Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

1-2023

Intelligent adaptive gossip-based broadcast protocol for UAV-
MEC using multi-agent deep reinforcement learning

Zen REN
Xinghua LI
Yinbin MIAO
Zhuowen LI

Zihao WANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons, and the Theory and Algorithms Commons

Citation

REN, Zen; LI, Xinghua; MIAO, Yinbin; LI, Zhuowen; WANG, Zihao; ZHU, Mengyao; LIU, Ximeng; and DENG,
Robert H.. Intelligent adaptive gossip-based broadcast protocol for UAV-MEC using multi-agent deep
reinforcement learning. (2023). IEEE Transactions on Mobile Computing. 1-17.

Available at: https://ink.library.smu.edu.sg/sis_research/8275

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8275&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author

Zen REN; Xinghua LI; Yinbin MIAO; Zhuowen LI; Zihao WANG; Mengyao ZHU; Ximeng LIU; and DENG,
Robert H.

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8275


https://ink.library.smu.edu.sg/sis_research/8275

IEEE TRANSACTIONS ON MOBILE COMPUTING

DOLI: 10.1109/TMC.2023.3323296 1

Intelligent Adaptive Gossip-based Broadcast
Protocol for UAV-MEC using Multi-agent Deep
Reinforcement Learning

Zhe Ren @, Xinghua Li
Mengyao Zhu @, Ximeng Liu

, Member, IEEE, Yinbin Miao @, Zhuowen Li @ | Zihao Wang ",
, Senior Member, IEEE, and Robert H. Deng ', Fellow, IEEE

Abstract—UAV-assisted mobile edge computing (UAV-MEC) has been proposed to offer computing resources for smart devices and
user equipment. UAV cluster aided MEC rather than one UAV-aided MEC as edge pool is the newest edge computing architecture.
Unfortunately, the data packet exchange during edge computing within the UAV cluster hasn’t received enough attention. UAVs need to
collaborate for the wide implementation of MEC, relying on the gossip-based broadcast protocol. However, gossip has the problem of
long propagation delay, where the forwarding probability and neighbors are two factors that are difficult to balance. The existing works
improve gossip from only one factor, which cannot select suitable forwarding probability and avoid redundant messages. Besides,
these schemes do not consider the historical packet reception of new neighbors when UAVs fly around, which decreases forwarding
efficiency. To solve these problems, we first propose a data structure called Bitgraph that can record the historical packet reception of
UAVs. Then, we formulate gossip broadcasting as a partially observable Markov decision process. Based on Bitgraph, we design the
reward function. Finally, we design a multi-agent reinforcement learning algorithm, Branching Deep Graph Network (BDGN), which
simultaneously makes decisions on forwarding probability and neighbors. Extensive experiments illustrate that our proposal gets more

than 29% advantage in terms of the propagation delay and 20% advantage in terms of the redundant messages compared to the

existing works.

Index Terms—UAVs, Gossip Protocol, Sparse Rewards, Partially Observable Markov Decision Process, Reinforcement Learning.

1 INTRODUCTION

ITH the emergence of smart navigation, online 3A
W gaming and virtual reality, the convenience of mobile
edge computing (MEC) has attracted lots of attention. The
global edge computing market is expected to grow at a
compound annual growth rate of 37.9% from 2023 to 2030
to reach USD 155.90 billion by 2030 [1]. Recently, UAV-
assisted mobile edge computing (UAV-MEC) has become
a new style of MEC to provide more flexible, easier and
faster computing service than traditional fixed location MEC
infrastructures. Past works [2], [3], [4], [5] have consid-
ered a single UAV case. Unfortunately, one UAV can only
provide service for limited users. Recent work [6], [7], [8]
has evolved to where UAV clusters act as edge pools to
provide edge computing services. For example, multiple
UAVs hovering in the air provide computational services
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for underwater and surface sensors in a marine network [6].
However, the above schemes only focus on optimizing the
energy consumption of the sensors and UAVs during task
offloading. They do not consider the data packet exchange
process during edge computing within the UAV cluster.
The data packet exchange of UAV clusters can refer to
distributed computing systems, relying on some broadcast
protocol [9].
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Fig. 1. One UAV is used as the source, and the broadcasting scenario
under flood and gossip is adopted. The forwarding strategy of gossip
is configured with a forwarding probability of 80%, and the number
of forwarding neighbors is 2. The flood can cover all UAVs with only
three rounds of propagation, while gossip needs five rounds to cover all
UAVs. At the same time, the number of message packets is represented
by arrows. Compared with the flood, gossip reduces the number of
redundant messages by 53.8%.
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Existing broadcast protocols include flood and gossip [10].
The advantage of the flood is that the propagation delay
is optimal, but the problem is message implosion [11]. In
contrast, gossip can avoid implosion, which is more suitable
for UAVs with limited energy [12]. Each UAV, as a source,
initially sends its message packet to several neighbors. In
each subsequent round, the relay UAV must decide whether
to forward the packet with a certain probability when re-
ceiving the message packet. If it forwards, it randomly se-
lects neighbors to forward. Theoretically, gossip will run for
multiple rounds until all UAVs receive the message packet.
However, as shown in Fig. 1, due to the random forwarding
characteristics, there is a problem of long propagation delay
[13]. To reduce the propagation delay, the existing works
improve the gossip from forwarding probability decision
making [14], [15] and forwarding neighbors decision mak-
ing [16], [17], [18], [19], [20].

The forwarding probability and neighbors of the gossip
protocol are two factors that are difficult to balance. When
the forwarding probability is selected as 100%, and the for-
warding neighbors are all neighbors, the gossip degenerates
into a flood. However, existing works improving gossip only
focus on one single aspect. The schemes [14], [15] that only
consider the forwarding probability is still completely ran-
dom when selecting neighbors, which will cause the mes-
sage packet to be sent to the node that has already received
it. This situation will cause this round of forwarding to be
invalid, so it cannot guarantee a lower propagation delay.
The schemes [16], [17], [18], [19], [20] that only consider the
forwarding neighbors introduce some fixed strategies into
the decision making of forwarding neighbors. The selection
of neighbors is not completely random but is based on
factors such as distance and topology to select the neighbor
nodes that need to receive packets. Still, these schemes do
not consider the forwarding probability. Under this condi-
tion, the relay UAV still performs the same processing when
receiving duplicate messages, resulting in more redundant
message packets. In addition, these schemes [14], [15], [16],
[17], [18], [19], [20] do not consider the neighbors’” historical
packet reception because getting the historical record is hard
in dynamic distributed MEC environment. The dynamic
change of the topology causes the neighbors around the
UAV to change. Finally, these schemes do not distinguish
between old and new neighbor nodes, which will cause the
relay node to send redundant message packets to nodes that
have already received the packet. This situation will cause
a decrease in propagation efficiency, thereby prolonging the
propagation delay.

Since the UAV needs to decide the forwarding probabil-
ity and neighbors in multiple rounds, the gossip improve-
ment is a sequential decision problem [21]. For such prob-
lems, reinforcement learning is a recognized solution, but
there are two challenges to its use in gossip broadcasting.

e First, in each round of gossip broadcasting, UAVs do
not know the impact of the current decision for the final
propagation delay. Due to the reward of final propagation
delay obtained when gossip broadcasting stops, the UAVs
cannot learn the forwarding strategy without extra help,
which is a sparse reward problem [22]. We can design
some rewards to help the UAVs learn the forwarding

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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strategy. However, the design relies on domain knowledge,
which is a hard problem.

e Second, the two actions of forwarding probability and
neighbors need to be decided simultaneously, so there is
a problem of combinatorial action space explosion [23].
At the same time, the dynamic changes of neighbors make
UAV hard to learn the latent influence for action decisions
between UAVs.

