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Abstract—The reliability of decision-making policies is urgently
important today as they have established the fundamentals of
many critical applications, such as autonomous driving and
robotics. To ensure reliability, there have been a number of
research efforts on testing decision-making policies that solve
Markov decision processes (MDPs). However, due to the deep
neural network (DNN)-based inherit and infinite state space,
developing scalable and effective testing frameworks for decision-
making policies still remains open and challenging.

In this paper, we present an effective testing framework for
decision-making policies. The framework adopts a generative
diffusion model-based test case generator that can easily adapt to
different search spaces, ensuring the practicality and validity
of test cases. Then, we propose a termination state novelty-
based guidance to diversify agent behaviors and improve the test
effectiveness. Finally, we evaluate the framework on five widely
used benchmarks, including autonomous driving, aircraft collision
avoidance, and gaming scenarios. The results demonstrate that our
approach identifies more diverse and influential failure-triggering
test cases compared to current state-of-the-art techniques. More-
over, we employ the detected failure cases to repair the evaluated
models, achieving better robustness enhancement compared to
the baseline method.

Index Terms—generative model, testing, decision-making poli-
cies

I. INTRODUCTION

As artificial intelligence (AI) advances, approaches such
as deep learning (DL), reinforcement learning (RL), and
imitation learning (IL)-based decision-making policies have
been employed to efficiently solve complex MDPs. Although
these methods have demonstrated effectiveness in various
applications such as gaming [1], [2], Go [3], and robot manip-
ulation [4], they may also exhibit erroneous behaviors leading
to potential errors [5]. Such errors could have catastrophic
consequences in safety-critical domains, for instance, causing
crashes in autonomous vehicles [6] and even jeopardizing
human safety [7]–[9]. Given the growing reliance on decision-
making policies, there is an urgent and critical need to develop
software engineering techniques tailored to ensure the reliability
of these policies.

Testing decision-making policies by exploring the scenarios
that cause failures during execution is a promising approach
to ensuring their reliability. However, since these policies
often employ DNN models, they inherit both the benefits and
drawbacks of such models, rendering their testing inherently
challenging and time-consuming. In addition, detecting failures

in decision-making policies of real-world MDPs is particularly
challenging due to the infinite number of states. As it is
impossible to exhaustively explore all states and actions of
decision-making policies [5], potential failures may persist in
the unexplored regions of the huge state space. There have
been a number of research efforts tailed for testing decision-
making policies. Previous testing methods usually rely on
traditional software testing techniques such as search-based
testing [5], [10]–[14] or metamorphic testing [15]. Especially,
search-based techniques mutate the intermediate or initial state
of MDP environments to inflate the scale of test cases and reveal
failures in decision-making policies. While metamorphic testing
techniques explore cases that violate predefined metamorphic
relations. However, due to the aforementioned difficulties,
developing scalable and effective testing methods for decision-
making policies still remains open and challenging.

In this paper, we develop a methodology for decision-making
policies, primarily focusing on two key aspects of testing these
policies: agent behavior diversity and test effectiveness. For
agent behavior (test case) diversity, since executing similar test
cases tends to exercise similar parts of the source code (model),
relying on diverse test cases could increase the exploration
of the fault space and thus increase the detection rates [16]–
[18]. Besides, due to the black-box mechanism of DNN-based
systems, diversity is a more practical and effective metric to
be used as guidance for testing DNN-based systems [19], [20].
Second, test effectiveness is particularly important for complex
decision-making systems, as they often require significant
resources to operate and repair. This necessitates that test cases
should be effective in identifying potential failures efficiently
and accurately. Furthermore, effective test cases could detect
more corner cases, which thus increases the possibility of
detecting severe vulnerabilities in decision-making policies.

This paper presents a scalable and effective testing framework
for decision-making policies, focusing on two aforementioned
key aspects. First, we employ a generative diffusion model for
producing test cases. Specifically, we first train the diffusion
model using normal (random) input for decision-making
policies, enabling it to capture the distribution of normal test
cases. We then introduce novelty-based guidance to measure
the freshness of the trajectories, which effectively guides the
testing framework and ensures agent behavior diversity. In
particular, we diversify the agent behaviors by maximizing the



novelties of the termination states in interaction trajectories [21].
After training the diffusion model, we incorporate the proposed
novelty-based guidance with a joint objective function to fine-
tune the diffusion model-based test case generators, thereby
encouraging the framework to generate valid test cases with
diverse behaviors and a higher likelihood of triggering failures.

We evaluate our approach on five widely used MDP solving
tasks, encompassing four scenarios: gaming [22], cooperative
navigation (Coop Navi) [23], aircraft collision avoidance [24],
and autonomous driving [25]. Compared to the state-of-the-
art techniques, our method detects more failure cases with a
broader range of state coverage. Additionally, we compare our
proposed novelty-based guidance with other existing guidance
techniques for failure detection. The findings reveal that novelty-
based guidance is more effective and contributes to diversifying
agent behaviors. Lastly, we utilize the detected failure cases
to repair the evaluated models. The results indicate that
failure cases identified by our method could better enhance
the robustness of decision-making policies, demonstrating the
efficacy of our approach.

In summary, this paper makes the following contributions:
• We present a scalable and effective testing framework for

decision-making policies. Our framework is designed to
diversify agent behaviors and thus effectively test decision-
making policies.

• We utilize a generative diffusion model that can adapt
to different search spaces, capture the distribution of test
cases and effectively generate test cases.

• We propose new novelty-based guidance to measure the
freshness of trajectories and diversify agent behaviors,
incorporating it with the diffusion model to enable
effective testing for decision-making policies.

