
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2023

REKS: Role-based Encrypted Keyword Search with enhanced REKS: Role-based Encrypted Keyword Search with enhanced

access control for outsourced cloud data access control for outsourced cloud data

Yibin MIAO

Feng LI

Xiaohua JIA

Huaxiong WANG

Ximeng LIU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
MIAO, Yibin; LI, Feng; JIA, Xiaohua; WANG, Huaxiong; LIU, Ximeng; CHOO, Kim-Kwang Raymond; and
DENG, Robert H.. REKS: Role-based Encrypted Keyword Search with enhanced access control for
outsourced cloud data. (2023). IEEE Transactions on Dependable and Secure Computing. 1-15.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8268

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yibin MIAO, Feng LI, Xiaohua JIA, Huaxiong WANG, Ximeng LIU, Kim-Kwang Raymond CHOO, and Robert
H. DENG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8268

https://ink.library.smu.edu.sg/sis_research/8268

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

REKS: Role-Based Encrypted Keyword Search
with Enhanced Access Control for Outsourced

Cloud Data
Yinbin Miao, Feng Li, Xiaohua Jia, Fellow, IEEE, Huaxiong Wang, Ximeng Liu, Kim-Kwang

Raymond Choo, Senior Member, IEEE, and Robert H. Deng, Fellow, IEEE

Abstract—Keyword-based search over encrypted data is an important technique to achieve both data confidentiality and utilization in
cloud outsourcing services. While commonly used access control mechanisms, such as identity-based encryption and attribute-based
encryption, do not generally scale well for hierarchical access permissions. To solve this problem, we propose a Role-based Encrypted
Keyword Search (REKS) scheme by using the role-based access control and broadcast encryption. Specifically, REKS allows owners
to deploy hierarchical access control by allowing users with parent roles to have access permissions from child roles. Using REKS, we
further facilitate token generation preprocessing and efficient user management, thereby significantly reducing the users’ final token
generation and index update overheads, respectively. Formal security analysis proves that REKS is secure against chosen keyword
and internal keyword guessing attacks, and findings from the empirical evaluations demonstrate that REKS is efficient and practical.

Index Terms—Keyword-based search, access control, identity-based encryption, attribute-based encryption, role-based access
control

F

1 INTRODUCTION

C LOUD computing services (e.g., data storage, outsourc-
ing, and processing) are now deeply entrenched in

our society. For example, resource-constrained clients often
outsource computationally incentive operations to cloud
servers for reducing local computation and storage burdens.
Because clients lose physical control on remotely stored
data, the potential data security and privacy concerns
impede the widespread adoption of cloud computing.
The data encryption based on cryptographic primitives
is generally used to guarantee data confidentiality, but
makes the search over encrypted data difficult with
traditional plaintext retrieval techniques. To guarantee both
data confidentiality and data searchability, the searchable
encryption (SE) [1] technique, which provides an elegant
solution to search encrypted files by keywords, was
developed.

Existing work of SE ignored the access control, and

• Y. Miao and F. Li are with the School of Cyber Engineering, Xidian
University, Xi’an 710071, China; Guangxi Key Laboratory of Trusted
Software, Guilin University of Electronic Technology, Guilin 541004,
China; Department of Computer Science, City University of Hong Kong,
Hong Kong 999077, China. Email: ybmiao@xidian.edu.cn

• X. Jia is with the Department of Computer Science, City University of
Hong Kong, Hong Kong 999077, China. Email: csjia@cityu.edu.hk

• H. Wang is with Division of Mathematical Sciences, School of
Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, 639798, Singapore. E-mail: hxwang@ntu.edu.sg

• X. Liu is with the Key Laboratory of Information Security of Network
Systems, College of Mathematics and Computer Science, Fuzhou
University, Fuzhou 350108, China. Email: snbnix@gmail.com

• K.-K. R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249-
0631, USA. E-mail: raymond.choo@fulbrightmail.org

• R. H. Deng is with the School of Information Systems, Singapore
Management University, 80 Stamford Road 178902, Singapore. Email:
robertdeng@smu.edu.sg

incurred unauthorized access permissions when deployed
in public cloud systems [2], [3]. Thus, it is important
to combine access control with SE. Existing access
control approaches can be classified into two categories,
namely authentication-based approach and encryption-
based approach. The authentication-based approach, such
as password authentication, is a server-dominated access
control mechanism and assumes that cloud servers are
trusted, but could lead to security and privacy leakages
once the servers are compromised. The encryption-
based approach prevents unauthorized accesses through
commonly used cryptographic primitives such as identity-
based encryption (IBE) [4] or ciphertext-policy attribute-
based encryption (CP-ABE) [5]. Encryption-based approach
offers a promising direction for combining SE with access
control. However, there are three issues to apply encryption-
based approach to SE.

Let us first consider a cloud-based enterprise, where
there are multiple roles such as R:chairman, R:manager,
and R:staff (see Fig. 1). The roles are arranged in a
hierarchical structure, and each role can be associated with
many users. For example, a staff shares encrypted files
with the sales manager, financial manager and chairman.
The traditional encryption-based access control solutions
applied to SE still incur three issues: 1) The IBE-based
keyword search solutions [6], [7] achieve access control by
pre-fixing user identities, in which one user corresponds
to one identity, which cannot achieve hierarchical access
permissions mentioned in the above example; 2) The ABE-
based Keyword Search (ABKS) solutions provides fine-
grained access control compared with IBE-based keyword
search schemes, but the index encryption and ciphertext
search overheads in most of existing ABKS schemes [8],
[9], [10], [11] linearly increase with the number of

ppyeo
Typewritten Text
DOI: 10.1109/TDSC.2023.3324640

ppyeo
Typewritten Text

ppyeo
Typewritten Text

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

roles, and those of updated ciphertexts linearly increase
with the number of users having the role, which incur
high computation and storage burdens on both resource-
constrained owners and users, respectively. Thus, ABE-
based solution is difficult to deploy in practical applications
due to high computation and storage costs; 3) The above two
kinds of solutions have high index update overheads when
updating identities/attributes [12] or access policies [13] in
the dynamic setting.

Chairman

Staffs

Financial

manager

Sales

manager

Fig. 1: An example of hierarchical structure.

From the above discussion, we can see that traditional
broadcast encryption-based keyword search solutions [14],
[15], [16] or ABKS [17] schemes can support the hierarchical
role-based access control, but the costs associated with
index constructions, ciphertext search or index updates are
high. To address the challenging issues, we design a Role-
based Encrypted Keyword Search with enhanced access
control (REKS) scheme by combining role-based encryption
(RBE) [18] and Identity-Based Broadcast Encryption (IBBE),
which does not incur additional computational and storage
overheads due to combination. Then, we extend it to
support token generation preprocessing and efficient user
management. The main contributions of our work are as
follows:

• We propose a hierarchical role-based access control
mechanism over encrypted data, in which the parent
role has all the access permissions of child roles. We
further provide efficient user management when the
user set associated with the same role dynamically
changes.

• We design an efficient index construction based on a
specified role, in which the index construction costs
are independent of the number of users and ancestor
roles having the access permission of specified role.
REKS only updates one index component when the
user set updates.

• We extend REKS to support the token generation
preprocessing, which shifts the computationally
intensive operations to the preprocessed phase.
Consequently, such a move significantly relieves
users’ token computations in the final phase.

The remainder of this paper is organized as follows.
We first review the extant literature in Section 2, before
presenting the problem formulation (i.e., system model,
problem definition, threat and security models) in Section 3.
We describe the construction of REKS in Section 4, and
formally prove that REKS is secure against Chosen Keyword
Attack (CKA) and Internal Keyword Guessing Attack
(IKGA) in Section 5. We evaluate the performance of the

proposed REKS in Section 6. Finally, we conclude our work
and discuss potential future research in Section 7.

2 RELATED LITERATURE

Since the proposal of public key encryption with keyword
search [1] was proposed, a large number of extensions
have been proposed, such as schemes seeking to improve
search functionalities [19], [20], [21], [22], [23], efficiency [24],
and security [9], [25]. To allow only authorized users
having the right access permissions to encrypted data, either
symmetric encryption-based [26] or asymmetric encryption-
based access control mechanism [27], [28] can be employed.
It is known that symmetric encryption-based access control
approaches are vulnerable to key leakage threats; thus, we
mainly focus on the asymmetric encryption-based access
control mechanisms such as IBE-based keyword search and
ABE-based keyword search in this paper.

IBE-based keyword search. In the IBE-based keyword
search solution [7], the owner builds the indexes based
on the public key of each user. When deployed in the
multi-user setting, this mechanism dramatically expands the
ciphertext storage space as it generates multiple ciphertexts
for each keyword. The IBBE proposed by Cecile et al. [38]
remedies the defect of IBE, and achieves the constant
ciphertext size that is independent of the number of users.
To allow the owner to flexibly grant access permission
from one user to multiple users, Deng et al. formalized
an IBE ciphertext transformation model [29] by combining
two well-established IBE and IBBE solutions. While this
scheme just provides flexible access control rather than
keyword search. Thus, Jiang et al. integrated SE and IBBE to
construct an efficient Identity-Based broadcast Encryption
with Keyword Search scheme [15] in the static group,
which resists IKGA. Zhang et al. designed the threshold
broadcast encryption with keyword search scheme [30]
for dynamic groups and flexible threshold values, but
this scheme is vulnerable to CKA due to deterministic
token generation algorithm. Mohamed et al. proposed
the broadcast searchable keyword encryption scheme [31]
which is secure against adaptive CKA.

ABE-based keyword search. In the dynamic group, the
newly joined or revoked users could impact the flexibility
and scalability of IBE-based keyword search schemes that
often update indexes. ABE provides an expressive access
control as it does not need to know the identities of
users in advance. So far, many ABE-based keyword search
solutions have been proposed for achieving both fine-
grained access control and keyword search. For example,
Miao et al. proposed a privacy-preserving ABKS scheme [32]
in the shared multi-owner setting, but its encryption and
decryption costs linearly increase with the number of
attributes. Then, they reduced encryption cost by employing
disjunctive normal form [39] rather than Boolean formula
when specifying the access policy, and achieved constant
decryption cost through fast outsourced decryption. While
above ABKS schemes just support conjunctive keyword
search, which cannot satisfy more desired expressive
search queries including Boolean keyword search [33]
or comparable search [40]. To further prevent malicious
cloud servers executing a fraction of search operations and

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

TABLE 1: A comparative summary between our scheme and previous schemes.

Schemes [29] [15] [30] [31] [32] [33] [34] [35] [17] [18] [36] [37] REKS
Access control IBE IBBE IBBE IBBE ABE ABE ABE IBBE ABE RBE IBE RBE RBE

Hierarchical structure % % % % % % % ! ! ! ! ! !

Search type % Single Single Single Single Boolean Single % Conjunctive % Single Conjunctive Single
Ciphertext size Constant Constant Linear Constant Linear Linear Linear Constant Linear Constant Linear Linear Constant

User update % % % % % % % % ! ! % ! !
Security level CPA CKA/IKGA — CKA KGA CKA CKA CPA/CCA CPA/CKA CPA CPA CPA/CKA CKA/IKGA

— Notes. “CPA”: Chosen Plaintext Attack; “CCA”: Chosen Ciphertext Attack; “—”: [30] is not secure against CKA as it claims.

returning incorrect search results, verifiable ABKS schemes
have been put forward by using Merkle hash tree [34],
Bloom filter [41] or digital signature [42].

