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Abstract: Integrating low-level edge features has been proven to be effective in preserving clear boundaries 

of salient objects. However, the locality of edge features makes it difficult to capture globally salient edges, 

leading to distraction in the final predictions. To address this problem, we propose to produce distraction-

free edge features by incorporating cross-scale holistic interdependencies between high-level features. In 

particular, we first formulate our edge features extraction process as a boundary-filling problem. In this way, 

we enforce edge features to focus on closed boundaries instead of those disconnected background edges. 

Second, we propose to explore cross-scale holistic contextual connections between every position pair of 

high-level feature maps regardless of their distances across different scales. It selectively aggregates 

features at each position based on its connections to all the others, simulating the "contrast" stimulus of 

visual saliency. Finally, we present a complementary features integration module to fuse low- and high-level 

features according to their properties. Experimental results demonstrate our proposed method outperforms 

previous state-of-the-art methods on the benchmark datasets, with the fast inference speed of 30 FPS on a 

single GPU. 
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Salient object detection (SOD) aims at 

segmenting the most distinct objects and regions 

from images. It serves as a fundamental 

component for many image processing and 

computer vision tasks, such as image 

manipulation6 and people reidentification.16 

Traditional SOD is inspired by cognitive 

psychology, which aims to design hand-crafted 

features to capture salient stimuli in images. 

However, handcrafted features may not be 

reliable as they are designed based on 

assumptions for specific scenarios. With the 

development of deep learning, the power of 

representation learning boosts the development 

of SOD, especially after the emergence of fully 

convolution neural network (FCN).5 FCN-based 

methods overcome the limitation of the capability 

of handcrafted features and detect saliency in an 

end-to-end manner. Whether an object is salient 

or not is determined from a global view, and 

therefore high-level features of a deep network is 

usually extracted. However, using high-level 

features always come with dilution of low-level 

features which leading to coarse salient object 

boundaries. There are some postprocessing 

methods, such as superpixel-based filter and 

conditional random filed for boundary refinement. 

However, these postprocessing methods are time 

consuming. As a result, most researchers focus 

on injecting low-level information in the networks. 

Latest research works15,19 explicitly incorporates 

salient edges to refine the object boundaries. 

Notwithstanding the demonstrated success, the 

incorporated edges usually contain background 

nonsalient edges, which may distract the 

detection of saliency (see Figure 1). Although they 



are trained with salient edges data, the naive supervi-
sion cannot help distinguishing edges from foreground
object or background distraction. Besides, edge fea-
ture extraction and integration modules are too heavy
and lead to long inference time (less than 10 FPS of
EGNet19) and memory overload.

We observe that foreground, salient objects exhibit
closed boundaries, while background edges are usu-
ally disconnected. This observation motivates us to
remove edge distraction from a new aspect. We for-
mulate the process of salient edge features extraction
as a new boundary filling problem. In this way, the pre-
dicted edges should be not only salient, but also
restricted by the closed boundary constraint that can
be filled to form the shape of objects. In the meantime,
with the help of this supervision, our model can
extract distraction-aware edge features even with
superlightweight decoder, which helps reaching faster
inference speed than others.15,19 On the other hand,
high-level contrast contextual information are crucial
for both salient edge and object detections to prevent
detecting incomplete objects. To this end, we propose
a cross-scale holistic contrast features extraction
(CSHC) module that explore contextual interdepen-
dencies between every position pairs cross feature
scale in high-level feature maps regardless distances.
It aggregates features according to positional similari-
ties, simulating the “contrast” stimulus7 in visual
saliency. Finally, we present a complementary features
integration (CFI) module to fuse low- and high-level
features according to their unique properties.

In summary, the contributions of this article are
threefold as follows.

› We propose a distraction-aware edge features
extraction (DEFE) module and boundary-filling
loss that extract edge features in a boundary fill-
ing manner. This novel solution enforces the net-
work to produce closed boundaries instead of

disconnected ones, and thus removing edge dis-
traction from saliency detection.

› We propose a CSHC module that explores long-
range positional similarities cross different fea-
ture scale. It simulates the “contrast” stimulus of
visual saliency and thus enhancing high-level
understanding for different size salient edge and
object detections.

› Our proposed model outperforms state-of-the-
art methods on six benchmark datasets on three
evaluation metrics.

RELATEDWORKS
Before deep learning era, SOD methods try to design
hand-crafted features, but now it is dominated by
deep learning-based methods.1,2,8,9,10,17,19 Here we con-
centrate on the latter category.

