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Abstract

In recent years, vision Transformers and MLPs have demonstrated remarkable performance in image under-

standing tasks. However, their inherently dense computational operators, such as self-attention and token-mixing

layers, pose significant challenges when applied to spatio-temporal video data. To address this gap, we propose

PosMLP-Video, a lightweight yet powerful MLP-like backbone for video recognition. Instead of dense opera-

tors, we use efficient relative positional encoding (RPE) to build pairwise token relations, leveraging small-sized

parameterized relative position biases to obtain each relation score. Specifically, to enable spatio-temporal mod-

eling, we extend the image PosMLP’s positional gating unit to temporal, spatial, and spatio-temporal variants,

namely PoTGU, PoSGU, and PoSTGU, respectively. These gating units can be feasibly combined into three types

of spatio-temporal factorized positional MLP blocks, which not only decrease model complexity but also main-

tain good performance. Additionally, we improve the locality of modeling using window partitioning and enrich

relative positional relationships using channel grouping. Experimental results demonstrate that PosMLP-Video

achieves competitive speed-accuracy trade-offs compared to the previous state-of-the-art models. In particu-

lar, PosMLP-Video pre-trained on ImageNet1K achieves 59.0%/70.3% top-1 accuracy on Something-Something

V1/V2 and 82.1% top-1 accuracy on Kinetics-400 while requiring much fewer parameters and FLOPs than other

models. The code will be made publicly available.

Keywords: Positional encoding, spatio-temporal modeling, multi-layer perceptron, video recognition

1 Introduction

Neural networks have evolved from classic CNNs

He, Zhang, Ren, and Sun (2016); Hu, Shen, and Sun

(2018); Krizhevsky, Sutskever, and Hinton (2017);

Szegedy, Ioffe, Vanhoucke, and Alemi (2017) to

convolution-free Transformers Dosovitskiy et al.
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(2020); Huang et al. (2021); Z. Liu et al. (2021); Tou-

vron et al. (2021); W. Wang et al. (2021) to the more

recently self-attention-free MLPs S. Chen, Xie, Ge,

Liang, and Luo (2021); Guo et al. (2022); Hou et al.

(2022); Lian, Yu, Sun, and Gao (2021); H. Liu, Dai,

So, and Le (2021); Tolstikhin et al. (2021); Z. Wang

et al. (2022); Yu, Li, Cai, Sun, and Li (2022). Gen-

erally, vision Transformers and MLPs perform more

impressively in large-scale image processing tasks

thanks to their innate capacity for long-range depen-

dency modeling with self-attention and token-mixing.

Extending these image-based networks for video pro-

cessing, nevertheless, will dramatically increase the

model complexity and processing time. Inspired by

the image-based MLP models H. Liu et al. (2021);

Z. Wang et al. (2022), which are capable of maintain-

ing a good balance between efficiency and recognition

accuracy, this paper proposes MLP-like architectures

for efficient and effective video recognition.

A direct way of extending a 2D image model for

3D video processing is by involving the time axis in

the spatial operator. For example, C3D Tran, Bourdev,

Fergus, Torresani, and Paluri (2015) and I3D Carreira

and Zisserman (2017) extend 2D convolution to 3D

convolution. Similarly, Transformers can extend self-

attention for spatio-temporal modeling but with T 2

more pairwise computations, where T is the time-

length. Extending MLPs for video will also result in

substantial growth of tokens in the token-FC layers. To

alleviate this problem, the factorization of space and

time has been widely adopted by video architectures.

For example, P3D Qiu, Yao, and Mei (2017) decom-

poses the 3D convolution kernel as the combination

of 1D kernel + 2D kernel. Similarly, ViViT Arnab et

al. (2021), MorphMLP D.J. Zhang et al. (2022) and

MLP-3D Qiu, Yao, Ngo, and Mei (2022) divide the 3D

spatio-temporal tokens as spatial tokens and tempo-

ral tokens. In addition to the factorization mechanism,

there are also other strategies, such as temporal Lin,

Gan, and Han (2019) or token shift H. Zhang, Hao,

and Ngo (2021), and window partitioning Z. Liu et

al. (2021), for lightweight models. Despite the sig-

nificant reduction in model complexity, these models

still struggle with excessive number of parameters and

pairwise self-attention computations.

In this paper, we present PosMLP-Video, a novel

MLP-like architecture for video recognition that offers

a superior speed-accuracy trade-off compared to the

Transformers and MLPs, while being efficient and

lightly parameterized. Our PosMLP-Video is an exten-

sion of the image PosMLP Z. Wang et al. (2022) that

leverages the relative positional encoding (RPE) to

compute pairwise token relations and incorporates a

part-to-part element-wise gating mechanism as gMLP

H. Liu et al. (2021) for cross-token interactions. In

this work, we explore the potential of learnable RPE

(LRPE) in constructing spatial and temporal token

relations. We demonstrate that LRPE is highly sensi-

tive to temporal order and achieves efficient pairwise

token relation computation by searching from a learn-

able relative position bias dictionary with minimal

parameters. Specifically, only 2N − 1 position biases

are parameterized for a given N tokens, compared to

N2 for token-mixing in MLPs H. Liu et al. (2021);

Tolstikhin et al. (2021) and 3N2 for self-attention in

Transformers Arnab et al. (2021); Dosovitskiy et al.

(2020); Z. Liu et al. (2022). To further enhance posi-

tional relationships, we split tokens along the channel

dimension into multiple groups and learn a specific

relative position bias dictionary for each group. The

channel grouping operation increases the LRPE-based

model complexity to g (number of groups) times,

while its overall model complexity remains O(N) as

g << N .