When considering the hierarchical structure, the Hi-
erarchical IBE/IBBE [43], [35] or Hierarchical ABE [44]
can be used to support hierarchical access control, but
the secret key of low level should be derived from that
of high level and its size linearly increases with the
depth of hierarchical tree. There are some state-of-art
works focusing on achieving hierarchical access control
and keyword search. For example, Miao et al. proposed
ABKS scheme over hierarchical data [17] rather than
hierarchical users. Sultan et al. constructed the role-based
keyword search scheme [37], but needs to transform the
indexes based on roles in the ciphertext search process.
Li et al. proposed a hierarchical public key encryption
with keyword search scheme [36] by utilizing a public
key tree, but its index construction cost linearly grows
with number of users. In addition, Liu et al. [45] adopted
the structure of a public key tree to realize hierarchical
access control, which allows users in different levels have
different access permissions. Xiong et al. [46] proposed
an authentication scheme with hierarchical access control
based on self-certified public key cryptography and Chinese
remainder theorem, which provides hierarchical access
control, access without outside the scope of permission
and efficient update user access privilege. Zhang et al. [47]
proposed a new blockchain-based unified access control
scheme in the form of ciphertext for the mobile cloud
computing, which provides single registration, unified
authentication, hierarchical access control, auditability and
dynamic update. Riad et al. [48] proposed a new hierarchical
access control scheme with dynamic revocation threshold
vector for securing the cloud outsourced data, which
can restrict the role of the central authority and revoke
malicious users at different stages in the system, based
on a dynamically changing revocation threshold vector.
Compared with previous IBE-based or ABE-based keyword
search schemes, REKS has following features in TABLE 1.

3 PROBLEM FORMULATION

In this section, we present the system model, problem
definition, threat model and security model.

3.1 System Model

In this paper, we consider a cloud-based enterprise data
sharing application, where the data users cannot share their
secret keys with unauthorized ones. As depicted in Fig.2,
the system model of REKS consists of five entities, namely

Trusted Authority (TA), Role Manager (RM), data owner,
data users and Cloud Server (CS). The role of each entity is
shown as follows:

• Trusted authority: TA is responsible for generating
keys for owner, users and roles.

• Role manager: RM manages roles of users. RM sends
the role information and role-user information to CS
and owners, respectively.

• Data owner: The owner outsources encrypted files to
CS. It builds search indexes based on the ancestor
role set of specified role and uploads them to CS.

• Data user: An authorized user makes a search query
by generating a token of the search keyword and
submits the token to CS.

• Cloud server: CS stores ciphertexts and conducts
search operations in respond to user’s search queries,
and returns the query results for search users.

Cloud server

Data owner Data users

Trusted authority

Role

 manager

Fig. 2: System model of REKS.

In a cloud-based enterprise, TA distributes keys for
owner, users and roles (Step 1⃝) managed by RM. RM (e.g.,
enterprise administrator) manages users’ access permissions
and sends the role information, role-user information to
CS and the owner respectively (Step 2⃝). When the owner
outsources its data to CS, it first encrypts files and builds
corresponding indexes by using a specified role (Step 3⃝)
and secret key. The user generates the valid token based on
the search keyword (Step 4⃝) and secret key. CS matches the
submitted token with indexes (Step 5⃝) and returns relevant
query results to the user (Step 6⃝).

3.2 Problem Definition

In this work, in order to divide the access permissions of
user more precisely, we model the users’ access permissions

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

over encrypted files using the role-based access control.
Each role corresponds to a certain access permission. Each
user is associated with one or multiple roles. Roles are
organized in a hierarchical structure, of which a parent role
has all the access permissions of its child roles. Take Fig. 3
as an example, the parent role R3 has all access permissions
of the child roles R7,R8,R9 (see the green nodes), and the
ancestor role set having the access permission of role R6 is
defined as (R6,R2,R1,R0) (see the yellow nodes).

R3

R4 R5 R6

R1

R0

R2

R7 R8 R9

R0~R9: Roles

U0~U8: Data users

{U0,U1}

{U2,U3}

{U5,U6,U7,U8}

{U4}

Fig. 3: An example of role-based access control.

To facilitate keyword search over encrypted files in
REKS, the owner needs to construct the searchable indexes
by combining IBBE [38] with RBE [18]. Specifically, the
owner first builds the inverted index Iw for each keyword
w based on the ancestor role set of a specified role, then
uploads encrypted indexes and file ciphertexts to CS. The
user generates the token Tw′ based on its search keyword
w′, role and identity, and then sends Tw′ to CS. If the token
Tw′ matches with the index Iw, CS returns the query results
to the user. In REKS, when the owner uses a role R6 to
generate the index Iw, any user who has an ancestor role
of R6 should be able to generate a valid Tw′ that can search
Iw.

3.3 Threat Model
In REKS, TA, RM, data owner and data users are fully
trusted, note that there are no communications among
data users, and they are trusted entities who do not sell
or leak their secret keys and roles to unauthorized ones.
For such reason, REKS is limited to specific application
scenarios, where rules and regulations stipulate that leaking
secret leaks will result in penalties. CS is honest-but-
curious, which honestly conducts the search operations
but is curious to infer some sensitive information about
underlying keywords in accessible indexes and tokens. In
addition to the keyword privacy leakage caused by the
internal CS, the external attackers may try to distinguish
indexes from those of their chosen keywords. Note that the
external attackers only have access to indexes as tokens are
generally transmitted via a secure channel. The potential
keyword privacy threats incurred by the internal CS or
external attackers are shown as follows:

• Token linkability. The internal CS can infer whether
any two tokens are generated from the same
keyword if the token generation algorithm is
deterministic rather than non-deterministic.

• Internal keyword guessing attack. The internal CS can
distinguish tokens from ciphertexts of its chosen
keywords by using the public parameters and
available ciphertexts.

• Chosen keyword attack. The internal CS or external
attackers can distinguish indexes from ciphertexts of
their chosen keywords with accessible information.

It is worth noting that the token linkability attack,
internal keyword guessing attack and chosen keyword
attack are all passive attacks, as the internal CS or external
attackers only attempt to infer some sensitive information
by observing accessible information without malicious
actions (e.g., interfering with the search operations or
modifying accessible information.)

3.4 Security Model

In this work, we only consider the case the internal
adversary is CS. To guarantee the keyword privacy, REKS
should resist CKA and IKGA based on following two
security games [15], [49], respectively.
CKA game. In this game, the adversary is allowed to make
queries for some secret keys and token generations with
some restrictions. Given a searchable index for the claimed
user set having the role R, this adversary cannot distinguish
the index for keyword w0 from that of keyword w1, but
the restriction is that the adversary cannot receive the
corresponding token. The specific CKA game conducted
between the adversary A and a challenger C is shown as
follows:

Init. The adversary A declares a challenging user set
UL∗

R = {ID∗
U1
, · · · , ID∗

Un
}.

Setup. The challenger C first runs System Initialization
and Key Generation for the owner, then sends the public
parameters PP and the owner’s public key PKO to A.

Phase 1. A conducts a polynomially bounded number of
secret key queries and token generation queries as follows:

• Secret key queries. A issues a user’s identity IDUj /∈
UL∗

R to C. Then, C calls Key Generation to generate
the user’s secret key SKUj and sends it to A.

• Token generation queries. A issues the user’s identity
IDUj and a queried keyword w to C. Then, C calls
Token Generation to generate the token Tw and sends
it to A.

Challenge. A submits two keywords w0, w1 with equal
length and a challenging user set UL∗

R to C, but it did not
issue privates keys for the identity set {ID∗

U1
, · · · , ID∗

Un
}

and token generation queries for keywords w0, w1 in Phase
1. Then, C chooses a random bit b ∈ {0, 1} and calls Index
Construction to generate the index Iwb

for A.
Phase 2. A continues to make the secret key or token

generation query for IDUj /∈ UL∗
R, or token generation

query for w /∈ {w0, w1} on condition that IDUj ∈ UL∗
R.

Then, C responds as Phase 1.
Guess. A outputs a guess bit b′ ∈ {0, 1} and wins the

above CKA game if b′ = b.

Definition 1. Definition 1. We say that REKS is secure against
CKA if for any polynomially bounded adversary A, it has a
negligible probability ϵ in breaking the above CKA game, namely
AdvCKA

A (1λ) = |Pr[b′ = b]− 1
2 | < ϵ.

IKGA game. In this game, the adversary A is permitted
to make queries for secret keys and index constructions

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

with some restrictions. Given the claimed identity ID∗
Uj

,
A cannot distinguish the token for the keyword w0 from
that of keyword w1, and it is not allowed to access the
corresponding index. The specific IKGA game conducted
between A and C is demonstrated as follows:

Init. A declares a challenging identity ID∗
Uj

of user.
Setup. C calls System Initialization and Key Generation to

generate public parameters PP and the owner’s public key
PKO for A.

Phase 1. A makes a polynomially bounded number of
secret key queries and index construction queries as follows:

• Secret key queries. A issues a user’s identity IDUj ̸=
ID∗

Uj
to C. Then, C runs Key Generation to generate

the secret key SKUj associated with the identity
IDUj and sends it to A.

• Index generation queries. A issues the identity set
{IDUj} of users having the same role and the
keyword w to C. Then, C responses it by calling Index
Construction and sends the resulting index Iw to A.

Challenge. A submits two queried keywords w0, w1 with
equal length and the user’s identity ID∗

Uj
to C. While the

restriction is that A did not make secret key query for ID∗
Uj

,
or index construction queries for keywords {w0, w1} based
on the identity set {IDUj} in Phase 1. Then, C chooses
a random bit b ∈ {0, 1} and calls Token Generation to
generate the token Twb

for A.
Phase 2. A continues to make the secret key query

for IDUj ̸= ID∗
Uj

, index construction query for {IDUj}
with ID∗

Uj
/∈ {IDUj}, or index construction query for the

keyword w /∈ {w0, w1} and {IDUj} with ID∗
Uj

∈ {IDUj}.
Guess. A outputs a guess bit b′ ∈ {0, 1} and wins the

above IKGA game if b′ = b.

Definition 2. We say that REKS is secure against IKGA
if for any polynomially bounded adversary A, it just has a
negligible advantage ϵ in breaking the above IKGA game, namely
AdvIKGA

A (1λ) = |Pr[b′ = b]− 1
2 | < ϵ.

4 PROPOSED ROLE-BASED ENCRYPTED KEY-
WORD SEARCH SCHEME

We first show the technical overview of REKS before
presenting its construction, then extend it to support token
generation preprocessing and efficient user management.