FCN-Based SODMethod
As Long et al.5 proposed FCN for dense prediction
tasks, recent SOD methods are based on FCN-like
structure. Li et al.dealt with SOD and salient segmen-
tation together by integrating both FCN stream and
special spatial pooling stream. In the next sections,
we review three directions of SOD that inject addi-
tional information or explore internal information, i.e.,
edge-aware method, attention mechanism, and fea-
ture integration.

Edge-Aware Method
To solve the coarse boundary problem in SOD, latest
research works aim at recovering the structural detail
and edge information in SOD. On the one hand, edge/
boundary aware losses, such as IoU boundary loss,
boundary enhanced loss, and similarity structural simi-
larity loss,8 integrating the boundary detection into
SOD for the more accurate edge of salient object. On
the other hand, Zhao et al.19 explicitly detected edge
and used the edge information to complement SOD.
Wu et al.15 mutually considered the SOD and edge
detection and propose a stacked cross refinement
network to refine both of them. Wu et al.13 took a mul-
titask intertwined framework to guide SOD by the
foreground contour detection and edge detection.
Our method takes a different strategy that formulate
the edge features extraction process as a boundary
filling problem to remove edge distraction.

Attention Mechanism
Inspired by the study of human visual attention, atten-
tion mechanism is effective in computer vision tasks,
such as image classification12 and object recognition.12

FIGURE 1. State-of-the-art edge-aware methods (e.g., EGNet)

suffer from distraction of background edges. We propose to

remove distraction from the detection of edges by converting

it to a boundary filling problem.



Liu et al.4 proposed to utilize the global and local pixel-
wise information by the global and local attention to
learn pixelwise contextual information. The attention
mechanism is also used as a gating function.17

Zhang et al.18 proposed to learn spatial and channel
attention to distinguish foreground and background.
Pyramid network takes high-level features and low-level
features, and consider the difference between them
with the pyramid attention. However, these methods
lack the consideration of the “contrast” in visual saliency,
which is indeed a crucial stimulus of human visual sys-
tem. Our method investigates the positional similarity
and contrast to stimulate the visual saliency cross differ-
ent scale and provide the guidance for both salient
object and edge feature extraction.

Features Integration
Features between deep layers and shallow layers
reveal different levels of details in SOD, and thus a lot
of methods propose to integrate them in different
manner. Hou et al.2 proposed short connection and
introduce multiscale output and side-output based on
HED to refine the captured details. Amulet utilize the
multilevel features to predict saliency maps in differ-
ent resolutions and fuse them to generate the final
saliency map. Wang et al.11 extracted global informa-
tion recurrently for better integration of high-level
contextual information. Zhang et al.17 passed informa-
tion flow by a bi-directional structure between differ-
ent level of features to predict saliency maps.
However, these methods integrate different level of
features from the same task, preventing the network
from generating diverse and complementary features.

DISTRACTION-AWARE EDGE
ASSISTED NETWORK
Model Overview
Our distraction-aware edge assisted network (DENet)
is illustrated in Figure 2. Given an input image, it is first
fed into a five-stage backbone network to extract mul-
tiscale features. Then high-level features are first
enhanced by our CSHC module to extract by stimulat-
ing the “contrast” in visual saliency, while both low-
level and enhanced high-level features are processed
by our DEFE module for salient edge features. Finally,
these enriched features together with multiscale
salient object features from decoder are integrated in
our CFI for final prediction.

Salient Object Features Extraction
Our model mainly based on FCN encoder–decoder
structure and we also take skip connections. The

backbone network has four stages adopted from a
pretrained ResNet-50. We add a CSHC. Symmetric to
the backbone network, the decoder also has four
stages with much less channels than EGNet.19 Each
stage has three convolution layers and is followed by
two extra convolution layers to generate saliency
maps supervised by ground truth.

Distraction-Aware Edge Features
Extraction
Given the features generated from the backbone net-
work, we aim to produce distraction-free features with
the boundary filling setting. This module takes two
sets of features as input, the low-level features of the
first stage F s1, and the enriched high-level features
produced by our CSHC module (described in Section
Cross-Scale Holistic Contrast Features Extraction).
This is because detecting closed object boundaries
relies not only on local, low-level information, but also
a global view of the image. These two sets of features
are fused as follows:

F f ¼ F s1 þ fðConvðUpðF h;F 1ÞÞ; uÞ (1)

where, F f denotes the fused features, Upða; bÞ indi-
cates interpolating a feature map a to the same size
of b, f is the ReLU activation function, and Convð? ; uÞ
is convolution layer with parameter u. Then, F f is then
fed into a convolution block with three convolution-
batch normalization-ReLU layers. The output becomes
salient edge features that governed by two tasks,
edge detection and boundary filling.

