Simulated annealing with reinforcement learning for the set team orienteering problem with time windows

Vincent F. Yu^{a,b}, Nabila Yuraisyah Salsabila^a, Shih-Wei Lin^{c,d,e,*}, Aldy Gunawan^f

a Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan

b Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology, Taipei, Taiwan

c Department of Information Management, Chang Gung University, Taoyuan, Taiwan

d Department of Industrial Engineering and Management, Ming Chi University of Technology, Taipei, Taiwan

e Department of Emergency Medicine, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan

f School of Computing and Information Systems, Singapore Management University, Singapore

Published in Expert Systems with Applications, 2024, 238, 121996. DOI: 10.1016/j.eswa.2023.121996

Abstract: This research investigates the Set Team Orienteering Problem with Time Windows (STOPTW), a new variant of the well-known Team Orienteering Problem with Time Windows and Set Orienteering Problem. In the STOPTW, customers are grouped into clusters. Each cluster is associated with a profit attainable when a customer in the cluster is visited within the customer's time window. A Mixed Integer Linear Programming model is formulated for STOPTW to maximizing total profit while adhering to time window constraints. Since STOPTW is an NP-hard problem, a Simulated Annealing with Reinforcement Learning (SA_{RL}) algorithm is developed. The proposed SA_{RL} incorporates the core concepts of reinforcement learning, utilizing the *ε*-greedy algorithm to learn the fitness values resulting from neighborhood moves. Numerical experiments are conducted to assess the performance of SA_{RL}, comparing the results with those obtained by CPLEX and Simulated Annealing (SA). For small instances, both SA_{RL} and SA algorithms outperform CPLEX by obtaining eight optimal solutions and 12 better solutions. For large instances, both algorithms obtain better solutions to 28 out of 29 instances within shorter computational times compared to CPLEX. Overall, SA_{RL} outperforms SA by resulting in lower gap percentages within the same computational times. Specifically, SA_{RL} outperforms SA in solving 13 large STOPTW benchmark instances. Finally, a sensitivity analysis is conducted to derive managerial insights.

Keywords: Team orienteering problem with time windows, Set orienteering problem, Simulated annealing

1. Introduction

The Vehicle Routing Problem with Profits (VRPP) is given less attention than a classical vehicle routing problem in the literature. On the other hand, most logistic processes have been prioritizing the profit maximization in the application. Even though this term has increased in popularity in the past decade, there is still a lot to be discovered. The main characteristic of the vehicle routing problem with profits is the set of the customers to be served is not given, which is contrary to the classical vehicle routing problem. Hence, in addition to the vehicle route, the set of customers to be served must be decided (Archetti, Speranza, & Vigo, 2014). Furthermore, the main objective is to maximize the profit instead of minimizing the cost. Meaning that, the difference between the route score (revenue) and cost must be maximized (Archetti, et al., 2014).

The orienteering problem (OP) was introduced by Tsiligiridis (1984) & Golden, Levy, and Vohra (1987). It is one of the basic problems of the vehicle routing problem with profits, where it determines the customer to be visited and the shortest route between the visited customers. The profit is associated with each customer, and the objective is to maximize the total profit such that the time limit is not exceeded (Gunawan, Lau, & Vansteenwegen, 2016). In the past few years, OP has gained much attention as many researchers worked on OP and its applications, such as the implementation of OP in inventory routing problems (Golden, et al., 1987), traveling salesman problem (Chao, Golden, & Wasil, 1996a), and tourist trip planning (Vansteenwegen, Souffriau, Vanden Berghe, & Van Oudheusden, 2009).

Some researchers have developed OP variants, such as the Team OP

(TOP), the Team OP with Time Windows (TOPTW), and the Set Orienteering Problem (SOP). The TOP extends the OP by utilizing multiple vehicles. Hence, it determines multiple routes in order to maximize the total collected score such that the time limit is not exceeded (Gunawan, et al., 2016). Further, TOPTW considers the time window constraints that arise when each node has a time window to start the service. In this problem, each node can only be visited after the earliest time window and before the latest time window, otherwise, the visit will be infeasible. On the other hand, SOP was developed by Archetti, Carrabs, and Cerulli (2018), where customers are grouped into clusters, and profit is associated with each cluster. This means that at least one customer from the cluster needs to be visited for the profit to be collected (Archetti, et al., 2018). Despite of having different characteristics, the main objective of the aforementioned problems is to determine the vehicle routes that maximize the profit such that the time limit is not exceeded.

This paper introduces the Set Team Orienteering Problem with Time Windows (STOPTW). It combines the characteristics of TOPTW and SOP, where both are variants of the OP (Archetti, et al., 2018; Vansteenwegen, Souffriau, Vanden Berghe, et al., 2009). In this problem, the customers were grouped into clusters and the profit is associated with the cluster. In other words, the profit can only be collected if at least one customer is visited from the cluster. Each customer has time windows and a visit outside this time window can lead to infeasibility. The objective is to find the vehicle routes to maximize the total collected profit such that the duration of the tour does not exceed the time limit. Looking at the description, although it is possible to visit more than one customer in a cluster, it is less likely since the aim is to gain profits as much as possible within the time duration. Furthermore, to maximize the profit the constructed route should be the shortest path. To sum up, the solution to this problem involves four decisions: selecting a cluster, selecting a customer belonging to the cluster to visit, scheduling the starting time to visit the selected customer, and constructing the shortest route between these customers.

Similar with SOP, the STOPTW can be applied when a mass product is distributed to the retailers that belongs to different supply chains. In some cases, the product may be delivered to one retailer from each chain instead of serving all retailers. As a result, the chain can obtain a better price from the distributor since they only deliver it once to a customer, while the delivery inside the chain is handled internally. To avoid interrupting their customer services, most retailers prefer to receive the products during off-peak hours. Another application is when a group of private customers ordering large quantities together, in hoping that they will get a discounted price. However, they may have their preferred time windows to receive the products. Furthermore, it also can be used in the tourist trip design problem, where some attractions are grouped based on their similarity, and each attraction has certain showing or opening time.

The STOPTW is an NP-hard problem, as it falls within the class of routing problems. Hence, an effective solution methodology is required to solve large-scale problems. Simulated annealing (SA) metaheuristic was proven to produce high quality solutions with quick computation in solving OP variants (Lin & Yu, 2012, 2015; Yu, Jewpanya, Redi, & Tsao, 2021). SA start with generating a random solution and then improve the solution by employing some neighborhood moves. Commonly, the basic SA randomly chooses a neighborhood move with the uniform probability distribution. In this study, we propose simulated annealing with reinforcement learning (SA_{RL}) to solve newly introduced benchmark instances. In contrast with SA, SA_{RL} uses a different method to select the neighborhood moves operator. SA_{RL} uses the basic idea of reinforcement learning, where the ε -greedy is used to learn the fitness value resulting from each neighborhood move (Rodríguez-Esparza, Masegosa, Oliva, & Onieva, 2022; Shahmardan & Sajadieh, 2020). The numerical experiment results show that the proposed SA_{RL} can obtain good results and outperform a basic SA algorithm within a reasonable computational time.

- 1. A new variant of the orienteering problem is introduced, namely the Set Team Orienteering Problem with Time Windows (STOPTW).
- 2. Two datasets of new benchmark instances for the STOPTW are generated.
- 3. A mixed integer linear programming for the STOPTW is formulated as an exact approach and a simulated annealing metaheuristic to solve the STOPTW is developed.
- 4. A reinforcement learning-based simulated annealing is also developed by embedding an *ε*-greedy algorithm to learn the performance of the neighborhood moves. This appends the contribution of this paper since it is first developed to solve the OP variant.

The remainder of this paper is organized as follows. Section 2 presents the literature review of the TOP, TOPTW, and SOP. Section 3 defines the problem and develops the mathematical formulation for the STOPTW. Section 4 describes the proposed SA and SA_{RL} in detail. In Section 5, the numerical experiments are conducted to analyze the performance of the proposed algorithm, and the comparative study is presented. Section 6 provides the conclusion and suggestions for further research.

2. Literature review

2.1. Team orienteering problem

The term "orienteering problem" was introduced by (Tsiligiridis, 1984), which aims to select the best nodes to travel within a limited travel time to maximize the total profit. Thus, OP can be defined as a combination between the Knapsack Problem and Travelling Salesman Problem (TSP) (Gunawan, et al., 2016). OP belongs to the class of routing problems; thus, it can be distinguished from TSP.

The Team Orienteering Problem is one of the well-known variants of OP and was first proposed by Chao, Golden, and Wasil (1996b). Similar to OP, the profit is also associated with each node in TOP. However, TOP determines multiple routes instead of a single route. Hence, multiple vehicles are utilized to visit those routes, and each vehicle must start and end at the same node. The number of nodes visited is maximized, but no nodes can be visited more than once. Hence, the main difference between OP and TOP is that several vehicles are utilized to collect profits in TOP.

Many studies have developed different approaches to solving OP and TOP (Archetti, Hertz, & Speranza, 2006; Boussier, Feillet, & Gendreau, 2006; Chao, et al., 1996a, 1996b; El-Hajj, Dang, & Moukrim, 2016; Gunawan, Lau, Vansteenwegen, & Lu, 2017; Hammami, Rekik, & Coelho, 2020; Ke, Archetti, & Feng, 2008; Keshtkaran, Ziarati, Bettinelli, & Vigo, 2016; Tang & Miller-Hooks, 2005; Vansteenwegen, Souffriau, Berghe, & Oudheusden, 2009; Vansteenwegen, Souffriau, Vanden Berghe, et al., 2009). Chao, et al. (1996a, 1996b) constructed a heuristic with two steps: initialization and improvement. The initialization was done by creating a route by a greedy method; and the improvement phase was done by performing a two-point exchange, one-point movement, clean up, and reinitialization. The computational testing showed that the proposed heuristic obtained better scores and more efficient than six previously published solution methods, including Tsiligiridis (1984). A tabu search heuristic was proposed by Tang and Miller-Hooks (2005) to solve TOP applications in routing technicians. They proposed the tabu search in three phases: initialization, solution improvement, and evaluation by embedding it into an Adaptive Memory Procedure. They tested the algorithm on 320 problems published in the literature. The proposed technique obtained high-quality solutions and outperformed the benchmark heuristics produced by Tsiligiridis (1984) and Chao, et al. (1996b). Archetti, et al. (2006) proposed two variants of generalized two tabu search and variable neighborhood search (VNS). The computational results show that the latter algorithm turned out to be more efficient and effective for TOP than the former one. Their proposed algorithm improved 128 benchmark test instances from Chao,

The main contributions of this paper are listed as follows:

et al. (1996b) and Tang and Miller-Hooks (2005). Vansteenwegen, Souffriau, Vanden Berghe, et al. (2009) presented two metaheuristic frameworks to solve TOP, Guided Local Search (GLS), and Skewed Variable Neighborhood Search (SVNS). Both algorithms implemented similar local search procedures to find a high-quality solution. The numerical experiment showed that the SVNS framework outperformed the GLS algorithm and three aforementioned best-published results in terms of the obtained scores and computational time.