4.1 Technical Overview
In a role-based access control application shown in Fig. 4,
each role is associated with many users. Aiming at achieving
privacy-preserving keyword search over encrypted data, a
naive solution is to build multiple indexes using IBE in the
first phase, and then transform each index into another form
generated by IBBE in the second phase, note that each role is
analogous to an identity. Specifically, for the same keyword
w, the owner first specifies a role R1 and generates IBE-
based indexes IIBE,1

w , IIBE,2
w , · · · , IIBE,m

w based on different
ancestor roles R1,R2, · · · ,Rm respectively, then outputs
the IBBE-based indexes IIBBE,1

w , IIBBE,2
w , · · · , IIBBE,m

w using
the delegated keys corresponding to the ancestor role
set PRLR1 = {R1,R2, · · · ,Rm} [29]. The size of each
ciphertext IIBBE,i

w does not increase with the number of

users having the role Ri, but this solution generates a re-
encryption key for each role so that a proxy server can
transform each ciphertext IIBE,i

w into another ciphertext
IIBBE,i
w , which brings high ciphertext transformation

burdens.
Another alternative way is to generate the same index

IABE
w for the ancestor role set PRLR1 using CP-ABE,

note that the access policy P is determined based on
PRLR1 in the first phase and each role is analogous
to an attribute. Then, IABE

w is re-encrypted to multiple
indexes {IABE,1

w , IABE,2
w , · · · , IABE,m

w } with m updated
access policies respectively [50]. Each updated access policy
Pi should be determined based on the corresponding user
set. Not only the computation and storage costs of IABE

w

linearly grow with the number of roles in PRLR1 but also
those of updated ciphertexts {IABE,i

w } linearly increase with
the number of users having the role Ri. Thus, the above two
naive solutions cannot be deployed in practical applications
due to high computation and storage costs.

R1

R1

R2

Rm

...
Role

U1 U2 U7 U8

U4 U6

U3 U5 U9

Role set Data user sets

First phase Second phase

Fig. 4: The relationship between roles and users.

Our proposed scheme is as below: TA publishes a
tuple (AR1 , BR1) for the ancestor role set PRLR1 =
(R1,R2, · · · ,Rm) by Eq. 1, where

AR1 = g
∏m

i=1(α+H1(IDRi
)), BR1 = Aβ

R1
, (1)

PRLR1 is the ancestor role set having the access permission
of role R1, g, h are two generators of group G, α, β are
two random elements and H1(·) is a collision-proof hash
function. Let ULR1 = {IDU1 , · · · , IDUn} be a set of users
having the role R1, RM generates the role-user information
NR1 for the owner by Eq. 2,

NR1 = hα
∏n

j=1(α+H1(IDUj
)), (2)

where R1 is specified by the owner in the process of index
construction. The owner embeds AR1

, BR1
, NR1

into the
index Iw for each keyword w, note that Iw can be generated
by using IBBE and SE. Thus, the index construction costs
of our proposed scheme are independent of the number
of roles in PRLR1

or the number of users in ULR1
. RM

also generates the role information (ULR1
,MR1

, SR1
) for CS,

where MR1 , SR1 are generated based on the specified role
R1. The role-user information and role information jointly
guarantee that each user with a valid role Ri(1 ≤ i ≤ m)
and identity IDUj (1 ≤ j ≤ n) can successfully make search
queries, which satisfying Ri ∈ PRLR1 and IDUj ∈ ULR1 .

4.2 Construction of REKS
We use the following Bilinear pairings as the basis for
constructing REKS. Let G,GT be two cyclic groups of order
p and Zp be a field of order p. There exits an efficient
computable bilinear map e : G × G → GT that satisfies

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Z∗
p. Before

presenting the construction of REKS, we first define some
notations in TABLE 2.

TABLE 2: Notation definitions

Notations Definitions
[x] = [1, 2, · · · , x] A set of integers
PRLR = {R1, · · · ,Rm} Ancestor role set for role R
{U1, · · · ,Un} Data users having the same role
{IDR1

, · · · , IDRm} Identities for role set PRLR

ULR = {IDU1
, · · · , IDUn} Identities of users having R

F = {f},W = {w} File/keyword set
SKR, SKU, SKO Secret keys of role, user and owner
I = (I1, I2, I3, I4, I5, I6, {Iw}) Indexes for all keywords
Tw′ = (T1, T2, {T3,j , T4,j}) Token for the queried keyword w′

Tp = (T 1
p , T

2
p) Preprocessed token

Tf = (T1, T2, T3, T4) Final token

The concrete construction of REKS consists of six
algorithms, namely system initialization, key generation,
role management, index construction, token generation and
ciphertext search. We present REKS’s algorithm flow in
Fig. 5 and its construction as follows:

Key

TA Data owner RM CS Data users

(,)SK PK,,
{ }RSK { }USK

Key
Key

R R R(, ,)UL M S{ }RN

(,)

U R(, ,)
k l

w
T ID ID¢Query

Results

Ciphertext/index

Role-user info Role info

Public parameters

 :System initialization; : Key generation; : Role management;

: Index construction; : Token generation; : Ciphertext search

Fig. 5: The algorithm flow of REKS.

System Initialization (1λ). TA runs this algorithm to
output global public parameters and master keys. The
global public parameters are used in remaining algorithms
and the master keys kept by TA are used to generate keys
for the owner, roles and users. Given the security parameter
λ, TA first generates the Bilinear pairing parameters
(G,GT , e, p), then chooses two generators g, h from the
group G. TA chooses two random elements α, β ∈ Z∗

p and a
hash function H1 : {0, 1}∗ → Zp. Finally, TA generates the
master keys MSK and public parameters PP as

MSK = (g, α, β),

PP = (H1, v, v
∗, gα, hβ , h, hα, · · · , hαq+1

),
(3)

where v = e(g, h), v∗ = e(h, h) and q is the maximum
number of users having the same role.

Key Generation (MSK,PP). With the public parameters
PP and master keys MSK, TA generates keys for each role,
user and owner as follows:

• For each role R with an identity IDR, TA generates
its secret key SKR = h1/(α+H1(IDR)) and sends SKR

to RM. Let the symbol PRLR be the ancestor role
set {R1, · · · ,Rm} having the access permission of
role R, TA calls Eq. 1 to publish the tuple (AR =

g
∏m

i=1(α+H1(IDRi
)), BR = Aβ

R for R, where IDRi is the
identity of role Ri ∈ PRLR, m is the size of PRLR.
The tuple (AR, BR) is used to hide keywords in Index
Construction.

• For each user U with an identity IDU, TA generates
its secret key SKU = g1/(α+H1(IDU)) so that it can
generate valid tokens of queried keywords.

• For the owner O with an identity IDO, TA first
chooses a random element γ ∈ Z∗

p and computes
g1/(α+γ), gαγ , hαγ , then outputs the secret key SKO

and public key PKO by Eq. 4.

SKO = (γ, g1/(α+γ)), PKO = (gαγ , hαγ). (4)

Role Management (SKR,PP). In this algorithm, RM is
responsible for managing roles, users and corresponding
relationships between them when TA is offline, and
generates the role-user information and role information.
Fig. 6 gives the content stored by RM, note that RM
just has access to the secret key of each role, which
guarantees the role anonymity. Given the user set ULR =
{IDU1 , · · · , IDUn} having the role R, RM first chooses a
random element tR ∈ Z∗

p and computes MR, SR by Eq. 5,
then sends the role information (ULR,MR, SR) to CS. RM
calls Eq. 2 to compute the role-user information NR =

hα
∏n

j=1(α+H1(IDUj
)) and sends it to the owner, where NR is

derived from public parameters h, hα, · · · , hαq+1

. The above
two pieces of role information and role-user information can
be used to the check the legitimacy of each user in Ciphertext
Search.

MR = h−tR , SR = SKR · (hβ)tR . (5)

1R
ID

2R
ID

R
m

ID

1R
SK

2R
SK

R
m

SK

…... …...

1 2 7 8U U U U
, , , ,ID ID ID ID

4 6U U
, ,ID ID

3 8 9U U U
, , ,ID ID ID

1 1 1R R R
, ,UL M S

2 2 2R R R
, ,UL M S

R R R
, ,

m m m

UL M S

…...

1R
N

2R
N

2R
N

…... …...

Fig. 6: The content stored by RM.

Index Construction (PP,F,W, SKO, PKO, AR, BR, NR).
The owner runs this algorithm to encrypt files and build
indexes for facilitating privacy-preserving keyword search.
Given the file set F and keyword set W, the owner first
specifies a role R, then chooses two random elements
zR, sR ∈ Z∗

p to generate the file ciphertexts and indexes as
follows:

For each file f ∈ F, the owner uses the traditional
symmetric encryption algorithm Enc(·) (e.g., AES) to
encrypt it as cf = Enc(f). For each keyword w ∈ W,
the owner uses AR, BR, NR and its secret/public key pair
(SKO, PKO) to compute I1, I2, I3, I4, I5, Iw, I6 by Eq. 6. In
this way, AR, BR, NR are embedded in each index, and the
index size is independent of the number of roles in PRLR

and users in ULR.

I1 = (gα)−zR , I2 = AzR
R , I3 = BzR

R , I4 = vzR ;

I5 = (g1/(α+γ))sR , Iw = NsR
R N

H1(w)γ
R , I6 = (gα)−sR .

(6)

Finally, the owner sends the file ciphertexts C and
encrypted indexes I to CS, where C = {cf}, I =
(I1, I2, I3, I4, I5, I6, {Iw}).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

Token Generation (SKUk
,PP, PKO, w

′). If the identity
IDUk

of user with the role Rl belongs to the set ULRl
=

(IDU1 , · · · , IDUn), the user is allowed to makes search
queries, where Rl ∈ PRLR = (R1, · · · ,Rm). Given the
queried keyword w′ ∈ W, the user first chooses a random
element u ∈ Z∗

p and uses its secret key SKUk
to compute

T1, T2, T3,j , T4,j by Eq. 7, where j ∈ [q]. Then, the user sends
the token Tw′ = (T1, T2, {T3,j , T4,j}) and its identity and
role information (IDUk

, IDRl
) to CS.

T1 = (hα2+αγ)−u, T2 = gu/(α+H1(IDUk
));

T3,j = (hαj

)u, T4,j = e(gαγ , (hαj

)H1(w
′))u.

(7)

Ciphertext Search (PP, I, IDUk
, IDRl

, Tw′ ,MRl
, SRl

).
CS runs this algorithm to find relevant results by
matching the token and each index. When receiving the
token submitted by the user that has the identity IDUk

and the role IDRl
, CS first computes the intermediate

variables (Aux1, Aux2, Aux3, Aux4) by Eq. 8, where Aux3

is computed based on public parameters h1, · · · , hm−1.

Aux1 =
m∏

i=1,i ̸=l

H1(IDRi), Aux2 =
n∏

j=1,j ̸=k

H1(IDUj);

Aux3 = h
1
α (

∏m
i=1,i̸=l(α+H1(IDRi

))−Aux1);

Aux4 = e(MR, I3).