Edge detection can be obtained by simply perform-
ing convolution on the salient edge features, and it is
trained by salient edge ground truth. On the other
hand, the salient edge features are fed to a boundary
filling network, which inhibits background nonsalient
edges. The boundary filling network is a simplified ver-
sion of FCN for fast computation. It consists of an
input convolution layer followed by ReLU and four
stages downsample–upsample process. The input
convolution layer has 64 filters of 7 � 7 kernel size.
Each stage includes a convolution layer, a batch nor-
malization layer, and a ReLU activation function. Every
convolution layer has a 64 filters of 3 � 3 kernel size.
The downsampling process uses the convolution layer
with stride 2 and the upsample process uses bilinear
interpolation operation. A final convolution layer with
kernel size of 1 � 1 is used to obtain the output bound-
ary-filling map denoted as Sb. The edge and boundary
filling losses are described in Section Boundary Filling
Loss.



Cross-Scale Holistic Contrast Features
Extraction
The feature maps from the fourth stage of the back-
bone network cover rich semantic information. How-
ever, the receptive filed is constant and lacks diversity
to capture multiscale contextual information. Com-
paring with simple fusion cross-scale feature, we aim
to further enhance these features to capture cross-
scale contextual interdependencies for simulating
high-level contrast. We simulate the visual contrast by
providing and dynamically adjusting the contrast infor-
mation of every spatial position pairs across scales.

The feature maps from the fourth stage from back-
bone denoted as F s4 2 Rc�h�w is downsampled–convo-
lution–upsampled with scale rate f2; 4; 8g to capture
multiscale contextual information F i

s4, where i is the
scale rate and F s4 can be regarded as F 0

s4. To model
cross-scale long range dependency, F i

s4 is feed into dif-
ferent positional attention module as “Query,”where F s4

is as “Key” and “Value.” In positional attention, “Query,”
“Key,” “Value” are fed into three different linear projec-
tion layers to get the feature map fQ;K;V g 2 Rc0�h�w,
respectively. The contrast map A is calculated by the
matrix multiplication between the reshaped and trans-
posed version of Q 2 Rhw�c0 and reshaped version of
K 2 Rc0�hw followed by a Softmax function:

Aji ¼ expðQi �KjÞPwh
k¼1 expðQk �KjÞ

(2)

where, Aji denotes the impact of the ith position on
the jth position. A large value represents a high simi-
larity (and thus lower contrast) between the two posi-
tions. Then we use V to multiply S and reshape it back
to Rc0�h�w to generate the final output F0i

s4. Compar-
ing with Fs4, every positions in F 0i

s4 has a global view of
contrast on the whole feature maps in scale rate
f0; 2; 4; 8g, respectively. Finally, we concatenate all
cross-scale position enhanced feature and the original
feature Fs4 followed by a convolution layer to generate
final CSHC feature Fh. Comparing with Fs4, Fh covers
different scale contextual information from the long
range dependency guidance of different receptive
field features.

Complementary Features Integration
In previous we extract salient edges features, holis-
tic contrast features, and salient object features
(from the decoder). All these features convey
unique and complementary information, and we
argue that they should be integrated in a simple,
unified manner like Hou et al.,2 Liu et al.,3 and

FIGURE 2. Network architecture of our DENet. It consists of three main components, DEFE, CSHC, and CFI. DEFE provides dis-

traction-free edge features supervised by salient edge and boundary-filling network. CSHC stimulate “contrast” in visual saliency

and provide enhance high-level features with long range contextual interdependencies over scale. CFI integrate different fea-

tures according to their own characteristics.



