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Adaptive Split-Fusion Transformer
Zixuan Su, Hao Zhang, Jingjing Chen, Member, IEEE, Lei Pang, Chong-Wah Ngo, Member, IEEE

and Yu-Gang Jiang, Senior Member, IEEE

Abstract—Neural networks for visual content understanding
have recently evolved from convolutional ones to transformers.
The prior (CNN) relies on small-windowed kernels to capture the
regional clues, demonstrating solid local expressiveness. On the
contrary, the latter (transformer) establishes long-range global
connections between localities for holistic learning. Inspired
by this complementary nature, there is a growing interest in
designing hybrid models which utilize both techniques. Current
hybrids merely replace convolutions as simple approximations of
linear projection or juxtapose a convolution branch with attention
without considering the importance of local/global modeling. To
tackle this, we propose a new hybrid named Adaptive Split-
Fusion Transformer (ASF-former) that treats convolutional and
attention branches differently with adaptive weights. Specifically,
an ASF-former encoder equally splits feature channels into
half to fit dual-path inputs. Then, the outputs of the dual-
path are fused with weights calculated from visual cues. We
also design a compact convolutional path from a concern of
efficiency. Extensive experiments on standard benchmarks, such
as ImageNet-1K, CIFAR-10, and CIFAR-100, show that our
ASF-former outperforms its CNN, transformer, and hybrid
counterparts in terms of accuracy (83.9% on ImageNet-1K),
under similar conditions (12.9G MACs/56.7M Params, without
large-scale pre-training). The code is available at: https://github.
com/szx503045266/ASF-former.

Index Terms—Visual understanding, Transformer, CNN, Hy-
brid, Gating.

I. INTRODUCTION

Neural networks for learning visual representations have re-
cently split into directions of conventional convolutional neural
networks (i.e., CNN) and emerging transformers. CNN used
to be the de-facto standard network and was good at modeling
localities. On the contrary, the transformer learns holistic fea-
tures by building pair-wise relations, thus demonstrating strong
global expressiveness. Pilot visual transformers, including ViT
[2], T2T-ViT [1], deliberately avoid convolutions and only
rely on the self-attention. Though achieving good accuracy,
they pay extra computations as a price for bypassing efficient
convolution operators.

Since convolutions and self-attention are complementary
when viewed from perspectives like local-global modeling
and high-low efficiency, it is natural to study hybrid networks
to ensure each part serves its best. Existing hybrids usually
combine these two parts in a cascade or parallel manner.
For a cascade hybrid, researchers usually re-implement lin-
ear projections in vanilla transformers with convolutional
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approximations. For example, token-embedding [3]–[9] and
linear-projections [3], [5]–[7], [9], [10] in attentions/MLPs
are commonly replaced by convolutions. These cascade works
share a common principle of minimal change. As for parallel
hybrids, an extra convolutional branch is inserted on par with
the attention in a dual-branch (or dual-path) manner [11]–
[14]. This strategy enables learning local/global visual contexts
independently and is beneficial for analyzing the effectiveness
of each path.

However, most current hybrid models treat local and global
contexts equally, which conflicts with the real-world scenario
that the importance of local/global cues varies according to
the image visuals and layer depth. For example, tiny objects
prefer local evidence, whereas landscapes bias global views in
the recognition process. Besides, layer with different depths
also shows their biases in learning local/global contexts, as
mentioned in [12].

To tackle this, we propose a novel parallel hybrid
named Adaptive Split-Fusion Transformer (ASF-former),
which adopts an adaptive gating strategy to select convolu-
tion/attention paths according to global visual cues. Its encoder
contains two parts: Efficient Split Parallelism with HMCB and
Adaptive Fusion as shown in Figure (1).

Efficient Split Parallelism with HMCB differs from the
existing parallel hybrid models in two aspects. Firstly, we com-
prehensively and carefully craft an efficient convolution path
named Half-Residual Mobile Convolutional Branch (HMCB).
Compared with existing counterparts, the HMCB demonstrates
stronger local capability with fewer computations. Secondly,
we split inherent feature channels of pure transformers into
half and separately feed sub-features into the Conv/attention
branch. Thereby, we could keep the same feature dimension as
the original backbone. With these, the Split Parallelism shares
a similar complexity as single-path (convolution or attention)
models.

Adaptive Fusion module intakes outputs from convolution
and attention branches and weighs them with adaptive scalars.
Specifically, visual features from both paths are processed by
sequential layers, including global pooling, fully-connected
layer, and Sigmoid activation, to generate weighting scalars.
These scalars are used to weigh features from each branch
(Fig. (1)). We also add an extra skip connection to alleviate
gradient vanishing in backpropagation. We experimentally
verify that the new adaptive fusion could effectively and
efficiently select convolution/attention branches according to
visual contents. We briefly summarize our contributions below.

• Efficient Split Parallelism with HMCB. We introduce
a new Half-Residual Mobile Convolutional Branch,
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Fig. 1. An overview of the ASF-former. The encoders in a reduction and computation stage are separately denoted as ASR-R/C. Both types include Split
Parallelism and Adaptive Fusion parts, except that the ASF-R adopts T2T attention for down-sampling token dimension. As shortcut and Conv 1×1(red line)
is incompatible with the T2T attention [1], they are removed in the reduction stage. (This figure is best viewed in color)

which complements the attention feature with high cost-
effectiveness.

• Adaptive Fusion. We first introduce adaptive fusion to
combine outputs from convolution and attention branches.
We could adjust the importance of local/global modeling
with adaptive weights according to visual contents.

