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ABSTRACT
We propose a robust recommender systems model which performs
matrix completion and a ratings-wise uncertainty estimation jointly.
Whilst the prediction module is purely based on an implicit low-
rank assumption imposed via nuclear norm regularization, our loss
function is augmented by an uncertainty estimation module which
learns an anomaly score for each individual rating via a Graph Neu-
ral Network: data points deemed more anomalous by the GNN are
downregulated in the loss function used to train the low-rank mod-
ule. The whole model is trained in an end-to-end fashion, allowing
the anomaly detection module to tap on the supervised information
available in the form of ratings. Thus, our model’s predictors en-
joy the favourable generalization properties that come with being
chosen from small function space (i.e., low-rank matrices), whilst
exhibiting the robustness to outliers and flexibility that comes with
deep learning methods. Furthermore, the anomaly scores them-
selves contain valuable qualitative information. Experiments on
various real-life datasets demonstrate that our model outperforms
standard matrix completion and other baselines, confirming the
usefulness of the anomaly detection module.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Anomaly detection; Factorization meth-
ods; Neural networks.
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1 INTRODUCTION
Recommender Systems (RS) exploit historical user-item interac-
tions (e.g., clicks, ratings, and likes) to construct a mathematical
model of human preferences, with the final aim of anticipating
each individual consumer’s needs and growing business value. By
accurately predicting user preferences and delivering personalized
recommendations, RS play a crucial role in a wide range of do-
mains, from movie recommendations [27, 47] to personalized food
recipes [30].

A variety of factors make such an endeavour especially challeng-
ing and ambitious. For instance, the interaction data is inherently
fickle due to human’s propensity to impulsivity [4]: a user may
give a poorer or better rating to a movie depending on their mood
at the time of watching it, or purchase an item they do not really
want in moment of excitement. Additionally, a satisfactory model
of human preferences ought to remain reasonably simple and in-
terpretable [15, 37]. Since the model is used to make financially
impactful decisions, a certain amount of human-interpretable trust-
worthiness is expected. Furthermore, only by understanding which
specific characteristics of each item appeal to each user, one can
in fact understand the market’s needs and eventually create new
items with lucrative properties.

Recommender Systems approaches are typically divided into two
main classes of methods. On the one hand, many recent methods
exploit the larger expressivity of artificial neural networks [3, 46]
to provide refined predictions based on combined modelling of all
aspects of the data, including all interaction types and any user
and item features. This approach inherits all the properties of deep
learning methods, including both state-of-the-art performance and,
unfortunately, black-box behaviour: it is still challenging to make
reasonable interpretable sense of the trained weights of deep ma-
chine learning methods [8]. On the other hand, many classical
approaches rely on matrix factorization (MF) [24, 31, 44] to express
each predicted rating 𝑅𝑖, 𝑗 as an inner product between a user fea-
ture 𝑢𝑖 ∈ R𝑑 and an item feature 𝑣 𝑗 ∈ R𝑑 : 𝑅𝑖, 𝑗 = ⟨𝑢𝑖 , 𝑢 𝑗 ⟩. Here,
R𝑑 is the much smaller dimensional feature space, i.e. 𝑑 ≪ 𝑚,𝑛.
Thus, the underlying assumption is that the ground truth matrix
is low-rank, i.e., can be decomposed into the form 𝑈𝑉⊤ for some
𝑈 ∈ R𝑚×𝑑 and 𝑉 ∈ R𝑛×𝑑 . Such approaches are fundamentally
interpretable since they provide low-dimensional features which
capture the geometric properties of user and item space. However,
they are typically far more sensitive to any inaccuracy in the data.