Zhang et al.17 did. We design our integration mod-
ule to combine these features according to their
special properties. Low-level salient edge features
reveal important object boundaries, and therefore
we use the addition to emphasize edges in salient
object features. Holistic contrast features show
rich contextual interdependencies, which helps
locating salient objects, so we use multiply opera-
tion to inhibit nonsalient background (see Figure 2).
The integration is formulated as follows:

F 0
i ¼ Conv blockððFi þ FeÞ þ Fh � ðFi þ FeÞÞ; uÞ (3)

where, Fi denotes the ith stage salient object fea-
tures, and F 0

i represents the final features of the
ith stage. Every final features will followed by a
convolution layer to output a saliency map S0

i from
F 0
i .
Besides, we concatenate all enhanced salient

object features to generate the fused saliency map,
which will be the final saliency map in the inference

Ffuse ¼ catð½F1;
0 . . .; F 0

k�Þ (4)

Sfuse ¼ SigmoidðConvðFfuse; uÞÞ (5)

where, Ffuse is the concatenation of all enhanced fea-
tures, k ¼ 5 indicates five stage enhanced features,
and Sfuse indicates the fused saliency map.

Objective Function
The total loss function L includes three parts: edge
loss Le, boundary filling loss Lb, and saliency loss Ls

L ¼ Le þ Lb þ Ls: (6)

Edge Loss
We use the edge map computed from the saliency
map and the class-balanced cross entropy loss as the
edge loss

Le ¼ �b
X

i2GTþ
e

GTeðiÞlogEðiÞ

� ð1� bÞ
X

i2GT�
e

ð1�GTeðiÞÞlog ð1� EðiÞÞ (7)

where, E is the predicted edge map, GTþ
e and GT�

e

represent the edge pixel and background pixel of

ground truth edge map and b ¼
P

GT�
eP

GTe
. Cross-

entropy loss is widely used in binary classification
problem, and due to the small amount of positive
samples in edge detection problem, class-balanced
cross entropy shows better performance.

Boundary Filling Loss
We use cross entropy loss lce to measure the output
boundary filling result

lceðP;GTÞ ¼ �
X

i2GTþ
GTðiÞlogP ðiÞ

�
X

i2GT�
ð1�GTðiÞÞlog ð1� P ðiÞÞ(8)

(8)

where, P is the predicted map from boundary filling
network. Besides, we use IoU loss liou to suppress
background edges

liouðP;GTÞ ¼ 1�
P

i2GT P ðiÞGTðiÞ
P

i2GT½P ðiÞ þGTðiÞ � P ðiÞGðiÞ� : (9)

To sum up, the total loss is

Lb ¼ lceðSb;GTsÞ þ liouðSb;GTsÞ (10)

where, the Sb is the boundary-filling map from DEFE
and GTs is the ground truth saliency map.

Saliency Loss
We need to supervise all the output saliency maps
from salient object features extraction module Si, fea-
ture integration module S0

i, and fuse feature Sfuse. We
adopt the cross entropy loss lce to compute the
saliency loss as

lceðS;GTÞ ¼ �
X

i2GTþ
GTeðiÞlogSðiÞ

�
X

i2GT�
ð1�GTðiÞÞlog ð1� SðiÞÞ (11)

Ls ¼
X4

i¼1

lceðSi;GTsÞ þ
X4

i¼1

lceðSi;
0 GTsÞ

þ lceðSfuse;GTsÞ: (12)

EXPERIMENTS
Implementation Details
Our model is trained on DUTS-TR with random hori-
zontal/vertical flipping and multiscale training. All the
experiments are using an SGD optimizer with momen-
tum of 0.9 and weight decay of 0.0005. The learning
rate starts from 5e-4 and divided by 10 after 25 epochs.
The four stages of the backbone network from
ResNet-50 is pretrained on ImageNet (the same as
EGNet19 and SCRN15) and the rest layers are initialized
following the default settings of PyTorch. During infer-
ence, the image will be resized to 352�352.
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Datasets
We test our model on five widely used benchmarks:
HKI-IS, ECSSD, PASCAL-S, DUT-OMRON, and DUTS.
HKU-IS consists of 4447 images with high-quality
annotations. There are many disconnected objects
with different sizes in this dataset. ECSSD contains
1000 semantic objects with complex backgrounds.
PASCAL-S has 850 images from the PASCAL VOC
segmentation dataset. DUT-OMRON contains 5168
image with various objects and complex back-
grounds. DUTS is the largest SOD dataset including
10,533 images for training and 5019 images for test-
ing. For a fair comparison, the performances of
other methods are evaluated from the codes or
models released by the authors.

Evaluation Metrics
For SOD, we take three widely adopted evaluation
metrics, MAE, F-measure (max Fb), and structure-mea-
sure (S-measure) to evaluate our methods. MAE is the
mean absolute value between the predicted saliency
map and ground truth

MAE ¼ 1

H �W

Xw

i¼1

Xh

j¼1

Sði; jÞ �GTði; jÞj j (13)

where, H and W are the height and width of the
saliency map.

