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ABSTRACT

Hateful meme detection is a new multimodal task that has gained
significant traction in academic and industry research communi-
ties. Recently, researchers have applied pre-trained visual-linguistic
models to perform the multimodal classification task, and some
of these solutions have yielded promising results. However, what
these visual-linguistic models learn for the hateful meme classi-
fication task remains unclear. For instance, it is unclear if these
models are able to capture the derogatory or slurs references in
multimodality (i.e., image and text) of the hateful memes. To fill
this research gap, this paper propose three research questions to
improve our understanding of these visual-linguistic models per-
forming the hateful meme classification task. We found that the
image modality contributes more to the hateful meme classification
task, and the visual-linguistic models are able to perform visual-
text slurs grounding to a certain extent. Our error analysis also
shows that the visual-linguistic models have acquired biases, which
resulted in false-positive predictions.
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1 INTRODUCTION

Motivation. Internet memes, which are often presented as images
with accompanying text, are increasingly abused to spread hatred
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under the guise of humor [8, 13, 24]. To fight against the prolif-
eration of hateful memes, Facebook has recently released a large
hateful meme dataset and crowdsourced hateful meme classification
solutions [13]. The research community has responded enthusiasti-
cally as many promising hateful meme classification methods have
been proposed [16, 20, 31, 35, 36]. Among the proposed solutions, a
popular line of approaches is to apply pre-trained visual-linguistic
models such as VisualBERT [17] and ViIBERT [21] to perform the
hateful meme classification tasks. These methods have yielded
promising results. However, what these visual-linguistic models
learn for the hateful meme classification task remains unclear.

Research Objectives. Understanding visual-linguistic models
is an emerging research area that has garnered much attention
from the multimodal research community [3, 7, 18, 22]. Inspired by
works that explored the internal behaviors of pre-trained language
models [4], Li et al. [18] conducted a quantitative study on whether
visual-linguistic models acquire semantic grounding ability during
pre-training without explicit supervision. Frank et al. [7] proposed
a diagnostic framework to assess the extent to which the visual-
linguistic models integrate cross-model information. This paper
aims to contribute to the existing literature on visual-linguistic
model understanding by applying some of these techniques to
investigate how visual-linguistic models understand hateful memes.
To the best of our knowledge, this is the first paper that attempts
to understand what visual-linguistic models actually learn when
training for the hateful meme classification task.

Contributions. Our paper proposed three research questions,
which improve our understanding of the internal behaviors of
visual-linguistic models trained to perform the hateful meme clas-
sification task. Through extensive quantitative and qualitative anal-
yses, we show that (i) the visual-linguistic models have accorded
higher importance to the visual modality when performing hate-
ful meme classification; (ii) the visual-linguistic models are able
to learn the visual-text slurs grounding; (iii) and the models have
acquired biases that adversely affected their hateful meme classifi-
cation performance.

2 RESEARCH QUESTIONS

This paper aims to improve our understanding of visual-linguistic
models applied to perform the hateful meme classification task.
Working towards this goal, we formulate three research questions
to guide our exploration!.

RQ1: Modality Attribution. A key characteristic of memes is
their multimodality nature, where their underlying message is often
communicated via a combination of text and visual information.
The multimodality characteristic also motivated the application

1Code implementation: https://gitlab.com/bottle_shop/safe/ExplainHatefulMeme.
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Table 1: Distribution of Facebook hateful meme dataset

Train Test
Hate | Non-hate | Hate | Non-hate
5,493 3,007 246 254

of visual-linguistic models to perform hateful meme classification.
However, it is unclear if the text and visual information contributed
equally towards the multimodal classification task. Existing stud-
ies have attempted to improve the explainability of deep learning
models by attributing the prediction of a deep network to its input
features [1, 11, 15, 30]. For instance, Sundararajan et al. [30] pro-
posed an attribution method called Integrated Gradients to score
the contribution of input features on deep models’ prediction. The
researchers applied their model on several images and text deep
learning models to demonstrate its ability to explain the prediction
results of these models. Similar studies were also conducted by
investigating the attribution of text and visual features in multi-
modal tasks such as Visual-question-answering (VQA) [9, 10, 23].
We aim to apply the attribution methods to understand how the
different modalities input features contribute to the hateful meme
classification task.