To factorize space and time modeling, we design

three types of gating units: 1D positional tem-

poral gating unit (PoTGU), 2D positional spatial

gating unit (PoSGU), and 3D positional spatio-

temporal gating unit (PoSTGU). These units sepa-

rately capture axis-preferred cross-token interactions

and can be configured into various MLP-like archi-

tectures. We present three spatio-temporal factorized

video PosMLP blocks, including two cascaded blocks

(PoTGU→PoSGU and PoSGU→PoTGU) and one

paralleled block (PoTGU+PoSGU). In addition, we

also present the joint spatio-temporal video PosMLP

block (PoSTGU) as a comparison. As demonstrated in

the experiment, the spatio-temporal factorized variants

have smaller model sizes and obtain higher recogni-

tion accuracies than the joint version. Among them,

the paralleled version, PosTGU+PosSGU, achieves

the best performance. Finally, these blocks are inte-

grated into a hierarchical framework as D.J. Zhang et

al. (2022) to build up PosMLP-Video networks, which

are further improved through the adoption of a win-

dow partitioning strategy similar to that used in Swin

Transformer Z. Liu et al. (2021).

PosMLP-Video can be readily pre-trained on off-

the-shelf image datasets by replacing the temporal unit

PoTGU with a residual connection. In our experiment,

we demonstrate that, despite being pre-trained on the
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relatively smaller dataset ImagNet1K, our PosMLP-

Video can achieve comparable or even superior per-

formance to competing methods that are pre-trained

on more extensive datasets such as ImageNet21K

and Kinetics-400/600. Overall, through various video

recognition tasks, PosMLP-Video proves to be com-

petitive in recognition rate with better model effi-

ciency than the existing video CNNs, Transformers,

and MLPs.

2 Related Works

We start by introducing video neural network mod-

els, including video CNNs, Transformers and MLPs.

Then a review of position encoding in sequential data

modeling is presented.

Video CNNs extends 2D CNN for spatio-temporal

modeling. The earliest video CNNs such as C3D

Tran et al. (2015) and I3D Carreira and Zisserman

(2017) directly expand the 2D convolution to a 3D

version. They typically have hefty parameters and

high computational overheads because of the added

time axis. Later, research attempts are made to devise

lightweight convolutional operators, such as spatio-

temporal factorized convolutions Qiu et al. (2017);

Tran et al. (2018); Xie, Sun, Huang, Tu, and Mur-

phy (2018), temporal shift module (TSM) Lin et al.

(2019), group spatio-temporal network Luo and Yuille

(2019), and SlowFast network Fan, Li, Xiong, Lo,

and Feichtenhofer (2020). More recently, to enhance

CNN features with larger receptive contexts, feature

contextualization has also been studied, for example,

non-local neural network X. Wang, Girshick, Gupta,

and He (2018), temporal excitation and aggregation

(TEA) Y. Li et al. (2020), and group contextualization

Hao, Zhang, Ngo, and He (2022).

Video Transformers are developed using the

cutting-edge technology Transformer Vaswani et al.

(2017). Vision Transformers Dong et al. (2022); Doso-

vitskiy et al. (2020); Z. Liu et al. (2021); Touvron et

al. (2021); W. Wang et al. (2021); B. Wu et al. (2020);

Yuan et al. (2021) have demonstrated the promising

potential of Transformer in vision tasks. Unfortu-

nately, due to the high pairwise computational cost,

directly applying 3D self-attention to process spatio-

temporal video material is not a viable option. As a

result, video Transformers Arnab et al. (2021); Bulat,

Perez Rua, Sudhakaran, Martinez, and Tzimiropoulos

(2021); J. Chen and Ho (2022); Fan et al. (2021); Y. Li

et al. (2022); Z. Liu et al. (2022); Yan et al. (2022);

H. Zhang et al. (2021) focus their efforts mostly on

developing efficient space-time self-attention mod-

ules. ViViT Arnab et al. (2021) and TimeSformer

Bertasius, Wang, and Torresani (2021), for example,

investigate alternative factorized space-time attentions

and find superior speed-accuracy trade-offs than 3D

self-attention. To enable temporal interaction between

tokens, TokShift H. Zhang et al. (2021) employs the

zero-parameter and zero-FLOPs channel shift oper-

ation. MViT Fan et al. (2021) leverages multi head

pooling attention to achieve multiscale hierarchical

feature aggregation while concurrently reducing com-

putation cost. Video Swin Z. Liu et al. (2022), on

the other hand, proposes to reduce the computation of

3D self-attention by slicing the space-time area into

smaller windows while preserving spatio-temporal

locality.

Video MLPs. In recent years, vision MLPs

S. Chen et al. (2021); Guo et al. (2022); Hou et

al. (2022); Lian et al. (2021); H. Liu et al. (2021);

Tolstikhin et al. (2021); Z. Wang et al. (2022);

Yu et al. (2022) merely utilize token-mixing and

channel-mixing MLP to achieve cross-token and

cross-channel interaction, respectively. Particularly,

the token-mixing (i.e., token-FC) layer is expected to

replace the self-attention layer in a Transformer. When

processing video data, however, a huge number of

MLP layers might still result in dense parameters and

computations. The existing video MLPs include Mor-

phMLP D.J. Zhang et al. (2022) and MLP-3D Qiu et

al. (2022). MorphMLP designs two types of MLP lay-

ers, i.e., MorphFCs and MorphFCt, where MorphFCs

captures the spatial semantics by gradually increas-

ing the token receptive field while MorphFCt achieves

long-range temporal dependency by applying a linear

projection to the temporal concatenated feature chunk.

The space-time factorization can significantly reduce

the computation cost. MLP-3D decomposes the token

mixing MLP along height, width and time axes and

aggregates their outputs using weighted summation.