Fb is the weighted average mean of precision and
recall

Fb ¼ ð1þ b2Þ � Precision� Recall

b2 � Precisionþ Recall
(14)

where, b2 is usually set to 0.3 to strengthen the weight
of precision.

S-measure consider both region and object struc-
tural similarity of saliency map

S ¼ m � So þ ð1� mÞ � Sr (15)

where, S0 and Sr denotes the region-aware and object-
aware structural similarity, respectively. We set m as
0.5.

To evaluate the effectiveness of our detected
edges, we measure the edge map of F1 score by two
binarization methods: optimal dataset scale (ODS)
sets the same threshold for all edge maps in the data-
set, while optimal image scale (OIS) sets threshold for
different edge maps in the dataset

F ¼ 2� Precision� Recall

Precisionþ Recall
: (16)

Salient Object Detection
We thoroughly compare with 14 latest CNN-based SOD
methods: DSS,2 Amulet, UCF, R3Net,1 DGRL,11 BMPM,17

PiCANet,4 PAGE,18 BASNet,8 PoolNet,3 SCRN,15 EGNet,19

GateNet,20 and EDN.14

Quantitative Evaluation
The quantitative performance of our methods and
other state-of-the-art SOD methods are shown in
Table 1. As can be seen, edge-aware method8,15,19 has
better performances than the other methods without
considering object boundary.2 Specifically, without any
preprocessing and postprocessing, our method achi-
eves the best performances on all evaluated datasets
in MAE especially on the ECSSD dataset (about 16%
improvement). In terms of F-measure, we perform the
best in four dataset and achieve about 0.9% average
improvements over the second best method EGNet in
all six datasets. This indicates the effectiveness of the
proposed distraction-aware edges and holistic contrast
features. The improvements on S-measure shows our
method achieves the better performance in object level
and region level.

Qualitative Evaluation
We qualitatively compare our method with state-of-
the-arts in Figure 3. On one hand, our method is able
to detect crispy boundary and structural details of
salient objects. On the other hand, our method can
better locate salient objects regardless background
distraction. For example, in the second row, our
method accurately captures three objects while the
others either distracted by background or capture
incomplete salient regions.

Time Statistics
We evaluation the average inference time over six data-
sets on the same platform: Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10 GHz and GTX1080Ti. The results are reported in
Table 1. Note that our boundary-filling network is not nec-
essarily activated during inference. Comparing with other
edge prediction and edge information assisted methods,
such as EGNet19 and SCRN,15 our model extracts and
complements edge information with high quality and
high efficiency. Compared with those methods without
integrating boundary information explicitly, such as BAS-
Net,8 BMPM,17 and PoolNet,3 our method has almost the
same inference speed but much better performance. Our
model does not have any pre-/postprocess, so our model
has better time performance than the methods require
pre-/postprocess, such as DSS,2 in practice.



Salient Edge Detection
We choose two similar methods for comparing the
detected salient edges, SCRN15 and EGNet,19 both of
which explicit predict edge maps. We are interested in
two points, the edge maps predicted by edge
branches for measuring the quality of salient edge fea-
tures, and the edge maps delivered from saliency
maps for measuring the performance of salient edge
detection. We also test the salient edge detection as a
comparison with two methods (PoolNet and R3Net)
without considering the boundary. We evaluate them
on the DUT-O, HKU-IS, ECSSD datasets.

We report the quantitative results in Table 2. For
edge maps predicted directly by edge branches, we

achieve the best performance except under metric
ODS on the ECSSD dataset. For salient edge measure-
ment (with ? that using the edges from salient maps),
when comparing with the methods without consider-
ing of boundary (PoolNet and R3Net), the three edge-
aware methods achieve an average improvement of
13.4% on ODS and 11.6% on OIS. Our methods signifi-
cantly outperform the rest methods on salient object
edge detection.

The visual results are shown in Figure 4. Our meth-
ods precisely locate salient objects and sharp details.
More importantly, our methods suppress distracted
background for all the four examples, leaving those
closed salient boundaries.

FIGURE 3. Qualitative comparison with state-of-the-art methods. Our proposedmethod can sharpen salient object boundary and

locate objects accurately. (a) Img. (b) GT. (c) Ours. (d) EGNet. (e) BASNet. (f) SCRN. (g) PoolNet. (h) BMPM. (i) Amulet. (j) UCF.