RQ2: Visual-Text Slurs Grounding. Hate speech detection
tasks have been notoriously challenging due to the ambiguity and
variability in natural languages. Adding to the complexity, hate
speech also includes unique derogatory terms that are commonly
used as insinuations or allegations about members of a specific
group. For example, the word "Dishwasher” has been associated
with females due to the traditional gender ideology where married
women would become housewives and do house chores. In doing
so, it undermines women’s gender equality rights and objectifies
them as mere tools. The use of derogatory terms amplifies further
in hateful memes. With the additional visual information, the subtle
allegations in the derogatory terms are communicated through con-
textual cues in both modalities. Existing works have investigated
the semantic grounding capabilities of visual-linguistic models in
VOQA and image captioning tasks [7, 18]. We aim to extend these
studies to understand the visual-linguistic models’ ability to per-
form visual-text grounding for derogatory terms and slurs used in
the hateful memes.

RQ3: Bias and Error Analysis. Data and model biases in text-
based hate speech detection tasks have been are widely researched [2,
5, 12, 32, 34]. For instance, Kennedy et al. [12] conducted a study to
analyze group identifier biases in hate speech detection models. The
researchers found that existing text-based hate speech classifiers
are over-sensitivity to group identifiers like “Muslim”, “gay”, and
“black”. We aim to extend these studies to conduct a preliminary
analysis on the biases in hateful meme classification models. Specif-
ically, we will examine the group identifier biases in both text and
visual modalities of the wrongly classified memes.

3 EXPERIMENTS

3.1 Experiment Settings

3.1.1 Dataset. The Facebook hateful meme dataset [13], which
was constructed and released by Facebook as part of a challenge
to crowd-source multimodal hateful meme classification solutions,
is a popular dataset used in many research studies. Therefore, we
utilize this dataset in our experiments. The dataset contains 10K
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Table 2: Average gradients from text and visual inputs in var-
ious models

Text Input Visual Input
Model Avg [ Stg. Dev | Avg [ Std?Dev
VilBERT 3.183 0.900 4.096 0.774
VisualBERT 3.006 0.804 7.705 2.180
ViIBERT CC 3.130 0.882 4.145 0.730
VisualBERT COCO | 3.112 0.843 6.444 0.976

memes with binary labels (i.e., hateful or non-hateful). As we do
not have labels of the memes in the test split, we utilize the dev-seen
split as the test set. Table 1 outlines the distributions of the dataset.

3.1.2  Models. VIIBERT [21] and VisualBERT [17] are amongst
the state-of-the-art visual-linguistic models often used for various
multimodal tasks. The two models were also applied as baselines
to evaluate the released Facebook hateful meme dataset [13]. Both
models use pre-trained text from BERT [6] and image features from
fc6 layer of Faster-RCNN [25] with ResNeXt-152 as its backbone
[33]. These models can also be trained on multimodal objectives as
an intermediate step before fine-tuning them for the multimodal
hateful meme classification task. For our experiments, we train the
VilBERT and VisualBERT on the hateful meme classification task.
We also included two multimodally pre-trained versions of these
models and fine-tuned them for the hateful meme classification
task. Specifically, we include ViIBERT on Conceptual Captions [27]
(ViIBERT CC), and VisualBERT on Microsoft’s Common Objects
in Context [19] (Visual BERT COCO). We trained the models using
the Facebook MMF framework [29] and adopt the hyperparameters
specified in [13], as the researchers have already performed grid
search on numerous hyperparameters.