• We conduct an extensive evaluation of our proposed
methods, comparing them with state-of-the-art baselines.
The results highlight the effectiveness of our techniques
in improving the robustness of decision-making policies.
To facilitate further in-depth research in this field, all
materials are made publicly accessible.

The rest of this paper is organized as follows: Section II
gives an in-depth explanation of the technical background.
Section III is the overview of our method. Section IV introduces
the implementation details. Section V presents the results of
our evaluation. Section VI provides a detailed analysis of the
benefits of using diffusion models and the development of
novelty-based metrics in generating test cases for decision-
making policies. Section VII discusses threats to the validity
of our work. Section VIII introduces related works. Finally,
section IX is the concluding remarks.

II. BACKGROUND

A. Markov Decision Processes

A Markov Decision Process (MDP) is a four-tuple
⟨S,A,R, P ⟩, where S and A represent the sets of states and
actions. R(·) and P (·) denote the reward function and state
transition function, respectively. In this framework, an agent

interacts with the environment at each time step t by observing
the current state st ∈ S, selecting an action at ∈ A to
execute, receiving an immediate reward rt = Ra(st, st+1)
after performing at, and then transitioning to a new state
st+1 ∼ P (st, at). The R(·) specifies the reward the agent
receives for performing a specific action in a particular state.
At the same time, the P (·) describes the probability distribution
over possible following states given the current state and action.

In an MDP environment, the agent selects an action to
execute based on a policy π(·), represented as a ∼ π(s), and
interacts with the environment, generating a trajectory denoted
as [(s0, a0, r0), ..., (st, at, rt), ...] where the subscripts indicate
different time steps. The return of each trajectory is defined
as the sum of discounted rewards received up to time step T ,
calculated as

∑T
t=0 γ

trt, where γ ∈ [0, 1) is a discount factor
applied to future rewards. Solving MDPs, such as reinforcement
learning (RL), generally involves finding an optimal policy that
maximizes the expected returns. This is achieved by iteratively
improving the policy through trial-and-error interactions with
the environment to find the optimal policy that yields the
highest expected return over the long term.

B. Decision-Making Policies

Several types of decision-making policies can be used for
solving MDPs, including Deep Neural Networks (DNNs), Deep
Reinforcement Learning (DRL), Multi-Agent Reinforcement
Learning (MARL), and Imitation Learning (IL). We introduce
the above decision-making policies as follows:

• Deep Neural Networks (DNNs): DNNs can represent
the value or policy function in an MDP. DNNs can learn
complex state space representations, allowing for more
accurate and efficient policy or value estimation.

• Deep Reinforcement Learning (DRL): DRL is a
combination of reinforcement learning and deep neural
networks [26]. DRL algorithms, such as Deep Q-Networks
(DQN) [1], can learn policies directly from raw sensory
input without using hand-crafted features.

• Multi-Agent Reinforcement Learning (MARL): MARL
involves multiple agents that interact with each other
and the environment [27]. MARL algorithms, such as
Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) [23], can learn coordinated policies for multiple
agents in a shared environment.

• Imitation Learning (IL): IL involves learning policies
by imitating the behavior of an expert [28]. IL algorithms,
such as Behavioral Cloning (BC) [29] and Inverse Rein-
forcement Learning (IRL) [30], can learn policies from
demonstrations or expert feedback, which can be more
efficient and reliable than trial-and-error exploration.

C. Guidance for Testing Decision-Making Policies

Guidance in testing systems is essential for ensuring the
underlying components are thoroughly and efficiently tested.
Previous works utilize various guidance to improve the test
effectiveness of decision-making policies. In addition, such



guidance effectively measures the test cases by the probabil-
ity of triggering failures. We introduce the following three
guidances used in the experiments.

• State coverage-based guidance: Existing works demon-
strate that covering more states benefits failure detection.
For instance, Pang et al. proposed density in MDPFuzz,
a state coverage measurement of trajectories [12]. A low
density indicates that the current trajectory has more new
patterns not yet explored. When the densities exceed a
threshold, the test cases will be mutated in MDPFuzz.

• Robustness-based guidance: Previous works state that
failures of decision-making policies might locate in
scenarios where the agent performance is not robust. For
example, sensitivity is discussed by previous works as a
robustness measurement [12], [15]. Sensitivity represents
the deviation of trajectory rewards before and after
implementing a slight mutation of the initial states. A
higher sensitivity implies a less robust policy for the test
cases.

• Reward-based guidance: Previous works also discussed
that the reward, as an essential component in MDP, is an
effective indicator of triggering failures. The failure cases
might occur near the low-reward states and trajectories [5],
[13].

In this paper, we propose a termination state-novelty-based
guidance to diversify the agent behaviors and explore more
failures of the decision-making policies.

D. Diffusion Model

Diffusion models are likelihood-based probabilistic genera-
tive models. The original idea comes from cognitive psychology
and is adapted for modeling complex data distribution such as
images, audio, or text [31]. Compared with previous generative
models such as generative adversarial network (GAN) and
variational auto-encoder (VAE), diffusion models offer superior
convergence in distribution modeling due to the autoregressive-
based modeling process [32]. The diffusion-based generative
models assume that the data is generated by a Markov process
that involves iteratively removing a Gaussian noise from a
random noise signal.
Formulation. Diffusion models aim to model the distribution
pθ(x0) of a dataset of interest, which consists of forward and
backward processes. In particular, during the forward noising
process q, an encoding process that gradually transforms the
data distribution into a standard Gaussian N(0, I). The models
then use a learnable denoising function pθ, a decoding process
that reverses the transformation. Once the denoising function
is learned, new samples from the data distribution can be
generated by iteratively applying the reverse denoising steps
pθ(xt−1|xt) after sampling from the standard Gaussian. As
the latent distribution of xt is nearly a standard Gaussian
distribution, we manage to learn the reverse distribution
q(xt−1|xt) acquire a sample from q(x0), generating a novel
data point from the original data distribution. Figure 1 shows
the process of training diffusion models, which mainly includes
the encoding and decoding procedures.