(8)

Then, CS matches the user’s token Tw′ with each index
by Eq. 9, where F2 =

∏n
j=1,j ̸=k(α + H1(IDUj)), F1 =

F2−Aux2

α . huαF1 is computed by using a set of terms {T3,j},
and e(gαγ , hH1(w

′))uF2 is calculated based on terms {T4,j}.
If Eq. 9 holds on condition that w = w′ and IDUk

∈ ULRl
,

CS returns relevant query results Result to the user.

e(I5, T1)
Aux2 · e(Iw, T2) · e(I6, huαF1) · I4

?
=

e(gαγ , hH1(w
′))uF2 · (e(Aux3, I1) · e(SR, I2) ·Aux4)

1
Aux1 .

(9)

Remark. REKS not only allows the owner to build
indexes based on a specified role, but also enables
authorized users having any role in PRLR to make valid
search queries. In traditional SE solutions, the owner only
uses public keys to build indexes. While in REKS, the
owner uses its both public key and secret key to build
indexes. In this way, REKS can resist IKGA as CS cannot
generate valid indexes without the owner’s secret key,
thereby preventing CS from matching each token with
forged indexes. In contrast to state-of-art works [37], [49],
REKS achieves the hierarchical access control without re-
encrypting or updating indexes based on roles, and incurs
a less key management overhead. REKS has constant index
construction and ciphertext search costs that do not increase
with the number of roles in PRLR or users in ULR.

However, there are two issues yet to be solved
with REKS in various applications. First, the token
generation process is affected by the maximum number
(q) of users having the same role, which has heavy
computation burdens on resource-constrained users (e.g.,
mobile terminals, sensor nodes). Second, in the dynamic
setting, the user set having the same role may frequently
change, such as user enrolment and user revocation. If
not handled properly, these two issues inevitably affect the
scalability and practicability of REKS in practice. For these

concerns, we extend REKS to support token generation
preprocessing and efficient user management.

4.3 Token Generation
Motivated by the offline/online encryption mechanism [51],
we improve REKS to support token generation preprocess-
ing. In the preprocessed phase, most of heavy operations
are conducted without knowing the queried keyword in
advance. When the queried keyword is available, the final
phase only performs lightweight operations to complete the
final token generation, which makes the computation cost
of final token generation independent of the value of q. The
token generation preprocessing mechanism is very useful
for resource-limited mobile terminals or sensor nodes in
practical applications.

In Token Generation, as each user with an identity IDUk

and role Rl does not know how many users having the
role Rl, it has to compute the maximum index components
{T4,1, · · · , T4,q} for each queried keyword w. For achieving
constant token computation and storage costs, we split
Token Generation into two phases, namely preprocessed
token generation and final token generation.

1) Preprocessed Token(IDUk
, IDRl

,PP, PKO). First,
the user with an identity IDUk

and role Rl interacts
with RM by sending hH1(Rl), RM checks whether
the equation e(SKRl

, hαhH1(Rl))
?
= v∗. If it is true,

RM sends ULRl
to the user. Then, the user computes

T 1
p = hαF1 = hF2hAux2 , T 2

p = e(gαγ , hF2), where
hαF1 , hF2 is computed based on public parameters
h, hα, · · · , hαn

. The preprocessed token is defined
as Tp = (T 1

p , T
2
p).

2) Final Token(Tp, IDUk
, SKU,PP, w

′). The user first
chooses a random element u ∈ Z∗

p and computes
T3 = (T 1

p)
u, T4 = (T 2

p)
H1(w

′)u. Then, the user sends
the final token Tf = (T1, T2, T3, T4) to CS.

Upon receiving the final token Tf , CS checks whether Tf

matches with indexes I by Eq. 10.

e(I5, T1)
Aux2 · e(Iw, T2) · e(I6, T3) · I4

?
=

T4 · (e(Aux3, I1) · e(SR, I2) ·Aux4)
1

Aux1 .
(10)

In the token generation preprocessing mechanism, each
user interacts with RM to get the user list information
ULRl

. If not, the user has to compute q pairing operations
e(gαγ , hαj

) in the preprocessed phase, which incurs high
computation and storage costs. REKS significantly relieves
the computation and storage costs of preprocessed token
generation by sacrificing a small amount of communication
overhead. In the preprocessed phase, the user does not
leak the role identity to RM, which guarantees the role
anonymity. The role anonymity is valuable and has wide
applications. For example, in the healthcare, the patients’
privacy and data protection are crucial. By anonymizing
roles of patients, medical institutions can use anonymous
data in data analysis and research to protect patients’
personal identity information, while achieving the goals
of medical research and data analysis. In the final phase,
the user only computes four modular exponentiation
operations. Thus, with the token generation preprocessing

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324640

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

mechanism, REKS can be widely deployed in resource-
limited applications. In addition, our scheme can be flexibly
extended to support multi-owner scenario by generating
multiple tokens via the idea of following remark. However,
REKS still has some shortcomings, i.e., REKS only supports
single keyword search, which has certain limitations for
users. Our current solution focuses on reducing user
computing costs, multi-keyword search will be solved as
an important issue in future work.

Remark: In this paper, we consider the single owner
multi-user setting, in which the single data owner shares
his/her data among multiple data users. In addition, our
scheme can be extended to support multi-owner scenario.
The multi-owner scenario refers to the sharing of data
from multiple owners {O1, · · · ,Om} to multiple users
{U1, · · · ,Un}. If a user Ui|1≤i≤n wants to query the data
of {O1, · · · ,Om}, he first generates m preprocessed tokens
{Tp,1, · · · , Tp,m} using algorithm Preprocessed Token, then
uses {Tp,1, · · · , Tp,m} and Final Token to generate m final
tokens {Tf,1, · · · , Tf,m} sent to CS, which are shown by
Eq. 11. It is worth noticing that the above mechanism is
just a naive solution to support multi-owner multi-user
setting. As part of our future work, we will aim to achieve
hierarchical access control in multi-owner setting without
incurring linear encryption costs.

Tp,1 = PreprocessedToken(IDUi , IDRl
,PP, PKO1);

· · ·
Tp,m = PreprocessedToken(IDUi , IDRl

,PP, PKOm).

Tf,1 = FinalToken(Tp,1, IDUi , SKUi ,PP, w
′);

· · ·
Tf,m = FinalToken(Tp,m, IDUi , SKUi ,PP, w

′).

(11)

4.4 Efficient User Management

In the dynamic setting, the access control policy regarding
roles is relatively stable, but the user set having the same
role may often be changed. Assume that a user with an
identity IDUk

and role IDR′
l

wants to register this system,
it first sends the request hH1(R

′
l) to RM. Then, RM checks its

legitimacy by using the equation e(SKRl
, hαhH1(R

′
l))

?
= v∗.

If this is true, RM adds the user’s identity IDUk
into

the original user list ULRl
, and sends the updated user

list UL∗
Rl

to CS, where n + 1 ≤ q. RM re-computes

N∗
R = hα

∏n+1
j=1 (α+H1(IDUj

)) and sends it to the owner. It is
worth noticing that the above equation just checks whether
the role is legitimate. In fact, the user with certain role only
has access permissions to files embedded with same role or
child roles, and cannot access files embedded with high-
level role or non-child roles. Thus, the user with certain
role just has permitted rights rather than all non-permitted
rights. In addition, each role has multiple user identities. In
the search phase, our scheme still needs to check whether
the identity IDUk

belongs to the user set corresponding to
role IDR′

l
. There are two cases in the following processes:

• REKS does not support token generation prepro-
cessing. The owner first updates the original index
component Iw as I∗w = (N∗

R)
sR(N∗

R)
H1(w)γ , then

sends I∗w to CS. When conducting the ciphertext

search, CS uses the updated information Aux∗
2,

e(I6, h
uαF∗

1), e(gαγ , hH1(w
′))uF

∗
2 to verify Eq. 9.

The terms Aux∗
2, F

∗
1 , F

∗
2 are updated based on

the auxiliary information UL∗
Rl

, but incur less
computation overheads on CS. In this case, the users
have to compute q token components {T3,j , T4,j}(j ∈
[q]). Thus, the user enrolment does not affect each
user’s token generation process.

• REKS supports token generation preprocessing.
In contrast to above case, each user generates
the preprocessed token T ∗

p by using the updated
information Aux∗

2, F
∗
1 , F

∗
2 . Note that the user

enrolment incurs a less computation overhead in the
preprocessed phase.

If a user with an identity IDUk
and role IDR′

l
is revoked

form the user list ULR′
l
, REKS executes the same process as

user enrolment. The user updates including user enrolment
and user revocation just bring m pairing operations and
one modular exponentiation operation for RM, and 2W
modular exponentiation operations for the owner, but incur
less computation burdens on CS and users. Thus, the user
management mechanism provided in REKS is efficient and
acceptable in the dynamic setting.

5 SECURITY ANALYSIS

In this section, we formally prove that REKS guarantees the
token unlinkability and is secure against CKA and IGKA
under the security models defined in Section 3.4. In Token
Generation, each user makes the keyword randomized by
using a random element u ∈ Zp when computing the
token component T4,j . Thus, REKS achieves the token
unlinkability and makes it impossible for CS to guess
whether two tokens are derived from the same keyword.
According to the analysis presented in [52], the proofs of
CKA security and IGKA security ARE reduced to two Multi-
Sequence of Exponents Decisional Diffie-Hellman (MSE-
DDH) problems [15], [53], respectively.
(n, α, 1)-MSE-DDH problem. Let (G,GT , e, p) be the bilinear
parameters and n be an integer. Given two random gen-
erators g0, h0 of the group G, three co-prime polynomials
f1, f2, f3 in α ∈ Z∗

p with respective orders def(f1) = 1,
def(f2) = def(f3) = n, and a set Γ of group elements:

gf10 , · · · , gα
n−1f1

0 , gαf1f30 , gγαf1f30 , gbf1f30 , gcaf30 , gcαf1f30 ,

hα
0 , · · · , hαn+1

0 , haα
0 , · · · , haαn−1

0 , hγα
0 , hbαf1

0 , hbα2f1
0 ,

hbaα
0 , · · · , hbaαn

0 , y, · · · , yα
n+1

, yt, · · · , ytα
n+1

, yb, · · · , ybα
n

it is difficult to distinguish whether Z is equal to
hcaαf2
0 ytγαf2 or a random element in the group G, where

a, b, c, t, γ ∈ Z∗
p and y ∈ G.

Theorem 1. REKS is secure against CKA on condition that
(n, α, 1)-MSE-DDH problem is intractable for any polynomial
adversary.

Proof: Assume that there exists an adversary A that
can break REKS with an advantage ϵ, we build a simulator
S that can simulate the challenger C and has an advantage
ϵ/eqT in breaking the (n, α, 1)-MSE-DDH problem in the
CKA game, where e is the natural base and qT is the number

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

of token queries A makes at most. Note that S’s running
time is approximately the same as that of A.

Init. A declares the challenging user set {UL∗
R} =

{ID∗
Uj
} and a user set {IDUj}.