To further improve model efficiency, they suggest a

grouped time mixing operation that can also achieve

parameter sharing across projections.

Position encoding in sequential data modeling.

The order information is important for understand-

ing sequential data such as natural language and

video. However, since self-attention is typically order-

independent, Transformers commonly utilize the posi-

tion encoding (PE) to maintain order information

Raffel et al. (2020). Two widely used PE methods are

absolute position encoding (APE), e.g., the sinusoidal

position signal Vaswani et al. (2017) and learned
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position embeddings, and relative position encoding

(RPE), e.g., learnable RPE (LRPE) Shaw, Uszkoreit,

and Vaswani (2018) and quadratic PE (QPE) Cordon-

nier, Loukas, and Jaggi (2019). APE is usually used

as a simple way of adding the signal or embedding to

the corresponding token. Many text and vision Trans-

formers Arnab et al. (2021); J. Chen and Ho (2022);

Dosovitskiy et al. (2020); Fan et al. (2021); Vaswani

et al. (2017); J. Wang and Torresani (2022); Yan et

al. (2022); Yang et al. (2022) has demonstrated its

positive effect on sequential modeling. In contrast to

APE, RPE computes the relative position embeddings

based on the relative position offset. Since the position

offset exactly overlaps the key-query offset of self-

attention, it is a common method for collapsing the

embedding to a learnable scalar and adding it to the

corresponding attention score, which is also the prin-

ciple of LRPE. Compared with APE, RPE regularly

provides more significant performance improvement

for Transformers d’Ascoli et al. (2021); Y. Li et al.

(2022); Z. Liu et al. (2021, 2022); Shaw et al. (2018);

Z. Wang et al. (2022); C.-Y. Wu et al. (2022) in lan-

guage and vision tasks. In addition, despite the lack

of explicit use of PE in CNNs and MLPs, it has been

demonstrated that both can capture position informa-

tion implicitly in their model learning Islam, Kowal,

Jia, Derpanis, and Bruce (2021a, 2021b); Kayhan and

Gemert (2020); Z. Wang et al. (2022). These find-

ings motivate us to develop a pure RPE-based operator

for efficiently processing time-order-dependent video

data.

3 Approach

In this section, we first introduce LRPE. Then, we

elaborate on the design details of the LRPE-based spa-

tial and temporal gating units, and the four types of

video PosMLP blocks. Finally, we stack the video

PosMLP blocks hierarchically to construct a set of

PosMLP-Video network backbones.

3.1 Learnable Relative Position Encoding

RPE computes the pairwise relationships between

tokens based on the position offset. Following works

He, Gkioxari, Dollár, and Girshick (2017); Z. Liu

et al. (2021, 2022); Raffel et al. (2020), a relatively

efficient learnable RPE (LRPE) is introduced to deter-

mine the relevance score of each position pair by using

a learned relative position bias dictionary. The rel-

ative position offset of a token pair totally dictates

the positional bias “choosing”. Therefore, LRPE is

order-sensitive. We verify the sensitivity in the experi-

ment. LRPE is often utilized to enhance self-attention.

Given a 2D M × M image window as an example,

the enhanced self-attention in Z. Liu et al. (2021) is

calculated for each head as follows

Attention(Q,K,V) = Softmax

(

QKT

√
d

+R

)

V,

(1)

where Q,K,V ∈ R
M2×d denote the query, key and

value matrices in a transformer, d is the feature dimen-

sion, M2 is the total number of tokens in a 2D window,

and R ∈ R
M2×M2

is the relative position bias matrix.

Specifically, each element rij in R is searched from

the learned bias dictionary P ∈ R
(2M−1)×(2M−1)

indexed by the position offset.

3.2 Positional Spatial and Temporal

Gating Units

Utilizing the aforementioned LRPE approach, we

design three positional spatial and temporal gating

units for video data modeling: PoTGU (temporal),

PoSGU (spatial), and PoSTGU (spatio-temporal). To

capture various axial relations, they individually take

into account the 1D temporal (PoTGU), 2D spatial

(PoSGU), and 3D spatio-temporal (PoSTGU) vari-

ances.

The computation pipeline of the three units fol-

lows image PosMLP Z. Wang et al. (2022) and gMLP

H. Liu et al. (2021). Formally, we have the general

formula as

Z = RX1 ⊙X2, (2)

where X1,X2 ∈ R
M2× d

2 are two independent parts

of X along the channel dimension, Z ∈ R
M2× d

2 is the

output with cross-token interactions, and ⊙ denotes

element-wise multiplication. Note that, for the sake of

simplicity, we omit the bias term in the equation, as

well as in the subsequent ones. Here, R plays a similar

role as the linear projection weight matrix of gMLP’

spatial gating unit (SGU) that contracts information

over tokens. But, R further considers the relative posi-

tion differences between tokens which makes it more

suitable for sequential dependency modeling. In the

experiment, we verify this by replacing all position

units with gMLP’s units and observing significant

performance drops.

In PosMLP-Video, all position units act on the

3D visual window. Firstly, let’s denote the token

embeddings of a 3D window as V ∈ R
T×H×W×C ,

4
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Fig. 1 Positional spatial and temporal gating units.
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Fig. 2 The schema of the four factorized spatio-temporal PosMLP blocks. The channel expansion ratio re is set to 2 and 4 in our implemen-

tation.

where T,H/W,C are the window-time, window-

height/width and channel dimension, respectively. We

first split V into V1 ∈ R
T×H×W×C

2 and V2 ∈
R

T×H×W×C
2 , and then divide each into g feature

groups: {V1
1,V

2
1, · · · ,Vg

1} ∈ R
T×H×W× C

2g and

{V1
2,V

2
2, · · · ,Vg

2} ∈ R
T×H×W× C

2g . The channel

grouping strategy follows Hao et al. (2022); Z. Wang

et al. (2022), which is to increase the multiformity of

relative position biases. Below, we present the designs

of PoTGU, PoSGU, and PoSTGU in detail.