• A new hybrid ASF-former. We build a new CNN-
transformer hybrid with efficient convolution layers
(HMCB) and an adaptive fusion strategy. Experiments on
standard benchmarks, such as ImageNet-1K and down-
stream datasets, show that the ASF-former could achieve
SOTA performance (83.9% on ImageNet-1K) under sim-
ilar conditions (12.9G MACs / 56.7M Params).

II. RELATED WORK

Convolutional Neural Network. Since the birth of
AlexNet [15], convolutional neural network (CNN) was the
de-facto standard model on different vision topics, such as
image recognition [16]–[21], object detection [22]–[28], in-
stance/semantic segmentation [29]–[31] and video recogni-
tion [32]–[38].

To apply CNN to edge devices, researchers spare many ef-
forts on balancing complexity and capacity. For example, Mo-
bileNet [39] factorized a standard convolution with depthwise
separable convolution. Moreover, MobileNetV2 [40] intro-
duced an extra inverted residual design and expanded the usage
of depthwise convolution into more layers (e.g., intermedia
expansion layer). ShuffleNet [41] combines group convolution,
channel shuffle, and depthwise convolution to build an efficient

CNN unit. EfficientNet [42] follows an empirical scaling rule
to search and adjust hyperparameters of network structure,
such as “dimension, depth, width, resolution”, to achieve a
high cost-effective.

Some researchers proposed plug-and-play modules intro-
ducing a few extra parameters to recalibrate CNN features.
For example, the SE-Net [43] introduced a new “Squeeze-
and-Excitation” block on top of a plain 2D-CNN backbone.
The block could adaptively adjust feature channels with global
contexts. Furthermore, GE-Net [44] studied more choices of
“Gathering” contexts information than SE-Net. Hao et al.
[45] extended contextual calibrating for videos and proposed
GC-Net that utilizes spatial-temporal contexts. SKNet [46]
selectively fuse two convolution branches with different kernel
sizes to adaptively adjust the receptive field size. ResNeSt [47]
further combined the channel-wise attention with a multi-path
strategy. This design would build cross-feature interactions and
benefit learning diverse representations.

Vision Transformer. Transformer receives extensive in-
terest in various multimedia and vision tasks, such as
Video Recognition [48], Image Understanding [49], [50], Re-
Identification [51]–[53], Visual Inpainting [54], Pose Estima-
tion [55] tasks since the birth of ViT [2], which validates
the feasibility of replacing CNNs with pure transformers with
large-scale pre-training.

Though achieving impressive accuracy, the ViT [2] suffers
from a high computational cost. The cost is caused by densely
calculating the pair-wise distance between visual tokens in
each attention module. To balance computations and classi-
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fication accuracy, researchers spare more effort on developing
new transformers, including DeiT [56], T2T-ViT [1], TNT
[57], PVT [58], Swin [59] than before. Specifically, DeiT
[56] adopted convnet as a teacher and trained transformer
under a teacher-student strategy. It relies on the distillation
token to introduce locality into a transformer, thus lower-
ing the requirement for large-scale training data. T2T-ViT
[1] focused on shrinking token-length. It designs the T2T
module to down-sampling tokens via concatenating features
of local neighboring pixels. TNT [57] altered the granularity
of patch dividing by further splitting local patches into sub-
patches. The inner attention will be calculated within each
patch before outer global attention. In order to be ported to
various downstream tasks, PVT [58] introduced a progressive
shrinking pyramid structure and a spatial-reduction attention
for efficiently learning multi-scale and high-resolution fea-
tures. For further parameter and computation efficiency, Swin
Transformer [59] utilized shifted window to split the feature
map and performed self-attention within each local window.
These models are pure convolutional-free transformers, thus
lacking local capacity and convolution’s efficiency strength.

Hybrid Transformer. Attracted by the complementary
nature of CNN and Attentions, more and more efforts are
devoted to developing hybrid transformers. Existing hybrids
can be separated into two groups. The first is cascade hybrid
which minimally modify the original transformer model by
re-implementing the token-embedding [3]–[9] and the linear
projections [3], [5]–[7], [9], [10] in Attentions/MLPs with
convolution operators. The second is parallel hybrid which
juxtaposes an extra convolutional branch on par with the
attention [11]–[14]. For example, Conformer [13] designed
the Feature Coupling Unit (FCU) for transmitting features
from one path to another. For acquiring inductive bias from
convolution, ViTAE [14] built the parallel structure in each
block and designed the pyramid reduction module with dilated
convolution. These methods treat convolution and attention
paths equally. ACmix [12] instead set two learnable weights
for measuring the importance of two paths, but the weights
only vary with network depth, failing to be adjusted according
to visual contexts.

III. OUR METHOD

An overview of ASF-former is shown in Figure (1). Similar
to [1], [14], it contains a total of L = L1+L2 encoders, where
L1/L2 encoders reside in reduction or computation stages. As
in [1], the two stages differentiate in whether adopting the T2T
for shrinking token-length and T2T attentions for reducing
computations. To distinguish, we separately denote encoders
in the two stages as the ASF-R and ASF-C. We present a
detailed pipeline of ASF-former below.

An image I ∈ RH×W×3 is first soft-split into patches.
Each patch shares an identical shape of k × k with overlap
o and padding p. These patches are unfolded into a sequence
of tokens T 0 ∈ RN0×D0 , where D0 = 3k2, and token-length
is:

N0 =

⌊
H + 2p− k

k − o
+ 1

⌋
×
⌊
W + 2p− k

k − o
+ 1

⌋
. (1)

Tokens T 0 go through the two stages, including the reduction
and computation stages for representation learning.