Setup. Given the bilinear parameters (G,GT , e, p) and
the (n, α, 1)-MSE-DDH instance Γ, the goal of S is to
distinguish hcaαf2

0 ytγαf2 from a random element in the
group G by using A as a subroutine. If Z = hcaαf2

0 ytγαf2 ,
S outputs 1; if Z is a random element in G, S outputs 0.
S selects random elements {a∗j}, {aj} ∈ Z∗

p and implicitly
defines

f1 = α+ γ, f2 =
n∏

j=1

(α+ a∗j), f3 =
n∏

j=1

(α+ aj),

where f1, f2, f3 are unitary polynomials and are co-prime.
We define f3,j = f3/(α + aj) for all j ∈ [n]. To generate
the public parameters, S first sets g = gf1f30 , h = h0 and
computes gα = gαf1f30 , hαj

= hαj

0 . Then, S specifies the

keyword wb and sets hH1(w), hH1(w)α
j

by Eq. 12, Eq. 13,
respectively.

hH1(w) =

{
yt, if w = wb;

y, if w ̸= wb;
(12)

hH1(w)α
j

=

{
ytα

j

, if w = wb;

yα
j

, if w ̸= wb.
(13)

Finally, the simulator S sends the public parameters

PP = (gα, {hαj

, hH1(w)α
j

}) and the owner’s public key
PKO = (gαγ , hαγ) to A, where gαγ = gαγf1f30 , hαγ = hαγ

0 .
S maintains a hash list L(IDUj , x

j), which is initially
empty. If A makes a hash query for the identity IDUj , S first
checks L. If IDUj ∈ L, S picks the corresponding xj for A;
otherwise, S computes xj by Eq. 14, and adds (IDUj

, xj) to
L before sending xj to A.

xj =

{
a∗j , if IDUj ∈ {ID∗

Uj
};

aj , if IDUj /∈ {ID∗
Uj
}.

(14)

Phase 1. A makes the secret key queries and token
generation queries as follows:

• Secret key queries. A makes the secret key query
for the user’s identity IDUj /∈ {ID∗

Uj
}, and

S calls Key Generation to generate SKIDUj
=

g1/(α+H1(IDUj
)) = g

f3,jf1
0 , note that g

f3,jf1
0 can be

derived from gf10 , · · · , gα
n−1f1

0 in the above (n, α, 1)-
MSE-DDH instance.

• Token generation query. A makes the token generation
query for identity IDUj and the keyword w:

– If IDUj /∈ {ID∗
Uj
}, S gains the secret key

by calling Key Generation and generates the
token for A by running Token Generation.

– If IDUj
∈ {ID∗

Uj
}, S calls Token Generation

in following two cases: 1) if w = w∗, S
aborts this process; 2) if w ̸= w∗, we have

xj = H1(IDUj) = a∗j and hH1(w)α
j

=

yα
j

. S chooses a random element u∗ ∈ Zp

and computes the token Tw by Eq. 15. Note

that T1, T2, T3,j , T4,j are derived from terms
gbf1f30 , gαγf1f30 , hbαf1

0 , hbα2f1
0 , hbaα

0 , · · · , hbaαn

0 ,
yb, · · · , ybαn

in the above (n, α, 1)-MSE-DDH
instance.

Iw =

T1 = h
−u∗bαf1(α+a∗

j)

0 ;

T2 = gu
∗bf1f3

0 ;

T3,j = h
u∗ba(α+a∗

j)α
j

0 ;

T4,j = e(gαγf1f30 , yu
∗bαj(α+a∗

j)).

(15)

Challenge. A submits two challenging keywords w0, w1

and sends (w0, w1, ID
∗
Uj
) to S . While the restriction is

that A did not make secret key query for ID∗
Uj

or token
generation query for ID∗

Uj
and w ∈ {w0, w1}. S responses

to this query as follows:

• If wb /∈ {w0, w1}, S aborts this process.
• If wb ∈ {w0, w1}, we have (x∗)j = H1(ID

∗
Uj
) = a∗j

and h
H1(wb)
0 = yt based on the tuple (ID∗

Uj
, (x∗)j) in

the hash list. Then, S selects a random bit b ∈ {0, 1}
and computes the challenging index I5 = gacf30 ,
Iwb

= Z , I6 = g−cαf1f3
0 . Finally, S sends (I5, Iwb

, I6)
to A.

If Z = hcaαf2
0 ytγαf2 , one can compute above (I5, Iwb

, I6)
by implicitly setting sR = ac. If Z is a random element in
the group G, the challenging index Iwb

is random from the
A’s view and does not contain the term w∗.

Phase 2. A continues to make the secret key query
for IDUj /∈ {ID∗

Uj
}, and the token generation query for

IDUj /∈ {ID∗
Uj
} or the token generation for w /∈ {w0, w1}

on condition that IDUj ∈ {ID∗
Uj
}. S responses to these

queries as Phase 1.
Guess. A outputs a guess bit b′ ∈ {0, 1}. S returns 1 if

b′ = b. Otherwise, S returns 0.
In the case that S does not abort in the CKA

simulation: 1) If Z is the value in the above (n, α, 1)-
MSE-DDH instance, namely Z = hcaαf2

0 ytγαf2 , S
returns the correct form of challenging index. Thus,
S’s simulation is indistinguishable from the actual attack,
and A’s advantage in guessing the correct value on
b′ is defined as Pr[b′ = b|Z = hcaαf2

0 ytγαf2] = ϵ. 2)
If Z is a random element in G, it can be rewritten
as Z = hcaαf2

0 ytγαf2yz
∗γαf2 , then we have Iwb

=

h
sRα

∏n
j=1(α+H1(ID

∗
Uj

))
(hH1(wb)hH1(w)z∗

)
γα

∏n
j=1(α+H1(ID

∗
Uj

)),
where z∗ ∈ Zp. Thus, (I5, Iwb

, I6) is correct index form. As
z∗ is a random element, H1(wb)H1(w)

z∗
does not leak the

information on wb from A’s view. A’s advantage in guessing
the correct value b′ is defined as Pr[b′ = b|Z ∈ G] = 1

2 .
According to the above analysis, we have |Pr[b′ =

b] − 1
2 | ≥ ϵ if S does not abort in above simulation,

note that this probability is over random bits b, b′ guessed
by S,A, respectively. Assume that A only makes the
token generation query for each keyword one time, S’s
probability in aborting is 1/qT , but S does not abort when
A makes the secret key queries. Thus, the probability that
S does not abort during A’s qT token generation queries
is (1 − 1

1+qT
)qT ≥ 1

e in Phase 1 or Phase 2. In the Challenge
phase, S aborts when A submits keywords w0, w1 satisfying
wb /∈ {w0, w1}. As A did not make token generation

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

queries for w0, w1 and ID∗
Uj

, the choices of keywords w0, w1

are independent of A’s view, and we can have Pr[wb =
w0 or w1] =

1
qT+1 and Pr[wb ̸= w0, w1] = (1− 1

1+qT
)2. Thus,

the probability that S does not abort in Challenge is 1/qT .
As A’s probability in breaking REKS is ϵ, the probability
that S does not abort in Phase 1, Phase 2 and Challenge is
ϵ · 1e ·

1
qT

= ϵ
eqT

, which conflicts with the assumption that the
(n, α, 1)-MSE-DDH problem is intractable. This completes
the proof of Theorem 1.
(n, α, 2)-MSE-DDH problem. Let (G,GT , e, p) be the bilinear
parameters and n be an integer. Given two random gen-
erators g0, h0 of the group G, three co-prime polynomials
f1, f2, f3 in α ∈ Z∗

p with respective orders def(f1) =
def(f2) = 1, def(f3) = n, and a set Γ of group elements:

gf10 , · · · , gα
n−1f1

0 , gαf1f30 , gzαf1f30 , gγαf1f30 , gac0 , gazf30 , gcαf10 ,

gbf1f30 , hα
0 , · · · , hαn+1

0 , haα
0 , · · · , haαn−1

0 , hγα
0 , hbαf1f2

0 ,

hbaαf2
0 , · · · , hbaαn−1f2

0 , hazαf2
0 , · · · , hazαnf2

0 , y, · · · , yα
n+1

,

yt, · · · , ytα
n+1

, yγαf2 , · · · , yγα
nf2 , hacα

0 yγαf3 , hacα
0 ytγαf3

it is difficult to distinguish whether Z is equal to
e(g0, y

tbγαf1f2f3) or a random element in the group GT ,
where a, b, c, z, t, γ ∈ Z∗

p and y ∈ G.

Theorem 2. REKS is secure against IGKA on condition that
(n, α, 2)-MSE-DDH problem is intractable for any polynomial
adversary.

Proof: Assume that there exists an adversary A that
can break REKS with an advantage ϵ in the IGKA game, we
then build a simulator S that can simulate the challenger C
and has an advantage ϵ/eqT in solving the (n, α, 2)-MSE-
DDH problem. S’s running time is approximately similar to
that of A.

Init. The adversary A declares a challenging identity of
user ID∗

Uj
and users’s identity set {IDUj}.

Setup. Given the public bilinear parameters (G,GT , e, p)
and the (n, α, 2)-MSE-DDH instance Γ, S utilizes A as a
subroutine to decide whether Z is equal to e(g0, y

tbγαf1f2f3)
or a random element in GT . If Z = e(g0, y

tbγαf1f2f3), S
outputs 1; otherwise, S outputs 0. First, S chooses a set of
random elements a∗, {aj} ∈ Zp and sets

f1 = α+ γ, f2 = α+ a∗, f3 =
n∏

j=1

(α+ aj),

where the polynomials f2, f3 are co-prime. In addition,
S defines f3,j = f3/(α + aj) for all j ∈ [n]. Then, S
sets g = gf1f30 , h = h0 and computes gα = gαf1f30 ,
hαj

= hαj

0 . S chooses the keyword wb and computes

hH1(w), hH1(w)α
j

by calling Eq. 12, Eq. 13, respectively.
Finally, S responses to hash queries by maintaining a hash
list L(IDUj , x

j), which is similar to Eq. 14. The public

parameters PP = (gα, {hαj

, hH1(w)α
j

}) and the owner’s
public key PKO = (gαγ , hαγ) are returned to A.

Phase 1. A makes the secret key query and index
construction query as follows:

• Secret key query. A makes the secret key query for
the identity IDUj ̸= ID∗

Uj
. Then, S finds the term

H1(IDUj) = xj = aj from the hash list L(IDUj , x
j).

Finally, S calls Key Generation to generate the secret
key SKIDUj

= g
f3,jf1
0 for A.

• Index generation query. A makes the index construc-
tion query for the users’ identity set {IDUj} and the
keyword w:

– If ID∗
Uj

∈ {IDUj}, S calls Index Construction
and responses in two cases: 1) If w = wb, S
aborts this process; 2) If w ̸= wb, S picks the
element xj = H1(IDUj) from L, chooses a
random element s∗R ∈ Zp and generates the
index for A by Eq. 16,

I5 = g
s∗Razf3
0 ;

Iw = (h
s∗Razαf2
0 yγαf2)

∏
aj ̸=a∗ (α+aj);

I6 = g
−s∗Rzαf1f3
0 ,

(16)

which can be derived from the elements
gazf30 , gzαf1f30 , hazαf2

0 , · · · , hazαnf2
0 , yγαf2 , · · · ,

yγα
nf2 in the (n, α, 2)-MSE-DDH instance.

One can verify the index form by implicitly
setting s∗R = sR/az

– If ID∗
Uj

/∈ {IDUj}, S calls Index Construction
and responses in two cases: 1) If w = wb,
we pick the element xj = H1(IDUj

) = aj
from L and have H1(w)

αj

= ytα
j

. Then,
S chooses a random element s∗R ∈ Zp and
sends the index Iw = (I5, Iw, I6) to A, where
I5 = g

s∗Rac
0 , Iw = h

s∗Racα
0 , I6 = g

−s∗Rcαf1
0 .