In this paper, we construct a model which keeps the advantages
of both approaches above: our final predictions come from a low-
rank matrix, providing simple feature representations for each user
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and item. However, our training procedure leverages the power
of deep learning methods to improve the robustness and accuracy
of the achieved low-rank representation by incorporating an es-
timate of uncertainty𝑊𝑖, 𝑗 for each rating. This estimate is then
used to weigh the loss function through a method analogous to
existing work on mitigating aleatoric uncertainty in heteroscedas-
tic regression [22, 25, 57]. Thus, our model consists of two parts:
(1) our prediction module is a matrix in the factorized form𝑈𝑉⊤

with rank sparsity being induced by a nuclear norm regularization
term; (2) In parallel, our model also involves a Graph Convolutional
Neural Network 𝑓Θ with parameters Θ on the 1-hop subgraph 𝐺𝑖, 𝑗

extracted from each rating as in [53]. Unlike existing works where
the GCNN is trained directly to provide predictions, the output of
our GCNNmodule, 𝑓Θ (𝐺𝑖, 𝑗 ), is an anomaly score𝑊𝑖, 𝑗 . Although the
first layers of the GCNN are pre-trained with the rating prediction
task, our final model is trained in a fully joint manner, allowing
the representations learned by the GCNN to match the needs of
the anomaly detection task closely. Our main contributions are as
follows:

• We propose a novel Recommender Systems architecture in-
corporating deep graph anomaly detection into the nuclear
norm regularization objective. Ratings that are considered
more anomalous are then downregulated in their contribu-
tion to the loss function used to train the matrix factorization
method. This allows the MF module to be more robust to
outliers.

• Our model is trained jointly, allowing the GCNN to learn
feature representations which are relevant to the anomaly de-
tection task whilst still utilizing the supervised information
available in the ratings.

• We perform a wide range of experiments on five datasets
and demonstrate that our model outperforms the baselines
in almost all scenarios, confirming the utility of our anomaly
detection module.

2 RELATEDWORK
Moderating and estimating Uncertainty is an important topic in
Recommendation Systems and Machine Learning in general. One of
the first works to deal with natural noise in a recommender system
setting was [35]. They observe that given that all human activity
is vulnerable to error and that users usually perceive the rating
process as a tedious task, the presence of some aberrant ratings
is unavoidable. Unusually, this work focuses on purely detecting
the noise: they provided a method to determine the consistency
of an actual rating for a given user–item by comparing it to the
corresponding predicted rating. Unlike us, the authors assume the
existence of a training set with no-noise users, which was demon-
strated to be highly unrealistic [10, 21]. Furthermore, they did not
attempt to use the information obtained to improve the perfor-
mance of the recommender, which is a key aspect of our work. In
the Machine Learning and statistics literature, there has been a lot
of interest in the estimation of uncertainty and its use to improve
predictions. Heteroskedastic regression, the classic statistical frame-
work where the variance of the noise varies with the input [34],
has undergone a recent resurgence in the machine learning com-
munity [1, 22, 25, 36, 57]. In particular, our model takes inspiration

from the formulation in [22], where the key idea is to introduce, for
each predicted label 𝑦𝑖 , an uncertainty estimate 𝜎𝑖 , which is trained
in a model-free manner (treated as a parameter). The loss function∑𝑁
𝑖=1 ℓ (𝑦𝑖 , 𝑦𝑖 ) is then replaced by

∑𝑁
𝑖=1 exp(−𝜎𝑖 )ℓ (𝑦𝑖 , 𝑦𝑖 ) +

∑𝑁
𝑖=1 𝜎𝑖 .

Thus, the model is free to ignore a small number of training en-
tries in its training procedure. The benefit of this approach is that
an uncertainty estimate for each training datapoint is output as a
byproduct of the training procedure. More recently, [2] performed
a nuclear-norm-based matrix factorization method, which relies
on side information in the form of an estimate of the unreliability
of each user and item. There are several key differences between
this branch of the literature and our work: firstly, to the best of
our knowledge, our method is the first application of this joint
uncertainty estimation technique in a Recommendation Systems
Context. Secondly, whilst earlier works treat the uncertainty esti-
mates as free parameters to learn, we learn them using a Graph
Neural Networks. This has several consequences: (1) our model
is able to tap into the additional information from the one-hop
subgraph to detect anomalies, and therefore, indirectly, to make
predictions; and (2) our model is able to predict the uncertainty
rating not just of datapoints in the training set, but also for the case
of unseen entries.
Matrix Completion and Inductive Matrix Completion: The
most classic approach to RS is based on low-rank matrix factor-
ization, which aims to represent all observed entries as the inner
product between two low-dimensional feature vectors 𝑢𝑖 and 𝑣 𝑗 ,
i.e., the prediction matrix takes the form 𝑅 = 𝑈𝑉⊤ for 𝑈 ∈ R𝑚×𝑑