3.2 Modality Attribution

Inspired by gradient-based researches that use gradients as feature
importance [26, 28], we use the gradients to represent the contri-
bution of each modality towards making the model’s decision. We
reasoned that gradients signify the weightage each input feature
has towards making the model’s prediction. Hence, we equate the
summation of gradients for each input type as the contribution
of each modality. Specifically, we first obtain the gradients for the
inputs in each modality through backpropagation. Subsequently,
we normalize the gradients by their magnitude. Through normal-
ization, we place the gradients for the text and visual modality
onto the same unit space and enable us to compare their relative
contribution. We attribute the summation of these normalized gra-
dients as the contribution of each modality. Finally, we compute
the average and standard deviation across the 500 samples in the
test data. We noted empty tokens are present in the text inputs but
not in the visual inputs, as the text inputs have various lengths. As
these empty tokens do not contain any meaning, we argue that their
gradients should not attribute to the contribution of each modality
and do not consider these gradients in our analysis.

Table 2 shows the average and standard deviation for the text and
visual modality gradients for various hateful meme classification
models. We observe that the visual modality consistently has a
slightly higher average gradient than the text modality, suggesting
that the visual modality contributes more towards the model’s
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Figure 1: Attention heads in VisualBERT where the text-visual alignments attend to the word "dishwasher" and "truck".
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Figure 2: Attention heads in Visual BERT where the text-visual alignments attend to the word "goat" and "f*ck"

prediction. We also noted that the standard deviation for both
modalities is relatively low across most models, suggesting that
there is little variation in the contribution of each modality across
all samples.

The observation that the visual modality contributes more in the
hateful meme classification results concurs with Frank et al. [7]’s
findings where proposed vision-and-language models tend to attend
to visual information more than text information. A possible reason
for this observation could be the ratio of text features to image
features. We note that internet memes generally have relatively
short text. For instance, the samples in the validation dataset have
an average number of 14 words and a maximum number of 54
words. Conversely, the image features always comprise the top 100
image regions extracted from existing object detection techniques.
Hence, the number of text features is always lower than the number
of image features across the samples, and the models may have
leverage on the modality with more features.

3.3 Visual-Text Slurs Grounding

The visual-linguistic models offer a simplistic solution to learn inter-
action across modalities. It uses a stack of Transformer layers that
implicitly aligns the text input and visual input with self-attention.
Recent works have also established that input alignments within
VisualBERT’s attention weights often capture intricate associations
in the Transformers’ architecture (e.g., visual-text entity grounding,
visual-text syntactic grounding, etc.) [18]. Extending from these
studies, we should observe visual-text alignments for slurs within

the attention weights after fine-tuning the visual-linguistic models
on the hateful meme classification task.

As our investigation aims to understand the visual-text ground-
ing in the hateful meme classification tasks, we visualize the visual-
text alignments within the models’ attention weights for evidence
of slurs grounding. Specifically, we display the bounding region on
the image for each visual feature. To obtain the bounding region
for each visual feature, we used the predicted coordinates from the
final layer of the Faster-RCNN as they originate from the model’s
intermediate layer fc6. However, visualizing 100 bounding regions
would clutter the image and would be impractical to make any
valuable observation. Therefore, we choose to visualize the top 9
features ranked by their contribution to the models’ decisions.

There are many slurs embedded in the hateful memes. We select
and examine two common slurs, “dishwasher” and “goat-f*cker”,
that target female and Muslim communities, respectively. Specifi-
cally, we search the hateful memes that contain the words “dish-
washer”, “goat”, and “goat-f*cker”. From the retrieved memes, we
examine the visual bounding regions that have attention weight
aligned to the selected keywords. We then show the 4 heads of the
attention layers that best demonstrate visual-text alignments for
slurs and entities. The visual-text alignment will reveal the models’
multimodal understanding of the slurs embedded in the memes.

The word “dishwasher” is a sexist slur commonly found in hate
speech targeted at the female gender, used to stigmatize women
as housewives. In Figure 1, the meme describes a scenario where
one undermines women’s gender equality rights and addressed
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[CLS] goat meat is very popular in ISlamie countries [SEP]

(b)
Figure 3: Two examples of non-hateful memes wrongly clas-
sified by VisualBERT

the woman as “dishwasher”. We observed that the model implicitly
forms alignments between the subword "##er" for dishwasher and
the seven image segments containing the woman in lower layers.
The model displays residual visual-text alignments for the slur
using a different subword "##wash" by the end of the computation
(i.e., layer 12), demonstrating the strong presence of visual-text
alignment for image of woman and the slur “dishwasher”.