Fig. 1: Brief illustration of the training process of diffusion
models.

Objective. The diffusion model is trained to maximize the
marginal log-likelihood, log pθ(x0). However, since it is hard
to optimize the marginal log-likelihood directly, similar to VAE
optimization, we instead minimize the expectation of variant
lower bounds, Lvlb, in the backward process, as shown in Eq. 1.

Lvlb = Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
≥ − log pθ(x0) (1)

To train the models, the training objective can be transformed
equivalently as minimizing the negative Lvlb:

θ∗ = argminθLvlb (2)

III. METHODOLOGY
Figure 2 illustrates the workflow of our method, which is

composed of three modules: (1) a Normal Test Case Generator
that generates random test cases for the environment, (2) an
Execution Module that takes test cases as input, produces
interaction trajectories, and calculates metrics for further
analysis, and (3) a Diffusion Model-Based Test Case Generator
that creates test cases with higher probabilities of causing
failures. Our method consists of two stages. In the first stage,
the diffusion model captures the distribution of test cases
by training on test cases generated from the Normal Test
Case Generator with Eq. 1 as loss function. In the second
stage, the diffusion model is fine-tuned using both normal and
generated test cases from the Execution Module. Those cases
are employed to detect failures in decision-making policies.
Additionally, we fine-tune the diffusion models to learn the
desired test case distribution using our proposed loss (Eq. 6)
which takes the novelties of both normal and generated test
cases into account.

A. Novelty-based Guidance

Previous studies have shown that generating test cases
covering fresh states and diversifying agent behaviors can
effectively detect failures [33]. Therefore, methods have been
proposed to measure state freshness, such as density-based
measurement [12], generalizable novelty measurement [34],
distance-based novelty [35], and topological similarity measure-
ment [36], [37]. However, recent studies suggest that measuring



Fig. 2: The overview of our method.

topological similarities can more effectively cluster similar
concrete states in MDP environments [36], [38]. Therefore,
in this work, we adopt a grid-based clustering method to
measure the topological similarities of states [36], [37], [39].
Additionally, unlike previous works that measure the novelty
of entire trajectories [12], we directly measure the novelty of
the termination state, which is the last concrete state of each
trajectory. The reason is that diversifying the termination states
can effectively benefit the exploration of the state spaces [21].

Given a K-dimensional state space RK , the termination
state s is represented as (s0, ..., sK−1). The value of the i-th
dimension can be scaled into [li, ui], where the li and ui are
the lower and upper boundaries. We equally split the value
scopes into N intervals of each dimension. In this way, we
convert the continuous state space into a discrete state space
with finite grids on each dimension as follows:

ein = [li + n× ui − li
N

, li + (n+ 1)× ui − li
N

] (3)

where different concrete termination states s, which locate in
the same grid, will be assigned by a common and unique label
ŝ as follows:

ŝ = {s|si ∈ ein, n ∈ [0, N − 1], i ∈ [0,K − 1]} (4)

We apply grid-based clustering to transform the concrete
termination states into countable abstract states. Topologically
similar concrete states will fall into the same grid as an abstract
state. Each abstract state represents a cluster. We count the
occurrences concrete states in ŝ by ηŝ. Greater occurrences
indicate less novelty of the concrete states. During the testing,
we calculate the novelties of abstract states ρŝ based on the
occurrences:

ηŝ = |{s|s ∈ ŝ}|, ρŝ =
1

exp (ηŝ − 1)
(5)

where the abstract states with greater occurrences ηŝ have lower
novelty ρŝ. During the testing phase, we utilize a memory
module in the form of a key-value store to store the abstract
states and their corresponding occurrences. This straightforward
structure allows for efficient storage and retrieval of states, as
demonstrated in previous works [36], [38].

An example of a grid-based state cluster in a 2-dimensional
state space is shown in Figure 3. The figure demonstrates that
several concrete states (i.e., points on the left) are clustered

into three types of abstract states (i.e., clusters): abstract states
4, 5, 9, 17, 20 with occurrences η = 1, abstract state 11 with
occurrences η = 2, and abstract state 19 with occurrences
η = 3. Based on the computation of novelties, their novelties
are 1, 1

e , and 1
e2 , respectively. Hence, an abstract state with

higher occurrence has a lower novelty. It should be noted that
our experiments involve agents operating in higher-dimensional
state spaces.

B. Test Case Generator

This work introduces an innovative approach of utilizing
a diffusion model as a test case generator, illustrated on the
right side of Figure 2. The test case generator follows an
encoding-decoding workflow.

In the encoding stage, we introduce standard Gaussian
random noise to the normal test cases. Note that normal test
cases refer to the test cases randomly generated using the
default method of the environment in which the test case
components are within a valid range. The noise is gradually
refined through multiple diffusion steps until a standard
Gaussian distribution closely approximates the distribution
of the normal cases. In the decoding stage, we use a denoising
function pθ in the form of a fully connected feed-forward neural
network to recover the encoded samples (noise) back to normal
cases. Diffusion model-based test case generators learn the
correspondence and transformation between standard Gaussian
noisy samples and normal cases. During the generation, we
sample a random noise the same size as the test cases and use
the denoising function pθ to recover the noise to a new test
case.