and𝑉 ∈ R𝑛×𝑑 . One of the earliest attempts to utilize this technique
is arguably [24]. Whilst a simple approach is to restrict the rank
explicitly by setting 𝑑 ≪𝑚,𝑛, this poses the problem of choosing
the appropriate value for 𝑑 . In particular, in the exactly observed
case, finding the appropriate value of 𝑑 is NP-hard [6, 9]. As a result,
much of the community has shifted to favouring low-rank solutions
indirectly through regularization. The most canonical approach to
this would be to use the nuclear norm ∥·∥∗ of the matrix of predic-
tions as a regularizer. The nuclear norm, which is the 𝐿1 norm of
the vector of singular values (𝐿1 Shatten norm), induces low-rank
solutions in a similar way as 𝐿1 regularization induces component
sparsity. The problem of recovering the unknown entries of an
exactly observed matrix via nuclear norm minimization has been
extensively studied in the pure mathematics community [5–7, 38].

Similarly, the use of the nuclear norm as a regularizer together
with the square loss is also well established in the literature [13, 31]
and is also well studied from a theoretical standpoint [13, 41, 42].
Inductive Matrix Completion (IMC) usually refers to a variant of the
matrix completion where additional side information is present and
it is assumed there exists a low-rank matrix𝑀 such that each rating
can be expressed 𝑥⊤

𝑖
𝑀𝑦𝑖 , where 𝑥𝑖 and 𝑦 𝑗 are the side information

feature vectors associated to user 𝑖 and item 𝑗 respectively. There is
a wide body of works establishing the theoretical properties of this
model [50, 55, 56], and a lot of interest in its practical applications
in various fields [26, 28, 32, 48]. However, in all the cases above
(both MC and IMC), the assumption is usually that the noise is i.i.d.,
which is an unrealistic assumption in practice. Thus, there is very
limited research on how to make matrix completion robust to the



presence of large perturbations on a small proportion of anomalous
entries.
Graph Neural Networks are a generalization of convolutional
neural networks, which allow information to flow from layer to
layer through the edges of a graph to produce an output. They have
been gaining a considerable amount of attention recently, includ-
ing with their use in Recommendation Systems [53], where each
rating is predicted as the output of a GNN where the input is a
bipartite graph containing the nearby ratings extracted from the
one-hop subgraph (here the nodes correspond to the users and the
items). This method achieves similar accuracy to matrix completion
methods whilst focusing only on ‘local’ information and therefore
being more somewhat robust to anomalous entries. Since the intro-
duction of that method, various simplifications which forego the
GNN structure in favor of a more simple architecture have been
provided [14, 29, 39, 51], including most famously LightGCN [19].
However, most of these methods are still black boxes and do not
yield low-rank solutions. Furthermore, LightGCN is only applicable
to the implicit feedback prediction task (predicting which entries
will be interacted with rather than predicting a numerical rating
associated with the interaction). Finally, feed-forward neural net-
works have also been used for the recommendation task. In this
case, the input is typically a one-hot encoding of the user and the
item [11, 20]. The advantages and disadvantages of such methods
are similar to those of GNNs.

3 METHODOLOGY
In this section, we present the requisite notation before thoroughly
explaining howwe have integrated uncertainty into the matrix com-
pletion optimization problem. This leads to our proposed model, de-
noted as Uncertainty-adjusted inductive matrix completion (UAIMC).
Basic notation: we write 𝑚 and 𝑛 for the number of users and
items respectively and represent the ratings as a ground truthmatrix
𝑋 ∈ R𝑚×𝑛 , where 𝑋𝑖, 𝑗 is the rating of user 𝑖 to item 𝑗 . The set of
observed entries is denoted by Ω ⊂ {1, . . . ,𝑚} × {1, . . . , 𝑛}. Thus,
(𝑖, 𝑗) ∈ Ω if the training set contains a rating from user 𝑖 to item
𝑗 . The nuclear norm is denoted by ∥·∥∗ and the Frobenius norm is
denoted by ∥·∥𝐹 .