Reduction stage contains L1 replicated ASF-R + T2T pairs,
where the prior and the latter module separately serve for
feature learning and down-sampling. Denote tokens from the
i-th pair as T i ∈ RNi×Di or T̃ i ∈ RNi×D′

. The token-length
Ni and dimension Di would reduce and increase according to
the depth i ∈ [1, 2, · · · , L1], due to the T2T operation, while
the ASF-R encoder would decrease the token dimension to
D′. A math process of the i-th pair is shown as:

T̃ i−1 = far(T i−1) (2)

T i = ft2t(T̃ i−1) (3)

where far (·) and ft2t (·) denotes the ASR-R and T2T mod-
ules.

Output T out ∈ RNL1
×D of reduction stage is obtained by

linear-projecting TL1
to a fixed D-dimensional space.

T out = Linear (TL1
) (4)

Computation stage contains L2 identical ASF-C encoders,
without changing token-length. Same as the ViT [2], an extra
[CLASS] token C0 ∈ R1×D is concatenated with T out for an
input X0 ∈ R(NL1

+1)×D of this stage. Notably, the [CLASS]
part would only be processed by the attention branch.

X0 = [T out;C0] (5)

Denoting the ASF-C with function fac (·), the process of the
j-th encoders is:

Xj = fac (Xj−1) , Xj ∈ R(NL1
+1)×D (6)

The [CLASS] token yielded by the last ASF-C encoders will
be fed into a fully-connected layer for category prediction:

Y = Linear (CL2) , Y ∈ RCategories (7)

Since ASF-R/C encoders share most parts, we present them
together in Section III-A.

A. An ASF-R/C Encoder

The ASF-R & ASF-C encoders are same in Split Paral-
lelism, Adaptive Fusion and MLP parts, and differs in the
attention part (T2T or vanilla attention).

Split Parallelism equally split a tensor of tokens T ∈
RN×D for the ASF-R (or X for the ASF-C) into two parts
T (a), T (b) ∈ RN×D

2 , along the channel axis. Then, the sub-
tensor T (a)/T (b) is separately fed into convolutional/attention
branch for local/global modeling. Notably, T (a) are pre/post-
processed with seq2image or image2seq function [1] to re-
arrange tokens into spatial or sequential form. The process is
shown below:

T̂
(a)

= img2seq
(
fconvb

(
seq2img

(
T (a)

)))
(8)

T̂
(b)

= fatteb

(
T (b)

)
(9)

where fatteb(·) and fconvb(·) respectively denote attention and
convolution paths, and T̂

(a)
, T̂

(b)
∈ RN×D′

. Hereby, D′=64
in the ASF-R (or D′=D

2 in ASF-C). Notably, we carefully
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Fig. 2. Designs of convolutional branch: (a) PCM from ViTAE transformer
[14]; (b) Residual bottleneck; (c) our HMCB

craft an efficient convolutional branch named Half-Residual
Mobile Convolutional Branch and present it in Section III-B.

Adaptive Fusion performs weighted sum on tensors pro-
cessed by the two paths with adaptive scalars α and β. Hereby,
α and β are calculated according to visual features from the
two paths by Eq. (11)∼(12).

S = T̂
(a)

+ T̂
(b)

(10)
α = Sigmoid (fw (S)) (11)
β = 1− α (12)

T̂ = α · T̂
(a)

+ β · T̂
(b)

+ S (13)

where the fw (·) denotes the function for generating weighting
scalars. Notably, we generate the α & β in a Sigmoid way.
Though this way is theoretically equivalent to a Softmax func-
tion, it is practically simple in implementation. We describe
details and compare different fusion strategies in Section III-C.

Attentions & MLP are mostly inherited from the general
vision transformer regime, with minor modifications on at-
tention settings. Specifically, the ASF-R/C separately adopt
the T2T attention and vanilla attentions. Compared with the
vanilla, the T2T attention replaces the multi-head scheme
with a single-head one and fixes channels of “query”, “key”,
“value” to D′ = 64, concerning computational efficiency.
Since the T2T attention reshapes tokens, the shortcut and Conv
1 × 1 are removed in the ASF-R compared with the ASF-C
(red line in Fig. (1)). Output T̃ /X̃ of the ASF-R/C encoders
is generated as in Eq. (14)∼(15), where fmlp (·) denotes the
MLP with two fc layers and a GeLU activation:

T̃ = fmlp

(
T̂
)
+ T̂ (14)

X̃ = fmlp

(
X̊

)
+ X̊, X̊ = Conv

(
X̂

)
+X (15)

B. Half-Residual Mobile Convolutional Branch

We study existing CNN branches for hybrid models and
craft a new Half-Residual Mobile Convolutional Branch
(HMCB). The HMCB is more complementary to the attention
way than its counterparts while consuming fewer computa-
tions. We begin with PCM, the recently proposed CNN-branch
in ViTAE hybrid [14].

Parallel Convolution Module (PCM) is shown in Fig-
ure (2a), it contains stacked convolutions with 3 × 3 kernels.

Fig. 3. Fusion strategies: (a) Simple Fusion; (b) Context-Agnostic Fusion; (c)
Adaptive Fusion. The shortcut (blue) serves for reducing gradient vanishment

We re-implement it by replacing its internal group conv with
conventional conv. This re-implementation is combined with
our Split Parallelism and surpasses the original ViTAE hybrid
(Accuracy from 82.0% → 82.2%), at the expense of extra
parameters.