To address the above challenges, we first construct a
data structure Bitgraph that can record the packet recep-
tion of UAVs in a dynamic distributed environment. With
the help of Bitgraph, we design a new reward function
through reward reshaping, helping the UAV to learn the
better forwarding policy in multiple rounds of propagation.
Then, we formulate gossip broadcasting as a partially ob-
servable Markov decision process. Finally, we propose a
multi-agent deep reinforcement learning (MDRL) algorithm
named BDGN by innovatively combining the graph atten-
tion mechanism and branching structure network. Com-
pared to conventional MDRL, BDGN can make decisions
on forwarding probability and neighbors simultaneously,
and consider the two-hop dependencies between the UAV
and its neighbors in a dynamic topology environment. Our
specific contributions are as follows:

1) We propose Bitgraph to record packet reception by UAVs
and design a reward function based on it. Bitgraph is a
customized binary string and is updated by gossip about
gossip. Through reward reshaping [24], we develop Bit-
graph filling percentage and message redundancy in a
single round as the intrinsic reward of the UAV to guide
each round of gossip forwarding decision, and we also
consider the final propagation cost to help UAV learn the
optimal strategy.

2) We design a multi-agent deep reinforcement learning
algorithm Branching Deep Graph Network (BDGN).
Specifically, we use different actor networks to decide
on different actions and reduce the dimensionality of the
combined action space from O(n?) to O(n). Meanwhile,
to cope with a dynamic topology environment, we use
a deep graph neural network to learn the dependencies
between the UAV and its new neighbors.

3) Using Gym’s code framework, we implement a proto-
type system for UAV broadcast with the network sim-
ulator NS3 and the machine learning library Pytorch.
Experimental results show that our scheme reduces the
propagation delay by 29.2% and the number of redun-
dant messages by 20.7% compared to the existing works.

The rest of this paper is organized as follows. First, we
review related work of gossip improvement in Section 2.
Then, we introduce preliminaries in Section 3. Section 4
presents the problem formulation. Section 5 describes our
proposal for the intelligent adaptive gossip-based broadcast
protocol. In Section 6, we use NS3 and Pytorch to conduct
experiments on the proposed scheme and analyze the exper-
imental results. Finally, the conclusion is given in Section 7.

2 RELATED WORK

Numerous studies [10], [12] revealed gossip-based broad-
cast performance is related to the topology, and adjusting
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the selection strategy of forwarding probability and neigh-
bors can improve the performance of gossip protocols.

2.1 Improvement on forwarding probability selection

Kyasanur et al. [14] proposed an adaptive gossip approach
named smart gossip. This work aims to choose the correct
value for every node based on network topology in a wire-
less sensor network. Smart gossip quantifies the importance
of a node using a distributed algorithm that takes into
account the local topological properties around a node.
Specifically, a node chooses its gossip probability according
to how many other nodes depend on this node for the
reception of a gossip message. The biggest drawback of this
scheme is that dynamic changes in topology can destroy the
relationship between nodes, so this scheme is only suitable
for static networks.

To improve the efficiency of the gossip, Cheng et al.
[15] proposed a Binary Exponential Backoff Gossip (BEBG)
algorithm that combines the binary exponential backoff
algorithm with the random gossip algorithm. The message
propagation strategy of BEBG is that the more times a
node receives the same message, the lower the probabil-
ity of continuing to propagate that message. Besides, the
combination of the PULL mechanism makes BEBG achieve
redundant message drop while reducing the propagation
delay. Although this scheme does not require much complex
computation, it is not given at what decreasing gradient the
probability should be in different cases.

However, these schemes [14], [15] of forwarding prob-
ability selection are still completely random in selecting
neighbors and do not guarantee an ideal propagation delay.

2.2

Tian et al. [16] aimed to improve the reliability and efficiency
of gossip by using the bionic attractor selection model with
a strong premise that the location and speed of vehicles are
used as auxiliary information to make forwarding neighbor
decisions. Matos et al. [17] proposed an enhanced version
of the gossip protocol called Brisa, which discovers special
structures such as trees, directed acyclic graphs, and forests
under the current topology by maintaining a view called
HyParView, and achieves more efficient propagation based
on these structures. However, it will cost much time to find
these special structures. Ozkasap et al. [18] proposed a hi-
erarchical version of the gossip protocol called ProFI. ProFI
divides the hierarchy containing peer nodes by constructing
dominating sets and using an energy consumption model to
make some nodes switch to the idle state, thus eliminating
some unnecessary gossip forwarding operations.

Esposito et al. [19] achieved the improvement effect by
introducing some determinism in gossip forwarding neigh-
bor selection by introducing a policy learning mechanism
on the basis of the proposed utility function that allows each
node to efficiently determine the best forwarding neighbor
node based on the actions taken by other nodes and the loss
patterns in the system. However, this solution lacks some
of the advantages of a fixed strategy, such as the inability
to guarantee a 100% propagation coverage. Altoaimy et al.
[20] proposed two improved versions of gossip protocols
based on distance measurement. The first proposed protocol

Improvement on forwarding neighbors selection
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NNGossip uses the nearest neighbor distance measurement
while the second proposed protocol CBGossip uses city
block distance measurement to calculate the scores of the
neighbor nodes to be selected by different methods, and
based on the highest scores, the forwarding neighbor selec-
tion is made. Despite the simplicity of the scheme, it still
requires some additional information about location and
power to be entered when calculating forwarding neigh-
bors.

However, these schemes [16], [17], [18], [19], [20] of
forwarding neighbors selection still perform equal process-
ing when receiving duplicate messages, resulting in more
redundant message packets in the system.

2.3 Customized improvements made for blockchain

In addition to the two aforementioned approaches, there
is a category of work that is customized for blockchain
improvements. Berendea et al. [25] made four enhancements
to gossip, which are infect upon contagion, digests for
the push phase, randomization of the initial gossiper and
removal of the pull component. The main idea of work [25]
is to simplify and merge some operations, thus improving
the efficiency of gossip. Cason et al. [26] presented Semantic
Gossip, a method that enhances traditional gossip with two
techniques: semantic filtering and semantic aggregation.
Semantic filtering lets the gossip layer discard unnecessary
messages based on consensus logic. On the other hand,
semantic aggregation allows processes to combine multiple
messages into a single message that carries the same mean-
ing as the consensus. Adopting the two semantic techniques
improves the latency of gossip-based Paxos from 7% to
24%. Xu et al. [27] introduced the idea of density clustering
to propose the DC-Gossip broadcast protocol, constructing
a stable network architecture with highly dense connec-
tivity for the blockchain network layer. This architecture
can effectively reduce the propagation latency and ensure
the integrity of the distributed ledger. Saldamli et al. [28]
proposed a predictable correction algorithm and a checking
algorithm that allows gossip to reduce the number of redun-
dant messages while maintaining propagation efficiency.

TABLE 1
A COMPARATIVE SUMMARY OF GOSSIP IMPROVEMENT
SCHEMES
Schemes Design Factors Method _Function
F1 F2
Kyasanur et al. [14] ~ Forwarding probability Distributed algorithm X Vv
Cheng et al. [15] Forwarding probability Fixed strategy v v
Tian et al. [16] Forwarding neighbors Heuristic algorithms X X
Matos et al. [17] Forwarding neighbors Distributed algorithm X Vv
Ozkasap et al. [18] Forwarding neighbors Fixed strategy )
Esposito et al. [19] Forwarding neighbors Distributed algorithm v /7
Altoaimy ef al. [20] ~ Forwarding neighbors Fixed strategy X X
Berendea et al. [25] Node behavior Specific rules X X
Cason et al. [26] Message semantics Specific rules v o X
Xu et al. [27] Dense connectivity Specific rules v o X
Saldamli et al. [28] Network architecture Specific rules v X
Ours probability & neighbors  Reinforcement learning v /
Note: F}
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However, the above schemes [25], [26], [27], [28] are all
customized improvements made for the blockchain, corre-
sponding to specific consensus algorithms. Thus they cannot
be directly applied to our scenario.