PoTGU aims to model the 1D temporal relation

between tokens, as shown in Figure 1(a). PoTGU

parameterizes g temporal relative position dictio-

naries {P1
T ,P

2
T , · · · ,P

g
T } ∈ R

2T−1, based on

which we build g temporal relative position matrices

{R1
T ,R

2
T , · · · ,R

g
T } ∈ R

T×T following the LRPE

principle. Specifically, for the i-th token group (i.e.,

i ∈ [1, 2, · · · , g]) and j-th spatial position (i.e., j ∈
[1, 2, · · · , HW ]), the refined output token feature ZT

is computed as

Z
i,j
T = Ri

TV
i,j
1 ⊙V

i,j
2 , (3)

where V
i,j
1 ,Vi,j

2 ,Zi,j
T are with the size of T × C

2g .

PoSGU, in contrast to PoTGU, pays attention

to the 2D spatial relation between tokens, as shown

in Figure 1(b). Similarly, PoSGU learns g spatial

relative position dictionaries {P1
S ,P

2
S , · · · ,P

g
S} ∈

R
(2H−1)×(2W−1), where there is a total of (2H−1)×
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(2W − 1) relative position biases in each group. By

indexing the position offset, we can construct g spa-

tial relative position matrices {R1
S ,R

2
S , · · · ,R

g
S} ∈

R
HW×HW . For each frame, the spatial refined token

embeddings ZS can be calculated as

Z
i,l
S = Ri

SV
i,l
1 ⊙V

i,l
2 , (4)

where V
i,l
1 ,Vi,l

2 ,Zi,l
S ∈ R

HW× C
2g , i ∈ [1, 2, · · · , g]

and l ∈ [1, 2, · · · , T ].
PoSTGU treats the 3D feature tensor as THW

spatio-temporal tokens and captures their corre-

lations from the spatio-temporal view. Specifi-

cally, by employing LRPE, PoSTGU also con-

structs the g spatio-temporal relative position matrices

{R1
ST ,R

2
ST , · · · ,R

g
ST } ∈ R

THW×THW based on g
learned spatio-temporal relative position dictionaries

{P1
ST ,P

2
ST , · · · ,P

g
ST } ∈ R

(2T−1)×(2H−1)×(2W−1).

The final refined token embedding matrix ZST is

hereby computed as

Zi
ST = Ri

STV
i
1 ⊙Vi

2, (5)

where Vi
1,V

i
2,Z

i
ST ∈ R

THW× C
2g , and i ∈

[1, 2, · · · , g]. Figure 1(c) shows the pipeline.

Complexity Comparison. We list the parameters

counting of gMLP’s SGU and our positional units in

Table 1. It can be found that the proposed PoTGU/-

PoSGU/PoSTGU have much fewer parameters than

SGU. For example, by setting the 3D window size as

{T = 16, H = 7,W = 7} and g = 8, PoTGU,

PoSGU and PoSTGU have 248, 1,352 and 41,912

parameters compared to 615,440 of SGU. In the com-

parison with self-attention, since there is no pairwise

computation in position units, our PosMLP-Video also

show much lower FLOPs than video Transformers as

demonstrated by the experiment.

Table 1 Comparison of parameters between gMLP’s SGU and our

position variants.

Module Params.
SGU (gMLP) THW × (THW + 1)
PosTGU g × (2T − 1)
PosSGU g × (2H − 1)× (2W − 1)
PosSTGU g × (2T − 1)× (2H − 1)× (2W − 1)

3.3 Video PosMLP Blocks

PoTGU/PoSGU/PoSTGU model the cross-token

interaction. To further enhance the cross-channel

interaction, we follow gMLP H. Liu et al. (2021)

and add channel FC layer before and after the pos

gating unit, resulting in three corresponding PosMLP

modules. In practice, they have a similar network

structure, as shown in Figure 2. Specifically, we first

add a LayerNorm and a channel FC layer followed

by GELU activation before the pos unit. The channel

is expanded with a ratio re in this FC layer. Then

another channel FC layer is put after the pos unit to

reshape the channel size to C.

To achieve the modeling of spatial-temporal

interactions among the tokens in a 3D view, we

introduce three factorized spatio-temporal PosMLP

blocks by combining PoTGU and PoSGU, includ-

ing two cascaded blocks: PoTGU→PoSGU and

PoSGU→PoTGU, and one paralleled block:

PoTGU+PoSGU. As a comparison, we also present

the joint spatio-temporal PosMLP block by using

PoSTGU. Their architectural designs are shown in

Figure 2. Particularly, the factorized spatio-temporal

design shares a similar spirit with the existing works

in video CNNs Hao et al. (2022); Qiu et al. (2017);

Xie et al. (2018), Transformers Arnab et al. (2021);

Bertasius et al. (2021) and MLPs Qiu et al. (2022);

D.J. Zhang et al. (2022). As demonstrated in their

experiments as well as ours, the factorized archi-

tectures can achieve a preferable balance between

accuracy and efficiency.

3.4 PosMLP-Video Architecture

We adopt the hierarchical architecture design used by

MorphMLP D.J. Zhang et al. (2022) as the basic net-

work framework. Figure 3 illustrates the overall archi-

tecture. Particularly, the patch embedding block at the

top of the model receives the input of a raw video

and outputs token embeddings. The spatial downsam-

pling layers between the four stages are to reduce

the spatial resolution with a ratio of 2. Following

Z. Wang et al. (2022), we utilize the spatial window

partitioning strategy on stages 1-4 to produce multiple

non-overlapping token embedding windows, on which

the video PosMLP blocks act. The used window sizes

are 14×14 for stages 1-3 and 7×7 for the last stage 4.