Residual Bottleneck is widely used in various vision tasks
(Fig. (2b)). Thus, we want to adopt it as the convolutional
branch in the hybrid models. We only implement one block
of residual bottleneck here to maintain similar params/MACs
as the original PCM.

Half-Residual Mobile Convolutional Branch (HMCB)
is modified based on PCM, with the help of efficient conv
approximations (Fig. (2c)). Inspired by MobileNet [39] and
MobileNetV2 [40], we first factorize each conventional 3× 3
conv into one 3×3 depth-wise conv followed by one 1×1 conv
and then we add another 1×1 conv before the first depth-wise
conv.

These approximations remarkably reduce computations.
Even if we replicate the half-residual block three times,
the HMCB still contains similar Params / MACs to single
Residual bottleneck. Specifically, we implant the shortcut at
a different position with the conventional residual bottleneck
to be compatible with the repetition and promote the training
across channels. We compare the three designs in terms of
accuracy, Params, and MACs in Table III and observe that
our HMCB performs the best under all metrics.

C. Adaptive Fusion and Counterparts

In this part, we present Adaptive Fusion and two simple
counterparts. We begin with a simple fusion with fixed weights,
then introduce a fusion strategy context-agnostic weights, and
finally, give the Adaptive Fusion with contextually relevant
weights.

Simple Fusion directly averages outputs from the two
branches with equal importance as in Eq. (16) and Fig. (3a).
The fusion itself is parameter-free and effective. Thus, it is
preferred in a pilot parallel hybrid, ViTAE [14].

α = β = 0.5 (16)

Context-Agnostic Fusion explicitly learns α & β on par
with training process (Fig. (3b)). To avoid a phenomenon
that the gradient vanishment deactivates a particular branch
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Fig. 4. The architecture of ASF-formerp. It adopts a 4-stage pyramid structure and is built based on ASF-C encoders. Without [CLASS] token, the final
output feature will be entirely fed into the classification layer after global average pooling.

when Wα or Wβ falls into extremely tiny values, we add an
extra skip connection (blue line) to enforce gradients to be
propagated to both ways.

α = Wα, β = Wβ (17)

Adaptive Fusion calculates α and β according to visual
contexts from both branches, which is inspired by SKNet [46].
Its process is shown in Eq. (18)&(19) and Figure (3c).

α = Sigmoid
(
Linear2

(
Pool

(
T̂

(a)
+ T̂

(b)
)))

(18)

β = 1− α (19)

Specifically, we expand the function fw in Eq. (11) to be two
fully-connected layers (Linear), with BatchNorm and GeLU
activations in between. To stabilize the training procedure, we
add the extra skip connection from the same concern as the
prior fusion method.

We comprehensively compare various fusion strategies in
Table V and observe a significant improvement with our
Adaptive Fusion strategy.

D. Pyramid Structure

ASF-former is built beyond the structure of T2T-ViT [1],
which has a reduction stage for down-sampling and a com-
putation stage for feature encoding under the same feature
dimension. However, downstream tasks such as object de-
tection, instance segmentation, and semantic segmentation
usually prefer multi-level features from the backbone model
to capture objects at different scales. This requirement makes
ASF-former not quite suitable for transferring to downstream
tasks. To deal with this problem, we follow the pyramid
structure of Swin Transformer [59] and further design a new
model with our ASF-C encoder, denoted as ASF-formerp.

As Figure (4) shows, ASF-formerp adopts a 4-stage pyramid
structure with down-sampling layers before each stage. The
original images are tokenized and down-sampled by the ratio
of 4 in the first stage, while the other down-sampling layers
use a ratio of 2. ASF-formerp has N1,N2,N3,N4 ASF-C
encoders in each stage respectively and the feature channel
dimension C in Stage 1 will be doubled in each following
stages. Following Swin [59], we use the simple convolutions
for image tokenization and down-sampling instead of T2T

operation; therefore, we could remove the ASF-R from the
ASF-formerp. Besides, instead of adding a [CLASS] token
for classification, we perform global average pooling on the
output feature of the last stage and directly feed it into a fully-
connected layer for category prediction.

We will compare ASF-former and its pyramid version, ASF-
formerp, in Table VII. Besides, in Section IV-G and IV-H, we
will adopt ASF-formerp for all downstream tasks and further
utilize its stage-wise nature.

IV. EXPERIMENTS

We evaluate the ASF-former on standard benchmarks, in-
cluding ImageNet-1K, CIFAR-10/100, with metrics like Top-
1/5 accuracy, model Params, and inferencing MACs. Experi-
mental results validate the efficacy and efficiency of the ASF-
former.

A. Datasets

We conduct ablation and transferability experiments on
ImageNet-1K and CIFAR-10/100 downstream datasets.

ImageNet-1K [60] defines 1000 categories with 1.35 mil-
lion images captured in daily life. On average, each category
contains around 1.3k samples. These images are split into
training/validation sets with a ratio of 26:1.

CIFAR-10/100 [61] respectively contains 10/100 categories
on 60k images with a fixed 32×32 resolution. In the CIFAR-
10, each category includes 6k samples, with 5k/1k samples
as training/testing. Whereas, in the CIFAR-100, there are 600
samples per category, with 500/100 for training/testing.

B. Experimental settings

In this part, we briefly introduce hyperparameters of our
ASF-former variants and the training & inference recipes.