Note that I5, Iw, I6 can be derived from the
elements gac0 , gcαf10 , hacα

0 ytγαf3 in the (n, α, 2)-
MSE-DDH instance, and its correctness can be
verified by implicitly setting s∗R = sRf3/ac. 2)
If w ̸= wb, S outputs the correct index for A,
which is similar to above case.

Challenge. A submits two challenging keywords w0, w1

and the user’s identity ID∗
Uj

. However, the restriction is that
A did not make secret key query for the identity ID∗

Uj
, or

the index construction query for {IDUj} and any keyword
w ∈ {w0, w1} in the case ID∗

Uj
∈ {IDUj}. Then, S responses

this query as follows:

• If wb /∈ {w0, w1}, S aborts this process.
• If wb ∈ {w0, w1}, we pick the term x∗ =

H1(ID
∗
Uj
) = a∗ from the hash list L and have

H1(wb) = yt. Then, S chooses a random element
u∗ ∈ Zp and calls Token Generation to generate
the challenging token Twb

= (T1, T2, T3,j , T4,j) for
A, where T1 = h−u∗bαf1f2

0 , T2 = gu
∗bf1f3

0 , T3,j =

hu∗baαjf2
0 , T4,j = Zu∗αj

. Note that T1, T2, T3,j can be
derived from the elements in the (n, α, 2)-MSE-DDH
instance.

If Z = e(g0, y)
tbγαf1f2f3 , we can check the correctness of

token when implicitly setting u = u∗bf2. If Z is a random
element in GT , the challenging token Twb

is independent of
A’s view and contains no information about the keyword
wb.

Phase 2. A continues to make secret key query for
the user’s identity IDUj ̸= ID∗

Uj
, the index construction

query for the identity set {IDUj} and ID∗
Uj

/∈ {IDUj},

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

or index construction query for {IDUj} and the keyword
w /∈ {w0, w1} in the case ID∗

Uj
/∈ {IDUj}. The response of

S is similar to that of Phase 1.
Guess. A outputs a guess bit b′ ∈ {0, 1}. S outputs 1

when b′ = b; otherwise, S outputs 0.
The analysis of S’s probability in simulating the

IGKA game is similar to that of Theorem 1. If Z =
e(g0, y)

tbγαf1f2f3 is the element in the (n, α, 2)-MSE-DDH
instance, S returns the correct challenging token and its
simulation in the above IGKA game is indistinguishable
from the actual attack. In this case, A’s probability in
guessing the right bit on b′ is defined as Pr[b′ =
b|Z = e(g0, y)

tbγαf1f2f3] = ϵ. If Z is a random element,
the challenging token returned by S is random and
independent of A’s view, and A’s probability in guessing
the right bit on b′ is defined as Pr[b′ = b|Z is random] =
1
2 . According to the similar analysis in Theorem 1, the
S’s probability that it does not abort is at least ϵ/eqT ,
which conflicts with the (n, α, 2)-MSE-DDH problem. This
completes the proof of Theorem 2.

Remark. Since internal attackers are stronger than
external attackers and our scheme is proved to resist internal
keyword guessing attack, i.e., it can resist keyword guessing
attack. In addition, keyword guessing attack can be divided
into offline keyword guessing attack and online keyword
guessing attack based on the attack method. Therefore,
our scheme can resist offline keyword guessing attack and
online keyword guessing attack. The difference between
offline and online keyword guessing attack is the capability
of attacker. In offline keyword guessing attack, the attacker
can enumerate all possibilities, while in online keyword
guessing attack, the attacker can just guess all possibilities.

6 PERFORMANCE ANALYSIS

In this section, we evaluate the performance of REKS in
terms of theoretical complexities and experimental tests
using real-world dataset.

6.1 Theoretical Complexities

To evaluate the feasibility and efficiency of REKS, we
compare it with state-of-art schemes [36], [54]. The Hierar-
chical Public key Encryption with Keyword Search (HPEKS)
scheme [36] achieved the hierarchical keyword search by
using the public key tree, and the Accountable Access
Control for Hierarchical Content (AACHC) scheme [54]
achieved the hierarchical access control. For the theoretical
complexities, we mainly focus on several time-consuming
operations such as Pairing operation P, hash operation H
which maps the string of any length to the element of group
G and modular exponentiation operation E (or ET) in group
G or GT . Let |GT |, |G|, |Zp| be the length of elements in
GT ,G,Zp respectively, we show the theoretical complexities
of REKS, HPEKS and AACHC in TABLE 3.

In Key Generation, REKS is efficient than other three
schemes as it conducts about NE + 3mE for generating
keys for roles and users, while HPEKS and AACHC conduct
2NE + NH, 3N (E + ET) + N (H + P) for generating all
users’ keys respectively. With the same reason, the storage

cost of key generation process of REKS is less than those
of HPEKS and AACHC. In Index Construction or Ciphertext
Generation, HPEKS and REKS supporting keyword search
build indexes for W keywords by conducting about W(E +
P) and WE operations. Since P is much efficient than
E, REKS has less computation cost than HPEKS in the
index construction process, but these two schemes have
approximately equal storage costs. While AACHC does not
support keyword search, and it just generates each file
ciphertext based on roles. Thus, AACHC is much more
efficient than other schemes due to m ≪ W .

In Token Generation or Content Request, HPEKS and
REKS conduct 4E + H, 2E + q(E + P + ET) operations
to generate a token, respectively, and AACHC executes
P + 3E + 2ET + H for generating a valid content request.
Apparently, REKS has higher computation and storage
costs due to qE extra operations. When being equipped
with token generation preprocessing mechanism, REKS has
constant computation and storage costs in the final phase,
which is more efficient than HPEKS. In Ciphertext Search
or Ciphertext Decryption, the computation and storage costs
of HPEKS and AACHC are affected by the number of users
and roles, respectively, while those of our proposed RBSKS
are independent of above two variables N ,m. Thus, REKS
outperforms HPEKS in the ciphertext search process. Since
AACHC only decrypts one encrypted file, its computation
costs in ciphertext decryption process are less than those of
HPEKS and REKS in the ciphertext search process, but its
storage cost in Ciphertext Decryption is more than that of
REKS in Ciphertext Search.

6.2 Experimental Tests

To evaluate the actual performance of REKS, AACHC
and HPEKS schemes, we perform extensive experiments
on macOS Catalina 10.15.4 with Intel Core i7 CPU
2.9 GHz by using Python3 language and Paring Based
Cryptography (PBC) Library. The real-world dataset used
in these empirical experiments comes from the public
Enron Email Dataset1, and has a size of 422 MB emails
distributed in 3500 folders. From Enron Email Dataset,
we extract 100 high-frequency keywords using TF-IDF
algorithm. Our paper focuses on the number W of keywords
because our scheme is related to W and independent of
the number of (document, keyword) pairs. Although the
Enron Email dataset is large, we can control the number
of keywords extracted. If we increase the number of
extracted keywords, the number of (document, keyword)
pairs will correspondingly increase. The common Type A
curve E(Fq) : y2 = x3 + x selected has 80-bit security
level2or the convenience of testing, we select the elliptic
curve with 80-bit security level. In practical, to ensure the
security of the scheme, the higher security level, such as
128-bit, can be selected., and G,GT of order p are treated as
subgroups of E(Fq), where the lengths of p and q are 160
bits and 512 bits, respectively. Thus, the size of each element
in groups GT ,G is 1024 bits, and that of element in the file
Zp is 160 bits. For simplicity, we set the number m of roles

1. http://www.cs.cmu.edu/∼enron/
2. F

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

TABLE 3: Theoretical computation and storage costs: A comparative summary

Algorithms KeyGen Index Construction Token Generation Ciphertext Search
KeyGen Ciphertext Generation Content Request Ciphertext Decryption

HPEKS [36] Computation costs (2N + 1)E +NH (E + P)W + 5E + 2H 4E + H (N + 1)P + E
Storage costs 2N|G|+ |GT |+ |Zp| W|GT |+ 4|G| 3G| (N + 1)|GT |

AACHC [54] Computation costs N (3E + 3ET + H + P) 3ET +mE 3P + 3E + 2ET + H m(P + E + 2ET)
Storage costs 3N (|GT |+ |G|) 3|GT |+m|G| 4|GT |+ |G|+ |Zp| m(4|GT |+ |G|)

REKS Computation costs 3mE + nmE + 3E WE + 7E 2E + q(E + P + ET) 7P + 3ET + E
Storage costs (3 + n)m|G|+ 3|G|+ |Zp| (W + 6)|G| 2|G|+ q(|G|+ |GT |) 7|GT |+ |G|+ 2|Zp|

Notes. N = mn: the number of total users or attributes, m is the number of roles, n is the number of users having the same role, W is the
number of keywords in the keyword set W.
CP-ABKS, HPEKS and REKS include KeyGen, Index Construction, Token Generation and Ciphertext Search; while AACHC includes KeyGen,
Cipgertext Generation, Content Request and Ciphertext Decryption.

2 4 6 8 10
101

102

103

104

K
ey

 c
om

pu
ta

tio
n

co
sts

 (m
s)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(a) m = 5

2 4 6 8 10
100

101

102

103

K
ey

 st
or

ag
e

co
sts

 (K
B)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(b) m = 5

2 4 6 8 10
101

102

103

104

In
de

x/
ci

ph
er

te
xt

 c
os

ts
(m

s)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(c) m = 5,W = 100

2 4 6 8 10
10-1

100

101

102

In
de

x/
ci

ph
er

te
xt

 c
os

ts
(K

B)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(d) m = 5,W = 100

2 4 6 8 10
100

101

102

103

To
ke

n/
re

qu
es

t c
os

ts
(m

s)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(e) m = 5

2 4 6 8 10
10-1

100

101

102

To
ke

n/
re

qu
es

t c
os

ts
(K

B)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(f) m = 5

2 4 6 8 10
100

101

102

103

Se
ar

ch
/d

ec
ry

pt
io

n
co

sts
 (m

s)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(g) m = 5,W = 100

2 4 6 8 10
10-1

100

101

102

Se
ar

ch
/d

ec
ry

pt
io

n
co

sts
 (K

B)

Value of n

 AACHC [54]
 HPEKS [36]
 PEKS

(h) m = 5,W = 100

Fig. 7: E
xperimental tests of various schemes.

as 5, the number n of users as [10], and the number W of
keywords as 100.

In Figs. 7a, 7b, we notice that the computation
and storage costs of key generation in the above three
schemes approximately increase with the variable n. When
generating keys for N = mn users, AACHC conducts
N (3E + 3ET + H + P) operations, while HPEKS and REKS
just perform N (2E+H), NE operations, respectively. Apart
from generating keys for users, REKS generates keys for the
owner and m = 5 roles, but is more efficient than the other
two schemes in the key generation process. For example,
when the value of n is set as 6, the computation and storage
costs of AACHC, HPEKS and REKS are (514ms, 22.70KB),
(320ms, 7.65KB), (70ms, 6.07KB) respectively.