Ablation Study
In this section, we explore the effectiveness of our
proposed modules. We test the performance on DUT-
OMRON, which is the largest test set and covers

many objects of different sizes. We set the model with-
out salient edge features and holistic contrast fea-
tures (and therefore without features integration) as
the baseline.

TABLE 2. Qualitative evaluation on salient edge detection. no ? indicates edge maps are derived from saliency maps. ? indicates

the edge maps are directly predicted by edge branches. our methods significantly boost the detection performances.

Method DUT-O HKU-IS ECSSD

ODS OIS ODS OIS ODS OIS

R3Net 0.516 0.541 0.609 0.625 0.627 0.643

PoolNet 0.579 0.609 0.703 0.715 0.723 0.736

SCRN 0.594 0.627 0.723 0.740 0.744 0.761

EGNet 0.614 0.646 0.752 0.766 0.771 0.756

Ours 0.634 0.654 0.774 0.782 0.787 0.784

SCRN? 0.461 0.491 0.667 0.683 0.675 0.688

EGNet? 0.496 0.523 0.702 0.714 0.722 0.734

Ours? 0.511 0.555 0.711 0.732 0.720 0.741

FIGURE 4. Salient edge comparison with state-of-the-art methods. Our proposed method suppresses the background edge and

predict sharp salient object edge. No ? indicates edge maps are derived from saliency maps. ? indicates the edge maps are

directly predicted by edge branches. (a) Img. (b) GT. (c) Ours. (d) EGNet. (e) SCRN. (f) BMPM. (g) R3Net. (h) Ours? (i) EGNet? (j)

SCRN? .

TABLE 4. Ablation study on different features integration.

Settings DUT-O

High Low CFI RCFI MAE# max Fb " S "
0.056 0.765 0.803

@ 0.056 0.774 0.815

@ 0.052 0.833 0.818

@ @ 0.049 0.834 0.841

@ @ @ 0.051 0.833 0.836

@ @ @ 0.048 0.842 0.848

TABLE 3. Ablation study on the proposed DEFE and CSHC

modules. both two modules significantly boosts performance

of the plain baseline.

Method DUT-O

MAE# max Fb " S "
Baseline 0.073 0.695 0.724

Baseline + DEFE 0.050 0.836 0.822

Baseline + PPM 0.065 0.731 0.769

Baseline + ASPP 0.063 0.737 0.785

Baseline + CSHC 0.056 0.765 0.803

Baseline + DEFE + CSHC 0.048 0.842 0.848



Effectiveness of DEFE
To prove our boundary-filling network and the
extracted closed boundary has positive effects, we
activate the DEFE only, and the holistic feature are
replaced by high-level features that are not enhanced.
The architecture of DEFE is similar to EGNet19 except
extra supervision by boundary-fill network and our
light weight encoder, decoder. Quantitative result is
shown in Table 3. We can see that complementing
with distraction-free salient edge features hugely
boost the performance of baseline, and it outper-
forms state-of-the-art methods with this module only
(comparing with Table 1).

Effectiveness of CSHC
To evaluate the effectiveness of CSHC, we replace our
CSHC by two state-of-the-art multiscale context
extraction modules, pyramid pooling module (PPM),
atrous spatial pyramid pooling (ASPP). To fit the SOD
problem, the dilation rate of ASPP is set as {1, 2, 4, 8}.
Results are reported in Table 3. Our CSHC module out-
performs the other two, especially on F-measure and
S-measure, which reveals the effectiveness of our
exploited globally contrast features.

Effectiveness of CFI
To better evaluate the effectiveness of different features
and the CFI, we compare the performance on the DUT-
OMRON dataset with and without CFI. We use our base-
line model with CSHC for all the settings. “High” and
“Low” indicates whether supplementing high-level con-
trast and low-level salient edge features, respectively. No
CFI indicates simply concatenating different features.
RCFI indicates adding the holistic feature and multiplying
salient edge feature in CFI module

As can be seen in Table 4, low-level edge features
play a more important role in our method comparing
with high-level contrast features. It also means the
negative effect of the loss of low-level information is
more serious than that of the dilution of high-level
information in an FCN setting. Our feature integration
module emphasizes the properties of different fea-
tures has a positive influence.

CONCLUSION
In this article, we delve into the edge distraction prob-
lem of SOD. Specifically, we formulate edge features
extraction process as a boundary filling problem, and
therefore enforcing the detection of closed fore-
ground edges. Moreover, we propose a CSHC module
to explore the interdependencies between every posi-
tion pairs for global view cross feature map scale in
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