To learn the denoising function pθ, we update θ, the
parameters of the diffusion model, to minimize the gap between
the latent distribution of normal cases and generated cases.
However, such a process can only guarantee that the generated
test cases are similar to the normal cases, which is insufficient to
detect more failures. We integrate a novelty-based measurement
as part of the loss term to tackle this pitfall. Specifically, we
encourage the diffusion model to fit test cases that induce
the termination states with high novelties (i.e., low novelty
loss). On the contrary, we force the diffusion model to update
from the status that generates test cases inducing low-novelty
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Fig. 3: The process of grid-based abstraction in 2-dimensional
state space can be illustrated with a schematic diagram. The
diagram on the left side depicts the specific termination states,
while the right side represents the abstract states generated by
grid-based clustering.

termination states. The final loss then be optimized as follows:

θ∗ = argminθLvlb + Lnovelty

= argminθLvlb + λ(1− ρ) (6)

where the Lvlb is the basic loss of diffusion models, the Lnovelty
is used to compute the loss based on abstract state novelties.
The λ is a factor to control the value magnitude of Lnovelty.
This way, we can update the θ∗ to fit the sample with high
novelties. In addition, add the novelty loss 1−ρ to the objective
function Lvlb instead of the only loss in each step (i.e., Lt),
making the training process more stable.

Moreover, we implement a simple Data Transformation
Module to convert the text-based states into float numbers. For
example, CARLA uses text-based weather settings, such as
WetCloudyNoon and SoftRainSunset. These components cannot
be generated by general diffusion models which output float
vectors. Therefore, we use a float number that scales in [0,1]
to represent the weather. We split the value scope [0,1] to
equal intervals, and each interval corresponds to a weather text.
With the Data Transformation Module, the diffusion model
can quickly adapt to heterogeneous test case search space.

C. Testing Framework

The test framework works in two stages. In the first stage,
we randomly sample normal initial states of the environment
as test cases using the Normal Test Case Generator. We then
use the collected normal test cases to train the Diffusion model-
based Test Case Generator. The diffusion model captures
the distribution of normal test cases, ensuring the validity of
generated test cases. However, we do not execute the normal
test cases in the first stage, and novelty-based guidance metrics
are not calculated or involved in the training process of the
diffusion model. This ensures that the training is stable in the
early stage and that the diffusion model can fit the normal case
distribution without novelty-based guidance.

The second stage of the test process involves three steps:
collecting test cases from the Normal Test Case Generator,
executing and evaluating the test cases using novelty-based
metrics in the Execution Module, and fine-tuning the diffusion
model based on the collected and generated test cases and the

Algorithm 1 Testing of Decision-Making Policies.
Input: P : Decision-Making Policy, E : MDP Environment, D: Diffu-

sion Model, M: Metrics Memory (Novelty)
Output: F : Failures detected by our method.

1: Initialize: Normal_cases : C ← ∅,Generated_cases : G ←
∅, Failure_cases : F ← ∅

2: function NORMAL_CASES_SAMPLE(steps)
3: while i < Initilzation_steps do
4: ci ← Random_inputs()
5: s0 ← E .reset(ci)
6: S,A,R,CRASH, ...,← E .execution(s0,P)
7: i← i+ 1
8: C.append(ci),M.update(S,A,R)

9: return C,M
10: C,M← NORMAL_CASES_SAMPLE(Sample_steps)
11: D.train(C, Null,Training_steps)
12: while i < Testing_steps do
13: if i is Tuning_intervals then
14: C,M← NORMAL_CASES_SAMPLE(Sample_steps)
15: D.train(C + G,M,Tuning_steps)
16: C ← ∅,G ← ∅,M← ∅
17: gi ← D.generate()
18: s0 ← E .reset(gi)
19: S,A,R,CRASH, ...,← E .execution(s0,P)
20: G.append(gi),M.update(S,A,R)
21: if CRASH is true then
22: F .append(gi)
23: i← i+ 1
24: return F

metrics. We use the Grid-based Abstract module to compute
the novelty-based metrics. During the fine-tuning process, we
execute the test cases generated by the diffusion model to
detect failures and update the model according to the joint
optimization in Equation 6. This fine-tuning and testing process
is repeated until the testing is complete.

We implement our method as introduced in Algorithm 1. We
use a function named NORMAL_CASES_SAMPLE in line 2,
which samples normal (random) inputs using Sample_steps.
In line 11, the diffusion model D is trained by the collected
normal inputs novelty-based guidance. The reason is that D
captures the distribution of normal cases in the first stage, and a
joint optimization with metrics might influence the convergence
of D. While testing the policy P , we generate test cases G by D
in line 17 and execute them in the environment E . The failures
are stored in the buffer F . Moreover, we fine-tune the D at each
Tuning_intervals in line 15. Note that the Tuning_steps is
significantly smaller than the Training_steps, as we need
to avoid overfitting the diffusion model D. The metrics
computation M includes the grid-based novelty measurement.

IV. IMPLEMENTATION

This section introduces the implementation details, including
the baseline method, the evaluation environment, our hyperpa-
rameter settings, and the hardware condition.

A. Baseline Method

We select MDPFuzz [12] as the baseline for our comparison.
MDPFuzz aims to identify failures in decision-making policies



TABLE I: The number of abstract clusters covered, failure clusters detected, failure rates, and diversity rates achieved by the
baseline and our method in five tasks.