In Figs. 7c, 7d, we demonstrate the ciphertext generation
cost of AACHC and index construction costs of HPEKSA
and REKS. The results show that ciphertext generation or
index construction costs are independent of the variable
n. In fact, the ciphertext generation costs (including
computation and storage costs) of AACHC are affected by
the number m = 5 of roles, and the index construction costs
of HPEKS and REKS are related to the number W = 100

of keywords. Thus, the computation and storage costs of
the above three schemes remain nearly constant when the
variable n varies. In addition, HPEKS and REKS have
much more computation and storage costs than AACHC
due to W ≫ m, and AACHC cannot facilitate keyword
search. Compared with HPEKS that supports keyword
search, REKS has less computation cost than HPEKS as it
does not perform time-consuming operations such as hash
operation H and pairing operation P, but its storage cost
is approximately equal to that of HPEKS. When setting
n = 10, REKS’s computation and storage costs are 155ms
and 13.28KB respectively, which is acceptable in practical
applications.

From Figs. 7e, 7f, we observe that the computation
and storage costs of content request generation in AACHC
and token generation in HPEKS keep almost unchanged
when the variable n varies, but those of REKS linearly
grow with the increase of n. HPEKS is much more efficient
than REKS. The main reason is that REKS conducts extra
operations q(ET + E + P), and HPEKS just performs fixed
(4E + H) operations. AACHC does not support keyword
search, but it generates the authenticated content request

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

with conducting (3P + 2E + 2ET + H) operations. AACHC
is efficient than REKS as its computation and storage costs
are not affected by the value of n. For example, when the
value of n is set as 10, the computation and storage costs of
token generation of REKS and HPEKS are (41.88ms, 2.76KB),
(9.74ms, 0.38KB) respectively.

TABLE 4: Preprocessed/final token generation costs

value of n 2 4 6 8 10
Preprocessed token time (ms) 39.29 39.28 39.60 43.95 39.48

Final token time (ms) 4.85 4.78 4.78 5.18 4.83
Preprocessed token size (KB) 1.91 1.92 1.89 1.88 1.91

Final token size (KB) 0.51 0.53 0.51 0.52 0.54

Notes: m = 5.

To overcome this defect, REKS is extended to support
token generation preprocessing, and its preprocessed and
final token generation costs are shown in TABLE 4. We
fix the value of m as 5 and vary the value of n. The
preprocessed and final token generation time and size are
not affected by the variable n, which remain constant. This
is because the user in the preprocessed phase just conducts
3E + 2P operations based on the aggregation information
F1, F2, and it only performs 4E operations in the final phase.
Thus, the final token generation process is more efficient
than that of HPEKS. For instance, when setting n = 10,
HPEKS takes 9.74ms to generate the token, while REKS just
takes 4.83ms to generate the final token.

In Fig. 7g, AACHS just decrypts each file ciphertext by
using the secret key of a certain user, thus its decryption
time is independent of variable n. When conducting search
operation in Cipherext Search, REKS matches each index
with the user’s token, which makes its ciphertext time
change linearly with the number W of keywords. The
variables m,n have almost no effect on REKS’s ciphertext
search time, but REKS has high ciphertext search time due
to the effect of variable W = 100. The ciphertext search time
of HPEKS is affected by two variables W,N = mn. When
the value of n varies, HPEKS generates more indexes, which
significantly increases the matching time between indexes
and token. With the same reasons shown in Fig. 7g, the
storage cost of ciphertext search process in HPEKS linearly
increases with the variable n, and is much higher than
that of REKS. The storage cost of ciphertext decryption in
AACHC is higher than that of REKS’s search process.

When employed in the dynamic setting, the user
management costs of REKS are shown in TABLE 5. When
a certain user is enrolled or revoked in the REKS system,
RM first checks whether the user has a valid role by
conducting m pairing operations, then updates the user
list ULR and aggregation information NR associated with
the user’s role R. RM’s computation and storage costs vary
with the variable m, but are not affected by the variable n.
Upon receiving the updated aggregation information N∗

R ,
the owner only updates the index component Iw whose
computation and storage costs depend on the variable W .
The update costs of RM and the owner are small and
are almost impervious to the variable n, thus the user
management mechanism in REKS scales well in practice.

TABLE 5: User management costs

value of n 2 4 6 8 10
RM’s computation time (ms) 66.76 66.48 67.31 73.75 68.86

Owner’s computation time (ms) 152.49 145.81 148.19 159.04 13.27
RM’s storage size (KB) 0.76 0.77 0.75 0.76 0.75

Owner’s storage size (KB) 12.62 12.69 12.71 12.59 12.64

Notes: m = 5,W = 100.

As a summary, the actual performance tests are
consistent with the theoretical complexities. AACHC
achieves the role-based access control, but cannot provide
keyword search. Our proposed REKS is much more
efficient in key generation, index construction, final token
generation and ciphertext search when compared with
HPEKS. Compared with ACCHC, REKS does not degrade
the performance of key generation, final token generation
and ciphertext search. REKS can be extended to provide
lightweight token generation preprocessing and efficient
user management. Thus, REKS is efficient in practice.

7 CONCLUSION

In this paper, we proposed an efficient role-based authorized
keyword search scheme for managing hierarchical access
permissions. Using this as a building block, we extended it
to support token generation preprocessing and efficient user
management. Finally, we formally proved our proposed
approach resists both CKA and IGKA, and performed
empirical experiments to demonstrate that its efficiency
and feasibility in practical applications. Future extensions
including exploring more efficient and expressive multi-
keyword searches with hierarchical access control, and
implementing a prototype of the proposed approach (or its
future extension) in a real-world setting for evaluation.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (No. 62072361), Key Research and De-
velopment Program of Shaanxi (No. 2022GY-019), Shaanxi
Fundamental Science Research Project for Mathematics
and Physics (No. 22JSY019), the National Natural Science
Foundation of China (No.62125205), Fundamental Research
Funds for the Central Universities (No. QTZX23091),
Fellowship pf China Postdoctoral Science Foundation (No.
2022T150507), Opening Project of Intelligent Policing Key
Laboratory of Sichuan Province (No. ZNJW2023KFMS002).
The work of Kim-Kwang Raymond Choo was supported
only by the Cloud Technology Endowed Professorship.

REFERENCES

[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Proc. International
conference on the theory and applications of cryptographic techniques
(EUROCRYPT’04). Springer, 2004, pp. 506–522.

[2] K. Xue, W. Chen, W. Li, J. Hong, and P. Hong, “Combining data
owner-side and cloud-side access control for encrypted cloud
storage,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2062–2074, 2018.

[3] Y. Xue, K. Xue, N. Gai, J. Hong, D. S. Wei, and P. Hong, “An
attribute-based controlled collaborative access control scheme for
public cloud storage,” IEEE Transactions on Information Forensics
and Security, vol. 14, no. 11, pp. 2927–2942, 2019.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

[4] B. Waters, “Efficient identity-based encryption without random
oracles,” in Proc. Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT’05).
Springer, 2005, pp. 114–127.

[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. IEEE symposium on security
and privacy (SP’07). IEEE, 2007, pp. 321–334.

[6] H. Li, Q. Huang, J. Shen, G. Yang, and W. Susilo, “Designated-
server identity-based authenticated encryption with keyword
search for encrypted emails,” Information Sciences, vol. 481, pp.
330–343, 2019.

[7] L. Wu, Y. Zhang, K.-K. R. Choo, and D. He, “Efficient identity-
based encryption scheme with equality test in smart city,” IEEE
Transactions on Sustainable Computing, vol. 3, no. 1, pp. 44–55, 2017.

[8] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: verifiable attribute-
based keyword search over outsourced encrypted data,” in Proc.
IEEE Conference on Computer Communications (IEEE INFOCOM’14).
IEEE, 2014, pp. 522–530.

[9] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced
search authorization in the cloud,” in Proc. IEEE Conference on
Computer Communications (IEEE INFOCOM’14). IEEE, 2014, pp.
226–234.

[10] J. Li, X. Lin, Y. Zhang, and J. Han, “Ksf-oabe: Outsourced
attribute-based encryption with keyword search function for
cloud storage,” IEEE Transactions on Services Computing, vol. 10,
no. 5, pp. 715–725, 2016.

[11] Q. Xu, C. Tan, W. Zhu, Y. Xiao, Z. Fan, and F. Cheng, “De-
centralized attribute-based conjunctive keyword search scheme
with online/offline encryption and outsource decryption for cloud
computing,” Future Generation Computer Systems, vol. 97, pp. 306–
326, 2019.

[12] H. Deng, Z. Qin, Q. Wu, Z. Guan, and H. Yin, “Revocable attribute-
based data storage in mobile clouds,” IEEE Transactions on Services
Computing, 2020, doi:10.1109/TSC.2020.2984757.

[13] J. Li, S. Wang, Y. Li, H. Wang, H. Wang, H. Wang, J. Chen,
and Z. You, “An efficient attribute-based encryption scheme
with policy update and file update in cloud computing,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 12, pp. 6500–6509,
2019.

[14] N. Attrapadung, J. Furukawa, and H. Imai, “Forward-secure and
searchable broadcast encryption with short ciphertexts and private
keys,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2006, pp. 161–177.

[15] P. Jiang, F. Guo, and Y. Mu, “Efficient identity-based broadcast
encryption with keyword search against insider attacks for
database systems,” Theoretical Computer Science, vol. 767, pp. 51–72,
2019.

[16] Y. Yang, S.-L. Yang, F.-H. Wang, and J. Sun, “Post-quantum secure
public key broadcast encryption with keyword search.” Journal of
Information Science & Engineering, vol. 33, no. 2, 2017.

[17] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang, “Attribute-
based keyword search over hierarchical data in cloud computing,”
IEEE Transactions on Services Computing, vol. 13, no. 6, pp. 985–998,
2017.

[18] L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure
role-based access control on encrypted data in cloud storage,”
IEEE transactions on information forensics and security, vol. 8, no. 12,
pp. 1947–1960, 2013.

[19] Y. Zhang and S. Lu, “Poster: Efficient method for disjunctive
and conjunctive keyword search over encrypted data,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS’14), 2014, pp. 1535–1537.

[20] Q. Liu, Y. Tian, J. Wu, T. Peng, and G. Wang, “Enabling verifiable
and dynamic ranked search over outsourced data,” IEEE Transac-
tions on Services Computing, 2019, doi:10.1109/TSC.2019.2922177.

[21] H. T. Poon and A. Miri, “Fast phrase search for encrypted
cloud storage,” IEEE Transactions on Cloud Computing, 2017,
doi:10.1109/TCC.2017.2709316.

[22] L. Xu, W. Li, F. Zhang, R. Cheng, and S. Tang, “Authorized
keyword searches on public key encrypted data with time
controlled keyword privacy,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 2096–2109, 2019.

[23] Y. Miao, R. Deng, K.-K. R. Choo, X. Liu, and H. Li,
“Threshold multi-keyword search for cloud-based group da-
ta sharing,” IEEE Transactions on Cloud Computing, 2020,
doi:10.1109/TCC.2020.2999775.