In summary, the forwarding probability and neighbors
of the gossip protocol are two main factors that are dif-
ficult to balance. We give a comparison of the respective
schemes in TABLE 1. It is worth noting that none of the
above schemes [14], [15], [16], [17], [18], [19], [20], [25], [26],
[27], [28] consider the neighbors” historical packet reception.
The high speed dynamic change of the topology causes
the neighbors around the UAV to change frequently. The
existing works do not distinguish between the old and
new neighbor nodes, which may send redundant message
packets to the nodes that have already received the packets,
leading to a decrease in the propagation efficiency and thus
prolonging the propagation delay.

3 PRELIMINARIES

In this section, we introduce the preliminaries of the gossip
protocol, gossip about gossip, and multi-agent deep rein-
forcement learning involved in the proposal.

3.1 Gossip Protocol

The gossip protocol, also known as the epidemic protocol, is
a well-known message propagation method [29]. As shown
in Fig. 2, rumor mongering is a complex epidemic. The
node state is either susceptible, infective or removed. The
susceptible state means that the node does not know the
update. The infective state means that the node knows the
update and is actively sharing it with others. The removed
state means that the node knows the update but is not
spreading it. The rumor mongering is as follows. We plant
a rumor with the red node, which becomes infective and
propagates to others randomly. Every node hearing the
rumor also starts propagating. Then, with probability 1/Xk,
the infective node loses interest in sharing the rumor until it
becomes removed.

QO : Infective state
QO : Susceptible state
O : Removed state

T,: Infective node start spreading rumors
T»: Susceptible nodes start the second propagation

Ts: Susceptible node starts the third propagation, and the
removed node is not interested and no longer propagates

Fig. 2. The rumor mongering of gossip.

3.2 Gossip about gossip in Hashgraph

Hashgraph algorithm is an Asynchronous Byzantine Fault
Tolerance (ABFT) consensus algorithm proposed by Baired

4

et al. [30], which replaces the traditional blockchain data
structure with a direct acyclic graph. Inspired by the piggy-
back propagation idea, Hashgraph propagated a packet re-
ception record of each node when propagating the message
packet. The above process is called gossip about gossip. As
shown in Fig. 3, if node B has already received a message
M from node A when node B propagates the message M
to node C, it will tell node C about the action "node A
propagates message M to node B”.

M
O—0
C M O
-
O (O
N4
Node A Node B Node C

Fig. 3. The gossip about gossip.

3.3 Reinforcement Learning
3.3.1 Deep Reinforcement Learning

The problem studied by reinforcement learning is that of an
intelligent agent ¢ interacting with its environment, which is
a sequential decision process [21]. When interacting with
the environment, the agent ¢ learns an optimal strategy
through continuous trial-and-error exploration. Formally,
the sequential decision process is modeled as a Markov
Decision Process (MDP), which can be represented as a
triplet {S, A, T, R}, where S is the state space, A is the
action space, 7' is the state transition function, and R is the
reward function. Specifically, the agent ¢ chooses an action
a(t) € A at a timeslot ¢ based on the state s(t) € S. When
the agent i performs an action a(t), it moves to the next
state s(t + 1) with a probability T'(s(t),a(t), s(t + 1)) and
receives an immediate reward r(t) = R(s(¢),a(t),s(t + 1))
from the environment. Therefore, the action value function
Q,, for the timeslot ¢ can be expressed as:

T
Qu(s(t),a(t)) = Eu[> " r(k)] (1)
k=t

where p represents a deterministic policy in practice, v €
(0,1) is the discount factor. In summary, the goal of the
agent i is to learn a strategy p to maximize the action value
function @), which can be expressed as:

p' =argmax @, (S, A) )

where p* is the optimal strategy.

Recently, we often utilize a function @) to represent the
approximate computation, Q4 ~ @, and the function Q4
is usually a neural network with parameters ¢.

3.3.2 Deep Graph Netural Network
The multi-agent reinforcement learning of deep
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feature vector h! by multi-layer perceptron (MLP) for low-
dimensional input. The convolutional layer integrates the
feature vector h! in the local region and generates the latent
feature vector h;' and h, ‘. By stacking two layers, agent
i can get two-hop information while only communicating
with its neighbors.

Encoder

Convolutional
Layer

Convolutional
Layer

Fig. 4. The multi-agent reinforcement learning algorithm DGN.

4 PROBLEM FORMULATION

In this section, we first give the network model. Then, we
give the problem definition. The notations frequently used
are illustrated in TABLE 2.

TABLE 2
NOTATION DEFINITIONS

Notation Meaning

t,T Timeslot, The maximum timeslot of an episode
Decom The communication range of UAV

m; The message received indicator

R; The current redundant message numbers
B; The current Bitgraph filling status

HN; The neighbor list of the UAV ¢

Dg The forwarding probability

Nab The forwarding neighbors

ot Local observation of UAV i at timeslot ¢
Oy The observation space at timeslot ¢

aq The sub-action

Tt The reward at timeslot ¢

4.1 Network Model

In our network model, we consider a scenario with a
number of UAVs N4, = {1,---, N}. These UAVs will be
arranged to collect information in a specific area. As shown
in Fig. 5, the network model of our proposal consists of
UAVs. Due to the limited communication range Do, of
UAUVs, not all UAVs are within the communication range of
each other. The gossip protocol is an efficient and scalable
broadcast protocol, where each UAV constructs a locally
maintained neighbor list HN; through heartbeat packet
messages before broadcasting. For example, UAV i has three
neighbors. After the UAV i sends a message, the rest of
the UAVs will relay the received packets to several of the
surrounding neighbors with a certain probability. And this
method can mitigate the impact of packet loss caused by

5

unstable link characteristics in wireless networks. However,
the settings of forwarding probability p, and forwarding
neighbors N,,;, in the gossip protocol can significantly affect
the effectiveness of the gossip protocol in different network
conditions [12].

Neighbor,

=

B SRR
Neighbor; VAV St S
‘ o sl
Neigi]borl UAV

Fig. 5. Network model.

Therefore, we expect UAVs to adaptively adjust the
propagation strategy of the gossip protocol in a dynamic
environment by collaborating. Specifically, since the net-
work topology and other network conditions are different
when UAVs act as an edge pool, individual UAVs cannot
be informed of the global network conditions due to their
limited sensing ranges. We allow UAVs to sense the local
network conditions on a larger scale through a collaborative
approach and further decide their respective gossip protocol
policy settings based on the sensing results.

4.2 Problem Definition

Intending to maximize the gossip efficiency, we optimize
the forwarding probability p, and forwarding neighbors
Noup policy of UAVs, subject to the maximum probability
constraint, one-hop neighbors constraint and spacial con-
straints. Therefore, the propagation policy m determines the
performance of the gossip and has to be optimized for
message redundancy minimization and propagation delay
minimization.

We introduce two global metrics to evaluate the per-
formance of the Bitgraph-gossip protocol and illustrate the
target problem we want to solve. According to [4], we
evaluate the performance of the gossip strategy from the
two indicators of message redundancy and propagation
delay.

The first indicator is message redundancy, which repre-
sents the average number of redundant messages received
by each UAV in the past ¢ timeslots. For example, at any
timeslot ¢, if the UAV receives previously received messages,
these messages are counted. Therefore, the message redun-
dancy can be expressed as:

MRt = =1
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and the denominator N (N —1)(N —2) ! is the total number
of redundant messages received by all UAVs in extreme
cases. Therefore, M R; € [0,1] is established. We refer to
the message redundancy of the last timeslot ¢ as the final
message redundancy, denoted as M Rt = M R;;—r, which
is used to evaluate the performance of the UAV cluster in an
episode.