Following Vansteenwegen, Souffriau, Vanden Berghe, et al. (2009), exact algorithms were developed by El-Hajj, et al. (2016) and Keshtkaran, et al. (2016). El-Hajj, et al. (2016) presented a cutting plane algorithm; the results show that it is comparable to existing algorithms and provided optimal solutions to 12 previously unsolved instances. On the other hand, Keshtkaran, et al. (2016) proposed a Branch-and-Price algorithm that can solve 17 previously unsolved benchmark instances.

Gunawan, et al. (2017) proposed two algorithms, Iterated Local Search (ILS) and a hybridization of Simulated Annealing and Iterated Local Search (SA-ILS). The proposed algorithms were able to discover 50 best known solutions. Hammami, et al. (2020) proposed a Hybrid Adaptive Large Neighborhood Search (HALNS) which combined the exploration ability of ALNS with local search procedures and a Set Packing Problem to improve the solutions. Their proposed algorithm discovered all the 387 best known solutions of the small-scale benchmark instances and 333 best known solutions large-scale benchmark instances. Furthermore, they also improved one large-scale benchmark instance.

2.2. Team orienteering problem with time windows

OP with Time Windows (OPTW) is a variant of OP first introduced by Kantor and Rosenwein (1992). OPTW has different characteristics from OP, where the time windows of each customer are considered. However, the approach to solving OPTW can still be implemented to solve OP by modifying the solution approach (Vansteenwegen, Souffriau, & Van Oudheusden, 2011). TOPTW has similar characteristics to OPTW, but multiple vehicles are utilized to serve the customers.

Many researchers studied TOPTW and its extension (Amarouche, Guibadj, Chaalal, & Moukrim, 2020; Hu & Lim, 2014; Karabulut & Tasgetiren, 2020; Labadie, Mansini, Melechovský, & Wolfler Calvo, 2012; Lin & Yu, 2012, 2015; Montemanni, Weyland, & Gambardella, 2011; Moosavi Heris, Ghannadpour, Bagheri, & Zandieh, 2022; Ruiz-Meza, Brito, Montoya-Torres, Castro-Vergara, & Liu, 2022; Saeedvand, Aghdasi, & Baltes, 2020; Souffriau, Vansteenwegen, Vanden Berghe, & Van Oudheusden, 2011; Vansteenwegen, Souffriau, Vanden Berghe, et al., 2009; Yu, Jewpanya, Lin, & Redi, 2019). Vansteenwegen, Souffriau, Vanden Berghe, et al. (2009) proposed an ILS to solve TOPTW. They combined an insertion step and a shaking step to escape from local optima. The computational experiments indicated that the iterated local search can find new best solutions for 31 instances with a reasonable computation time. Lin and Yu (2012) presented a Simulated Annealing (SA) approach; the computational results show that the proposed heuristic is competitive with previous approaches. It obtained the best solutions for more than half of the benchmark instances for which the optimal solution is unknown. Hu and Lim (2014) introduced an iterative three-component heuristic, which tested and compared with the previous approaches in the literature, including Vansteenwegen, Souffriau, Vanden Berghe, et al. (2009) and Lin and Yu (2012). The proposed iterative three-component heuristic can find 35 new best solutions. Karabulut and Tasgetiren (2020) developed an evolution strategy to generate an offspring solution through ruin and recreate heuristic. Their proposed algorithm obtained new best-known solutions for 7 benchmark problem instances. Amarouche, et al. (2020) proposed a randomized Multi-Start Iterated Local Search (MS-ILS) procedure, which is able to improve 57 benchmark instances of TOPTW.

Lin and Yu (2015) proposed a multiconstraint team orienteering problem with multiple time windows (MC-TOP-MTW) as the extension of TOPTW. They developed simulated annealing with restart strategy (SA_{RS}) as the solution approach, which performs better than without the restart strategy. Another extension was developed by Yu, et al. (2019), where the score of visiting a node differs depending on the time visit, namely the team orienteering problem with time windows and time-dependent scores (TOPTW-TDS). They proposed a hybrid artificial bee colony (HABC), which is better than the previous algorithms for TOPTW. Ruiz-Meza, et al. (2022) extended their problem by introducing a multiconstraint multimodal team orienteering problem with time windows, namely Tourist Trip Design Problem (TTDP) and considering uncertainty using fuzzy constraints. The model has a bi-objective function that maximizes the total profit and minimizes the cost of CO_2 emissions.

The TOPTW also has been applied to a real case study by Saeedvand, et al. (2020). They implemented TOPTW as the task allocation for teams of rescue robots, namely TOPTWR. The TOPTWR was then solved by a Hybrid Multi-Objective and Evolutionary Algorithm (HMO-TOPTWTR). TOPTW was also implemented by Moosavi Heris, et al. (2022) to model a Tourist Trip Design Problem in Tehran, Iran. It aimed to maximize the profit gained from visiting the Points of Interests (POIs) and accessibility indicators. They developed a multi-objective genetic algorithm (MOGA) to solve the problem.

2.3. Set orienteering problem

The idea of SOP comes from the clustered OP (COP), where the customer is grouped in a cluster, and the profit can be collected if all customers in a cluster are visited (Angelelli, Archetti, & Vindigni, 2014). However, the profit can be collected if at least one customer is visited in the cluster in SOP.

Since this extension is considerably new, only a few researchers have studied SOP and its extension (Archetti, et al., 2018; Dutta, Barma, Mukherjee, Kar, & De, 2020; Pěnička, Faigl, & Saska, 2019). SOP was first introduced by Archetti, et al. (2018). They proposed a matheuristic algorithm to solve SOP, called MASOP (Matheuristic for the SOP). It has two phases: the first stage is the construction of an initial solution; the second phase is the tabu search. The numerical experiment result shows that the matheuristic produces high-quality solutions within a short computing time.

Pénička, et al. (2019) proposed Variable Neighborhood Search (VNS) and compared their algorithm with the MASOP result proposed by Archetti, et al. (2018). The experimental result shows that seven best-known solutions can be improved for small instances and ten best-known solutions for large instances with much lower computational time than MASOP. Dontas, Sideris, Manousakis, and Zachariadis (2023) proposed an adaptive memory matheuristic which consisted of the initialization phase, improved by the local search and an adaptive memory heuristic. The proposed approach produced best solutions for 98.20 % of the instances of the classic SOP benchmark dataset. Dutta, et al. (2020) extended SOP by considering multiple objectives and open route (MOOSOP). In addition to maximizing profit, their model maximizes customer service satisfaction. They used the nondominated sorting genetic algorithm (NSGAII) and the strength Pareto evolutionary algorithm (SPEA2) to solve the proposed model.

2.4. Reinforcement learning-based simulated annealing

The idea of the reinforcement learning-based simulated annealing is inspired by the Adaptive Neighborhood Simulated Annealing (ANSA), where the probability of selecting a neighborhood move in the searching process is controlled (Salama & Srinivas, 2021; Yu, et al., 2021). Given the lack of literature, the utilization of reinforcement learning to select the neighborhood moves in SA needs to be explored (Rodríguez-Esparza, et al., 2022; Shahmardan & Sajadieh, 2020).

Shahmardan and Sajadieh (2020) developed a reinforcement learning-based SA to solve truck scheduling in a multi-door crossdocking center with partial unloading. In their study, a reward is given to the neighborhood moves that improved the solution; otherwise, punishment is given. Reinforcement learning was adopted to learn the value of each move by tracing their respective punishment and reward. Further, they implemented four variants of multi-armed bandit (MAB) to learn the true value function of each neighborhood search: (1) incremental implementation, (2) non-stationary problem, (3) upperconfidence-bound action selection, and (4) *Q*-learning.

Rodríguez-Esparza, et al. (2022) proposed Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning to solve the Capacitated Electric Vehicle Routing Problem. They implemented MAB to optimize the reward of the neighborhood move, acquiring knowledge (exploration) and optimizing decisions based on that learning (exploitation). They use the three most commonly used MAB variants: (1) ϵ -greedy, (2) Thompson sampling, and (3) upper-confidence-bound 1.

Table 1 summarizes the current state-of-the-art of existing literature on TOP, TOPTW, and SOP. By looking at Table 1, it is apparent that the STOPTW is a problem that has not been studied in the literature. Whereas, it is a problem that often arises in real-world applications. Furthermore, the neighborhood moves in the Simulated Annealing are randomly selected in most cases. Rather than ANSA, the reinforcement learning-based simulated annealing utilizes more comprehensive method to learn the performances of the neighborhood moves. Hence, the utilization of reinforcement learning-based simulated annealing should be more prospected in the literature. Motivated by these shortcomings, this paper proposes a reinforcement learning-based simulated annealing (SA_{RL}) to solve the STOPTW.

3. Problem description and formulation

As STOPTW is a generalized form of SOP, we derive the mathematical model based on Archetti, et al. (2018). The STOPTW is formally described as follows. Let G = (N, A) be a geographical network, where $N = \{0\} \cup C$ represents a set of nodes, and A represents a set of arcs connecting each node. Vertex 0 represents the depot, and C represents the set of customers. In contrast with SOP, in this problem, each

Table 1			
State-of-the-art of TOP.	TOPTW.	and	SOP.

customer has a non-negative service time s_i and time window $[E_i, F_i]$,
where E_i represents the earliest service time of node i , and F_i represents
the latest service time at node i , $\forall i \in N$. Each customer can only be
visited once and must be visited within its time window. The travel time
from customer <i>i</i> to customer <i>j</i> is represented by t_{ij} , $\forall (i, j) \in A$. A set of
vehicles V is available to visit the customers, and each vehicle must start
and finish its visit at the depot.