ASF-former variants. By customizing hyperparameters,
such as the number of encoders (i.e., L1 and L2) and di-
mensions of tokens in different layers, we can flexibly control
the complexity of ASF-former at different computation scales.
To fairly compare the ASF-former with its counterpart of
similar computational costs, we propose a small and big
model, respectively denoted as the ASF-former-S and ASF-
former-B in Table I. Besides, we set the same k, o, p as
the original T2T-ViT model (Eq. (1)). As for ASF-formerp,
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TABLE I
HYPERPARAMETERS OF ASF-FORMER-S & ASF-FORMER-B .

Model
Reduction stage Computation stage Model Size

Depth Token MLP Depth Token MLP Params MACs
L1 dim D′ dim L2 dim D dim (M) (G)

ASF-former-S 2 64 64 14 384 1152 19.3 5.5
ASF-former-B 2 64 64 24 512 1536 56.7 12.9

TABLE II
HYPERPARAMETERS OF ASF-FORMERp-S & ASF-FORMERp-B .

Model Depth Dim Params MACs
N1,N2,N3,N4 C (M) (G)

ASF-formerp-S 3,4,12,5 64 21.3 5.4
ASF-formerp-B 3,4,18,5 96 58.9 12.1

we also design two variants correspondingly, named ASF-
formerp-S and ASF-formerp-B. Their details are shown in
Table II.

Training & Inference. We fix the training/inference recipe
as [1] for a fair comparison. In the training phase, images
are randomly cropped into size 224 × 224 before going
through the network. We also adopt data-augmentations, such
as MixUp [62], CutMix [63], Rand-Augment [64], Random-
Erasing [65] to reduce over-fitting. The Exponential Moving
Average (EMA) strategy is further used for training stability.
We train 310 epochs using AdamW optimization, with a batch
size of 512. The learning rate is initialized with 5e-4 and
decreases with the cosine learning schedule. In the inference
phase, images are first resized to let the short side be 256 and
then center-cropped into 224× 224 before being fed into the
network.

C. Ablation study

In this part, we study the effectiveness of our proposed con-
volutional branch HMCB, Split Parallelism, Adaptive Fusion,
etc. We test them on top of the small ASF-former-S for quick
verification.

HMCB vs Convolutional Candidates. We plug the PCM,
Residual Bottleneck, and HMCB into the ASF-former. To ex-
clude the influence of the fusion strategy, we employ “Simple
Fusion” in all three ASF-formers. The comparison is shown
in Table III.

TABLE III
COMPARISON OF DIFFERENT CONVOLUTIONAL BRANCHS ON

IMAGENET-1K VAL.

Conv Branch Regime Params (M) MACs (G) Top-1 (%)

PCM ViTAE [14] 23.6 5.6 82.0
PCM ASF-former 32.1 9.3 82.2
Residual Bottleneck ASF-former 18.3 5.4 81.7
Our HMCB ASF-former 18.8 5.5 82.5

We observe that the HMCB achieves the best accuracy
(82.5%) among all candidates while consuming comparable

or fewer computations (Params / MACs) than the Residual
Bottleneck or PCM. This validates that the HMCB is more
complementary to global attention than the rest at a low
computational cost. Moreover, plugging PCM into ASF-former
(with simple fusion) performs slightly better than in the origi-
nal ViTAE, verifying the effectiveness of the Split Parallelism
mechanism. We fix the convolutional branch to be an HMCB
in the following experiments.

Split Parallelism vs Single Path. We further compare the
Split Parallelism with Single Path methods. We remove the
channel split for the Single Path method and feed the entire
input into an Attention-Only or HMCB-Only path. Hereby,
we still adopt “Simple Fusion” (Fig. (3a)) in this ablation .
Notably, the HMCB-only replaces the [CLASS] token with an
average pooled vector to predict final categories.

TABLE IV
COMPARISON OF SPLIT PARALLELISM AND SING PATH ON IMAGENET-1K

VAL.

Branch Params (M) MACs (G) Top-1 (%)

Attention-only 21.5 6.1 81.7
HMCB-only 22.7 5.2 72.4
Attention + HMCB 18.8 5.5 82.5

The results are shown in Table IV. Our Split Paral-
lelism achieves 82.5% accuracy, which remarkably outper-
forms single-path settings (81.7% for Atten-only and 72.4%
for Conv-only). Thanks to the Split strategy, our parallelism
achieves comparable or fewer Parameters & MACs than single
path methods. This also indicates that the HMCB and attention
branches are complementary; meanwhile, our Split Parallelism
could capture and integrate the information from both branches
very well.

Adaptive Fusion vs Counterparts. We implement fu-
sion strategies in Section III-C, including “Simple Fusion”,
“Context-Agnostic Fusion” and “Adaptive Fusion”, on top of
the ASF-former. All fusion variants intake outputs from the
attention branch and HMCB. We present their comparison in
Table V.

TABLE V
COMPARISON OF DIFFERENT FUSION METHOD ON IMAGENET VALIDATION

SET.

Fusion Method Params MACs Top-1

Simple Fusion 18.8 5.5 82.5
Context-Agnostic Fusion 18.8 5.5 82.2
Adaptive Fusion 19.3 5.5 82.7
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Fig. 5. The distribution of weights for HMCB and Attention branch. (a) Weights to the depth of encoder. (b) Weights to categories. (Blue/Orange denotes
weights for the Attention/HMCB, this figure is best viewed in color)

We find that our Adaptive Fusion achieves 82.7% accuracy,
which is superior to all the other counterparts under similar
parameters and MACs. This indicates the effectiveness of
adapting the weights according to visual contents and verifies
the different branch preferences of different images. Notably,
Context-Agnostic Fusion performs worse than Simple Fusion,
showing that the coarsely learning context-agnostic weights
would even degrade both branches’ capability and training
effect.