One of the most commonly employed algorithms for matrix
factorization is nuclear norm regularization [18, 31, 44] which min-
imizes the following objective function:

minimize
𝑈 ,𝑉

1
2|Ω |

∑︁
(𝑖, 𝑗 ) ∈Ω

(
𝑋𝑖, 𝑗 − (𝑈𝑉⊤)𝑖, 𝑗

)2 + 1
2
𝜆

(
∥𝑈 ∥2𝐹 + ∥𝑉 ∥2𝐹

)
(1)

where 𝜆 ≥ 0 is a regularization parameter. It is well known [12, 31,
43] that the above regularization strategy is equivalent to regular-
izing the nuclear norm 1 (i.e. the sum of the singular values) of the
predictions, which naturally induces low-rank solutions.

Our strategy is to augment this optimization problem with a
joint uncertainty estimation module that learns an anomaly score
𝑊𝑖, 𝑗 for each individual rating from the local graph structure of the

1Indeed, ∥𝑍 ∥∗ = min
𝑈 ,𝑉 :𝑍=𝑈𝑉⊤

1
2 ( ∥𝑈 ∥2𝐹 + ∥𝑉 ∥2𝐹 ) , cf. [31]

rating:

minimize
𝑈 ,𝑉 ,Θ

1
2|Ω |

∑︁
(𝑖, 𝑗 ) ∈Ω

(
exp(−𝑊𝑖, 𝑗 )

(
𝑋𝑖, 𝑗 − (𝑈𝑉⊤)𝑖, 𝑗

)2 + 𝛼𝑊𝑖, 𝑗

)
+ 1
2
𝜆

(
∥𝑈 ∥2𝐹 + ∥𝑉 ∥2𝐹

)
+ 𝛽L𝐴𝑅𝑅,

s.t. 𝑊𝑖, 𝑗 = 𝑓Θ (𝐺𝑖, 𝑗 ) (2)

where 𝐺𝑖, 𝑗 is the enclosing one-hop subgraph around the rating
(𝑖, 𝑗) and 𝑓Θ is a jointly trained Graph Neural Network with param-
eters Θ, whose precise architecture we describe below. Here, the
term 𝛼

∑
(𝑖, 𝑗 ) ∈Ω𝑊𝑖, 𝑗 is a regularization term inspired from the het-

eroscedastic regression literature [22, 25, 36] which induces sparsity
in the uncertainty scores𝑊𝑖, 𝑗 and prevents the vanishing of the
first component of the loss from predicting infinite uncertainty for
all data points. L𝐴𝑅𝑅 is a regularization term associated with the
GCNN. The whole model is trained jointly, as illustrated in Figure 1.

The precise procedure for extracting the anomaly score 𝑊𝑖, 𝑗

from the trainable Graph Convolutional Neural Network (GCNN)
in the forward pass is described as follows. First, the enclosing
subgraph extraction procedure described in Algorithm 1 of [53] is
used to convert a rating 𝑋𝑖, 𝑗 into a one-hop subgraph 𝐺𝑖, 𝑗 , which
is processed by the graph-level GCNN to predict the final weight
𝑊𝑖, 𝑗 . The architecture of GCNN is composed of a few message-
passing (or ‘graph convolution’) layers to extract a graph-level
feature representation, followed by a multilayer perceptron: the
relational graph convolutional operator (RGCO) [40] is used as
GCNN’s message passing layers with the following form:

𝑥𝑙+1𝑖 = 𝑃𝑙0𝑥
𝑙
𝑖 +

∑︁
𝑟 ∈R

∑︁
𝑗∈N𝑟 (𝑖 )

1
|N𝑟 (𝑖) |

𝑃𝑙𝑟𝑥
𝑙
𝑗 (3)

where 𝑥𝑙
𝑖
denotes node 𝑖’s feature vector at layer 𝑙 , 𝑃𝑙0 and {𝑃𝑙𝑟 |𝑟 ∈

R} are learnable parameter matrices, R is a set for all possible
ratings, and N𝑟 (𝑖) represents a set of all items rated by a user 𝑖
with rating 𝑟 . The output of those 𝐿 stacked message-passing layers
produces a representation of the nodes in the enclosing subgraph
corresponding to the target user ℎ𝑖 and target item ℎ 𝑗 [49, 54]:

ℎ𝑖 = concat(𝑥1𝑖 , 𝑥
2
𝑖 , . . . , 𝑥

𝐿
𝑖 ) . (4)

Those representations are then aggregated to the graph-level fea-
ture vector. There are several sophisticated methods for this opera-
tion [52], but [53] empirically verified that a simple concatenation
ofℎ𝑖 andℎ 𝑗 brings a better performance for somematrix completion
tasks. Accordingly, our final weight𝑊𝑖, 𝑗 is predicted as

𝑊𝑖, 𝑗 = 𝑔𝜃 (concat(ℎ𝑖 , ℎ 𝑗 )) (5)

where 𝑔𝜃 is a multi-layer perceptron with trainable parameters
𝜃 representing𝑀 hidden layers followed by an output layer with
sigmoid activation producing a one-dimensional integer. To simplify
the notation in the further description, we group Equations (3), (4)
and (5), as one GCNN operation𝑊𝑖, 𝑗 = 𝑓Θ (𝐺𝑖, 𝑗 ) where

Θ = {𝜃 } ∪
⋃

𝑙∈{1,2,...,𝐿}

(
{𝑃𝑙0} ∪ {𝑃𝑙𝑟 |𝑟 ∈ R}

)
is the set of all trainable parameters in our GCNN. Finally, Adjacent
Rating Regularization (ARR) is included in our loss (2) to encourage
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Figure 1: UAIMC: Loss function augmented by an anomaly score predicted using GCNN from an extracted enclosing subgraph

ratings adjacent to each other to have similar parameter matrices:

L𝐴𝑅𝑅 =
∑︁

𝑖∈{1,2,..., | R |−1}

𝑃𝑟𝑖+1 − 𝑃𝑟𝑖

2
𝐹
. (6)

Our model then consists in training the full loss function (2),
jointly optimizing over the global latent representations in 𝑈 ,𝑉 as
well as the parameters of the GCNN architecture described above
to extract local graph structure.

4 EXPERIMENTS
In this section, we first describe the datasets used in our experi-
ments, then present the baselineswe compared to ourmodel. Finally,
we provide implementation details of our model and present the
results.
Datasets: we selected five stable benchmarking datasets, including
traditional ones like Movielens [17] and Douban [58]. Key charac-
teristics of each dataset, including the number of users, items, and
ratings, are summarized in Table 1.
Preprocessing: all datasets contain explicit ratings with values
from the set {1, 2, 3, 4, 5}. The Movielens 25M dataset is the only
exception with non-integer ratings. However, to maintain consis-
tency throughout our experimental setup, we rounded all ratings
up. Moreover, for all datasets, we ensured that each user-item pair
had at most one rating. If a pair had more than one rating, such
as in the Douban [58] or Amazon Video Games [33] dataset, we
retained only the most recent rating based on its timestamp. Fi-
nally, to ensure reasonable sparsity for the Amazon Video Games
dataset, we pruned the dataset by discarding the users and items
with fewer than five ratings. We randomly split all datasets into
training ratings, validation ratings, and test ratings in a 90:5:5 ratio.

4.1 Implementation Details
The optimization of the loss function (2) was optimized with au-
tomatic differentiation in Pytorch with the ADAM [23] optimizer
using cosine decay of learning rate. Since representing every ob-
served entry using a graph is a highly memory-intensive operation,
the optimization had to be done in batches. The batch size was dif-
ferent for each dataset because memory requirements are affected
by the size of the enclosing subgraph generated from the ratings.

For dense datasets like Douban and MovieLens 100K, the batch size
was 200. For Amazon Video Games, the batch size was 1000.

Parameters 𝑃 in the GCNN part of UAIMC predicting ℎ𝑖 and ℎ𝑢
were initialized by a GCNN trained to predict ratings, as described
in [53]. We adopted the suggested hyperparameters from the same
paper and set the number ofmessage-passing layers at𝐿 = 4 and 𝛽 =

0.001. The architecture of MLP contains one hidden layer with 64
dimensions, ReLU activations and dropout regularization. The MLP
parameters 𝜃 were initialized with Xavier Initialization [16]. 𝑃 and
𝜃 were trained, during the end-to-end training of UAIMC, to predict
anomaly score𝑊𝑖, 𝑗 from a feature representation extracted from a
graph. The regularization hyperparameter 𝛼 was cross-validated,
resulting in a value 𝛼 = 45.