In the STOPTW, customers in *C* are grouped in cluster L_g with g = 1, \cdots , l where $\bigcup_{g=1}^{l} L_g = C$ and $L_g \cap L_h = \emptyset$, $\forall L_g, L_h \in \mathscr{L}$ where $\mathscr{L} = \{L_1, L_2, \cdots, L_l\}$ is the set of clusters. Each cluster is associated with a profit p_g . As the characteristic of SOP, the profit collection process happens if and only if a vehicle visiting customer $i \in L_g$. The profit of each cluster can be collected only once; thus, the second visit to a customer in the same cluster will not obtain any profit. This problem gains complexity since the time windows are considered. An early visit before the time window results in waiting time, and a late visit after the time window results in infeasibility.

The decision variables are as follows:

- $x_{ij\nu}$ 1 if vehicle $\nu \in V$ traverses arc $(i, j) \in A$; 0, otherwise
- $y_{i\nu}$ 1 if node $i \in N$ is visited by vehicle $\nu \in V$; 0, otherwise
- z_{gv} 1 if profit in cluster $L_g \in \mathscr{L}$ is collected by vehicle $v \in V$; 0, otherwise
- c_{iv} The starting time of visiting customer $i \in C$ with vehicle $v \in V$

The mathematical model of the STOPTW is formulated as follows:

$$\max \sum_{L_g \in \mathscr{L}} \sum_{v \in V} p_g z_{gv} \tag{1}$$

Subject to

$$\sum_{i \in C, i \neq k} x_{ik\nu} = \sum_{j \in C, k \neq j} x_{kj\nu} = y_{k\nu} \forall k \in C, \nu \in V$$
(2)

$$\sum_{v \in V} \sum_{j \in C} x_{0iv} = \sum_{v \in V} \sum_{i \in C} x_{i0v} = |V|$$
(3)

Author	Model	Features	L						Obje	ective ²						Solution
	STW	MC	MTW	TDS	MM	С	S	0	Р	EC	TAT	FEC	TD	ACC	CS	Methodology
El-Hajj, et al. (2016)	_	-	-	-	-	-	-	-	1	-	-	-	-	-	-	Cutting planes
																algorithm
Keshtkaran, et al. (2016)	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	Branch and price
																algorithm
Hammami, et al. (2020)	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	HALNS
Lin and Yu (2012)	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	SA
Hu and Lim (2014)	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	Three-component
																heuristic
Gunawan, et al. (2017)	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	ILS and SA-ILS
Karabulut and Tasgetiren (2020)	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	Evolution strategy
																approach
Amarouche, et al. (2020)	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	MS-ILS
Lin and Yu (2015)	-	1	1	-	-	-	-	-	1	-	-	-	-	-	-	SA _{RS}
Yu, et al. (2019)	-	-	-	1	-	-	-	-	1	-	-	-	-	-	-	HABC
Ruiz-Meza, et al. (2022)	1	1	-	-	1	-	-	-	1	1	-	-	-	-	-	a CPLEX solver
Saeedvand, et al. (2020)	1	-	-	-	-	-	-	-	1	1	1	1	1	-	-	HMO-TOPTWR
Moosavi Heris, et al. (2022)	1	-	-	-	-	-	-	-	1	-	-	-	-	1	-	MOGA
Angelelli, et al. (2014)	-	-	-	-	-	1	-	-	1	-	-	-	-	-	-	Branch and cut
																algorithm
Archetti, et al. (2018)	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	MASOP
Pěnička, et al. (2019)	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	VNS
Dontas, et al. (2023)	-	-	-	-	-	-	1	-	1	-	-	-	-	-	1	Local search-based
																matheuristic
Dutta, et al. (2020)	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	NSGAII and SPEA2
This study	1	-	_	-	-	_	1	-	1	-	-	-	-	-	-	SA _{RL}

¹ STW: Single time window, MC: Multi constraint, MTW: Multiple time windows, TDS: Time-dependent scores, MM: Multi-modal, C: Clustered, S: Set, O: Open. ² P: Maximize profit, EC: Minimize CO2 emissions/ energy consumption, TAT: Minimize tasks' accomplishment time, FEC: Fair energy consumption, TD: Minimize task's delays, ACC: Maximize accessibility indicators.

$$\sum_{v \in V} y_{iv} \le 1 \forall i \in N \tag{4}$$

 $z_{gv} = \sum_{i \in L_s} y_{iv} \forall L_g \in \mathscr{L}, v \in V$ (5)

$$\sum_{v \in V} z_{gv} \le 1 \forall L_g \in \mathscr{L}$$
(6)

$$E_i \le c_{iv} \le F_i \forall i \in N, v \in V$$
(7)

$$c_{iv} + s_i + t_{ij} - c_{jv} \le M(1 - x_{ijv}) \forall i, j \in N, v \in V$$
 (8)

 $c_{iv} \geq t_{0i} y_{iv} orall i \in N, v \in V$

 $x_{ijv} \in \{0, 1\} \forall i, j \in N, v \in V$ (10)

$$y_{iv} \in \{0,1\} \forall i \in N, v \in V \tag{11}$$

$$z_{gv} \in \{0,1\} \forall L_g \in \mathscr{L}, v \in V$$
(12)

The objective function (1) maximizes the total collected profit, which is resulted from the multiplication of the cluster's profit and the decision variable of the visited cluster. This implies that the profit is only collected if the cluster is visited. Constraint (2) is the flow continuation constraint that ensures every vehicle visits and leaves the same customer. Constraint (3) ensures the route starts from the depot and finishes at the depot. Constraint (4) ensures every customer is only visited once. Further, each cluster member is determined using Constraints (5). Constraint (6) ensures that each cluster is only visited once. Constraint (7) restricts the time visit so that the time windows are not violated, and Constraint (8) determines the timeline of each route. Hence, if arc (i, j) is visited, then the starting time to visit node *j* must be greater than or equal to the starting time of visiting node *i* plus the travel time of traversing arc (i, j) and the service time of node *i*. Constraint (9) ensures that the time to visit the first customer must be longer than the travel time from the depot to the first customer. Constraints (10)-(12) define the variable domain.

4. SA_{RL} for STOPTW

This section describes the proposed metaheuristic, including the solution representation, the initial solution construction, and the neighborhood solution strategy for improving the quality of the initial solution. Accordingly, the procedural steps are explained.

4.1. Solution representation

The solution representation has two parts. The first part is a string of numbers representing the clusters, denoted by a permutation of n clusters, $1, 2, \dots, n$. Each tour is separated by m - 1 zeros, where *m* represents the number of routes. The second part is *l* numbers representing which customer will be served in the cluster. In the first part, the j^{th} non-zero number indicates the j^{th} cluster to be visited. Thus, the first non-zero element in a solution indicates the first cluster to be visited during the first tour. The second part of the solution representation represents which customer will be visited in the first cluster. Other clusters are added one by one from left to right representing the visiting sequence, provided that the time window constraint of the depot and each tour location is not violated. If adding a cluster to the tour violates the location's time window or the depot's time window, the cluster is discarded, and the next cluster is considered. A zero in the solution representation indicates that the current tour will be terminated, and a new tour is constructed whenever feasible. Hence, this solution representation always obtains a feasible STOPTW solution without violating the time window constraints of locations and depots.

 Table 2

 A STOPTW instance with 8 clusters and 25 customers.

(9)

No.	Х	Y	ST	ET	LT	Cluster
0	35	35	0	0	230	0
1	41	49	20	0	204	1
2	35	17	20	0	202	2
3	55	45	20	0	197	3
4	55	20	20	139	169	3
5	15	30	20	0	199	4
6	25	30	20	89	119	4
7	20	50	20	0	198	1
8	10	43	20	85	115	5
9	55	60	20	87	117	6
10	30	60	20	114	144	7
11	20	65	20	57	87	7
12	50	35	20	0	205	3
13	30	25	20	149	179	4
14	15	10	20	32	62	5
15	30	5	20	51	81	8
16	10	20	20	65	95	5
17	5	30	20	147	177	5
18	20	40	20	77	107	1
19	15	60	20	66	96	7
20	45	65	20	116	146	6
21	45	20	20	0	201	2
22	45	10	20	87	117	2
23	55	5	20	58	88	8
24	65	35	20	143	173	3
25	65	20	20	156	186	3

customers, which can be served by two tours (m = 2). Each coordinate (X, Y), service time (ST), earliest time windows (ET), latest time windows (LT), and the cluster of the customers are listed in the table. Fig. 1 illustrates an example of the solution to this instance, in which one (m-1=2-1=1) dummy zero is introduced. Fig. 1(a) represents the original solution representation and Fig. 1(b) represents the decoded solution representation. The distance between a customer is calculated by the Euclidean distance and rounded down to the first decimal.

As shown in Fig. 1(a), the first part solution representation shows that the original visiting sequence of the first route is 1-7-6-2, and 8-4-3-5 for the second route. The second part of the solution representation indicates that the 1st, 2nd, 2nd, 2nd, 2nd, 1st, 2nd, and 2nd customers will be visited for Clusters 1, 2, 3, 4, 5, 6, 7, and 8, respectively. Based on Table 2, the number of customers in Clusters 1 to 8 are 3, 3, 5, 3, 4, 2, 3, and 2, respectively. Hence, Customers 1, 21, 4, 6, 14, 9, 11, and 23 will be visited for Clusters 1–8, respectively. After decoding the cluster visits and the customer to be served, the routing solution is explicitly illustrated in Fig. 1(b). The first tour starts by visiting Customer 1, followed by Customers 11, 9, and 21. Since the value of the following element is 0, the trip ends after visiting Customer 21 and returns to the depot. The second trip begins with a visit to Customer 23, followed by visits to Customers 6, 4, and 14. The tour then ends because there are no further viable visits. Because the visited Customer 14 will exceed the customer's or depot's time frame constraint (or the vehicle's capacity), it is removed from the tour. Hence, the "x" symbol represents the customer from its corresponding cluster is removed from the tour due to the infeasibility of the time window. Fig. 2 shows a visual representation of the trip, which corresponds to the sample solution representation in Fig. 1.