The second indicator is the propagation delay, which
represents the average time it takes for the message packets
received by each UAV in the past ¢ timeslots to arrive at
the UAV. During broadcasting, each UAV j ¢ Noyaw will
broadcast the data packet, and the sending time is recorded
as start;, and when the other UAVs receive the data packet,
the receiving time is recorded as end;. Therefore, the prop-
agation delay can be expressed as:

N
:21 ve(1)
PL= 5 v 1) @

where vy(i) = 3_; end; — start; is the time taken by UAV i
to receive other UAVs j € Ny, \{i} in timeslot t, and N is
the number of UAVSs |A,,4,|- We refer to the message redun-
dancy of the last timeslot T as the final propagation delay,
denoted as PLy = PLy;—r, which is used to evaluate the
performance of the UAV cluster in an episode.

Therefore, the objective of the proposed propagation
algorithm design is to minimize message redundancy and
propagation delay.

Further, we combine these two metrics and define the
overall goal as the redundancy-latency (RL) score, expressed
as: 1

~ MR, x PL,

Hence, the objective function of distributed propagation
policy optimization problem for UAVs can be formulated as
follows:

RL, )

T
max RL = Z RL; (6)
t=0
S-tnrmin S Z‘f S xmaX7Vi S Muw (7)
Ymin < yf < %nax,vz‘ € Nu(w ®)
(@5, y;) # (25, 95), 3.5 € Nuao, ¥t )
p; € {0,10%, 20%, . .., 100%},Vt, Vi € Nyaw  (10)
7tLb g Nuav7Vt7Vi S Nuav (11)

where (7) and (8) indicate the constraints for the UAVs’
position, which has to be in the airspace above the MEC

1. In extreme cases, any two UAVs are connected. If UAV; is the
source. Other UAVs will forward the message to the rest of the UAVs
(except source U AV7) after receiving the message. From the perspective
of UAV3, it will receive N-2 redundant messages. Likewise, UAV, to
U AV will receive N-2 redundant messages. Thus, in the case of UAV;
as the source, the number of redundant messages is (N-1)(N-2). We
assume that each node is a message source, so the total number of
message redundancies is N(N-1)(N-2).
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needed within a fixed height. Constrain (9) is invoked to
ensure that there is no collision between UAVs. Constrain
(10) specifies the UAV forwarding probability of between 0
and 100%, with 11 grades. Constrain (11) indicates the UAVs
forwarding neighbors are some of the one-hop neighbors.

However, it is challenging to achieve the above target.
This is because the forwarding probability and neighbors
of the gossip protocol are two contradictive factors that
are difficult to balance. Besides, it is a control problem
that the target problem cannot solve via the conventional
dynamic programming method with an unknown environ-
ment, which is a model based approach. To overcome the
above issue, we choose to use deep reinforcement learning
(DRL) to find optimal solutions, which can learn policy from
interactive experience without requiring prior information
about the environment. However, since the challenge men-
tioned above, UAVs’ rewards are sparse and affected by the
actions of many other UAVs. Hence, the objective function
of the above problem can be formulated as follows:

7 = argmax RL (12)

where T’ is the last timeslot in the episode, 7 is the UAV pol-
icy of forwarding probability and neighbors. The solution to
this problem is presented in the next section.

5 OUR PROPOSAL: INTELLIGENT ADAPTIVE
GoOSSIP-BASED BROADCAST PROTOCOL

In this section, we give the design of our intelligent adaptive
gossip-based broadcast protocol. We first give the overview
of our proposal. Then, we give more details.

5.1 Overview

To address the defined problem, we first introduce a data
structure, Bitgraph, to record the packet reception of UAVs.
Inspired by the gossip about gossip from Hashgraph, our
Bitgraph can update during gossip propagation. We give
the updating instruction with a six-step demo, including the
stopping and consistency check rules. Next, we formulate
the gossip broadcasting as a partially observable Markov
decision process (POMDP). In each decision cycle, UAVs
choose an action and get a reward according to the partial
observation from the environment. It is worth noting that a
well-designed reward function is presented to guide UAVs
in learning how to gossip based on the Bitgraph. We extract
the change situation between two rounds as an intrinsic
reward. Hence, we can resolve the sparse reward problem.
Then, considering there are two factors as actions need to
decide simultaneously, we propose our reinforcement learn-
ing algorithm BDGN, consisting of a branching structure
and DGN. Each network branch deals with a sub-action.
DGN convolves the features of adjacent UAVs, allowing
UAVs to explore strategies in the environment until they
learn a good model. The overview of our proposal is shown
in Fig. 6.
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Fig. 6. The overview of our proposal.

deployment, the string length is the number of members
squared, and the string is partitioned and subdivided in
the logical order of the members. As shown in Fig. 7, for
example, with three UAVs, the string length is 9, each UAV
has a corresponding zone in a logical order, and each zone
has corresponding bits in logical order. In UAV A’s partition,
the first 1 means that UAV A sent its message packet. The
second 1 means that UAV A received the message packet
sent by UAV B, and the third 0 means that UAV A received
no message packet from UAV C. In the partition of UAV B,
the first and third 0 means that UAV B did not receive the
message packets sent by the corresponding bit UAV A and
C. The second 1 means that UAV B sent its message packet
outward. In the partition of UAV C, the first and second 1
mean that UAV C received the message packets sent by UAV
A and B, and the last 1 means that UAV C sent its message
packet outward.

Corresponding bit in each zone

UAVA UAVB UAVC

110 W
I

UAV A UAV B

111
UAV C

Zone partition

Fig. 7. Diagram of Bitgraph from UAV A’s viewpoint, this Bitgraph be-
longs to UAV A, and the underlined bit represents whether there is a
message packet sent from the corresponding UAV.

5.3 Gossip propagation with Bitgraph updating

We give a demo of gossip propagation with Bitgraph updat-
ing. Before the formal description, we introduce two rules.

The Bitgraph-gossip protocol stopping rule is: When the
UAV’s Bitgraph is full of 1, the UAV stops gossip and
Bitgraph updating after the last message forwarding.

The Bitgraph-gossip protocol consistency check rule is:
When the UAV finds that its Bitgraph is not yet filled with
1 (i.e., when it has not yet received all the message packets)
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without listening to the messages sent to itself, the UAV
can communicate with the corresponding neighbor UAV
and request retransmission of the missing message packets
according to the Bitgraph.

For brevity, we introduce Bitgraph-gossip propagation
with three UAVs as an example and specify that the UAVs
choose only one neighbor UAV for message forwarding
when performing gossip propagation. As shown in Fig.
8, after the last round of message broadcast, the Bitgraph
of the UAVs first performs a zeroing operation. Then, the
UAUVs generate message packets separately, update the 0 to
1 within the Bitgraph, and propagate the message packets
and their Bitgraphs through the gossip protocol. We divide
the gossip propagation process into six steps.

L1 I i

111111 Stop 111111
[SERSININ 1111
. ossip and
Step 6: 11110111 gBAtp n 11110111
C sends a 100110 111 I 100 110 111
message to A 100 110 111 updates 100 110 001
100010 111 100 010 001
111110111 [SRRARRAN 111 111111
Step 5: 111110 111 [SERTRRIN [EEREERTT
11110111 111110 111 11110111
B sends a 100110 111 100 110 111 100 110 111
message to C 100 110 001 100 110 001 100 110 001
100 010 001 100010 001 100 010 001
. 111111 100 110 111
Step 4: 11110111
A pd 111110111 11110 111 100 110 111
sends a 100 110 111 100110 111 100110 111
message to B 100 110 001 100 110 001 100 110 001
100 010 001 100010 001 100 010 001
Step 3: HTTI0T1 100 110 000 100110 111
Csends a 100110 111 100 110 000 100 110 111
message to A 100 110 001 100 110 000 100 110 001
100 010 001 100 010 000 100010 001
Step 2:
B sends a 100 000 000 100 110 000 100 110 111
100 000 000 100 110 000 100 110 001
message to C 100 000 000 100 010 000 100 010 001
“Stept: | | | o | |1
Asends a 100 000 000 100 110 000 000000 001
message to B 100 000 000 100 010 000 000 000 001
Initial state 100 000 000 000 010 000 000 000 001

UAV A UAV B UAV C

Fig. 8. Diagram of message broadcast under Bitgraph (gray shaded
binary string represents the latest Bitgraph of the UAV at the moment,
red shaded means the UAV’s Bitgraph is filled in this step, a red circle
means the UAV has received all the message packets actually in this
step).