Tasks Methods States State State Failures Failure Failure Failure
Clusters Diversity Rates Clusters Diversity

RL_CARLA MDPFuzz 3,622 197 5.43% 89 2.43% 19 21.34%
Ours 2,283 260 11.38% 163 7.13% 41 25.15%

IL_CARLA MDPFuzz 3,171 257 8.10% 118 3.72% 24 20.33%
Ours 2,401 339 14.11% 184 7.66% 73 39.67%

RL_BipedalWalker MDPFuzz 4,188 231 5.51% 718 17.14% 48 6.68%
Ours 5,651 355 6.28% 1,181 20.89% 114 9.52%

DNN_ACAS_Xu MDPFuzz 21,109 214 1.01% 17 0.08% 9 52.91%
Ours 15,854 209 1.31% 48 0.30% 18 37.50%

MARL_Coop_Navi MDPFuzz 258,971 9339 3.60% 32 0.01% 8 25.00%
Ours 166,869 6682 4.00% 104 0.06% 80 76.92%

that solve MDPs. MDPFuzz generates initial states as test cases
that can lead to failure-triggering trajectories. To increase its
effectiveness, the authors propose a mutation-based approach
to enrich the number of test case candidates and a fuzz-based
framework to search for test cases efficiently. In addition,
MDPFuzz uses a state coverage-based guidance named density
to diversify the trajectories. As pointed out by Pang et al. [12],
altering intermediate states in trajectories to detect failures
can disrupt the continuity of adjacent states, as trajectories
are composed of states with interdependencies [26]. Thus,
our proposed methods seek to identify practical failures by
utilizing only the initial states of the environments as test cases
for testing decision-making policies, which makes MDPFuzz
the closest comparable technique.

B. Environment and Decision-making Policies

We conducted experiments to evaluate our method on
five decision-making tasks: BipedalWalker game in the Gym
domain [22], Cooperative Navigation (Coop Navi) task [23],
ACAS-Xu collision avoidance task [24], and two CARLA
autonomous driving tasks [25]. The decision-making policy
for BipedalWalker was an agent trained by TQC, a model-
free DRL algorithm [40]. For Coop Navi, we used the agent
trained by Pang et al. [12] using a multi-agent reinforcement
learning (MARL) algorithm. In addition, we used a DNN
model in the official build as the decision-making policy for
ACAS-Xu. Finally, for CARLA autonomous driving tasks, we
used a DRL-based agent and an IL-based agent, which were
obtained from the CARLA Autonomous Driving Challenge 1

and Leaderboard 2, respectively.

C. Experimental Settings and Hyperparameters

We performed tests on CARLA and BipedalWalker for 12
hours, while the remaining tasks were tested for one hour, with
duration depending on their complexity. To ensure fairness, we
used the hyperparameters from the official open-source build of
MDPFuzz. For our method, we used a diffusion model as a test
case generator and trained it for 100 epochs using 1,000 normal
(random) test cases before testing. During each training epoch,

1 https://carlachallenge.org
2 https://leaderboard.carla.org/leaderboard

the diffusion model performs 50 add-noise steps (encoding)
and 50 denoising steps (decoding). In the testing phase, we
fine-tuned the diffusion model iteratively using 100 normal test
cases, 50 generated test cases by diffusion model, and their
corresponding metrics (such as Lnovelty in Equation 6) for one
epoch. The values of λ in the joint loss function are uniformly
set to 0.1. Subsequently, we evaluated the decision-making
policies using 10 test cases generated by the diffusion model.
The denoising model we used was a fully connected neural
network consisting of three hidden layers with a size of [256,
512, 256], and ReLU was used as the activation function.

D. Implementation and Hardware:

Our method is implemented with approximately 2K LOC
in Python (ver. 3.7.4). We use Numpy (ver. 1.19.5), and
PyTorch (ver. 1.13) to implement and train the diffusion model.
The experiments were conducted on high-performance servers
equipped with a 14-core Intel i9-10940X CPU, an Nvidia
A6000 GPU, and 128GB of RAM, running Ubuntu 20.04.
More implementation details could be found in our publicly
available code repository 3.

V. EVALUATION

In this section, we present the evaluation to study the
effectiveness of our method. We compare our method with
MDPFuzz [12], a state-of-the-art testing technique for decision-
making policies. The evaluation results aim to answer the
following research questions (RQs):

• RQ1: How many failures can the baseline and our method
detect in the selected tasks?

• RQ2: To what extent does novelty-based guidance out-
perform other widely used guidance for detecting failures
in decision-making policies?

• RQ3: How about the diversity of the covered states and
detected failures by the baseline and our method?

• RQ4: How much robustness is improved when repairing
decision-making policies by the detected failures of the
baseline and our method?

3 https://github.com/lizhuo-1994/mdp_testing

https://carlachallenge.org
https://leaderboard.carla.org/leaderboard


Fig. 4: Detected failures by our method with different guidance on five tasks.

A. RQ1: The Effectiveness of the Baseline and Our Method in
Detecting Failures.

We compare the test effectiveness of the baseline and our
method by measuring the number of detected failures and the
failure rate. The failure rate is calculated as follows:

Failure rate =
|{s∗|s∗ ∈ S∗}|
|{s|s ∈ S}|

(7)

where the S represents the group of tested cases, and S∗ is the
group of the test cases that trigger the failures. A higher failure
rate indicates a better test effectiveness of the method. The
numbers of detected test cases, detected failures, and failure
rates of our method and MDPFuzz on the five selected tasks
are presented in Table I.

The experimental results demonstrate that our method
detects more failures than MDPFuzz in all five tasks within
the respective testing time budget. Moreover, our method
achieves a higher failure rate than MDPFuzz. Thus, our method
outperforms MDPFuzz in detecting failures on all the tasks
given the limited time and number of test cases, proving our
method’s test effectiveness. It should be noted that the results
of MDPFuzz in this study may slightly differ from the original
publication [12] due to variations in hardware and random
seeds used in the experiments.

Answer to RQ1: The experimental results indicate that
our method is more efficient in detecting failures than the
baseline method within the given time budget. Additionally,
the testing results from our method show higher failure
rates, indicating that it detects more failures using fewer
test cases. In summary, our method is more effective for
identifying failures in decision-making policies than the
baseline.