4.2. Fitness value

The fitness value of a solution is the total collected profit without violating customers' time window constraints. The decoded solution reveals the location of each tour and the cluster visited by the tour. Hence, the overall collected profit can be calculated easily by summing up the collected score based on the cluster visited. The fitness value is denoted by obj(X) for a given solution *X*.

Table 2 shows the STOPTW instance with 8 clusters and 25

1	7	6	2	0	8	4	3	5	1	2	2	2	2	1	2	2
			Clust	ter nu	mber				Cus	stome	er to	be se	rved	in th	e clu	ster

(a) Original solution representation.

1	7	6	2	0	8	4	3	5	
	Rout	te - 1			Route -2				
1	11	9	21	-	- 23 6 4 x				
		(b) A	After decod	ling the so	lution repr	esentation			

Fig. 1. An example of solution representation.

Fig. 2. Visual illustration of the example solution given in Fig. 1.

4.3. Neighborhood search strategy

The SA_{RL} for Set-TOPTW uses four types of neighborhood moves: (1) swap, (2) insertion, (3) reversion, and (4) changing the visited customer in the cluster. Let N(X) denote the set of solutions neighboring the

current solution *X*. At each iteration, a new solution $(X)^{P}$ is generated from N(X) through one of the four moves described as follows.

Fig. 3 illustrates how each move generates a new neighborhood solution. The swap move is performed by randomly choosing and swapping any two clusters to change the positions (Fig. 3a). For example,

Fig. 3. Illustration of neighborhood moves.

assuming that the swap move is applied to the solution in Fig. 3a, and the 3rd and 10th positions are randomly selected, the cluster numbers appearing in these positions are 6 and 5, respectively. These clusters are then swapped. The insertion move randomly selects two clusters that are not adjacent, removes one cluster from its current location, and then inserts it after another cluster (Fig. 3b). For example, in the same solution in Fig. 3b, Cluster 3 is inserted into the position in front of Cluster 6. The reversion move is performed by randomly selecting a substring of clusters in the solution representation and reversing its order (Fig. 3c). The change of the visited customer move is performed by randomly choosing a cluster and randomly changing the value in the solution representation (from 1 to the number of customers belonging to the chosen cluster) (Fig. 3d). The tours of the new solution must be decoded after a move. Hence, the clusters not selected in the previous solution may be selected after a move and vice versa. Noteworthily, the new solution is always feasible based on our solution representation scheme.

4.4. SA_{RL} procedure

Fig. 4 shows the flowchart of the SA_{RL} algorithm for the STOPTW. The algorithm begins by generating a random initial solution regarded as the current solution X, and sets the current temperature T as the beginning temperature T_o . The current best solution X_{best} and the best objective function value F_{best} are set to be X and obj(X), respectively.

For each iteration, a neighborhood solution $(X)^{P}$ is generated by

Fig. 4. Flowchart of SA_{RL} for STOPTW.

selecting a move type according to the ε - greedy strategy. When applying the ε - greedy strategy, there is a probability of $1 - \varepsilon$ ($0 < \varepsilon < 1$) selecting the best move (with the highest fitness value) and a probability of ε selecting a move from the other three movies using the roulette wheel selection technique. Let $\Delta = obj(X)^P - obj(X)$. If Δ is greater or equal than 0, then let the new solution $(X)^P$ as the current solution *X*. Otherwise, the current solution *X* is replaced by the new solution $(X)^P$ with probability $exp(-\frac{\Delta}{T})$. The F_{best} and X_{best} is then replaced by obj(X) and *X*, respectively if the current solution *X* results a better fitness than the best solution X_{best} .

The fitness function value of Π^N used in the next iteration of the roulette wheel selection procedure was updated according to the for-

mula modified from the ε - greedy algorithm as follows. Further, the following formula was applied to update the fitness function value of four moves: $fit_{iter}^{Move_q} = \frac{n^{Move_q}-1}{n^{Move_q}} fit_{iter-1}^{Move_q} + \frac{1}{n^{Move_q}} [Obj(X)^P - Obj(X)]/Obj(X)$, where $fit_{iter}^{Move_q}(q = 1, 2, 3, 4)$ denotes the fitness function value of $Move_q$ used in the next iteration of the roulette wheel selection procedure, and n^{Move_q} means the cumulative selected times of $Move_q$ in the solution procedure.

The next step is to evaluate if the current number of iterations equals the maximum iteration. If it does, we decrease the temperature by the cooling rate $T = T^*\alpha$ and restart the number of iterations It = 0. Finally, the termination conditions are obtained in the proposed SA_{RL} when the computational time reaches the time limit *MaxT*. When the termination condition is reached, the algorithm will result in the best solution X_{best} and the best fitness value F_{best} .

5. Computational experiment

The proposed SA_{RL} for the STOPTW was coded in Microsoft Visual Studio C++ 2019, and the mathematical formulation was solved using the CPLEX by AMPL software and executed on a Windows 7 Professional PC with an Intel Core i7-4790 processor running at 3.60 GHz and 16.00 GB of RAM. In this section, the test instances generation is described, and the computational experiment results are discussed. In order to verify the efficiency of SA_{RL}, it was compared to the SA without reinforcement learning, denoted as SA. In the SA, a neighborhood move was selected randomly based on the same probability to generate a new solution (X)^{*P*} instead of using the ε - greedy strategy to select the move type.

5.1. Test problems

Since there is no existing literature on the STOPTW, no benchmark instances also exist. Thus, we generated the problem instances by modifying two datasets. The first dataset (Set A) is a small dataset modified from the OPTW instances of Righini and Salani (2009) based on Solomon's dataset (c100, r100, and rc100) (Solomon, 1987). The OPTW instances were modified by grouping the customers into clusters according to Archetti, et al. (2018) and adding the cluster profit. As presented in Archetti, et al. (2018), we also used 20 % of customers to determine the number of clusters and randomly assigned each customer to those clusters. Furthermore, the cluster profit was added by summing up the profit of each customer member in a cluster. In total, Set A consists of 29 instances, where each contains 100 customers and 20 clusters.

The second dataset (Set B) is a large dataset modified from the same dataset (Righini and Salani (2009). From this point forward, we refer to their dataset as the original dataset. In Set B, more customers were generated and added to the original dataset. We generated 100 and 200 new customers and assigned them to the existing 100 clusters. Hence, in total, there are 29 instances with 200 and 300 customers with 100 clusters. The steps of generating Set B are described as follows:

- (1) New customer coordinates are randomly generated between an interval of [x_{min}, x_{max}] and [y_{min}, y_{max}]. The min and max values are determined from the coordinates of customers in the original dataset.
- (2) The service time value of the new customer instances is the same as the service time of the customers in the original dataset.
- (3) Time windows of the new customer instances are generated based on the method explained by Solomon (1987).
- (4) The first 100 customers are taken from the original dataset and assigned to Cluster 1 to Cluster 100, respectively. For example, Customers 1, 2, and 3 become members of Clusters 1, 2, and 3, respectively.

- (5) The next 100 and 200 customers are generated randomly based on Steps (1) – (3). Then, each customer is assigned randomly to Cluster 1 to Cluster 100.
- (6) The profit of each cluster is the same as the profit of the customers in the original dataset corresponding to that cluster.

5.2. Parameter setting

The proposed SA_{RL} requires four parameters: the T_o - initial temperature, I_{iter} - the number of iterations, α - cooling rate, and the ε - greedy strategy. We implemented the Taguchi L16 orthogonal array as the experimental approach to define the parameters. The algorithm is executed in 5 independent runs for each combination on twelve randomly generated instances. For each run, a maximum time limit MaxT = numberofcodelength*100 milliseconds is used as stopping criterion. In this experiment, the parameters were considered the controlled variables and the average relative percentage deviation (APRD) as the response variable. Equation (13) is the formulation of the Relative Percentage Deviation (RPD), considered the performance indicator of the algorithm's effectiveness in selecting the best solution.

$$RPD = \frac{P^B_{max} - P^C_{max}}{P^B_{max}} \times 100\%$$
(13)

where P_{max}^{C} denotes the profit when applying configuration *C*, and P_{max}^{B} is the best profit overall combinations considering five runs, while ARPD is the average RPDs over the best-found solutions among nine test instances. Tables 3 and 4 show the orthogonal array for the ARPD calculation and the ARPD values obtained by the experiment, respectively.

According to Table 4, T_0 has the largest range, indicating that the initial temperature significantly influences the RPD values. Based on the probability function $\exp(-\frac{\Delta}{T})$ from Section 4.5, T_0 has a direct impact on accepting the worse solution. Hence, considering a larger T_0 will increase the likelihood of accepting weaker solutions, the convergence rate will be faster. The second most important parameter is the cooling rate α . The third and fourth important parameters are I_{iter} and ε , respectively. Based on this analysis, we determined the parameter configuration as follows: $T_0 = 1.0$, $I_{iter} = 6,000$, $\alpha = 0.98$, and $\varepsilon = 0.6$.

5.3. Computational results

In this study, we execute each instance in six problem settings, which is shown in Table 5. The 1st column refers to the name of the problem, the 2nd column is which dataset the problem belongs to, and the 3rd-5th columns are the number of customers, number of clusters, and number of tours, respectively. For problem A [100, 20, 2], the CPU time limit of CPLEX is 3,600 s, and the CPU time limit of SA and SA_{RL} were calculated

Table 3	
Orthogonal array for ARPD calculation.	

Experiment	T_0	I _{iter}	α	ε
1	1.0	4,000	0.96	0.4
2	1.0	5,000	0.97	0.5
3	1.0	6,000	0.98	0.6
4	1.0	7,000	0.99	0.7
5	1.5	4,000	0.97	0.6
6	1.5	5,000	0.96	0.7
7	1.5	6,000	0.99	0.4
8	1.5	7,000	0.98	0.5
9	2.0	8,000	0.98	0.7
10	2.0	4,000	0.99	0.6
11	2.0	5,000	0.96	0.5
12	2.0	6,000	0.97	0.4
13	2.5	4,000	0.99	0.5
14	2.5	5,000	0.98	0.4
15	2.5	6,000	0.97	0.7
16	2.5	7,000	0.96	0.6

 Table 4

 ARPD values obtained by different levels of each parameter.