Step 1: When UAV B receives a message from UAV A,
UAV B updates UAV A’s partition in Bitgraph to 100, which
means that UAV A generated and sent its message packet.
In the same way, UAV B updates UAV B'’s partition to 110,
which means that UAV B generated and sent its message
packet and received UAV A’s message packet.

Step 2: When UAV C receives a message from UAV B,
UAV C updates UAV A’s partition in Bitgraph to 100, which
means that UAV A generated and sent its own message
packet. Similarly, UAV C updates UAV B’s partition to
110, which means that UAV B generated and sent its own
message packet and received UAV A’s message packet, and
it updates UAV C’s partition to 111, which mean
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UAV B has not received UAV C’s message packet, and it
updates UAV C’s partition to 111, which means that UAV C
has received all the message packets.

Step 4: UAV A sends a message packet to UAV B. When
UAV B receives the message from UAV A, UAV B updates
the Bitgraph to 111 111 111, at which point UAV B receives
all the message packets and assumes that the rest of the
UAUVs have also received the message packets. UAV B will
forward the message packet one last time, and after sending
the message, UAV B will stop gossip and the Bitgraph
updating.

Step 5: UAV B sends a message packet to UAV C. UAV
C receives the message and updates the Bitgraph to 111 111
111, at which point UAV C receives the message packet and
assumes that the rest of the UAVs have also received the
message packet. UAV C will forward the message packet
one last time, and after sending the message, UAV C will
stop gossip and Bitgraph update. Similarly, UAV C will
forward the message packet one last time.

Step 6: UAV C sends a message packet to UAV A. UAV
A updates Bitgraph to 111 111 111, at which point UAV A
receives the message packet and assumes that the rest of
the UAVs have also received the message packet. Similarly,
UAV A will forward the message packet one last time and
then go into silence.

Due to the unstable link, there will be packet loss in gos-
sip messages. If UAV A does not receive the message packet
from UAV C in step 6, UAV A’s Bitgraph is still 111 110 111.
In this case, UAV A thinks that UAV B has not yet received
all the message packets, so message synchronization will
be performed between UAV A and B. Specifically, UAV A
requests the Bitgraph of UAV B. Since the received Bitgraph
is 111 111 111, which means that UAV B has received all
the message packets, UAV A updates its Bitgraph to 111 111
111. At this point, the consistency check is over, and all three
UAUVs have received all the message packets.

5.4 POMDP Formulation

The gossip broadcasting of UAVs can be formulated as a
POMDP since the UAVs make sequential decisions with a
partial observation limited by communication range. The
POMDP can be defined as M = {S,0,A,T,R,O,b}.
However, due to the whole environment being unknown
for UAVs, state transition function 7°, observation function
O, and belief b are unknown. We give the rest of the POMDP
as follows.

5.4.1 State Space

The state space S in our system is the all UAVs’ local state.

The mathematical expression of the state space in the ¢-th
timeslot can be expressed as:

St = (mh Ri, Bl) (13)

where i € Nygw, My represents whether the UAV ¢

receives the message packet, R; represents the current mes-

sage redundancy of the UAV i, and B; represents the current

Bitgraph filling status of the UAV i. Hence, the state space
is S = {s'}, where i € Nyq0.

5.4.2 Observation Space

For UAV ¢ in the ¢-th timeslot, it perceives a local obser-
vation o} from the environment. We describe in Section 4.1
that the communication range to a UAV i is D, so the
observation result is the case of other UAVs within the range
D.om centered on UAV ¢. Therefore, the observation is:

o; = (mj, R, By) (14)

where j € (HN; ). Hence, the observation space is O =
{0}, where i € Nqy-

5.4.3 Action Space

In the process of broadcasting through the gossip protocol,
the UAV i can decide on its probability p, of forwarding
packets and forwarding neighbors A,,;. In terms of forward-
ing probability, the UAV ¢ needs to decide with a proper
probability to forward the received packet. We divide the
probability into multiple grades, and the action space of
forwarding packet probability is

Ay=1{0,10%,20%, - - - , 100%} (15)

In determining the forwarding neighbor, as described
in Section 4.1, the UAV ¢ maintains a neighbor list HN;,
and it needs to decide which neighbor UAV to forward the
message to, and the action space of the forwarding neighbor

iS AQ :Nnb g HJ\/Z'

5.4.4 Reward Function

As described in subsection 4.2, the goal of UAVs is to
maximize the RL score. Therefore, a straightforward idea is
to directly use this score as a reward [32], ie rf = RL;. How-
ever, since our system is modeled as an ad hoc network of
UAVs with partially observable capabilities, global metrics
are not available during the training process of multi-agent
reinforcement learning. Furthermore, even though we can
obtain RL by means of centralized training, due to partially
observable constraints, distributed models have information
errors in predicting global RL, which may lead to extremely
unstable training. Therefore, we want to design a reward
function that only depends on partially observable informa-
tion. We hope that such a reward function can encourage
UAUVs to achieve better RL scores, which represent lower
message redundancy M R; and lower propagation delays
PL;. Since our reinforcement learning scheme is to obtain
the maximum cumulative reward:

RE=3"" ST 4t (16)

Ideally, we want the proposed reward function to be posi-
tively related to the RL score, i.e.

N T Tt t _ 1
Zz’:l Zt:l vy o RLr = MRy x PLp

where 7 is the discount factor.

According to the above analysis, we want to use propa-
gation delay and message redundancy as the design basis
of the reward function. However, the propagation delay
reward Tystclock

17)
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The idea is: When people forward news in real life, they will
lose the desire to spread the widely circulated news. And
when spreading the news, they tend to spread to people
who don’t know it.

Therefore, we design an intrinsic reward mechanism
where at each timeslot ¢, the UAV checks the local message
redundancy and the filling situation of the Bitgraph. For
message redundancy, we divide the number of redundant
messages by the number of UAVs in one-hop communica-
tion and then take the reciprocal of the calculation result as
a reward 7" *"". For the filling situation of Bitgraph, we
calculate the filling percentage of 1, and then subtract the
filling percentage of timeslot ¢ from the filling percentage
of the previous timeslot ¢-1. If the subtraction result is 0,
the reward 7p;¢c10ck 1S recorded as -1; otherwise, The ryitciock
reward is recorded as the result of the subtraction multiplied
by 100.

To sum up, the reward function we propose is mainly
composed of three parts, namely propagation delay reward
Thitclock, Message redundancy reward r;?"*" and Bitgraph
filling percentage reward r."*9" %"

Specifically, the propagation delay reward 74;¢ciock in the
first part comes from our Bitgraph. Since Bitgraph will be
cleared before broadcasting, when it is cleared, the UAV ¢
will turn on the timing clock locally. With the progress of
broadcasting, when the Bitgraph is filled with 1, it means
that the UAV 1 thinks that everyone has received the mes-
sage packet, and it stops the timing clock locally. We get
the timing results as ¢;. And the delay reward for this
broadcasting is:

1

Tbitclock = 7T~

i (18)

~ The second part is the message redundancy reward
r9"°"P which is defined as the average message redun-
dancy of UAV ¢ and its neighbors, which aims to encourage
adjacent UAVs to cooperate. And the message redundancy
reward is:

count

pigrow —q o M Ronchop (19)
n ncoun,
onehop t
where n,,.,,, represents the number of UAV groups

containing UAV ¢ and its neighbors within one hop,
and ng°“"'represents the number of redundant messages
recorded by these UAVs in the timeslot ¢.

The third part is the local Bitgraph filling percentage

reward
100 x (bt — bt—l)
O7 bt - btfl = 0

bit h
rtz graph __

(20)

where b, is the filling percentage of the bitgraph in the times-
lot ¢, which is the number of 1 in the bitgraph divided by
the bitgraph string length, and b;_; is the filling percentage
of the bitgraph in the previous timeslot ¢ — 1.