Two obvious advantages of using window partitioning

are: (1) small windows enhance the locality of mod-

eling Z. Liu et al. (2021, 2022); and (2) parameters
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Fig. 3 Overall architecture of PosMLP-Video.

GELU
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kernel (1,3,3)
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LayerNorm
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Input

(a) Patch Embedding Module (b) Spatial Downsampling Module

Fig. 4 Architecture of patch embedding and spatial downsampling

modules.

of a video PosMLP block are shared among windows,

significantly reducing the model complexity.

We provide three PosMLP-Video variants, includ-

ing PosMLP-Video-S (small), PosMLP-Video-B

(base) and PosMLP-Video-L (large). Their architec-

ture settings are listed in Table 2. Their differences

lie in re and layer numbers of stages 1-4. It is worth

noting that the temporal length T keeps unchanged

throughout the network, which is different from Mor-

phMLP and MLP-3D that reduce T to T
2 after patch

embedding. We find this setting can result in much

better performance.

We present the architecture details of the patch

embedding and the spatial downsampling modules of

PosMLP-Video. As shown in Figure 4(a), the patch

embedding module consists of two standard convolu-

tion layers with the kernel (1,3,3) and stride (1,2,2). A

batchnorm layer (BatchNorm3D) is added after each

convolution. The activation GELU is inserted between

the two convolution layers. The spatial downsampling

module is implemented as a standard convolution

layer with the kernel (1,3,3) and stride (1,2,2) followed

by a LayerNorm, as shown in Figure 4(b).

Table 2 Architecture settings for Stage 1-4 of PosMLP-Video

variants.

Models re
Layer numbers Layer channels

{L1, L2, L3, L4} {C, 2C, 3C, 4C}
PosMLP-Video-S 2 {3, 4, 9, 3}

{72, 144, 288, 576}PosMLP-Video-B 2 {4, 6, 15, 4}
PosMLP-Video-L 4 {4, 6, 15, 4}

Our PosMLP-Video can also benefit from the

pretraining on large-scale image datasets like Ima-

geNet1K. Since only the PoTGU and PoSTGU need

to perform on the time axis, we can simply replace

them with a residual connection to facilitate image

modeling. When dealing with videos, the only param-

eters, i.e., the relative position biases, of PoTGU and

PoSTGU will be randomly initialized.

4 Experiment

We examine our PosMLP-Video models on video

classification tasks, for both coarse-grained and fine-

grained video actions. Following prior art, top-1 and

top-5 accuracies (%) are adopted to evaluate the per-

formance. Parameters and FLOPs are also reported to

show the model complexity.

4.1 Datasets

We use 5 standard video benchmark datasets,

including Kinetics-400 (K400) Kay et al. (2017),

Something-Something V1 (SSV1) and V2 (SSV2)

Goyal et al. (2017), Diving48 Y. Li, Li, and Vascon-

celos (2018) and EGTEA Gaze+ Y. Li, Liu, and Rehg

(2018). Kinetics-400 is a large-scale video dataset,

containing ∼246k/20k training/validation videos for

400 human action classes. The actions in Kinetics-

400 are relatively coarse and prefer spatial context
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Loss Top-1 ErrorLoss

Fig. 5 Training loss and top-1 error curves of PosMLP-Video-S with different group numbers g on SSV1.

Table 3 Performance comparison with different video PosMLP

blocks on SSV1 dataset. The results are obtained without

pertaining except the last one. TGU is a temporal version of SGU.

“IN-1K” means that the model is pretrained on ImageNet1K.

Video PosMLP Block Params GFLOPs Top-1 Top-5

PoSGU 7.95M 25.08 6.25 20.64

PoTGU 7.65M 20.32 25.44 51.36

PoSTGU 17.19M 103.09 40.89 70.55

PoTGU→PoSGU 13.51M 40.49 44.11 74.70

PoSGU→PoTGU 13.51M 40.49 42.40 72.36

PoTGU+PoSGU 13.51M 40.49 46.31 75.34

SGU+TGU (gMLP) 13.83M 40.76 42.94 72.17

PoTGU+PoSGU (IN-1K) 13.51M 40.49 52.24 78.96

Table 4 Performance comparison with different group numbers

g on SSV1 dataset. The used window size is the default setting.

The results are obtained without pretraining.

g Stage 1-4 Params GFLOPs Top-1 Top-5

(1, 1, 1, 1) 13.20M 40.49 43.90 73.19

(8, 8, 8, 8) 13.24M 40.49 45.62 74.74

(4, 8, 16, 32) 13.35M 40.49 44.87 74.53

(8, 16, 32, 64) 13.51M 40.49 46.31 75.34

(12, 24, 48, 96) 13.67M 40.49 45.96 75.15

to temporal context. Something-Something V1 and

V2 cover 174 fine-grained human performing activi-

ties and require temporal modeling more. Particularly,

V1 is the smaller version and has ∼86K/12K train-

ing/validation videos, while the larger V2 contains

∼169k/25k videos. Diving48 is another fine-grained

video dataset, consisting of ∼18k trimmed video

clips of 48 unambiguous dive sequences. Here, the

newly released dataset version (V2) is used. EGTEA

Gaze+ is a first-person video dataset covering 106

fine-grained daily action categories, where the split-

1 that contains ∼8.3k/3.8k training/validation clips is

selected for use.

4.2 Implementation Details

The implementation of PosMLP-Video variants is

built upon the PySlowFast Fan et al. (2020) repos-

itory and mostly follows MViT Fan et al. (2021)

and MorphMLP D.J. Zhang et al. (2022) for training

and validation protocols. All experiments are run on

servers with 4×3090 or 4×A100 GPUs.