		-		
Configuration	T_0	I _{iter}	α	ε
1	3.7584	3.8884	3.8039	3.8192
2	3.7676	3.8308	3.8196	3.8606
3	3.8541	3.8062	3.8175	3.8216
4	3.9654	3.8202	3.9045	3.8440
Range	0.2069	0.0822	0.1006	0.0414
Rank	1	3	2	4

based on $MaxT = \frac{n^*200}{1000} = 4$ seconds (where *n* is the cluster number). Meanwhile, the other problems are executed for 7,200 s as the CPU time limit of CPLEX and $MaxT = \frac{100^*200}{1000} = 20$ seconds as the CPU time limit of SA and SA_{RL}.

Fig. 5 illustrates the performance comparison between SA with CPLEX and SARL with CPLEX of each problem setting. The terms "Better", "Equal", and "Worse" in the legend respectively represent that the solutions of SA or SA_{RL} are better, equal, or worse than CPLEX. Fig. 6 illustrates the solution comparison between SA and SA_{RL}. In this figure, the terms "Better", "Equal", and "Worse" in the legend indicate that the SA_{RL} results better, equal, and worse than SA, respectively. In both Figs. 5 and 6, the numbers inside the tables represent the number of instances that are compared between algorithms, where there are 29 instances in total. The details of the computational experiments are presented in Appendices A.1 - A.6. The 1st column (Instances) defines the name of the instances, and the 2nd and 3rd columns (CPLEX) are the profit obtained by the CPLEX and its computational time in seconds. The 4th – 7th columns show the best profit, average profit, the gap between CPLEX and the best profit, and the gap between CPLEX and the average profit of SA, respectively. The 8th - 11th columns show the respective performances of SA_{RL}. The numbers in bold are the best solution for each instance of the problem. It must be noted that, the instances that can be solved by CPLEX under the time limits are the optimal solutions. The gaps were obtained using equations (14) and (15):

$$b - Gap = \frac{Profit_{CPLEX} - Profit_{best}}{Profit_{CPLEX}} \times 100\%$$
(14)

$$a - Gap = \frac{Profit_{CPLEX} - Profit_{avg}}{Profit_{CPLEX}} \times 100\%$$
(15)

Fig. 5 (a) shows the comparison between CPLEX with SA and SA_{RL} of problem A [100, 20, 2]. The performances of SA and SA_{RL} are similar, where eight optimal solutions and twelve better solutions than CPLEX can be found within a shorter computational time. Furthermore, looking at Fig. 6, both algorithms obtain equal solutions for all instances. Hence, it can be concluded that both SA and SA_{RL} are competitive solution approaches in solving small STOPTW instances.

The comparison between CPLEX with SA and SA_{RL} of problem B [200, 100, 1], B [200, 100, 2], B [200, 100, 3], and B [200, 100, 4], are respectively shown in Fig. 1 (b) – (e). For problem B [200, 100, 1], both SA and SA_{RL} can obtain 1 equal solution and 22 better solutions than CPLEX. In Fig. 6, SA_{RL} obtains 3 better solutions than SA for this problem. Furthermore, in Appendix A.2, SA_{RL} outperforms SA in terms of both average and best runs. In problem B [200, 100, 2], both SA and SA_{RL} produce 26 better solutions than CPLEX. SA_{RL} still outperforms SA

by resulting in 12 better solutions and two worse solutions than SA_{RL} based on Fig. 6. This is also supported by Appendix A.3 which shows that SA_{RL} obtains larger negative gaps than SA. Furthermore, for problem B [200, 100, 3], both SA and SA_{RL} obtain 27 better solutions than CPLEX. Although both SA and SA_{RL} obtain seven better solutions than each other, SA_{RL} obtains larger negative gaps than SA. According to Appendix A.4, SA_{RL} obtains -74.053 % and -70.732 % gaps for the best and average runs, respectively. Whereas, SA obtains -73.769 % and -70.491 % gaps for the best and average runs, respectively. Lastly, in problem B [200, 100, 4], SA_{RL} still outperforms SA by resulting in 14 better solutions than SA, while 6 better solutions than SA_{RL} are resulted by SA. It is substantiated in Appendix A.5 that SA_{RL} obtains larger negative average and best run gaps than SA.

In this experimental study, the largest problem setting is B [300, 100, 4]. According to Fig. 5 (f), SA_{RL} and SA can obtain better solutions for almost all instances except one. In this problem setting, SA_{RL} still results the best performance with 13 better solutions and 10 worse solutions than SA. Although SA outperforms SA_{RL} in the best runs, SA_{RL} still outperforms SA for the average runs. Therefore, it can be concluded that SA_{RL} is a robust and competitive solution approach to solving small and large STOPTW problems.

Based on the numerical experiment, the proposed SA_{RL} obtains highquality solutions within a reasonable computational time. Most of the orienteering problems must be solved within a short time because of the dynamic environment and the short planning horizon in practice. Hence, we can imply that it is feasible to implement the proposed SA_{RL} to solve the STOPTW in the real-world application.

5.4. Sensitivity analysis of the number of vehicles

As the purpose of this study is to develop a problem that imitates the real-world application, some managerial implications should be acquired. In this section, we analyze the impact of increasing the number of tours on the magnitude of profits. In the practical application, adding a tour requires one additional vehicle. Hence, we can imply this analysis as the sensitivity analysis of adding number of vehicles on the profits. Fig. 7 illustrates this analysis. The numbers inside the graph represent the profit growth of adding one vehicle. These values are the average profits retrieved from problem B [200, 100, 1], B [200, 100, 2], B [200, 100, 3], and B [200, 100, 4]. If the company is currently having one vehicle, adding one vehicle will increase 265.24 amount of profit. If one more vehicle is added, the profit will be increased by 235.14. Lastly, adding one more vehicle will increase the profit by 197.74.

As shown in the graph, it can be implied that the profit growth will decrease as more vehicles are utilized. Hence, the management should be able to compare the cost of adding one vehicle with the profit gained. If the cost of adding a new vehicle is too high compared with the profit gained, then it could be less beneficial for the company. A further costbenefit analysis is recommended to analyze the economic benefits of adding one vehicle.

6. Conclusions and future research directions

This paper introduces a new variant of the Orienteering Problem, the STOPTW which is an extension of the well-known TOPTW and SOP. The

Tal	ble	5	

Problem	settings.
1 IODICIII	occurso.

Name	Dataset	Number of customers	Number of clusters	Number of tours
A [100,20,2]	А	100	20	2
B [200,100,1]	В	200	100	1
B [200,100,2]	В	200	100	2
B [200,100,3]	В	200	100	3
B [200,100,4]	В	200	100	4
B [300,100,4]	В	300	100	4

Fig. 5. Solution comparison between SA with CPLEX and SA_{RL} with CPLEX.

key characteristic of STOPTW is the customers were grouped into clusters and the profit is associated with the cluster. Furthermore, each customer has a time window. The objective of this problem is to find a set of routes to maximize the profit without exceeding the given time duration.

To solve the STOPTW, we develop a simulated annealing algorithm, which has been proven successfully solve TOPTW. In addition, we also improved the proposed simulated annealing algorithm by embedding a reinforcement learning algorithm, namely a simulated annealing with reinforcement learning. The superiority of this algorithm is that it provides a learning mechanism of the fitness value resulted from each neighborhood move, which is contrary to the basic simulated annealing algorithm.

Numerical experiments were conducted on the newly generated benchmark instances for the STOPTW. A comparative analysis was made between CPLEX, SA, and SA_{RL}. It shows that SA and SA_{RL} can obtain optimal solutions for small-sized problems with lower computational times. In solving the small problems, the performance of SA and SA_{RL} are similar. This is proven by the same gap percentages resulted from both algorithms. For large instances, both algorithms can obtain better solutions than CPLEX. Furthermore, SA_{RL} outperforms SA in terms of solution quality. Specifically, SA_{RL} can obtain 13 better solutions than SA with lower gap percentages. In addition, this study investigates the impact of adding vehicles on profit growth. Based on this analysis, some

	30			1						,									
nces	25									<u> </u>	_			_			_		
nsta	20													_					
of I	15													-				-	
ber	10																8	******	
Mum	5									<u> </u>									
~	0									1									
	0	A[100,20),2]	B[2	00,10	0,1]	B[2	00,10	0,2]	B[20	0,10),3]	B[20	0,100	0,4]	B[30	00,100	0,4]
	Better		0			3			12			7			14			13	
	Equal		29			26			15			15			9			6	
	Worse		0			0			2			7			6			10	

Fig. 6. Solution comparison between SA and SA_{RL}.

Fig. 7. Sensitivity analysis of the number of tours.

managerial implications were retrieved.

Although the proposed study has discovered the existing research gap, there are still some limitations that can be considered as the future research directions. First, more realistic assumptions should be added to the STOPTW. For an example, a time-dependent model should be considered where the time travel between two places depends on the departure time (Yu, et al., 2019). Maximizing the customer service level also could be considered in addition to maximize the profit in the objective function (Dutta, et al., 2020). This could balance the benefits between the company and the customer. Second, looking at the experimental results, the proposed SA_{RL} provides high-quality solutions with a reasonable computational time. Hence, the proposed SA_{RI} could also be applied to different problems. Third, more reinforcement learning-based algorithms should be embedded to the simulated annealing or other metaheuristic algorithms to learn the performance of each operator. This could improve the quality of the solutions in terms of optimality and efficiency. Fourth, there exists an opportunity to develop more comprehensive solution approaches and refine performance evaluations for solving STOPTW. As the exact solution methods were proven to be effective in solving various TOP variants, adapting and extending these approaches for solving STOPTW could be a promising future research direction (Boussier, et al., 2006; El-Hajj, et al., 2016; Keshtkaran, et al.,

2016). Finally, our extensive literature review has revealed a notable scarcity in the implementation of both TOPTW and SOP variants within practical case studies. Hence, STOPTW offers a promising opportunity to be applied to diverse real-world scenarios, such as urban waste collection, tourist trip planning, and crowdsourcing problems (Babaee Tirkolaee, Abbasian, Soltani, & Ghaffarian, 2019; Gavalas, Konstantopoulos, Mastakas, Pantziou, & Vathis, 2015; Gunawan, et al., 2016; Tirkolaee, Abbasian, & Weber, 2021).