In summary, our heuristic reward function can be writ-
ten as:

T-1 ; bi h
=3 A THO001 X O 0.1 x pyoert

FT(0.01 x 77" 0.1 x P97 101 X Phiverock)
(1)
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Among them, v is the discount factor. Since the most
important evaluation index is the propagation delay, the
proportion of future rewards rp;tci0ck 1S required to be large,
and the discount factor v € [0, 1] should be close to 1.

5.5 Branching Deep Graph Network

Now, we introduce the designed branching deep graph
network (BDGN). BDGN is an improved deep learning
reinforcement algorithm suitable for the gossip propagation
protocol of UAVs. It is designed to process two sub-actions
simultaneously under the propagation strategy of the gossip
protocol. In this scheme, all UAVs communicate through
the ad-hoc network and learn the gossip protocol policy
in a distributed manner. Next, we introduce the detailed
composition of the BDGN.

The design inspiration for BDGN comes from Branching
Dueling Q-Network (BDQ) [23] and Deep Graph Network
(DGN) reinforcement learning [31]. Both are improvements
on DQN, in which BDQ designs a shared decision mod-
ule based on DQN, which is followed by several network
branches to deal with different sub-actions. DGN convolves
the features of adjacent UAVs, allowing the agent to extract
potential features from gradually increasing receptive fields
to learn cooperative strategies. Compared to the conven-
tional multi-agent deep reinforcement learning-based algo-
rithm, we innovatively combine graph attention mechanism
and branching structure network. Specifically, we have a
shared decision module followed by two network branches
corresponding to forwarding probability and neighbors.
Besides, the shared decision module comprises two graph
attention layers designed specifically for processing graph-
structured data and considering node relationships. It is a
suitable choice for capturing complex dependencies in the
graph [31], [33].

In this subsection, we will introduce the specific compo-
sition of BDGN, as shown in Fig. 9. From top to bottom in
Fig. 9(a), the first is the observation embedding layer, the
second is the branch graph attention network (GAT) layer,
and the third is the Q-value prediction layer. Fig.9(b) gives
the specific structure of the graph attention network layer.
In Fig.9(c), the importance of the neighborhood around the
distribution UAV 1 is different due to the spread of the
message, i.e., the highest score for UAV 2 and the lowest
score for UAV 3. With the second GAT layer, the cooperative
scope of UAV 1 expands to 12 UAVs. Such additional
information helps UAV 1 pay more attention to the direction
of the propagation of the message that needs to be received.

5.5.1 Observation Embedding

First, given the local original observation data, that is,
whether the UAV i receives the message and the message re-
dundancy of other UAVs within the communication range.
We embed observation data into a latent vector through a

multi-layer perceptron:
e; = Embed(ol) = o(ol!W, + b,) (22)

where oﬁ is the observation of UAV ¢ at timeslot ¢, detailed
composition of o'
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Fig. 9. The proposed BDGN.

e; represents the current observation situation of UAV i.
Before input to BDGN, the reason for using MLP to process
observation instead of using raw one-dimensional data is
that MLP can transform observation into a more compact,
higher-dimensional representation. In this way, MLP can
help the network to learn the important features in the
data, thus improving the efficiency and performance of
subsequent tasks.

Then, the embedding of each UAV ¢ will be transmitted
through the edges between UAVs so that each UAV can
obtain information about itself and its surrounding neigh-
bors. For convenience, we denote the UAV ¢ and its one-hop
neighbor set as

NB; = {j|Vjst. AM(i,5) = 1}

where AM is the adjacency matrix of the UAVs. Corre-
spondingly, we denote the observation space O; and em-
bedding space &; of all UAVs in the set N'B; as follows:
0; = {0j|Vj S ./\/'Bz}
& = {€j|Vj S NBZ}

(23)

(24)

5.5.2 Branch Graph Attention Network

In a neighbor set N'B3;, the importance of each neighbor
UAV to UAV i should be different. For instance, when UAYV 3
finds that neighbors in a certain direction have low message
redundancy, these UAVs should be more important to <.
Meanwhile, we adopt the graph attention as the convolution
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@snaingcrapn kernel to process the graph data and utilize the graph

Attentional Network

Graph Attention Layer

r attention mechanism [34] to decide the importance of each
t UAV as shown in Fig.9(b), calculated as:

_ exp(T - Wqe; - (WKej)T)
ZkeNBi exp(T - Wge; - (WKek)T)

Further, the aggregation of neighbors’ information of
UAV i can be expressed as:

gl = J((ZjeNBi a;j - Wyej) - Wy + by)

where a;; is the attention weight of the importance of UAV
j to UAV . 7 is a scaling factor. Wg, Wy, Wy, are the
learning matrices that map the embeddings e; to query,
key, and value vectors respectively [34]. Wy, by are also the
learning matrices.

The above is the computation process of graph attention
layer (GAT) [35]. As shown in Fig. 9(a), we stack two GAT
layers together, which can provide a two-hop perception
field for each UAV. Therefore, we have the output of second
layers can be expressed as:

g; = GAT(g})

(25)

aij

(26)

27)

The UAV i can obtain the embedded information of its
neighbors in the first layer from the second layer GAT, so
it obtains the information of all UAVs within two hops
of UAV i. Note that in this process, UAV ¢ only needs to
communicate with UAVs within one hop. Specifically, the
outputs of each layer of GAT are concatenated as the final
output:

gi = concatennate(g}||g?) (28)

When concatenating GAT 1 with GAT 2, it is worth
noting that GAT 1 focuses on capturing local neighborhood
relationships and node-level information, while GAT 2 cap-
tures more global patterns and higher-level dependencies.

5.5.3 Q-value Prediction

At the same time, in order to enable the proposed network to
cope with the two sub-actions in the gossip strategy, BDGN
inputs the outputs in the double-layer GAT to the two action
branches respectively, where the advantage and state values
are combined through a special aggregation layer on the
action branch, and is computed with an independent state
value to produce an estimate of the distributed action value.
When the Q value on each branch is in state o! and sub-
action af, € Ay, Qq(0,al;) can be calculated through the
common state value function V' (o!) and the corresponding
sub-action advantage A,(o!,a};), where d is the label of
the branch. The common state value function V(o!) and
the corresponding sub-action advantage Aq(o!,a};) can be
expressed as:

V(o)) = o(giWa + bs) (29)

Ad(ofa afi) = G(QiWBd + bﬁd)
where W, b,, Wp,, bg,

(30)
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The calculation of Q4(0!, a;) can be expressed as:
Qa(0}, al) = V(o) + (Aa(0}, ay) — arg max Aq(o}, a,f))
alfeAq
G2))

To sum up, the process of the UAV interacting with
the environment can be summarized as follows. At each
timeslot, each UAV i acquires the observation space o, and
inputs it into the network to get action. The UAV 1mp1ement
action and gets a reward r! and a new observation space
o™ after execution.

Referring to the double DQN (DDQN) [36], we use a net-
work that updates parameters to select actions and the fixed
target network to calculate the value. The target network is a
copy of the BDGN network whose parameters are updated
every few iterations by copying the parameters from the
trained model. We update the model by minimizing the
expected value of the averaged temporal difference error.
When using the temporal difference approach, we need to
identify the temporal difference target so as to approximate
the optimal policy step by step by updating the estimated
value of the Q function. Refer to the [23], the temporal
difference target y4 can be represented as follows:

! arg max Qalo; i+l adt))

adt €Ay

2
1 _
Ya =1} +75 > Qy (ot (32)
d=1

where 0, denoting the branch d of the target network Q.
Based on the above equation, the loss function is calcu-
lated as:

N 2
= %ZZ ya — Qa(o},a))’ (33)

Once the loss L is obtained, we can use gradient descent
to update the parameters of the BDGN network iteratively
until convergence.