Pretraining. As explained in Section 3.4, our

PosMLP-Video variants can be pre-trained on the

image dataset. The pertaining settings follow Z. Wang

et al. (2022). After obtaining the pertained weights,

we can easily use them to initialize most of the

video model layers and blocks except for the rela-

tive position biases of PoTGU and PoSTGU. In the

experiment, we adopt ImageNet1K for pertaining and

observe comparable or even better performance than

those pre-trained on the larger-scale ImageNet21K.

Training. For all the five datasets, each frame of a

video is firstly resized to 256× 320 and then cropped

to 224 × 224 as model input. The temporal length

T is set to 16/24. Particularly, for Kinetics-400, the

dense sampling strategy is adopted to select T video

frames, and the training configurations are set as fol-

lows: warm-up epoch 10, total epoch 60, batch size 8

per GPU, and base learning rate 2e-4 and weight decay

0.05 for AdamW optimizer. The random horizontal

flip is also adopted. Stochastic depth rates are set to

0.05/0.1/0.2 for S/B/L. For other datasets, the sparse

sampling strategy is used. Most of the training set-

tings are the same with Kinetics-400, except warm-up

epoch 5 and base learning rate 4e-4. Here, stochastic

depth rates are set to 0.1/0.3/0.5 for S/B/L.

Inference. For Kinetics-400, we uniformly sample

four clips from each test video with three crops Feicht-

enhofer, Fan, Malik, and He (2019). While, for other

datasets, we only extract one clip with each having one

or three crops. The form of “A × B × C” denotes A
frames (T ), B crops and C clips in the tables.
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Table 5 Performance comparison with different window sizes (time length (T )×space (H,W )) on SSV1 dataset. The used g is

(8, 16, 32, 64) for Stage 1-4. The results are obtained without pretraining.

Window size Stage (S) 1-4 Params GFLOPs Top-1

8× 142 (S1-3),8× 72 (S4) 13.50M 20.38 42.33

16× 72 (S1-4) 13.30M 36.64 44.21

16× 142 (S1-S3),16× 72 (S4) 13.51M 40.49 46.31

16× 282 (S1), 16× 142 (S2-3),16× 72 (S4) 13.57M 46.86 46.29

Table 6 Performance comparison of PosMLP-Video-S

on shuffling frame inference on K400 and SSV2 datasets.

Dataset Shuffling Top-1 Top-5

SSV2
68.1 91.3

17.1 (-51.0) 44.2 (-47.1)

K400
78.5 93.9

58.6 (-19.9) 81.0 (-12.9)

Table 7 Performance comparison of GQPE and LRPE using

PosMLP-Video-S on SSV1 dataset. The results are obtained

without pertaining.

RPE method Params GFLOPs Top-1 Top-5

GQPE 13.19M 40.56 38.06 67.45

LRPE (used) 13.51M 40.49 46.31 75.34

4.3 Ablation Study

In the ablation study, we show the examinations of dif-

ferent hyperparameters and settings, including video

PosMLP block variants, group numbers g, window

sizes and RPE methods, using PosMLP-Video-S on

the Something-Something V1 dataset. All the results

are obtained with 16× 1× 1 frames.

Video PosMLP block variants. Firstly, we com-

pare the different PosMLP block variants, including

both single pos-based versions and combined ver-

sions, with g=(8, 16, 32, 64) in Stage 1-4 and the

default window size setting. As shown in Table 3,

the single temporal PoTGU can obtain higher top-

1 accuracy than the single spatial PoSGU, while

the spatio-temporal PoSTGU surpasses PoTGU and

PoSGU. Since categorizing videos in SSV1 requires

specific spatio-temporal relation modeling, this result

trend is expected. Also, the three combined versions

consistently outperform the single versions. Among

them, the paralleled PoTGU+PoSGU achieves the best

performance. In addition, we replace the position units

in each block with gMLP’s spatial SGU and temporal

TGU (extended from SGU) and observe a significant

top-1 accuracy drop (3.37%) and higher computa-

tion cost than ours. In the last line, we also provide

the results of PoTGU+PoSGU with pre-training on

ImageNet1K, improving the top-1 accuracy of w/o

pre-training from 46.31% to 52.24%.

Different group number g. Secondly, we exam-

ine the impact of group number g. We can find in

Table 4 that increasing g will monotonically raise

the model size (parameters) while boosting perfor-

mance significantly. This is mainly because that larger

g leads to more relative position bias dictionaries and

also enlarges the model capacity for diverse spatio-

temporal relations. In Figure 5, We also show the

training loss and top-1 error curves. It can be observed

that multi-group (i.e., g > 1) settings have lower

training losses and higher convergence speeds than

single-group one (red line). However, the performance

does not increase without bound. When increasing g
to (12, 24, 48, 96), the performance is relatively lower

than that with (8, 16, 32, 64). Finally, considering the

trade-off between model size and accuracy, we set g to

(8, 16, 32, 64) for stages 1-4.

Different window size. Thirdly, we compare the

performance of different window sizes. Window parti-

tioning is used to split the whole spatio-temporal video

clip into several non-overlapped parts, whose effect

has been demonstrated by Swin Transformers Z. Liu

et al. (2021, 2022). As shown in Table 5, we find that

(1) although temporal partitioning can greatly reduce

the computation cost (FLOPs), e.g., T = 8 compared

with T = 16, it leads to noticeable performance degra-

dation (42.33% vs. 46.31%), and (2) larger spatial

window size results in more parameters and FLOPs

while performance does not show monotonic increas-

ing. In other words, the large temporal receptive field

is more important for action recognition on SSV1.