CRediT authorship contribution statement

Vincent F. Yu: Conceptualization, Methodology, Supervision, Resources, Funding acquisition, Validation, Writing – review & editing. Nabila Yuraisyah Salsabila: Conceptualization, Methodology, Formal analysis, Investigation, Visualization, Writing – original draft. Shih-Wei Lin: Conceptualization, Methodology, Software, Validation, Funding acquisition, Investigation, Visualization, Writing – review & editing. Aldy Gunawan: Conceptualization, Methodology, Visualization, Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The work of V.-F. Yu was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 111-2410-H-011-020-MY3. The second author of the work is grateful to the Ministry of Science and Technology of the Republic of China (Taiwan) and the Chang Gung Memorial Hospital for financially supporting this research grants MOST109-2410-H-182-009-MY3/NSTC 112-2410-H-182-002-MY3 and BMRPA19, respectively.

Appendix A1. Results for Set a with 100 customers, 20 clusters, and m = 2

Instances	CPLEX Profit	Time (s)	SA Best	Avg	b-Gap	a-Gap	Time (s)	SA _{RL} Best	Avg	b-Gap	a-Gap	Time (s)
c101	1810	14.23	1780	1762	1.657	2.652	4.000	1780	1762	1.657	2.652	4.000
c102	1810	37.5	1810	1810	0.000	0.000	4.000	1810	1810	0.000	0.000	4.000

(continued on next page)

(continued)

Instances	CPLEX		SA					SA _{RL}				
	Profit	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)
c103	1810	202.16	1810	1810	0.000	0.000	4.000	1810	1810	0.000	0.000	4.000
c104	1810	25.41	1810	1810	0.000	0.000	4.000	1810	1810	0.000	0.000	4.000
c105	1810	255.76	1760	1740	2.762	3.867	4.000	1760	1740	2.762	3.867	4.000
c106	1800	3600	1800	1800	0.000	0.000	4.000	1800	1800	0.000	0.000	4.000
c107	1810	107.89	1780	1780	1.657	1.657	4.000	1780	1780	1.657	1.657	4.000
c108	1810	248.1	1810	1810	0.000	0.000	4.000	1810	1810	0.000	0.000	4.000
c109	1810	2287.93	1810	1810	0.000	0.000	4.000	1810	1810	0.000	0.000	4.000
r101	1364	9.72	1319	1319	3.299	3.299	4.000	1319	1319	3.299	3.299	4.000
r102	1316	3600	1458	1458	-10.790	-10.790	4.000	1458	1458	-10.790	-10.790	4.000
r103	1448	3600	1309	1292.8	9.599	10.718	4.000	1309	1292.8	9.599	10.718	4.000
r104	1393	3600	1458	1458	-4.666	-4.666	4.000	1458	1458	-4.666	-4.666	4.000
r105	1349	3600	1389	1323.4	-2.965	1.898	4.000	1389	1323.4	-2.965	1.898	4.000
r106	1378	3600	1418	1415.2	-2.903	-2.700	4.000	1418	1415.2	-2.903	-2.700	4.000
r107	1358	3600	1458	1441.8	-7.364	-6.171	4.000	1458	1441.8	-7.364	-6.171	4.000
r108	1339	3600	1458	1458	-8.887	-8.887	4.000	1458	1458	-8.887	-8.887	4.000
r109	1427	3600	1435	1394.4	-0.561	2.285	4.000	1435	1394.4	-0.561	2.285	4.000
r110	1422	3600	1400	1400	1.547	1.547	4.000	1400	1400	1.547	1.547	4.000
r111	1458	3600	1458	1458	0.000	0.000	4.000	1458	1458	0.000	0.000	4.000
r112	1403	3600	1458	1458	-3.920	-3.920	4.000	1458	1458	-3.920	-3.920	4.000
rc101	1615	3600	1483	1483	8.173	8.173	4.000	1483	1483	8.173	8.173	4.000
rc102	1595	3600	1587	1579.6	0.502	0.966	4.000	1587	1579.6	0.502	0.966	4.000
rc103	1684	3600	1684	1598.8	0.000	5.059	4.000	1684	1598.8	0.000	5.059	4.000
rc104	1558	3600	1670	1660.2	-7.189	-6.560	4.000	1670	1660.2	-7.189	-6.560	4.000
rc105	1556	3600	1471	1421.4	5.463	8.650	4.000	1471	1421.4	5.463	8.650	4.000
rc106	1628	3600	1631	1631	-0.184	-0.184	4.000	1631	1631	-0.184	-0.184	4.000
rc107	1549	3600	1559	1537.8	-0.646	0.723	4.000	1559	1537.8	-0.646	0.723	4.000
rc108	1627	3600	1681	1639.4	-3.319	-0.762	4.000	1681	1639.4	-3.319	-0.762	4.000
Average					-0.646	0.236	4.000			-0.646	0.236	4.000

Appendix A. 2 results for Set B with 200 customers, 100 clusters, and m = 1

Instances	CPLEX		SA					SA _{RL}				
	Profit	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)
c101	350	45.93	330	310	5.714	11.429	20.000	330	310	5.714	11.429	20.000
c102	160	7200	370	358	-131.250	-123.750	20.000	370	358	-131.250	-123.750	20.000
c103	150	7200	430	418	-186.667	-178.667	20.000	430	418	-186.667	-178.667	20.000
c104	260	7200	430	418	-65.385	-60.769	20.000	430	418	-65.385	-60.769	20.000
c105	360	7200	360	348	0.000	3.333	20.000	360	348	0.000	3.333	20.000
c106	230	7200	370	348	-60.870	-51.304	20.000	370	348	-60.870	-51.304	20.000
c107	240	7200	380	368	-58.333	-53.333	20.000	380	368	-58.333	-53.333	20.000
c108	210	7200	420	376	-100.000	-79.048	20.000	420	376	-100.000	-79.048	20.000
c109	230	7200	390	378	-69.565	-64.348	20.000	390	378	-69.565	-64.348	20.000
r101	244	35.41	233	228.8	4.508	6.230	20.000	233	228.8	4.508	6.230	20.000
r102	135	7200	270	252.4	-100.000	-86.963	20.000	270	252.4	-100.000	-86.963	20.000
r103	99	7200	286	270	-188.889	-172.727	20.000	288	274.2	-190.909	-176.970	20.000
r104	45	7200	313	308	-595.556	-584.444	20.000	313	308.6	-595.556	-585.778	20.000
r105	280	7200	245	232	12.500	17.143	20.000	245	232	12.500	17.143	20.000
r106	130	7200	310	306	-138.462	-135.385	20.000	310	306.8	-138.462	-136.000	20.000
r107	120	7200	325	302.4	-170.833	-152.000	20.000	325	301.2	-170.833	-151.000	20.000
r108	90	7200	315	309.4	-250.000	-243.778	20.000	320	310.2	-255.556	-244.667	20.000
r109	116	7200	298	285.8	-156.897	-146.379	20.000	298	285.6	-156.897	-146.207	20.000
r110	101	7200	294	279.4	-191.089	-176.634	20.000	294	279.6	-191.089	-176.832	20.000
r111	100	7200	310	284.4	-210.000	-184.400	20.000	310	285.2	-210.000	-185.200	20.000
r112	136	7200	303	287.8	-122.794	-111.618	20.000	303	288.2	-122.794	-111.912	20.000
rc101	270	7200	247	241.4	8.519	10.593	20.000	247	241.4	8.519	10.593	20.000
rc102	105	7200	321	293.8	-205.714	-179.810	20.000	321	295	-205.714	-180.952	20.000
rc103	152	7200	310	291.2	-103.947	-91.579	20.000	310	292.4	-103.947	-92.368	20.000
rc104	121	7200	336	311.2	-177.686	-157.190	20.000	336	313.4	-177.686	-159.008	20.000
rc105	164	7200	294	272.6	-79.268	-66.220	20.000	294	273	-79.268	-66.463	20.000
rc106	355	7200	282	273	20.563	23.099	20.000	282	274.2	20.563	22.761	20.000
rc107	378	7200	290	273.4	23.280	27.672	20.000	290	271.6	23.280	28.148	20.000
rc108	247	7200	317	291.6	-28.340	-18.057	20.000	321	294.8	-29.960	-19.352	20.000
Average					-114.361	-104.100	20.000			-114.678	-104.526	20.000