Effectiveness of Shortcut. We validate the influence of
the shortcut (blue line in Figure (3c)) by removing it from
Adaptive Fusion. The comparison is shown in Table VI.

TABLE VI
EFFECTIVENESS OF SHORTCUT ON IMAGENET VAL.

Fusion Method Params (M) MACs (G) Top-1 (%)

ASF-Former-S 19.3 5.5 82.7
− shortcut 19.3 5.5 82.0 (↓ 0.7)

When discarding the skip connection, we can see that the
final accuracy degrades by a large margin (0.7%) and is even
much worse than Simple Fusion in Table V. This demonstrates
the necessity of skip connection when fusing the outputs
of two branches and verifies its ability to help the model’s
training by promoting gradient propagation.

Effectiveness of Pyramid Structure. We train and validate
the pyramid version of ASF-former-S &ASF-former-B, named
ASF-formerp-S & ASF-formerp-B, under the same recipe. The
results are present in Table VII.

The underlined ASF-formerp-S achieves an excellent ac-
curacy of 83.0%, which outperforms ASF-former-S by 0.3%
with comparable parameters and MACs. This strongly proves
the effectiveness of a multi-level pyramid structure for better
feature encoding when designing hybrid transformer models.
ASF-formerp-B achieves comparable results with ASF-former-
B while consuming fewer MACs. This further indicates the
computation-efficient property of our pyramid model.

TABLE VII
COMPARISON WITH DIFFERENT METHODS ON IMAGENET VALIDATION

SET.

Type Model Image Params MACs ImageNet
Size (M) (G) Top-1 Top-5

C
N

N
(S

m
al

l) ResNet-50 [19] 224 25.6 7.6 76.7 93.3
RegNetY-4G [66] 224 21.0 4.0 80.0 -
ConvNeXt-T [67] 224 29.0 4.5 82.1 -

Tr
an

sf
or

m
er

(S
m

al
l)

PVT-S [58] 224 24.5 7.6 79.8 -
DeiT-S [56] 224 22.0 4.6 79.9 95.0
Swin-T [59] 224 28.0 4.5 81.2 95.5
TNT-S [57] 224 23.8 5.2 81.5 95.7
T2T-ViT-14 [1] 224 21.5 5.2 81.5 95.7
T2T-ViTt-14 [1] 224 21.5 6.1 81.7 -

H
yb

ri
d

(S
m

al
l)

ConT-M [7] 224 19.2 3.1 80.2 -
ConT-B [7] 224 39.6 6.4 81.8 -
Conformer-Ti [13] 224 23.5 5.2 81.3 -
Swin-ACmix-T [12] 224 30.0 4.6 81.9 -
CeiT-S [9] 224 24.2 4.5 82.0 95.9
ViTAE-S [14] 224 23.6 5.6 82.0 95.9
DAT-T [68] 224 29.0 4.6 82.0 -
Focal-T [8] 224 29.1 4.9 82.2 -
CvT-13 [6] 224 20.0 4.5 81.6 -
CvT-21 [6] 224 32.0 7.1 82.5 -
ASF-former-S 224 19.3 5.5 82.7 96.1
ASF-formerp-S 224 21.3 5.4 83.0 96.3

C
N

N
(B

ig
) ResNet-101 [19] 224 44.5 15.2 78.3 94.1

ResNet-152 [19] 224 60.2 22.6 78.9 94.4
RegNetY-16G [66] 224 84.0 16.0 82.9 -
ConvNeXt-B [67] 224 89.0 15.4 83.8 -

Tr
an

sf
or

m
er

(B
ig

)

ViT-B/16 [2] 384 86.5 55.4 77.9 -
ViT-L/16 [2] 384 304.3 65.8 76.5 -
PVT-L [58] 224 61.4 19.6 81.7 -
DeiT-B [56] 224 86.6 34.6 81.8 95.6
T2T-ViT-24 [1] 224 64.1 14.1 82.3 -
T2T-ViTt-24 [1] 224 64.1 15.0 82.6 -
TNT-B [57] 224 65.6 14.1 82.9 96.3
Swin-B [59] 224 88.0 15.4 83.5 96.5

H
yb

ri
d

(B
ig

)

Conformer-S [13] 224 37.7 10.6 83.4 -
Swin-ACmix-S [12] 224 51.0 9.0 83.5 -
Focal-B [8] 224 89.8 16.0 83.8 -
ASF-former-B 224 56.7 12.9 83.9 96.6
ASF-formerp-B 224 58.9 12.1 83.9 96.5
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D. Comparison with the state-of-the-art

We further compare the ASF-former-S and ASF-former-B
with SOTAs of pure CNN, transformer, and CNN-transformer
hybrid. We separately present models into Small and Big
parts, considering their computation scales (Params/MACs).
We only analyzed the results of ASF-former below for brevity.
However, it has to be mentioned that ASF-formerp performs
comparably with or even better than ASF-former and further
expands the advantages of our design, as shown in Table VII.