B. RQ2: Comparison between Novelty-based and Other Guid-
ances in Detecting Failures for Decision-making Policies.

To further demonstrate the effectiveness of novelty-based
guidance, we compare it with three other widely used guidance
(as introduced in II-C) for detecting failures, including density,
sensitivity, and reward. Furthermore, we compare test results ob-
tained with and without guidance to train diffusion model-based
test case generators. We obtain the official implementation
of the aforementioned metrics from the official repository of
MDPFuzz [12]. All the values of the metrics are normalized into
[0, 1] (i.e., the same value scope of novelties) and multiplied

by the uniform hyperparameter λ in Equation 6 for the joint
optimization of the diffusion model-based test case generators.

Figure 4 shows the results of testing the respective decision-
making policies on five tasks by selected guidance. We can see
that although the pure diffusion model-based test case generator
without specific guidance can produce failure-inducing test
cases, the number of detected failures is significantly lower
than that of other methods in all five tasks. Furthermore, after
integrating the selected guidance into the joint loss function of
the diffusion models, our method can identify more failures.
Another observation is that, with novelty-based guidance, our
method detected the most failures in all five tasks. These results
validate that novelty is the most effective guidance for failure
detection in decision-making policies.

To further demonstrate the effectiveness of novelty-based
guidance in test generation, we replaced the density-based
feedback signals of the fuzzing framework in MDPFuzz
with novelty. As shown in Figure 5, the evaluation results
reveal an improvement in detected failures with novelty-based
guidance for IL_CARLA, while RL_BipedalWalker experiences
a minor increase. The findings above indicate that MDPFuzz
with novelty-based guidance can identify more failures than
the original MDPFuzz (with density-based guidance), further
emphasizing the effectiveness of novelty in detecting failures
of decision-making policies.

Answer to RQ2: By optimizing the diffusion model-
based test case generator with novelty-based guidance,
our method achieves the highest number of detected
failures among several widely used guidance for test-
ing decision-making policies. Furthermore, incorporating
novelty-based guidance improves the test efficiency of
the baseline method, demonstrating its effectiveness in
detecting failures compared to other forms of guidance.

C. RQ3: The Diversity of Covered States and Failures Detected
by the Baseline and Our Method.

Prior research has demonstrated that diversifying agent
behaviors and increasing state space coverage can improve
the effectiveness of failure detection [12], [13]. In this section,
we analyze the diversity of the baseline and our method by
assessing the covered states and detected failures. To achieve
this, we utilize grid-based clustering (as illustrated in III-A) to
measure the topological similarities of the termination states
of trajectories. This approach is employed because grid-based



clustering groups similar concrete states with closer distances
in the state space into the same cluster, i.e., the abstract state,
thereby increasing the effectiveness of measuring the diversity
of agent behaviors.

We evaluate the diversity of agent behaviors using four
metrics: the number of covered abstract clusters during the
testing, the state diversity rate, the number of failure clusters,
and the failure diversity rate. We first obtain a set of covered
termination states denoted by S and the corresponding set
of clusters Ŝ to calculate the state diversity rate. Then, we
calculate the number of clusters that are covered given the
number of concrete termination states (which is equal to the
number of test cases and trajectories) using the following
formula:

State diversity =
|{ŝ|ŝ ∈ Ŝ}|
|{s|s ∈ S}|

(8)

We also measure the failure diversity rate. First, we obtain a
set of concrete states S∗ and the corresponding set of clusters
Ŝ∗ covered by all the failure-triggering trajectories. Then, we
calculate the failure diversity rate using the following formula:

Failure diversity =
|{ŝ∗|ŝ∗ ∈ Ŝ∗}|
|{s∗|s∗ ∈ S∗}|

(9)

As shown in Table I, our method covers more abstract
clusters of the termination states covered by the test cases than
MDPFuzz in four tasks. In addition, the number of covered
abstract clusters is close to the MDPFuzz in DNN_ACAS_Xu,
since we cost significantly fewer test cases. Furthermore, our
method has achieved higher state diversity rates than MDPFuzz
in all five tasks. This indicates that our method can cover a
broader range of states in the given testing time and the number
of test cases than MDPFuzz.

The failures detected by our method cover more abstract
clusters than MDPFuzz in all five tasks. Based on the above
results, our method has exhibited higher failure diversity rates
than MDPFuzz in four tasks, further highlighting its superior
performance in diversifying the agent behaviors. Note that our
method shows a lower failure diversity in MARL_Coop_Navi.
The reason is that MDPFuzz detects 32 failures, significantly
smaller than ours (i.e., 104), making the failure diversity value
greater. Overall, our method has successfully achieved two
critical goals: covering a broader and more diverse range of
states and detecting a wider range of failures than MDPFuzz.

Answer to RQ3: Our method excels the baseline method
in covering a broader range of states and failures within
the given number of test cases. These experimental results
signify that our method can better diversify the agent
behaviors and detect failures in decision-making policies
than the baseline method.

D. RQ4: Robustness Improvement through the Repair of
Decision-making Policies using Our Detected Failures.

To improve robustness, we focused on repairing the decision-
making policies in RL_BipedalWalker and DNN_ACAS_Xu
using the failure trajectories detected by both MDPFuzz and

Fig. 5: The testing results of MDPFuzz using novelty-based
guidance.

our method. We chose these tasks because other decision-
making policies require considerable computation resources
or are black-box models. Our repair approach fine-tunes the
model for 60 epochs in DNN_ACAS_Xu, the same as the repair
in MDPFuzz, and 100,000 total steps in RL_BipedalWalker.
Finally, we evaluated the robustness improvement achieved by
our method.