Appendix A. 3 results for Set B with 200 customers, 100 clusters, and m=2

Instances	CPLEX		SA					SA _{RL}				
	Profit	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)
c101	650	7200	600	590	7.692	9.231	20.000	610	594	6.154	8.615	20.000
c102	500	7200	650	638	-30.000	-27.600	20.000	650	638	-30.000	-27.600	20.000
c103	450	7200	750	734	-66.667	-63.111	20.000	750	732	-66.667	-62.667	20.000
c104	470	7200	750	748	-59.574	-59.149	20.000	750	750	-59.574	-59.574	20.000
c105	660	7200	670	646	-1.515	2.121	20.000	670	646	-1.515	2.121	20.000
c106	600	7200	650	626	-8.333	-4.333	20.000	650	626	-8.333	-4.333	20.000
c107	650	7200	680	664	-4.615	-2.154	20.000	680	666	-4.615	-2.462	20.000
c108	620	7200	690	680	-11.290	-9.677	20.000	690	680	-11.290	-9.677	20.000
c109	450	7200	720	696	-60.000	-54.667	20.000	720	696	-60.000	-54.667	20.000
r101	429	7200	400	391.6	6.760	8.718	20.000	400	391.6	6.760	8.718	20.000
r102	235	7200	517	493.8	-120.000	-110.128	20.000	515	494.8	-119.149	-110.553	20.000
r103	249	7200	567	538.8	-127.711	-116.386	20.000	566	539.2	-127.309	-116.546	20.000
r104	187	7200	597	585.8	-219.251	-213.262	20.000	599	590.6	-220.321	-215.829	20.000
r105	437	7200	461	452.8	-5.492	-3.616	20.000	461	453	-5.492	-3.661	20.000
r106	341	7200	565	554	-65.689	-62.463	20.000	565	555.2	-65.689	-62.815	20.000
r107	305	7200	557	549.8	-82.623	-80.262	20.000	571	561.4	-87.213	-84.066	20.000
r108	338	7200	597	593.2	-76.627	-75.503	20.000	597	592.2	-76.627	-75.207	20.000
r109	438	7200	576	547.2	-31.507	-24.932	20.000	578	548.4	-31.963	-25.205	20.000
r110	295	7200	542	525	-83.729	-77.966	20.000	545	525.2	-84.746	-78.034	20.000
r111	206	7200	563	554.4	-173.301	-169.126	20.000	565	555	-174.272	-169.417	20.000
r112	302	7200	561	543.6	-85.762	-80.000	20.000	571	548.4	-89.073	-81.589	20.000
rc101	529	7200	470	453.4	11.153	14.291	20.000	471	453.8	10.964	14.216	20.000
rc102	459	7200	529	504.4	-15.251	-9.891	20.000	529	506	-15.251	-10.240	20.000
rc103	325	7200	603	573.8	-85.538	-76.554	20.000	603	575.4	-85.538	-77.046	20.000
rc104	278	7200	583	574	-109.712	-106.475	20.000	585	575.8	-110.432	-107.122	20.000
rc105	406	7200	496	491.8	-22.167	-21.133	20.000	501	494	-23.399	-21.675	20.000
rc106	477	7200	527	523.8	-10.482	-9.811	20.000	528	524.4	-10.692	-9.937	20.000
rc107	378	7200	556	539	-47.090	-42.593	20.000	556	538	-47.090	-42.328	20.000
rc108	301	7200	583	570.8	-93.688	-89.635	20.000	589	572.2	-95.681	-90.100	20.000
Average					-57.656	-53.657	20.000			-58.209	-54.092	20.000

Appendix A. 4 results for Set B with 200 customers, 100 clusters, and m = 3

Instances	CPLEX		SA					SA_{RL}				
	Profit	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)
c101	870	7200	850	836	2.299	3.908	20.000	850	836	2.299	3.908	20.000
c102	640	7200	920	900	-43.750	-40.625	20.000	920	904	-43.750	-41.250	20.000
c103	560	7200	990	984	-76.786	-75.714	20.000	1010	992	-80.357	-77.143	20.000
c104	610	7200	1010	1006	-65.574	-64.918	20.000	1010	1000	-65.574	-63.934	20.000
c105	750	7200	900	892	-20.000	-18.933	20.000	900	890	-20.000	-18.667	20.000
c106	760	7200	910	888	-19.737	-16.842	20.000	910	888	-19.737	-16.842	20.000
c107	750	7200	940	928	-25.333	-23.733	20.000	940	930	-25.333	-24.000	20.000
c108	720	7200	950	946	-31.944	-31.389	20.000	950	946	-31.944	-31.389	20.000
c109	530	7200	980	968	-84.906	-82.642	20.000	980	970	-84.906	-83.019	20.000
r101	602	989.23	564	553.6	6.312	8.040	20.000	564	554.2	6.312	7.940	20.000
r102	333	7200	747	726	-124.324	-118.018	20.000	743	726.4	-123.123	-118.138	20.000
r103	312	7200	785	756.2	-151.603	-142.372	20.000	793	763.2	-154.167	-144.615	20.000
r104	360	7200	814	795.4	-126.111	-120.944	20.000	815	798.2	-126.389	-121.722	20.000
r105	547	7200	648	636.8	-18.464	-16.417	20.000	648	636.4	-18.464	-16.344	20.000
r106	318	7200	789	771	-148.113	-142.453	20.000	798	772	-150.943	-142.767	20.000
r107	371	7200	806	793.6	-117.251	-113.908	20.000	805	795.4	-116.981	-114.394	20.000
r108	363	7200	849	843	-133.884	-132.231	20.000	848	841.6	-133.609	-131.846	20.000
r109	489	7200	756	732.4	-54.601	-49.775	20.000	755	734.4	-54.397	-50.184	20.000
r110	366	7200	744	732.4	-103.279	-100.109	20.000	746	734.4	-103.825	-100.656	20.000
r111	422	7200	785	776	-86.019	-83.886	20.000	792	777.8	-87.678	-84.313	20.000
r112	400	7200	790	780.6	-97.500	-95.150	20.000	801	788.4	-100.250	-97.100	20.000
rc101	646	7200	686	663.2	-6.192	-2.663	20.000	686	664	-6.192	-2.786	20.000
rc102	477	7200	787	754.2	-64.990	-58.113	20.000	787	757	-64.990	-58.700	20.000
rc103	466	7200	837	822.4	-79.614	-76.481	20.000	827	819.2	-77.468	-75.794	20.000
rc104	322	7200	872	849	-170.807	-163.665	20.000	872	846.4	-170.807	-162.857	20.000
rc105	461	7200	718	706	-55.748	-53.145	20.000	718	706.8	-55.748	-53.319	20.000
rc106	522	7200	757	743.6	-45.019	-42.452	20.000	757	743	-45.019	-42.337	20.000
rc107	408	7200	824	812	-101.961	-99.020	20.000	823	812.6	-101.716	-99.167	20.000
rc108	429	7200	834	817.6	-94.406	-90.583	20.000	827	814.2	-92.774	-89.790	20.000
Average					-73.769	-70.491	20.000			-74.053	-70.732	20.000

Appendix A. 5 results for Set B with 200 customers, 100 clusters, and m = 4

Instances	CPLEX		SA					SA _{RL}				
	Profit	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)
c101	1050	7200	1070	1036	-1.905	1.333	20.000	1060	1036	-0.952	1.333	20.000
c102	600	7200	1150	1146	-91.667	-91.000	20.000	1160	1148	-93.333	-91.333	20.000
c103	620	7200	1210	1204	-95.161	-94.194	20.000	1220	1210	-96.774	-95.161	20.000

(continued on next page)

(continued)

Instances	CPLEX		SA					SA _{RL}				
	Profit	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)
c104	640	7200	1230	1230	-92.188	-92.188	20.000	1230	1230	-92.188	-92.188	20.000
c105	920	7200	1120	1108	-21.739	-20.435	20.000	1120	1108	-21.739	-20.435	20.000
c106	900	7200	1120	1100	-24.444	-22.222	20.000	1120	1102	-24.444	-22.444	20.000
c107	910	7200	1150	1134	-26.374	-24.615	20.000	1160	1140	-27.473	-25.275	20.000
c108	820	7200	1160	1152	-41.463	-40.488	20.000	1160	1152	-41.463	-40.488	20.000
c109	760	7200	1190	1180	-56.579	-55.263	20.000	1200	1184	-57.895	-55.789	20.000
r101	759	7200	715	700.4	5.797	7.721	20.000	715	701.2	5.797	7.615	20.000
r102	433	7200	910	887.4	-110.162	-104.942	20.000	911	887	-110.393	-104.850	20.000
r103	313	7200	959	939.8	-206.390	-200.256	20.000	971	943.4	-210.224	-201.406	20.000
r104	304	7200	1024	1012.6	-236.842	-233.092	20.000	1034	1014	-240.132	-233.553	20.000
r105	646	7200	830	813.8	-28.483	-25.975	20.000	826	818.2	-27.864	-26.656	20.000
r106	371	7200	971	947.6	-161.725	-155.418	20.000	963	948.2	-159.569	-155.580	20.000
r107	402	7200	999	980.6	-148.507	-143.930	20.000	998	987	-148.259	-145.522	20.000
r108	380	7200	1063	1053.8	-179.737	-177.316	20.000	1064	1052.8	-180.000	-177.053	20.000
r109	575	7200	900	892.2	-56.522	-55.165	20.000	901	895.8	-56.696	-55.791	20.000
r110	417	7200	907	899.8	-117.506	-115.779	20.000	910	902.2	-118.225	-116.355	20.000
r111	354	7200	985	970.6	-178.249	-174.181	20.000	985	975.8	-178.249	-175.650	20.000
r112	462	7200	1006	982.2	-117.749	-112.597	20.000	995	985.8	-115.368	-113.377	20.000
rc101	648	7200	846	828.2	-30.556	-27.809	20.000	846	831.4	-30.556	-28.302	20.000
rc102	448	7200	954	939.6	-112.946	-109.732	20.000	956	941.4	-113.393	-110.134	20.000
rc103	394	7200	1032	1022.6	-161.929	-159.543	20.000	1042	1026	-164.467	-160.406	20.000
rc104	289	7200	1102	1081.2	-281.315	-274.118	20.000	1100	1084.4	-280.623	-275.225	20.000
rc105	526	7200	924	909	-75.665	-72.814	20.000	924	910.2	-75.665	-73.042	20.000
rc106	625	7200	954	940.4	-52.640	-50.464	20.000	962	939.4	-53.920	-50.304	20.000
rc107	489	7200	1037	1020.8	-112.065	-108.753	20.000	1054	1019.8	-115.542	-108.548	20.000
rc108	449	7200	1039	992.4	-131.403	-121.024	20.000	1039	1002.2	-131.403	-123.207	20.000
Average					-101.590	-98.423	20.000			-102.104	-98.935	20.000