Compared with CNN SOTAs, our ASF-former outper-
forms the strong ConvNeXt regime in terms of accuracy with
fewer parameters and comparable computations. For example,
the ASF-former-S is better than the ConvNeXt-T (82.7% vs
82.1%) in accuracy, with much fewer parameters (19.3M
vs 29.0M) and slightly more computations (5.5G vs 4.5G).
And, the ASF-former-B surpasses the ConvNeXt-B (83.9%
vs 83.8%) with much less parameters (56.7M vs 89.0M) and
MACs (12.9G vs 15.4G).

Compared with pure transformer SOTAs, the ASF-
former performs better than the Swin Transformer and T2T-
ViT regimes in terms of accuracy, Params, with comparable
MACs. Specifically, the ASF-former-S achieves higher accu-
racy than the Swin-T and T2T-ViTt-14 (82.7% vs 81.2% vs
81.7%), with fewer parameters (19.3M vs 28.0M vs 21.5M)
and comparable MACs (5.5M vs 4.5M vs 6.1M). Besides,
the ASF-former-B outperforms the Swin-B and T2T-ViTt-
24 under all metrics: Accuracy (83.9% vs 83.5% vs 82.6%),
Params (56.7M vs 88M vs 64.1M), MACs (12.9G vs 15.4G vs
15.0G).

Compared with the CNN-transformer hybrid SOTAs,
the ASF-former outperforms those cascade hybrids, such as
CvT and Focal Transformer, in terms of accuracy and Params,
becoming the first parallel hybrid to beat cascade counterparts.
Specifically, at a similar MAC scale, the ASF-former-S shows
a better accuracy (82.7% vs 82.5% vs 82.2%) and fewer
params (19.3M vs 32.0M vs 29.1M) than CvT-21 and Focal-
T. Meanwhile, the ASF-former-B is better than Focal-B under
all metrics: Accuracy (83.9% vs 83.8%), Params (56.7M vs
89.8M), MACs (12.9G vs 16.0G).

Among hybrid transformers, ViTAE, Swin-ACmix, Con-
former, and our ASF-former all adopt parallel structure, while
the ASF-former demonstrates the best accuracy at a similar
computation scale. For example, the ASF-former-S and ASF-
former-B separately surpass those best available, i.e., ViTAE-
S and Swin-ACmix-S, by an accuracy margin of 82.7%-
82.0%=0.7% and 83.9%-83.5%=0.4%. This indicates that our
split parallelism with HMCB, cooperating with the adaptive
fusion, can efficiently enforce the model to be lightweight and
effectively boost performance via integrating parallel features.

Compared with SOTAs under ImageNet-22k pre-
training, we also pre-train the model on the large-scale
ImageNet-22k dataset and then fine-tune it on ImageNet-
1k to further explore the upper bound of ASF-former. The
classification results are shown in Table VIII. Our ASF-former
achieves the same Top-1 accuracy (85.2%) as the strong
SOTA of Swin-B but requires much less parameters (56.7M vs
88.0M) and MACs (12.9G vs 15.4G). These indicate the great

TABLE VIII
COMPARISON WITH DIFFERENT METHODS ON IMAGENET-1K VALIDATION

SET AFTER IMAGENET-22K PRE-TRAINING.

Model Image Params MACs ImageNet
Size (M) (G) Top-1

R-101x3 [69] 384 388 204.6 84.4
ViT-B/16 [2] 384 86 55.4 84.0
ViT-L/16 [2] 384 307 190.7 85.2
Swin-B [59] 224 88 15.4 85.2

ASF-Former-S (ours) 224 56.7 12.9 85.2

TABLE IX
TRANSFERABILITY TO CIFAR-10/100.

Model Params CIFAR-10 CIFAR-100

ViT-B/16 [2] 86.5 98.1 87.1
ViT-L/16 [2] 304.3 97.9 86.4
T2T-ViT-14 [1] 21.5 97.5 88.4
TNT-S↑384 [57] 23.8 98.7 90.1
ViTAE-S↑384 [14] 23.6 98.8 90.8
CeiT-S↑384 [9] 24.2 99.1 90.8
DeiT-B↑384 [56] 86.6 99.1 90.8

ASF-former-S 19.3 98.7 90.4
ASF-former-B 56.7 98.8 91.0

capacity of the ASF-former as well as its superior computation
efficiency.

E. Distribution of Weights

We plot the distribution of weights for HMCB and Attention
branch with respect to the depth of encoder and categories in
Fig. 5(a) and (b). For simplicity, we calculate distributions
using ASF-former-S.

Figure (5a) shows the trend of weights changing with the
depth of the encoder. Specifically, the ASF-former-S contains
16 encoders. For each encoder, we calculate the mean weight
of the HMCB/Attention way on ImageNet-1K Val. We observe
that the domination of HMCB in early encoders gradually
changes to the attention when depth becomes deeper. This
finding is consistent with prior works [12] that shallow layers
focus on locality, whereas deep layers prefer globality, which
will inspire future model designing.

Figure (5b) shows distribution weights on 1000 categories.
We pick the third encoders as they are the most balanced for
the HMCB/Attention (3rd depth in Fig. (5a)). We sort cate-
gories according to the descending (or increment) of HMCB
(Attention) weight. We observe that categories prefer local-
ity/globality differently, which is also affected by the depth
of the encoder. Specifically, small objects like “Ruler” and
“Can opener” prefer the locality. Categories like “Honeycomb”
also produce large weights for the convolution branch for its
requirement of capturing the local texture & edge information.
Sceneries or large objects like “Triumphal arch”, ”Kimono”
and ”Leonberg” prefer global information.