[24] P. Xu, H. Jin, Q. Wu, and W. Wang, “Public-key encryption with
fuzzy keyword search: A provably secure scheme under keyword
guessing attack,” IEEE Transactions on computers, vol. 62, no. 11,
pp. 2266–2277, 2012.

[25] H. Cui, Z. Wan, R. H. Deng, G. Wang, and Y. Li, “Efficient and
expressive keyword search over encrypted data in cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp.
409–422, 2016.

[26] J. Alderman, K. M. Martin, and S. L. Renwick, “Multi-level
access in searchable symmetric encryption,” in Proc. International
conference on financial cryptography and data security (FC’17).
Springer, 2017, pp. 35–52.

[27] X. Zhang, Y. Tang, H. Wang, C. Xu, Y. Miao, and H. Cheng,
“Lattice-based proxy-oriented identity-based encryption with
keyword search for cloud storage,” Information Sciences, vol. 494,
pp. 193–207, 2019.

[28] M. H. Ameri, M. Delavar, J. Mohajeri, and M. Salmasizadeh, “A
key-policy attribute-based temporary keyword search scheme for
secure cloud storage,” IEEE Transactions on Cloud Computing, 2018,
doi:10.1109/TCC.2018.2825983.

[29] H. Deng, Z. Qin, Q. Wu, Z. Guan, R. H. Deng, Y. Wang, and
Y. Zhou, “Identity-based encryption transformation for flexible
sharing of encrypted data in public cloud,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3168–3180, 2020.

[30] S. Zhang, Y. Mu, and G. Yang, “Threshold broadcast encryption
with keyword search,” in Proc. International Conference on
Information Security and Cryptology (Inscrypt’15). Springer, 2015,
pp. 322–337.

[31] M. Ali, H. Ali, T. Zhong, F. Li, Z. Qin, and A. A. AA, “Broadcast
searchable keyword encryption,” in Proc. IEEE International
Conference on Computational Science and Engineering (CSE’14).
IEEE, 2014, pp. 1010–1016.

[32] Y. Miao, X. Liu, K.-K. R. Choo, R. H. Deng, J. Li, H. Li, and J. Ma,
“Privacy-preserving attribute-based keyword search in shared
multi-owner setting,” IEEE Transactions on Dependable and Secure
Computing, 2019, doi:10.1109/TDSC.2019.2897675.

[33] K. He, J. Guo, J. Weng, J. Weng, J. K. Liu, and X. Yi, “Attribute-
based hybrid boolean keyword search over outsourced encrypted
data,” IEEE Transactions on Dependable and Secure Computing, 2018,
doi:10.1109/TDSC.2018.2864186.

[34] Z. Chen, F. Zhang, P. Zhang, J. K. Liu, J. Huang, H. Zhao,
and J. Shen, “Verifiable keyword search for secure big data-
based mobile healthcare networks with fine-grained authorization
control,” Future Generation Computer Systems, vol. 87, pp. 712–724,
2018.

[35] W. Liu, J. Liu, Q. Wu, and B. Qin, “Hierarchical identity-
based broadcast encryption,” in Proc. Australasian Conference on
Information Security and Privacy (ACISP’14). Springer, 2014, pp.
242–257.

[36] H. Li, Q. Huang, and W. Susilo, “A secure cloud data sharing
protocol for enterprise supporting hierarchical keyword search,”
IEEE Transactions on Dependable and Secure Computing, 2020,
doi:10.1109/TDSC.2020.3027611.

[37] N. H. Sultan, M. Laurent, and V. Varadharajan, “Securing
organization’s data: A role-based authorized keyword search
scheme with efficient decryption,” arXiv preprint arXiv:2004.10952,
2020.

[38] C. Delerablée, “Identity-based broadcast encryption with constant
size ciphertexts and private keys,” in Proc. International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT’07). Springer, 2007, pp. 200–215.

[39] Y. Miao, R. Deng, K.-K. R. Choo, X. Liu, J. Ning, and H. Li,
“Optimized verifiable fine-grained keyword search in dynamic
multi-owner settings,” IEEE Transactions on Dependable and Secure
Computing, 2019, doi:10.1109/TDSC.2019.2940573.

[40] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute-
based multi-keyword search scheme in mobile crowdsourcing,”
IEEE Internet of Things Journal, vol. 5, no. 4, pp. 3008–3018, 2017.

[41] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting
your right: Verifiable attribute-based keyword search with fine-
grained owner-enforced search authorization in the cloud,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 4, pp.
1187–1198, 2014.

[42] M. H. Ameri, M. R. Asaar, J. Mohajeri, and M. Salmasizadeh, “A
generic construction for verifiable attribute-based keyword search
schemes.” IACR Cryptol. ePrint Arch., vol. 2015, p. 915, 2015.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

[43] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity
based encryption with constant size ciphertext,” in Proc.
Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT’05). Springer, 2005, pp.
440–456.

[44] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based
encryption for fine-grained access control in cloud storage
services,” in Proc. ACM conference on Computer and communications
security (CCS’10), 2010, pp. 735–737.

[45] T. Liu, Y. Miao, K.-K. R. Choo, H. Li, X. Liu, X. Meng, and
R. H. Deng, “Time-controlled hierarchical multikeyword search
over encrypted data in cloud-assisted iot,” IEEE Internet of Things
Journal, vol. 9, no. 13, pp. 11 017–11 029, 2022.

[46] L. Xiong, F. Li, M. He, Z. Liu, and T. Peng, “An efficient privacy-
aware authentication scheme with hierarchical access control for
mobile cloud computing services,” IEEE Transactions on Cloud
Computing, vol. 10, no. 4, pp. 2309–2323, 2022.

[47] Y. Zhang, L. Xiong, F. Li, X. Niu, and H. Wu, “A blockchain-
based privacy-preserving auditable authentication scheme with
hierarchical access control for mobile cloud computing,” Journal
of Systems Architecture, vol. 142, p. 102949, 2023.

[48] K. Riad, T. Huang, and L. Ke, “A dynamic and hierarchical access
control for iot in multi-authority cloud storage,” Journal of Network
and Computer Applications, vol. 160, p. 102633, 2020.

[49] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved
searchable public key encryption with designated tester,” in
Proc. International Symposium on Information, Computer, and
Communications Security (AsiaCCS’09), 2009, pp. 376–379.

[50] U. S. Varri, S. K. Pasupuleti, and K. Kadambari, “Key-escrow free
attribute-based multi-keyword search with dynamic policy update
in cloud computing,” in Proc. IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID’20). IEEE, 2020,
pp. 450–458.

[51] Y. Miao, Q. Tong, K.-K. R. Choo, X. Liu, R. H. Deng, and H. Li,
“Secure online/offline data sharing framework for cloud-assisted
industrial internet of things,” IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 8681–8691, 2019.

[52] C. Delerablée and D. Pointcheval, “Dynamic threshold public-
key encryption,” in Proc. Annual International Cryptology Conference
(CRYPTO’08). Springer, 2008, pp. 317–334.

[53] R. Zhou, X. Zhang, X. Du, X. Wang, G. Yang, and M. Guizani,
“File-centric multi-key aggregate keyword searchable encryption
for industrial internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 8, pp. 3648–3658, 2018.

[54] N. H. Sultan, V. Varadharajan, S. Camtepe, and S. Nepal,
“An accountable access control scheme for hierarchical content
in named data networks with revocation,” in Proc. European
Symposium on Research in Computer Security (ESORICS’20).
Springer, 2020, pp. 569–590.

Yinbin Miao (M’18) received the B.E. degree
with the Department of Telecommunication
Engineering from Jilin University, Changchun,
China, in 2011, and Ph.D. degree with the
Department of Telecommunication Engineering
from Xidian University, Xi’an, China, in 2016. He
is also a postdoctor in Nanyang Technological
University from September 2018 to September
2019, and a postdoctor in City University of Hong
Kong from December 2019 to December 2021.
He is currently a Professor with the Department

of Cyber Engineering in Xidian University, Xi’an, China. His research
interests include information security and applied cryptography.

Feng Li received the B.E. degree in school
of cyberspace security from Hangzhou Dianzi
University, Hangzhou, China, in 2018. He is
currently a Ph.D. candidate in School of Cy-
ber Engineering, Xidian University. His current
research interests include cloud computing
security.

Xiaohua Jia received his BSc (1984) and
MEng (1987) from University of Science and
Technology of China, and DSc (1991) in Infor-
mation Science from University of Tokyo. He is
currently Chair Professor with Dept of Computer
Science at City University of Hong Kong. His
research interests include cloud computing and
distributed systems, computer networks and
mobile computing. Prof. Jia is an editor of IEEE
Internet of Things, IEEE Transactions on Parallel
and Distributed Systems (2006-2009), Wireless

Networks, Journal of World Wide Web, Journal of Combinatorial
Optimization, etc. He is the General Chair of ACM MobiHoc 2008, TPC
Co Chair of IEEE GlobeCom 2010 Ad Hoc and Sensor Networking
Symposium, Area-Chair of IEEE INFOCOM 2010 and 2015. He is
Fellow of IEEE.

Huaxiong Wang received the Ph.D. degree in
mathematics from University of Haifa, Israel, in
1996, and the Ph.D. degree in computer science
from University of Wollongong, Australia in 2001.
Since 2006, he has been an associate professor
with the Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore.
His research interests include cryptography, in-
formation security, coding theory, and theoretical
computer science.

Ximeng Liu (M’16) received the Ph.D. degree
with the Department of Telecommunication En-
gineering from Xidian University, Xi’an, China in
2015. He is a professor with the Key Laboratory
of Information Security of Network Systems,
College of Mathematics and Computer Science,
Fuzhou University, Fuzhou, China. His research
interests include applied cryptography and big
data security. He is a member of the IEEE.

Kim-Kwang Raymond Choo (SM’15) received
the Ph.D. in Information Security in 2006 from
Queensland University of Technology, Australia,
and currently holds the Cloud Technology
Endowed Professorship at The University of
Texas at San Antonio (UTSA). He is the founding
coEditor-in-Chief of ACM Distributed Ledger
Technologies: Research & Practice, founding
Chair of IEEE TEMS Technical Committee on
Blockchain and Distributed Ledger Technolo-
gies, an ACM Distinguished Speaker and IEEE

Computer Society Distinguished Visitor (2021 - 2023), and a Web of
Science’s Highly Cited Researcher (Computer Science - 2021, Cross-
Field - 2020). He is also the recipient of the 2019 IEEE Technical
Committee on Scalable Computing Award for Excellence in Scalable
Computing (Middle Career Researcher).

Robert H. Deng (F’16) is AXA Chair Professor
of Cybersecurity and Professor of Information
Systems in the School of Information Systems,
Singapore Management University since 2004.
His research interests include data security and
privacy, multimedia security, network and system
security. He served/is serving on the editorial
boards of many international journals, including
TIFS, TDSC. He has received the Distinguished
Paper Award (NDSS 2012), Best Paper Award
(CMS 2012), Best Journal Paper Award (IEEE

Communications Society 2017). He is a fellow of the IEEE.

	REKS: Role-based Encrypted Keyword Search with enhanced access control for outsourced cloud data
	Citation
	Author

	REKS: Role-Based Encrypted Keyword Search With Enhanced Access Control for Outsourced Cloud Data