The phrases “goat-humper” and “goat-f“cker” is one of the many
offensive slurs commonly targeted at the Muslim religion, accusing
Muslim men of having sexual relationships with goats (i.e., an act
of bestiality). Figure 2 shows a meme that suggests the Muslim men
have sexual relationships with goats by associating the text “we can
f*ck goats” with Muslim men in the image. While the phrase “goat-
humper” and “goat f*cker” does not appear in this meme, we could
infer the underlying allegations and identify the relevant keywords.
We observed that the word “f*ck” and the word “goat” assigns
significant attention weights to the bounding regions containing
Muslim men in the early layers. The model displays residual visual-
text alignment for the word “f*ck” and the word “goat” in the
later layers (i.e., layer 11 and 12), albeit more attention weights are
assigned to the word “f“ck”. Combining the observations, the model
demonstrates presence of visual-text alignment for the relevant
keywords that suggest the slurs “goat-humper” and “goat-f*cker”.

We also observed that the early layers demonstrate a cleaner
alignment to the slur terms. For example, in Figure 1, the unrelated
visual segments to the subword "##er" and the word "truck" are
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aligned to the separator token. A similar observation can be made
for the unrelated visual segments to the word "goat" in Figure 2.
Based on recent researches, these alignments to the separator tokens
can be seen as no-operation (no-op) as they do not substantially
impact the model’s output [4, 14].

3.4 Bias and Error Analysis

To analyze the bias of the hateful meme classification models, we
conduct an error analysis on the wrongly predicted non-hateful
memes by the models. Similar to the existing works that studied
biases in text-based hate speech detection models, we are espe-
cially interested in the false positives because it may reveal the
features that the models are overly sensitive to when performing
hateful meme prediction. Specifically, we conduct this analysis by
inspecting the bounding regions for the critical visual features and
contributions of individual word tokens for text features. The vi-
sualization of bounding regions for the visual features follows the
same strategy specified in 3.3. Whereas for the text features, we
used Integrated Gradients [30] to visualize the contribution of each
word towards making the model’s prediction. Specifically, words
are highlighted in green and red to indicate their attribution to hate-
ful and non-hateful prediction, and the color intensity represents
the level of attribution.

Figure 3 shows two examples of non-hateful memes wrongly
classified by VisualBERT. In Figure 3(a), we observed that the sub-
word tokens for “dishwasher” and word token “sandwich” have a
high contribution towards making the model predict the meme
as hateful. Upon inspecting the text-visual alignment, these text
tokens also assign significant attention weights to the bounding
region containing the woman. From the observations, we can infer
that the model has likely learned a bias where the presence of key-
words such as “dishwasher” and images of women would render
the model to predict the meme as hateful. The bias also exposes a
deeper issue with the visual-linguistic hateful meme classification
model; even though the models are able to learn the visual-text slurs
grounding, over-sensitivity to such grounding may also introduce
bias and results in false positive.

The model also exhibits bias for the group identifier term "Is-
lamic" in Figure 3(b). Inspecting the text-visual alignments, we
observed that the word "Islamic" does not assign much attention
weights to any bounding regions. We postulate that the bias for this
group identifier term happens in the unimodal text space rather
than the multimodal space.

4 CONCLUSION

We have presented an analysis of applying visual-linguistic models
on the hateful meme classification task. Our analysis showed that
the image modality contributes more to the hateful meme classifica-
tion task, and the visual-linguistic models can perform visual-text
slurs grounding. Nevertheless, the visual-linguistic models have
also acquired biases, which resulted in false-positive predictions.
For our future work, we will extend our analysis to multiple hate-
ful meme datasets, and benchmark more models. We would also
explore debiasing techniques to reduce the multimodal biases in
the visual-linguistic models and improve their hateful meme classi-
fication performance.
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