F. Transferability to downstream datasets

To investigate the transferability of our ASF-former, we fur-
ther fine-tune the proposed models on CIFAR-10 and CIFAR-
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TABLE X
TRANSFERABILITY TO OBJECT DETECTION AND INSTANCE

SEGMENTATION TASK.

Backbone Method Lr Params Box Mask
Schd (M) mAP mAP

ResNet-50 [19] Mask RCNN 1x 44 38.2 34.7
PVT-S [58] Mask RCNN 1x 44 40.4 37.8
ResT-Base [70] Mask RCNN 1x 50 41.6 38.7
Twins-PCSVT-S [71] Mask RCNN 1x 44 42.9 40.0
Twins-PVT-S [71] Mask RCNN 1x 44 43.4 40.3
RegionViT-S+ [72] Mask RCNN 1x 51 43.5 40.4
Conformer-S [13] Mask RCNN 1x 58 43.6 39.7
Swin-T [59] Mask RCNN 1x 48 43.7 39.8
DAT-T [68] Mask RCNN 1x 48 44.4 40.4
ViTAE-S [14] Mask RCNN 1x 37 44.6 40.2
Focal-T [8] Mask RCNN 1x 49 44.8 41.0
ASF-Formerp-S (ours) Mask RCNN 1x 38 45.9 41.2

ResNet-50 [19] Cascade RCNN 1x 82 41.2 35.9
Swin-T [59] Cascade RCNN 1x 86 48.1 41.7
ViTAE-S [14] Cascade RCNN 1x 75 48.9 42.0
DAT-T [68] Cascade RCNN 1x 86 49.1 42.5
ASF-Formerp-S (ours) Cascade RCNN 1x 79 49.7 42.8

100 datasets. The initial learning rate is 0.025 for CIFAR-10
and 0.05 for CIFAR-100.

The validation results are shown in Table IX. Our ASF-
former achieves comparable results on CIFAR-10 and the
state-of-the-art results on CIFAR-100 under 224 × 224 res-
olution, showing its superior transferability.

G. Transferability to object detection & instance segmentation

As described in Section III-D, ASF-formerp is adjusted from
the ASF-former, to make the transformer more compatible
with the detection & segmentation tasks. We test the per-
formance of our ASF-formerp on standard object detection
and instance segmentation benchmarks: MS-COCO 2017 [73]
datasets. Specifically, the COCO contains 118k training im-
ages and 5k validation images. During experiments, we adopt
Mask RCNN and Cascade RCNN as the detection frameworks
and follow the same experimental settings as Swin [59] for a
fair comparison. Specifically, multi-scale training and AdamW
optimizer are used. The initial learning rate is set to be 0.0001
with a weight decay of 0.05. We use the batch size of 16 and
1x schedule (12 epochs).

The experimental results are shown in Table X. We compare
our ASF-formerp with different kinds of vision backbones,
including the most widely-used pure CNN, transformer, and
the recent strong hybrid models. Among them, ASF-formerp
achieves the best results on both object detection (Box mAP)
and instance segmentation (Mask mAP) tasks under two
widely-used detection frameworks with comparable or fewer
parameters. It indicates the superior capacity of ASF-formerp
as a backbone for downstream tasks.

H. Transferability to semantic segmentation

We further validate our ASF-formerp as the backbone
model for semantic segmentation tasks using the standard
ADE20K [75] dataset. It contains more than 20k images in
the training set and 2k images in the validation set. Following

TABLE XI
TRANSFERABILITY TO SEMANTIC SEGMENTATION TASK.

Backbone Method Lr Params mIoU mIoU
Schd (M) (MS)

ResNet-50 [19] UPerNet 160K 67 42.1 42.9
Swin-T [59] UPerNet 160K 60 44.5 45.8
Swin-ACmix-T [12] UPerNet 160K 60 45.3 -
DAT-T [68] UPerNet 160K 60 45.5 46.4
ViTAE-S [14] UPerNet 160K 49 45.4 47.8
DW-T [74] UPerNet 160K 61 45.7 46.9
Focal-T [8] UPerNet 160K 62 45.8 47.0
ConvNeXt-T [67] UPerNet 160K 60 46.0 46.7
Twins-SVT-S [71] UPerNet 160K 54 46.2 47.1
Twins-PCPVT-S [71] UPerNet 160K 55 46.2 47.5
ASF-Formerp-S (ours) UPerNet 160K 51 46.7 47.6

Swin, we take the widely-used UPerNet as the framework and
use the AdamW optimizer for training. The initial learning
rate is set to be 0.00006 with a weight decay of 0.01, and
the batch size is 16. We follow the 160K lr schedule (160k
iterations) for a fair comparison.

The results are shown in Table XI which include the
standard and multi-scale (MS) testing results. We can see that
ASF-formerp achieves a mIoU of 46.7 in standard testing,
which outperforms the other backbone models by a large mar-
gin with comparable or fewer parameters. Under a multi-scale
augmentation setting, ASF-formerp gets comparable results to
the SOTA methods. These show that our method works well
as the backbone in segmentation tasks and proves its excellent
transferability to downstream vision tasks.

V. CONCLUSION

In this paper, we propose a novel hybrid transformer called
ASF-former. It adopts Split Parallelism, which splits channels
into half for two-path inputs. It introduces the novel HMCB
that complements the attention and the Adaptive Fusion for
feature merging. We experimentally verified that the three
mechanisms could a good balance of efficacy and efficiency
and achieve SOTA results. We also validate that the role of
local/global information varies with respect to visual cate-
gories and network depth. Besides, this hybrid design also
achieves promising results on downstream tasks, including
object detection and segmentation.
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