The proposed BDGN is summarized in Algorithm 1.
Since the UAVs are equal within the cluster, we only train
a generic model, as shown in Algorithm 1. Before the UAV
cluster is deployed as an edge pool, we initialize a BDGN
network with parameter . Similarly, we make a copy for
the target network and set an experience replay pool D = &
and a maximum number of iterative rounds V.. After that,
we randomize the locations of the UAVs. At first, let them
propagate according to the e-greedy strategy and obtain the
corresponding reward r} and observatlon space o/ ™!, and
store these experiences (o a’,rt,ol™) in the replay pool.
Then, we extract a small batch of experiences, let the model
calculate the Q value according to Eq. (30), and calculate the
corresponding loss according to Eq. (31) and Eq. (32). Next,
based on the loss and gradient descent method to update the
parameters of the BDGN network. Finally, we update the
target network only at a fixed training interval for training
stability.

5.6 Computational Complexity Analysis

In this subsection, we analyze the computational complexity
of the proposed BDGN algorithm. Referring to work [37],
we measure the computational complexity in terms of both
space complexity and time complexity.
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Algorithm 1 BDGN Algorithm

Input: Initialize a BDGN network Q of parameters 6 and
target network (Q~ with parameters 6’ < 0; replay
buffer D = @; maximum number of traning episodes
Nep.

Output: Trained parameters 6.

1: for nep = 1to Ny, do

2:  Randomly reassign the position f UAVs.
3:  Set time step ¢t = 0.
4:  while Some drones with unfilled Bitgraphs do
5: time step ¢ + +.
6: for agent Vi € N4, do
7: Obtain the observation ot
8: Select the action a!, with ¢ greedy strategy.
9: Execute the actlon afl, then obtain the corre-
sponding reward rf and next observation o‘*?.
10: Store experience (ot al,rt,0!*1) in butter D.
11: end for
12: Randomly sample a small batch of tuples from the
butter D.
13: Calculate the Q value based on (30).
14: Calculate the target y4 and loss L based on (31) and
(32).
15: Train parameter § with a gradient descent step L.
16: Update BDGN network.
17: if ¢ mod traning-interval = 0 then
18: Update target network Q~ by: 6’ «+ 0.
19: end if
20:  end while
21: end for

5.6.1 Space Complexity

For the sake of concise and understandable analysis, we
assume there are I hidden layers, each layer has ¢ neurons,
the input dimension of the observation space is s and the
output action dimension is . Then the size of the weight
matrices and bias vectors in each component of BDGN is:
1)Observation embedding layer according to the formula
(21): sc + ¢; 2)Two graph attention layers according to the
formula (24), (25) and (26): 2(3 |N'B;| - ¢ + (c2 + ¢)) H; 3)Q-
value prediction layer according to the formula (28), (29)
and (30): 3(cl 4 1). Typically, the size of the hidden layer c is
much larger than the number of layers H, the action space
[ and is similar to the input dimension s. Besides, |NB;] is
a constant. Hence, we get the space complexity of BDGN is
approximately equal to O(c?H).

5.6.2 Time Complexity

In time complexity analysis, according to the convention,
addition is not so important, and we count the number of
multiplications. Therefore, the time complexity of BDGN is:
1) Observation embedding layer: sc; 2)Two graph attention
layers: 2(|]N'B;| - ¢? + ¢?)H; 3)Q-value prediction layer: 3cl.
Typically, the size of the hidden layer c is much larger than
the number of layers H and action space [ and is similar
to the input dimension s. Besides, |N B;
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complexity of action selection is O(c>H). And we get the
time complexity of BDGN during the training process is
approximately equal to O(BN,,c*H).

6 EXPERIMENTS
6.1 Settings

Since it is difficult to carry out experiments on a real
UAVs network, as shown in Fig. 10, we adopt the dis-
crete network event simulation simulator NS-3 version
3.25 as the simulation environment of the UAVs net-
work, and the reinforcement learning framework PyTorch
1.7.1 is used to implement specific reinforcement learn-
ing algorithms. The two-part are coupled using Open
Al's GYM 0.25 code framework. Then we train in a
computer with Intel Xeon E-2176M@2.7GHz CPU and
NVIDIA Tesla T4 GPU. The code of the whole pro-
totype system has been released as open-source at the
following link: https://github.com/lzwgiter/Intelligent-
Adaptive-Gossip-based-Broadcast-Protocol. This will help
academia and industries to verify our work and, in general,
boost research toward intelligent communication in UAV-
MEC.

O PyTorch 2NS-3
T | @sute & A
—— 7 W e
3 Network| (9 [0 ® Action o 3
Update of g lJ ——— X’ \ \/;(.
( 5 OpenAl ~ \ v
Neural Network G & X[ O/

Training of Deep Neural Network Packet Transfer Simulation

Fig. 10. Architecture of the simulation environment.

In order to simulate the broadcasting scenario of the
UAVs, we add gossip protocol in the source code of NS-3
and use IEEE 802.11b to simulate the communication link
between UAVs in which the log-distance path loss model is
adopted, and the specific simulation parameters are shown
in TABLE 3.

TABLE 3
NS-3 SIMULATION ENVIRONMENT PARAMETER SETTINGS

Parameters Value

Simulation area 500*500 m
Number of UAVs 25, 50, 75, 100, 125 (default 25)
Shared data packet size 64 KB
Propagation loss model  ns3::LogDistancePropagationDelayModel
UAV speed 50-100 m/s
UAV total energy 550 KJ

Protocol Flood/Gossip/Ours

6.2 Compared Methods

We compare the proposed BDGN with the latest deep rein-
forcement learning algorithms: DQN, CommNet, and DGN.
A brief introduction of these algorithms is as follows:

1) DON. DOQN is the most widely used reinforcement
learning algorithm, mainly used for learning in a single-
agent environment [38]. Later some works use multiple Q-
networks to represent multiple agents and introduce them
into a multi-agent environment [39].
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2) CommNet. CommNet is a classic multi-agent rein-
forcement learning algorithm [40]. In view of the fact that it
is difficult for a single agent to observe the global state of
the system in the real environment, the agents improve the
learning efficiency and effect by learning and communicat-
ing.
3) DGN. DGN is a recently proposed multi-agent re-
inforcement learning algorithm that uses a convolutional
graph network as a communication module to improve
communication efficiency and collaboration effects [31].
However, it does not consider the case of multiple sub-
actions. We compare it to show the importance of shared
decision making modules.

Meanwhile, we compare the proposed message broad-
cast approach with flood based, gossip based, forwarding
probability decision based, and forwarding neighbor deci-
sion based broadcast approaches.

1) Blinded Flood based broadcasting approach (BFBA).
Multiple source UAVs send message packets to all their
neighbors. When receiving a new message packet, a relay
UAV sends it to all its neighbors. All UAVs forward a
message packet and receive some packets once, called a
round. The algorithm completes convergence when all the
UAVs in the network receive message packets from multiple
source UAVs.

2) Random gossip based broadcasting approach
(RGBA). Instead of forwarding data randomly to all its
neighbors, multiple source UAVs forward message packets
with a 60% probability to 3 randomly selected neighbors.
The relay UAV forwards the message packets with a 60%
probability to three randomly selected neighbor UAVs. The
convergence requirement of the algorithm is the same as
BFBA.

3) Changeable forwarding probability based broad-
casting approach (CFPBA) [15]. In this approach, the deci-
sion idea of the relay UAVs for forwarding probability when
receiving a message is that the more times a UAV receives a
redundant message, the lower the probability of continuing
to relay this redundant message.

4) Suitable forwarding neighbor based broadcasting
approach (SFNBA) [20]. This approach scores the neighbor
UAVs based on the distance relationship between UAVs
and selects the most suitable forwarding neighbor UAV. The
basic idea is that the closer the neighbors are, the higher the
score.