By considering the complexity-accuracy trade-off, we

select 16 × 14 × 14 for Stage 1-3 and 16 × 7 × 7 for

Stage 4 as the ultimate window size settings.

Frame shuffling. Finally, we verify the order sen-

sitivity of our PosMLP-Video model by testing on

randomly shuffled frames. It should be noted that

the model training does not use random frame shuf-

fling. As observed from Table 6, there are significant
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Fig. 6 PoTGU+PoSGU versions. “V1” is the used version of PosMLP-Video. “V2” adopts the channel splitting before inputting into the pos

units and then concatenates the outputs of PoTGU and PoSGU along the channel dimension. “V3” separately inputs the feature into PoTGU and

PoSGU and then concatenates their outputs along the channel dimension. In contrast to V3, “V4” elementwisely adds the outputs of PoTGU

and PoSGU.

Table 8 Performance comparison of different PoTGU+PoSGU

versions using PosMLP-Video-S on SSV1 dataset. The results

are obtained without pertaining.

Versions re Params GFLOPs Top-1 Top-5

V1 (used) 2 13.51M 40.49 46.31 75.34

V2 4 13.49M 40.35 45.92 75.43

V3 2 9.80M 30.46 43.98 73.34

V4 2 7.96M 25.52 42.52 72.31

performance drops with frame shuffling on both two

datasets, e.g., -51.0 (Top-1) on SSV2 and -19.9 (Top-

1) on K400. This demonstrates that the proposed

positional module can successfully capture temporal

order information. The larger performance drop on

SSV2 than that on K400, on the other hand, indicates

that videos of SSV2 are more sensitive to temporal

order than videos of K400.

LRPE vs. GQPE. In addition to LRPE, we also

test the performance of another RPE method called

GQPE. Table 7 compares the performance of both

methods, and it was observed that LRPE significantly

outperforms GQPE. Despite having fewer parameters,

with the model complexity of GQPE being O(1) com-

pared to O(N) of LRPE, the model capacity of GQPE

is probably constrained. This is due to the fact that

the RPE-based relation score in GQPE is determined

solely by the relative position and is not learnable.

PoTGU+PoSGU variants. In Figure 6, we

present four PoTGU+PoSGU block versions (V1-4).

These versions incorporate various feature operations

such as channel splitting (V2), channel concatenation

(V2, V3), and elementwise addition (V4). By adjust-

ing the value of re, the model size can be conveniently

controlled. The experimental results, as presented in

Table 8, suggest that a larger model size (i.e., more

parameters) generally leads to better recognition per-

formance. Interestingly, the use of channel splitting

and concatenation (V2) does not improve the Top-

1 accuracy, despite having similar model sizes when

compared to V1. Conversely, although elementwise

addition (V4) reduced the channel length significantly,

it also led to a degradation in recognition accuracy, as

observed in V3 and V4.

4.4 Comparison with State-of-the-Art

We compare PosMLP-Video networks with vari-

ous state-of-the-art networks, including video CNNs,

Transformers and MLPs, on many video recognition

tasks. All the competing methods adopt RGB frames

as input and are pre-trained on ImageNet1K (IN-

1K), ImageNet21K (IN-21K), Kinetics-400 (K400),

Kinetics-600 (K600) or None.

Something-Something V1&V2. The two datasets

share the same human-performing action categories

and only differ in scale. Their video actions focus

on more temporal relationships, for example, “Putting

something ...”, “Lifting something ...” and “Pretend-

ing to ...”. Tables 9 and 10 show the performance

comparison on V1 and V2, respectively. On the

smaller SSV1, our PosMLP-Video-S achieves a higher
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Table 9 Comparison of performance on Something-Something V1 dataset.

Method Pretrain Params Fr.×Cr.×Cl. GFLOPs Top-1 Top-5

CNNs

TSM Lin et al. (2019)

IN-1K

23.9M 16×3×2 197.4 48.4 78.1

SmallBig X. Li, Wang, Zhou, and Qiao (2020) — 16×3×2 — 50.0 79.8

STM Jiang, Wang, Gan, Wu, and Yan (2019) 24.0M 16×3×10 999 50.7 80.4

TEINet Z. Liu et al. (2020) 30.4M 16×3×10 1980 51.0 —

MSNet Kwon, Kim, Kwak, and Cho (2020) 24.6M 16×1×1 67 52.1 82.3

TEA Y. Li et al. (2020) — 16×3×10 2100 52.3 81.9

CT-NET K. Li, Li, Wang, Wang, and Qiao (2021) — 16×3×2 447 53.4 81.7

TDN L. Wang, Tong, Ji, and Wu (2021) 26.1M 16×1×1 72.0 53.9 82.1

GC-TDN Hao et al. (2022) 27.4M 16×1×1 73.4 55.0 82.3

MLPs

MLP-3D-S Qiu et al. (2022)

IN-1K

74.1M 64×3×1 324 55.2 83.2

MLP-3D-B Qiu et al. (2022) 88.3M 64×3×1 549 56.2 83.5

MLP-3D-L Qiu et al. (2022) 149.4M 64×3×1 1008 56.5 83.5

MorphMLP-S D.J. Zhang et al. (2022) 46.9M 16×3×1 201 53.9 81.3

MorphMLP-B D.J. Zhang et al. (2022) 67.6M 16×3×1 294 55.5 82.4

MorphMLP-B D.J. Zhang et al. (2022) 68.5M 32×3×1 591 57.4 84.5

PosMLP-Video-S

IN-1K

13.5M 16×3×1 122 55.6 82.1

PosMLP-Video-B 19.0M 16×3×1 177 58.2 84.6

PosMLP-Video-L 35.4M 16×3×1 338 59.0 84.3

Top-1 accuracy of 55.6% compared to all the com-

peting video CNNs (48.4%-55.0%). In comparison

with other video MLPs, such as MorphMLP and

MLP-3D, PosMLP-Video variants (S, B, L) consis-

tently outperform them and spend much lower com-

putations. For example, PosMLP-Video-L achieves

the highest Top-1 accuracy of 59.0% with only

35.4M parameters/338G FLOPs, which significantly

surpasses MLP-3D-L’s 56.5% with 149.4M parame-

ters/1008G FLOPs and MorphMLP-B’s 57.4% with

68.5M parameters/591G FLOPs. Particularly, as our

PosMLP-Video has a similar backbone architecture

with MorphMLP, the notable performance improve-

ments further demonstrate the superiority of the pro-

posed positional regimes for spatio-temporal relation

modeling.