Table II presents the results of repairing the decision-
making policies of RL_BipedalWalker and DNN_ACAS_Xu
using the detected failure trajectories of MDPFuzz and our
method. For the repair process, we fine-tuned the model in
60 epochs for DNN_ACAS_Xu, the same as the repair in
MDPFuzz, and 100,000 total steps for RL_BipedalWalker. We
randomly shuffled the test cases generated by the baseline and
our method and trained the decision-making policies on the
trajectories produced by the generated test cases. Moreover,
we add the same amount of normal test cases for repairing
to avoid overfitting. The results show that policies repaired
by our detected failure trajectories have 477 and 8 failures in
RL_BipedalWalker and DNN_ACAS_Xu, respectively, while
policies repaired by MDPFuzz detected 629 and 14 failures,
respectively. Hence, we conclude that our detected failures are
more effective in improving robustness than MDPFuzz.

Answer to RQ4: The failure cases detected by our
method can help improve the robustness of decision-
making policies. Additionally, repairing evaluated models
using our detected failure cases leads to a more significant
improvement in robustness compared to the baseline
method.

VI. DISCUSSION

A. Potential for Adopting Generative AI in Other Software
Engineering Areas

Our experiment demonstrates that integrating generative
models with novelty-based guidance significantly enhances both
agent behavior diversity and test effectiveness. Additionally, we
discovered that employing generative AI for test case generation
can also help improve the validity of test cases, which is a
crucial factor to consider when developing testing frameworks.
As discussed in [41], [42], the absence of test case validation
could substantially inflate coverage and escalate test costs,



TABLE II: The number of detected failures before and after
repair.

Item RL_BipedalWalker DNN_ACAS_Xu

MDPFuzz 718 17
MDPFuzz (Repair) 629 14
Ours 1,181 48
Ours (Repair) 477 8

leading to diminished test effectiveness. Generative models
facilitate flexible adaptation to various search spaces with
minimal effort. Moreover, they can dependably validate input
by capturing the standard case distribution and generating valid
and novel cases without imposing additional constraints.

These findings may have broader implications, suggesting
that we should contemplate utilizing these generative models
and adapting them for other software engineering tasks. For
instance, the diffusion model used in generation tasks can
be designed to generate valid data samples by explicitly
constraining the diffusion process. In particular, the diffusion
process can be designed to prevent the generation of invalid
samples, such as images with missing pixels or audio with
random noise. One way to do this is by using a diffusion
process that respects the geometry or structure of the data. For
example, in image generation, the diffusion process can be
designed to respect the spatial structure of the pixels so that
each pixel is generated based on its neighbors, which can help
prevent the generation of invalid images with missing pixels
or artifacts. Another way to ensure the generation of valid
samples is to use a diffusion process that is conditioned on the
input data or a specific task. This can help guide the diffusion
process toward generating valid samples consistent with the
input data or the desired output.

B. Detailed Design Philosophy of Our Testing Framework

Our method goes beyond the goal of detecting more failures
than the baseline on selected tasks. The reason is that testing
decision-making policies is challenging due to the massive
state space of complex environments, the high cost of test
execution, and the black-box nature of DNN-based components.
As a result, conducting exhaustive testing of decision-making
policies is not feasible [5]. Moreover, failures in decision-
making policies tend to be concentrated on similar scenarios,
which can negatively impact testing effectiveness. Instead,
recent studies have shown that generating test cases that induce
diverse behaviors can improve the testing of decision-making
policies [12], [13]. In this study, we also aim to detect a more
diverse range of failures, and therefore, we utilize novelty-
based guidance to enhance the test case generation. The results
indicate that our method’s detected failures can better enhance
the policy’s robustness. Thus, an effective testing method for
decision-making policies should focus on detecting a broader
range of failures and exploring a wider range of agent behaviors.

Note that although we have many choices in measuring
the freshness of the termination states, such as KNN [38], in
this paper, we select grid-based abstraction to discretize the

concrete termination states and adopt the occurrence of the
abstract states as novelty measurements. The reason is that grid-
based abstraction is more efficient and effective in grouping
topologically similar states [36]. However, we found that the
abstraction granularity (grid numbers) on each dimension can
affect the correctness of abstraction. For example, a smaller
grid number makes more concrete states fall into the same
grid and causes the abstraction to be less representative. On
the contrary, a greater grid number increases the number of
grids, thus harming the generality. In our method, we set the
grid number to 5, 5, 5, 5, and 2 in RL_CALRA, IL_CARLA,
RL_BipelWalker, DNN_ACAS_Xu, and MARL_Coop_Navi,
respectively.

The computation of novelties in Equation 5 involves the re-
ciprocal of the exponentiated value of abstract state occurrences
η. This leads to novelty values ρ that change more rapidly
when η is relatively small, making it easier to identify new
abstract states. To illustrate this, consider the abstract states in
Figure 3, where abstract states 4, 11, and 19 occurred 1, 2, and
3 times, respectively. Their corresponding novelties are 1, 1

e ,
and 1

e2 , respectively. The novelties decrease more quickly when
state occurrences are relatively small, as (1− 1

e ) > ( 1e − 1
e2 ).

This computation facilitates a clearer differentiation between
new and covered states, which is advantageous for optimizing
the diffusion model to discover and explore more novel states.

Both our method and the MDPFuzz approach have demon-
strated the ability to detect a wider range of failures in decision-
making policies through diversification of termination states
and entire trajectories, respectively. However, measuring the
novelty of trajectories (i.e., density in MDPFuzz) can be com-
putationally complex and inefficient, as they are typically high-
dimensional vectors, as mentioned in MDPFuzz. Instead, we
propose measuring novelty based on termination states, which
is more computationally efficient. Moreover, we suggest that
measuring the novelty of multi-step states (patterns) could be a
more effective approach for identifying novel trajectories [36].
In addition, we believe that using a generalizable memory [43]
such as DNNs to store and fit the covered states or patterns
would be more scalable than the key-value memory used in
our method. This is because a generalizable memory can more
easily adapt to higher-dimensional states.

