints. Bipartite suffers the greatest degradation (95%), and
BiPoly.S has the least degradation (2.5%), between the smallest
and largest datasets.



Fig. 8. The left three show the Recall, Precision and F1 of greedy approximation for robust while scaling. The right two show the effects of the number of entities
on actual running times and the running time as a factor of the time taken to complete the smallest dataset per method.

We apply these algorithms to the Journal domain and the
results are shown on the last row of Fig. 8. BiPoly still maintains
the highest F1 while k-core fares the worst, which produced
results similar to Product Taxonomy datasets.

The right figures show the running time of each method
on the three datasets. By normalizing each algorithm’s run-
time by the smallest run, we found that BiPoly.S performs
closer to O((n+m)2), substantially less than the worst case
of O((n+m)3) mentioned in Section IV-A. The normalized
runtime of BiPoly.C tracks Bipartite very closely as they are
bounded by sorting which takes O(nm log nm) but it is not
surprising that Bipartite has the fastest runtime empirically given
that it is the most restrictive. However, it is interesting that
UFLP and Poly are less performant empirically than BiPoly.
Both UFLP and Poly require O(mn log n) to sort the clients,
which differs from BiPoly as open hosts are only allowed to
form on the right. This also results in a simpler inner loop
compared to BiPoly reducing the number of operations for each
consecutive round to nm, n(m− 1), n(m− 2), and so on.
This results in a worst-case complexity of O(nm2). We refer
to the selection process of the best connected component. The
best combination of clients for every host needs to be found to

select the best set in each round. In UFLP and Poly, hosts (one)
and the clients (many) can only be selected from the left and
right sides respectively, resulting in the reduction of only one
host each round. However, though BiPoly starts out with more
potential hosts (n+m instead of n), hosts (likewise clients)
can be selected from either side, resulting in larger decrements
of potential hosts in subsequent rounds. Thus, BiPoly ends up
needing fewer iterations than UFLP or Poly.

VII. RELATED WORK

Assignment Problems. Constraint matching stems from the
assignment problem (AP), a combinatorial optimization that
assigns ‘tasks’ to ‘agents’ [15], [16]. One distinction is how
task and agent in AP are designated, whereas an entity could
take on either a host or client role in our problem. Cost-focused
variants of AP minimize (resp. maximize) the overall cost (resp.
reward). They differ in constraints. Classical ones include one-
to-one [15], [17] and (unidirectional) one-to-many [18], and the
extended version, UFLP [1]. The generalized AP (GAP) [16]
imposes a quota on one-to-many AP, the

∑
k AP only considers

the top k-costs, and the k-cardinality AP [19], [20] requires only



k tasks to be completed. Equitable-focused variants ‘balance’ the
costs borne by entities, by minimizing “inequality” such as the
maximum task cost [21], the difference between the highest and
lowest task costs [22] or between the task costs and its mean [23],
or the maximum tasks assigned to an agent [24].

For entity matching, the emphasis is placed on cost-focused
approaches to maximize similarity weights. Many have equiv-
alent problems in graph theory. The classic AP is known as
the weighted bipartite matching which can be solved using
the Hungarian algorithm [25], the one-to-many AP is akin to
max-weighted poly-matching, and GAP is also known as the
b-matching problem and can be solved in O(n4logn) time for
edges with real weights [26]. In turn, the aforementioned UFLP
is an extension of GAP [27]. These instantiations of AP for
entity matching have been included as baselines to showcase
our distinctions of bidirectionality in poly-matching and robust
objective.

We discover mentions of ‘robustness’ in AP [28], [29], but
these polysemously refer to a different concept: the uncertainty
of the objective function coefficients.

Entity Matching. There are various directions in improving
Entity Matching (EM) [9], [30], [31]. One is to improve the
similarity estimation either by better representation of enti-
ties [32], [33], [34], or working with multiple attributes [2],
[35], or employing supervised similarity learning [36], [37].
Another direction is to improve the efficiency of matching, by
blocking [38], [39], [40], hashing [41], or end-to-end work-
flow [13], [42]. Our work pursues an orthogonal direction in
applying ‘global constraints’ to improve the quality of match-
ing for multi-granular entities. Few prior works have studied
leveraging global constraints. While [43], [44], [45] use some
constraints, their conditions myopically apply between two
records, e.g., John Doe and J. Doe must live in the same zip
code to match. To our best knowledge, the only work that uses
global constraints is [3]. While they have applied one-to-one and
one-to-many constraints on matching (included as baselines),
there have not been any studies on multi-granular datasets or
robustness.

This article is a significant extension and comprehensive
treatment of an earlier work [46] that appeared in ICDM 2021.
Here, we present a formal proof of NP-Hardness, describe
an additional approximation algorithm that is more efficient,
include three new and significantly larger datasets, and expand
the experiments with a scalability study and in-depth sensitivity
analysis of the robustness constraint.

VIII. CONCLUSION

We address bidirectional poly-matching of multi-granular
entities. The key to its robustness is the novel notions of
reclusivity and receptivity, which cooperatively help to counter
the noisy similarity. An optimal solution is formulated via
linear programming. We develop more efficient greedy algo-
rithms, which analytically grow polynomially and empirically
scale well. Comprehensive experiments validate our contribu-
tions and shed light on the workings of the algorithms on
real-world datasets. Several directions for future work include

exploring the potential benefit of supervised similarity learn-
ing, constraint relaxation and investigating tighter bounds of
approximation.
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