6.3 Neural Network Convergence and Reward Function
Effectiveness

6.3.1 Neural Network Convergence Comparison

As shown in Fig. 11, we demonstrate the convergence of all
tested DRL methods by the cumulative trend of the reward
function during training. We note that our proposed BDGN
converges faster and behaves more stably than other algo-
rithms. This is because a shared decision making module is
added to BDGN, which coordinates the decision
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to learn the interaction between various agents and uses the
latent features generated by the convolution layer to learn
cooperation. Thus it has a better effect in the scenario where
UAVs cooperate in spreading the message.
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Fig. 11. Cumulative curve of reward Fig. 12. Time required for model
function in training phase. training convergence.

To further test the convergence of the neural network, we
train the neural network by varying the number of UAVs.
We set the number of UAVs to 25, 50, 75, 100, and 125
and counted the time it took for the model to converge.
As shown in Fig. 12, with the number of UAVs increasing,
the time required for model convergence also increases.
The reason is that the increase in the number of UAVs
will increase the complexity of the problem. The number
of messages forwarded by each UAV will also increase
accordingly to spread the message to the entire network.
Our model can achieve the fastest convergence speed re-
gardless of the number of UAVs because our model adds
a shared decision module compared to DGN, CommNet,
and DQN, which speeds up the convergence of the model
speed. The model convergence speed of DGN is the slowest,
which is in line with our expectations because DGN adds
an attention mechanism compared to CommNet and DQN,
which increases the difficulty of model convergence.

6.3.2 Reward Function Effectiveness

At the same time, to prove that the reward function we
designed based on the local observation form is effective,
we test the evaluation metrics in Section 6.2 on the trained
model to verify that our reward function can satisfy equa-
tion (18). As shown in Fig. 13, with the increase of cumula-
tive reward, the message redundancy index M R decreases
at the end of broadcasting, the propagation delay index PL
decreases, and the redundancy delay score RL increases.
This experiment proved that our designed reward function
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enables the UAV to learn a good gossip propagation strat-
egy, resulting in an overall optimization effect.

6.4 Performance Comparison

In this section, we will verify the performance of the pro-
posed scheme in terms of message broadcasting and com-
pare it with four broadcasting approaches, namely BFBA,
RGBA, CFPBA, and SENBA. Specifically, we will measure
three aspects: the required delay for propagating, the num-
ber of redundant messages, and power consumption.

6.4.1 Propagation Delay Comparison

Fig. 14 shows the number of rounds required for the five
broadcasting methods to spread the message throughout the
network (note: for BFBA and RGBA, we only count when
the message is broadcast successfully). According to the
theoretical analysis in [10], [12], compared to other methods,
BFBA has an optimal convergence speed with only five
rounds of propagation because each UAV sends the message
packet to all its neighbors instead of one neighbor when
forwarding. Our experimental results also verify the above
conclusions. RGBA and CFPBA are significantly higher than
BFBA in terms of propagation delay because they are still
random in forwarding message packets. Because CFPBA
introduces a forwarding strategy with decreasing probabil-
ity of redundant messages, it avoids sending part of the
redundant messages and can slightly reduce the propaga-
tion rounds. SEFNBA introduces some fixed strategies in
selecting neighbors, which further accelerates the conver-
gence speed and propagates the message packets. SFNBA
further accelerates the convergence speed, and the propa-
gation rounds are only 11. Compared with other schemes,
the model is trained to broadcast so that the probability
and neighbors are not completely random when forwarding
message packets. The forwarding strategy learned by the
model makes the UAV forward the message packets with
a higher probability to neighboring UAVs that have never
received a message packet. Hence, our scheme’s message
packet forwarding is more efficient than randomly selecting
a neighbor. Experiments show that when the number of
UAVs is 125, the required number of rounds for our scheme
is 20, which is better than 26 for CFPBA and 25 for SEFNBA.

We also record the specific dealy required for the five
broadcasting methods at the corresponding rounds. Fig. 15
shows the required delay at the different number of UAVs,
and on average, our scheme requires a delay saving of 36.1%
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compared to RGBA, 29.2% compared to CFPBA, and 22.6%
compared to SENBA.

6.4.2 Redundant Packets Comparison

Fig. 16 shows the number of redundant packets for different
numbers of UAVs (note: for BFBA and RGBA, we only count
when the message broadcast is successful). From the figure,
we can see message implosion due to the flood approach
used by BFBA in propagating the message packets. Since we
fixed the spatial size of the UAV distribution, as the num-
ber of UAVs increases, the network density then increases,
leading to a rise in the number of neighbors per UAV, thus
making the message implosion appear more severe.
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Fig. 16. Comparison of the redundant packets for broadcasting.

Since RGBA randomly selects three neighbors for mes-
sage packet forwarding, the increase in the number of
UAVs does not make the number of redundant packets
rise sharply. Experiments show that when the number of
UAVs is 125, CFPBA significantly reduces the forwarding
probability for redundant message packets, so the num-
ber of redundant packets can be reduced considerably by
32.9% compared to RGBA. Since only neighbor selection is
considered, when in the face of redundant packets, SFNBA
still forwards redundant packets with probability 1, so the
number of redundant packets is only reduced by 17.8% com-
pared to RGBA. Our trained model first sends packets to the
desired UAVs, which improves the propagation efficiency
and minimizes the forwarding probability or even does not
send packets when multiple duplicate packets are received.
So redundant messages of our scheme are reduced by 38.2%
compared to RGBA, 6.9% to CFPBA, and 20.7% to SFNBA.

6.4.3 Power Consumption Comparison

The reception and processing of redundant packets ex-
acerbate the power consumption, and we compare only
the power consumption of flood, gossip, and our scheme,
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where we measure the energy consumption of each UAV
during message broadcasting. For example, there are 25
UAVs in the network, and each UAV battery can supply
2000 joules of energy. Fig. 17(a)(b)(c) shows the different
schemes’ power consumption at different simulation times.
It is clear that due to a large number of redundant packets
in BFBA, all UAVs are in a state of power depletion at
1500 seconds in a continuous message broadcast scenario.
However, compared to BFBA, RGBA still has eight UAVs
surviving, and our scheme still has 17 UAVs surviving.
Besides, we averaged the remaining power of the UAVs at
different times to make a comparison of the three schemes.
Fig.17(d) indicates that our scheme can save more power.

6.4.4 Application Case: P2P aerial photography service for
disaster relief
To further validate the superiority of our proposed scheme,
we apply the proposed protocol to gossip-based P2P live
video streaming, which is a distributed video-on-demand
system such as QvodPlayer [41]. Such systems are designed
to provide smooth video services to users with limited
bandwidth. In a disaster such as an earthquake, clusters of
UAVs are sent to areas that are difficult to reach by humans
to conduct an aerial search. To ensure that rescue is carried
out in time, aerial video needs to be transmitted back to
various units on the ground for viewing without delay [42].
We set ten UAVs in the sky for aerial photography and
five rescue units on the ground for accessing aerial photog-
raphy data. The UAVs adopts the communication mode of
802.11b with a bandwidth of 11 Mbps. It is worth noting that
multi-access concurrency and video streaming lead to spikes
and cause bandwidth usage fluctuations in Fig. 18. In Fig. 18
and Fig. 19, when the five units request 720P vid
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frame rate is greater than 30fps. The frame rate of the
returned video should be at least 30fps [43] so as to provide
reliable aerial video for the ground units.

7 CONCLUSION

This paper proposes an intelligent adaptive gossip-based
broadcast protocol using multi-agent reinforcement learning
for UAV-MEC. First, we design a data structure called Bit-
graph while laying the foundation for the subsequent design
of reward functions. Second, we propose a reward function
and design the BDGN algorithm to make simultaneous
decisions on forwarding probability and neighbors. The
heuristic ideas behind the scheme are: “people tend to tell
people who are not yet informed when spreading the news”
and "People lose the desire to spread the news that is widely
circulated”. We intend to guide the agents in learning a good
forwarding strategy in a dynamic environment. Extensive
experimental results show that our scheme can achieve
efficient broadcasting.
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