Overall, the primary objective of our method is to develop
an effective testing framework for decision-making policies.
Our focus is not only on detecting more failures but also on
identifying more diverse trajectories. Furthermore, our approach
can be applied to new testing tasks without requiring significant
engineering effort.

VII. THREATS TO VALIDITY
A. Internal Threats

An internal threat to our method’s validity is the diffusion
model’s fine-tuning process. During fine-tuning, the diffusion
model is trained using the normal cases from the initialization,
which could potentially harm the model’s convergence. To
mitigate this issue, we adopt two solutions: (1) we introduce a
factor to control the value range of the novelties during joint



optimization, and (2) we monitor the loss of the diffusion
model to prevent overfitting. Although we did not observe
any invalid test cases generated by our method, this threat
still exists and warrants further investigation, particularly in
scenarios involving longer-term fine-tuning of the diffusion
models.

B. External Threats

The fact that we selected only a limited number of decision-
making and repair tasks could be an external threat to the
generalization of our method. Despite the limitations in compu-
tational resources, our method demonstrated its effectiveness.
However, further experiments on a broader range of tasks
are necessary to confirm the robustness and versatility of our
method, particularly in safety-critical and real-world scenarios.
We aim to continuously enhance our method for more tasks and
deeper insights. We leave the above topics as future works.

VIII. RELATED WORK

A. DNN Testing

DNN testing is an essential quality assurance for deep
learning-based models and applications [44]. The related works
have drawn much attention in both software engineering and
artificial intelligence communities in recent years, including
the tests of correctness [45], [46], relevance [47]–[49], ro-
bustness [50]–[52], faireness [53], [54]. Unlike traditional
software test techniques, DNN testing usually leverages unique
characteristics such as neuron coverage [55]. The above DNN
testing methods are applied to various tasks such as autonomous
driving [56], [57], machine translation [58], [59], nature
language inference [60], [61]. However, testing DNN-based
decision-making policies still establishes challenges such as
oracle definition and test case generation [12], [15], [62]. This
paper mainly focuses on testing decision-making policies for
solving MDPs, where the existing testing methods for DNN
are not applicable.

B. Decision-making Policy Testing

Previous works have stated that existing decision-making
policies require more thorough tests [63]. Most existing works
focus on testing decision-making policies by exploring the test
case search spaces [5], [10]–[14], [64], which achieved superior
testing performance. Alessandro et al. applied the search-based
testing methods to autonomous driving systems (ADS) [11]
with promising results. Koren et al. used perturbation-based
modification on the elements of the environment to test
the collision of vehicles [65]. Lee et al. adopted adaptive
stress testing (AST) to decision-making policies in MDP
environment [66]. Another inspiring work is testing decision-
making policies by searching the inconsistency via metamorphic
relaxations [15]. Besides, a few words about finding bugs in
the decision-making policies in hybrid systems have been
proposed [67]. Dreossi et al. performed tests on cyber-physical
systems (CPS) [68], a type of physical MDP environment.
Recently, the tests and verification of decision-making policies
by formal methods have been proven effective [69], [70].

These methods usually require domain-specific knowledge
to design the mutation strategies and metamorphic relations.
This paper discusses a novel solution for generating test cases
by generative models. Furthermore, existing works on testing
decision-making policies still exhibit room for improving test
effectiveness and diversity. Our method adopts a diffusion
model-based test case generator with novelty-based guidance
to mitigate the above challenges.

C. Generative Model-based Testing

DeepRoad, as presented in Zhang et al., utilizes GANs
to automatically synthesize large-scale driving scenes and
assess the consistency of driving systems [71]. Similarly,
Li et al. demonstrates the effectiveness of similar methods
in generating and identifying critical environmental condi-
tions [72]. BMT [73], proposed by Deng et al., adopts
generative models to produce logical metamorphic relations for
autonomous driving tasks. In addition, generative model-based
test generation has proven effective in performance testing
of complex software [74]. Previous studies have shown that
generative models effectively generate numerically critical test
cases. Furthermore, in the tasks mentioned above, generative
model-based generators can produce diverse and valid test
cases, as demonstrated by Fontes et al. in their integration
work [75].

Another application of generative models in testing DNN
models by Swaroopa et al. shows that existing test case
generators [50], [51], [76] for DNN models lack validity since
the test cases might be out-of-distribution (OOD) against the
training data. Moreover, they proposed a generative model
(VAE) -based test case generator to ensure the cases are in
the training data distribution [41]. In this paper, we consider
that using generative models as test case generators benefit not
only test cases’ validity but also test implementation efficiency
since we can quickly generate test cases by sampling from the
learned distribution instead of carefully designing the test case
generation constraints [12], [41].

IX. CONCLUSION

In this work, we propose a novel testing framework for
decision-making policies, incorporating generative diffusion
models as test case generators and novelty-based guidance to
diversify agent behaviors. Our experimental results demonstrate
that our method outperforms baseline techniques in detecting
a wider range of failures and enhancing policy robustness. We
show that diversifying agent behaviors can help effectively
test decision-making policies. Moreover, using our detected
failure cases to repair the decision-making policies results in
a more significant robustness improvement than the baseline
method. Our future work involves continuously enhancing our
method to test and improve decision-making policies. This will
be achieved through the following steps: (1) expanding our
techniques to address increasingly complex and safety-critical
tasks; (2) investigating novel guidance strategies to discover
more corner failures; (3) conducting more effective robustness
enhancements for existing decision-making policies.
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