Appendix A. 6 results for Set B with 300 customers, 100 clusters, and m = 4

Instances	CPLEX		SA					SA _{RL}				
	Profit	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)	Best	Avg	b-Gap	a-Gap	Time (s)
c101	920	7200	1090	1062	-18.478	-15.435	20.000	1090	1062	-18.478	-15.435	20.000
c102	530	7200	1170	1162	-120.755	-119.245	20.000	1190	1164	-124.528	-119.623	20.000
c103	640	7200	1210	1198	-89.063	-87.188	20.000	1210	1200	-89.063	-87.500	20.000
c104	620	7200	1250	1222	-101.613	-97.097	20.000	1230	1220	-98.387	-96.774	20.000
c105	990	7200	1150	1130	-16.162	-14.141	20.000	1150	1132	-16.162	-14.343	20.000
c106	710	7200	1130	1112	-59.155	-56.620	20.000	1140	1112	-60.563	-56.620	20.000
c107	940	7200	1160	1154	-23.404	-22.766	20.000	1170	1160	-24.468	-23.404	20.000
c108	840	7200	1180	1176	-40.476	-40.000	20.000	1190	1174	-41.667	-39.762	20.000
c109	830	7200	1200	1184	-44.578	-42.651	20.000	1200	1186	-44.578	-42.892	20.000
r101	825	7200	729	715.2	11.636	13.309	20.000	729	715.2	11.636	13.309	20.000
r102	384	7200	924	899.8	-140.625	-134.323	20.000	923	900	-140.365	-134.375	20.000
r103	167	7200	1017	988.6	-508.982	-491.976	20.000	1012	990.2	-505.988	-492.934	20.000
r104	215	7200	1061	1047.6	-393.488	-387.256	20.000	1059	1050.6	-392.558	-388.651	20.000
r105	643	7200	865	836.6	-34.526	-30.109	20.000	875	838.2	-36.081	-30.358	20.000
r106	430	7200	966	950	-124.651	-120.930	20.000	965	952.6	-124.419	-121.535	20.000
r107	410	7200	1023	1004.2	-149.512	-144.927	20.000	1026	1001.8	-150.244	-144.341	20.000
r108	298	7200	1069	1060	-258.725	-255.705	20.000	1073	1062.2	-260.067	-256.443	20.000
r109	455	7200	948	936.8	-108.352	-105.890	20.000	953	933.8	-109.451	-105.231	20.000
r110	425	7200	912	895	-114.588	-110.588	20.000	911	894.2	-114.353	-110.400	20.000
r111	423	7200	1030	1011.8	-143.499	-139.196	20.000	1027	1013.4	-142.790	-139.574	20.000
r112	264	7200	1028	995.2	-289.394	-276.970	20.000	1013	992.4	-283.712	-275.909	20.000
rc101	751	7200	903	871.6	-20.240	-16.059	20.000	904	870.8	-20.373	-15.952	20.000
rc102	383	7200	1017	987.4	-165.535	-157.807	20.000	1011	988.6	-163.969	-158.120	20.000
rc103	362	7200	1082	1071.2	-198.895	-195.912	20.000	1088	1069.4	-200.552	-195.414	20.000
rc104	281	7200	1147	1114	-308.185	-296.441	20.000	1160	1120.6	-312.811	-298.790	20.000
rc105	502	7200	976	951.6	-94.422	-89.562	20.000	977	953.4	-94.622	-89.920	20.000
rc106	614	7200	1047	1020.2	-70.521	-66.156	20.000	1050	1019	-71.010	-65.961	20.000
rc107	381	7200	1040	995.2	-172.966	-161.207	20.000	1026	989.4	-169.291	-159.685	20.000
rc108	366	7200	1050	1035.2	-186.885	-182.842	20.000	1050	1030.6	-186.885	-181.585	20.000
Average					-137.450	-132.610	20.000			-137.441	-132.697	20.000

References

Amarouche, Y., Guibadj, R. N., Chaalal, E., & Moukrim, A. (2020). Effective neighborhood search with optimal splitting and adaptive memory for the team orienteering problem with time windows. *Computers & Operations Research, 123*. Angelelli, E., Archetti, C., & Vindigni, M. (2014). The Clustered Orienteering Problem. *European Journal of Operational Research, 238*, 404–414. Archetti, C., Carrabs, F., & Cerulli, R. (2018). The set orienteering problem. European Journal of Operational Research, 267, 264–272.

Archetti, C., Hertz, A., & Speranza, M. G. (2006). Metaheuristics for the team orienteering problem. Journal of Heuristics, 13, 49–76.

Archetti, C., Speranza, M. G., & Vigo, D. (2014). Chapter 10: Vehicle routing problems with profits. In Vehicle routing: Problems, methods, and applications (second edition, pp. 273–297). SIAM. Babaee Tirkolaee, E., Abbasian, P., Soltani, M., & Ghaffarian, S. A. (2019). Developing an applied algorithm for multi-trip vehicle routing problem with time windows in urban waste collection: A case study. Waste Management & Research, 37, 4–13.

Boussier, S., Feillet, D., & Gendreau, M. (2006). An exact algorithm for team orienteering problems., 4or, 5, 211–230.

Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996a). A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88, 475–489.

 Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996b). The team orienteering problem. *European Journal of Operational Research, 88*, 464–474.
 Dontas, M., Sideris, G., Manousakis, E. G., & Zachariadis, E. E. (2023). An adaptive

Dontas, M., Sideris, G., Manousakis, E. G., & Zachariadis, E. E. (2023). An adaptiv memory matheuristic for the set orienteering problem. *European Journal of Operational Research*.

Dutta, J., Barma, P. S., Mukherjee, A., Kar, S., & De, T. (2020). A multi-objective open set orienteering problem. *Neural Computing and Applications, 32*, 13953–13969.

El-Hajj, R., Dang, D.-C., & Moukrim, A. (2016). Solving the team orienteering problem with cutting planes. *Computers & Operations Research*, 74, 21–30.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015). Heuristics for the time dependent team orienteering problem: Application to tourist route planning. *Computers & Operations Research*, 62, 36–50.

Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34, 307–318.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: A survey of recent variants, solution approaches and applications. *European Journal of Operational Research*, 255, 315–332.

Gunawan, A., Lau, H. C., Vansteenwegen, P., & Lu, K. (2017). Well-tuned algorithms for the Team Orienteering Problem with Time Windows. *Journal of the Operational Research Society*, 68, 861–876.

Hammami, F., Rekik, M., & Coelho, L. C. (2020). A hybrid adaptive large neighborhood search heuristic for the team orienteering problem. *Computers & Operations Research*, 123.

Hu, Q., & Lim, A. (2014). An iterative three-component heuristic for the team orienteering problem with time windows. *European Journal of Operational Research*, 232, 276–286.

Kantor, M. G., & Rosenwein, M. B. (1992). The Orienteering Problem with Time Windows. Journal of the Operational Research Society, 43, 629–635.Karabulut, K., & Tasgetiren, M. F. (2020). An evolution strategy approach to the team

Karabulut, K., & Fasgelirein, M. F. (2020). An evolution strategy approach to the team orienteering problem with time windows. *Computers & Industrial Engineering*, 139. Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering problem.

Computers & Industrial Engineering, 54, 648–665. Keshtkaran, M., Ziarati, K., Bettinelli, A., & Vigo, D. (2016). Enhanced exact solution

Keshtkaran, M., Ziarati, K., Bettinelli, A., & Vigo, D. (2016). Enhanced exact solution methods for the Team Orienteering Problem. *International Journal of Production Research*, 54, 591–601.

Labadie, N., Mansini, R., Melechovský, J., & Wolfler Calvo, R. (2012). The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search. *European Journal of Operational Research*, 220, 15–27.

Lin, S.-W., & Yu, V. F. (2012). A simulated annealing heuristic for the team orienteering problem with time windows. European Journal of Operational Research, 217, 94–107.

Lin, S.-W., & Yu, V. F. (2015). A simulated annealing heuristic for the multiconstraint team orienteering problem with multiple time windows. *Applied Soft Computing*, 37, 632–642. Montemanni, R., Weyland, D., & Gambardella, L. M. (2011). An Enhanced Ant Colony System for the Team Orienteering Problem with Time Windows. In *In 2011 International Symposium on Computer Science and Society* (pp. 381–384).

Moosavi Heris, F. S., Ghannadpour, S. F., Bagheri, M., & Zandieh, F. (2022). A new accessibility based team orienteering approach for urban tourism routes optimization (A Real Life Case). Computers & Operations Research, 138.

Pěnička, R., Faigl, J., & Saska, M. (2019). Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants. *European Journal of Operational Research*, 276, 816–825.

Righini, G., & Salani, M. (2009). Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. *Computers & Operations Research*, 36, 1191–1203.

Rodríguez-Esparza, E., Masegosa, A. D., Oliva, D., & Onieva, E. (2022). A new Hyperheuristic based on Adaptive Simulated Annealing and Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem. arXiv preprint arXiv:03185.

Ruiz-Meza, J., Brito, J., Montoya-Torres, J. R., Castro-Vergara, A., & Liu, A. (2022). Green Fuzzy Tourist Trip Design Problem. Adv. Oper. Res., 2022, 1–10

Saeedvand, S., Aghdasi, H. S., & Baltes, J. (2020). Novel hybrid algorithm for Team Orienteering Problem with Time Windows for rescue applications. *Applied Soft Computing*, 96.

Salama, M., & Srinivas, S. (2021). Adaptive neighborhood simulated annealing for sustainability-oriented single machine scheduling with deterioration effect. *Applied Soft Computing*, 110, Article 107632.

Shahmardan, A., & Sajadieh, M. S. (2020). Truck scheduling in a multi-door crossdocking center with partial unloading – Reinforcement learning-based simulated annealing approaches. *Computers & Industrial Engineering*, 139, Article 106134.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations research, 35, 254–265.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., & Van Oudheusden, D. (2011). The Multiconstraint Team Orienteering Problem with Multiple Time Windows. *Transportation Science*, 47, 53–63.

Tang, H., & Miller-Hooks, E. (2005). A TABU search heuristic for the team orienteering problem. Computers & Operations Research, 32, 1379–1407.

Tirkolaee, E. B., Abbasian, P., & Weber, G.-W. (2021). Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak. *Science of The Total Environment*, 756, Article 143607.

Tsiligiridis, T. (1984). Heuristic Methods Applied to Orienteering. Journal of the Operational Research Society, 35, 797–809.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Oudheusden, D. V. (2009). A guided local search metaheuristic for the team orienteering problem. *European Journal of Operational Research*, 196, 118–127.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A survey. European Journal of Operational Research, 209, 1–10.

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., & Van Oudheusden, D. (2009). Iterated local search for the team orienteering problem with time windows. *Computers & Operations Research*, 36, 3281–3290.

Yu, V. F., Jewpanya, P., Lin, S.-W., & Redi, A. A. N. P. (2019). Team orienteering problem with time windows and time-dependent scores. *Computers & Industrial Engineering*, 127, 213–224.

Yu, V. F., Jewpanya, P., Redi, A. A. N. P., & Tsao, Y.-C. (2021). Adaptive neighborhood simulated annealing for the heterogeneous fleet vehicle routing problem with multiple cross-docks. *Computers & Operations Research*, 129.