4.2 Comparative Analysis and Results
In our study, we compared our model to five established models.
Our first baseline, UserKnn, is a widely-adopted yet straightforward
model that employs cosine similarity to compare users. The optimal
number of neighbours was determined individually for each dataset
via cross-validation.

Since our model includes a Matrix Factorization and GNN mod-
ules as sub-components in its architecture, we included both the
classic Soft-Impute (SI) algorithm [31] and the original Inductive
Graph-based Matrix Completion (IGMC) [53] in our baselines. The
corresponding hyperparameters for IGMC were adopted from the
[53]. The hyperparameters for SI were cross-validated for each
dataset independently.

In addition to UserKNN, SI, and IGMC, we also included a com-
bination of a noise correction method (NC) [45] followed by either
UserKNN or SI, labeled as NC-KNN and NC-SI, respectively. NC
was configured with 𝜅𝑢 = 𝑥𝑢 − 𝜏𝑝𝑢 and 𝑣𝑢 = 𝑥𝑢 + 𝜏𝑝𝑢 settings. To
enhance the algorithm’s sensitivity to noise, 𝜏 was set to 0.25. Con-
sequently, 2-4% of the ratings were identified as noise and adjusted
according to Algorithm 2 in [45].

The RMSE of our model, along with baseline models measured
on the test set, is shown in Table 1. Our model outperformed SI
for all datasets, and outperformed all baselines for most datasets.
However, despite diligent fine-tuning of the SI hyperparameters
for the Amazon Video Games dataset, its RMSE was worse than



Table 1: Datasets used in the experiment with reported sizes after the preprocessing and RMSE measured on test set

Users Items Ratings KNN SI IGMC NC-KNN NC-SI UAIMC
943 1682 100,000 Movielens 100K 1.0217 0.9363 0.9457 1.0225 0.9348 0.9309

59,740 33,482 526,768 Amazon Video Games 1.2898 1.3480 1.1409 1.3015 1.3470 1.3471
2,709 2,783 762,513 Douban 0.8135 0.7500 0.7778 0.8137 0.7495 0.7452
6,040 3,706 1,000,209 Movielens 1M 0.9672 0.8536 0.8895 0.9693 0.8516 0.8479

162,541 59,047 25,000,095 Movielens 25M 0.9571 0.7979 0.8427 0.9541 0.7974 0.7962

IGMC’s RMSE, and even ourmodel could notmake up the difference.
Preprocessing training subsets of datasets using NC also helps
because NC-SI performed better than SI for all processed datasets.
However, we show that UAIMC remains the preferable method
overall. This superiority could likely be attributed to its trainable
mechanism for detecting potentially unstable ratings, providing it
with a distinct advantage in terms of adaptability and accuracy.

5 CONCLUSION
We have introduced a hybrid Recommender System model, which
relies on a low-rank Matrix Factorization backbone augmented
by an anomaly detection module that taps on the representation
power of deep Graph Neural Networks to extract features and
detect anomalous ratings based on all nearby interactions. Experi-
ments on five datasets with five baselines confirm that our model
exhibits state-of-the-art performance, outperforming all baselines
in most cases. This confirms the notion that simple methods such
as low-rank MF have great potential to remain competitive with
more complex baselines as long as the sensitivity to outliers can
be mitigated. In particular, we hope that this initial foray into the
incorporation of joint uncertainty estimation modules into classic
Recommendation System methods will give rise to further research
efforts. Although we have experimentally verified that the inclusion
of ratings-wise uncertainty estimation improves the low-rank MF
backbone and outperforms it in terms of performance, it would
also be worthwhile to investigate the relationship between the er-
ror of each test sample and its associated uncertainty exp(−𝑊𝑖, 𝑗 ).
Furthermore, the uncertainty score could also be used to modulate
the exploration-exploitation tradeoff in online contexts. We leave a
more detailed study of those considerations for future work.
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