On the larger SSV2, PosMLP-Video variants con-

sistently outperform video CNNs, Transformers and

MLPs. In particular, PosMLP-Video-L pre-trained on

IN-1K achieves the highest Top-1 accuracy of 70.3%

with 16 × 3 × 1 frames input, which even outstrips

the video Transformers such as X-ViT, RViT-XL,

MFormer-L, MViTv2-S and Swin-B that are pra-

trained on the larger-scale datasets (e.g., IN-21K,

K400 and K600) and use more frames (e.g., 32×3×1
and 64×3×1/3) as input. More importantly, PosMLP-

Video-L has only 35.4M parameters, which is 40%

of Swin-B. The FLOPs of PosMLP-Video-L is 338G,

which is only 35% of Swin-B. Moreover, compared

to the video MLPs, i.e., MLP-3D and MorphMLP,

our PosMLP-Video, regardless of network versions,

consistently outperforms them with large performance

improvements (0.2%-2.5%) while requiring much less

computational costs (about 18%-51% parameters and

33%-60% FLOPs).

Kinetics-400. K400 is a large-scale video recog-

nition dataset, whose video categories depend not

so much on temporal relations. We list the per-

formance comparison with the SOTA methods in

Table 11. Similar to observations as on SSV1 and

SSV2, PosMLP-Video models perform consistently

better than the competing video CNNs such as GC-

TDN, SlowFast101+NL and X3D-XXL. By compar-

ing with Transformer-based models, our PosMLP-

Video-L pre-trained on ImageNet-1K achieves the

best Top-1 accuracy of 82.1% with 24× 3× 4 frames.

Compared to MTV-B which obtains the second best

81.8% Top-1 accuracy pre-trained on ImageNet-

21K and has 310M parameters and 4790 GFLOPs,

PosMLP-Video-L only requires 35.5M parameters

and 2037 GFLOPs. In other words, the model size of

our PosMLP-Video-L is as small as 11% of MTV-

B’s, and the computational cost is only its 43%.

Also, compared to MorphMLP and MLP-3D, the

proposed PosMLP-Video obtains higher recognition

performance and requires less computational burden.
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Table 10 Comparison of performance on Something-Something V2 dataset.

Method Pretrain Params Fr.×Cr.×Cl. GFLOPs Top-1 Top-5

CNNs

TSM Lin et al. (2019)

IN-1K

23.9M 16×1×2 131.6 63.1 88.2

SlowFast Feichtenhofer et al. (2019) 53.3M 40×3×2 636 63.1 87.6

SmallBig X. Li et al. (2020) — 16×3×2 — 63.8 88.9

STM Jiang et al. (2019) 24.0M 16×3×10 999 64.2 89.8

TEINet Z. Liu et al. (2020) 30.4M 16×1×10 990 64.7 —

MSNet Kwon et al. (2020) 24.6M 16×1×1 67 64.7 89.4

TEA Y. Li et al. (2020) — 16×3×10 2100 65.1 89.9

TDN L. Wang et al. (2021) 26.1M 16×1×1 72.0 65.3 89.5

CT-NET K. Li et al. (2021) — 16×3×2 447 65.9 90.1

GC-TDN Hao et al. (2022) 27.4M 16×1×1 73.4 65.9 90.0

Transformers

TimeSformer-HR Bertasius et al. (2021) IN-21K 121.4M 16×3×1 5109 62.5 —

ViViT-L/16×2 Arnab et al. (2021) IN-21K 352.1M 16×3×4 11892 65.4 89.8

DVT J. Wang and Torresani (2022) IN-1K 73.9M 16×3×1 385 66.7 90.8

X-ViT Bulat et al. (2021) K600 92.0M 16×3×1 850 67.2 90.8

MM-ViT J. Chen and Ho (2022) IN-21K 158.1M 16×3×1 4530 67.4 90.6

MTV-B Yan et al. (2022) IN-21K 310M 32×3×1 963 67.6 90.1

MViT-B Fan et al. (2021) K400 36.6M 64×3×1 1365 67.7 90.9

RViT-XL,64×3 Yang et al. (2022) K400 107.7M 64×3×3 3990 67.9 91.2

ORViT MF Herzig et al. (2022) IN-21K+K400 148M 16×3×1 405 67.9 90.5

MFormer-L Patrick et al. (2021) IN-21K+K400 — 32×3×1 3555 68.1 91.2

MViTv2-S,16×4 Y. Li et al. (2022) K400 34.4M 16×3×1 194 68.2 91.4

Swin-B Z. Liu et al. (2022) K400 88.8M 16×3×1 963 69.6 92.7

MLPs

MLP-3D-S Qiu et al. (2022)

IN-1K

74.1M 64×3×1 324 67.2 91.3

MLP-3D-M Qiu et al. (2022) 88.3M 64×3×1 549 68.0 91.7

MLP-3D-L Qiu et al. (2022) 149.4M 64×3×1 1008 68.5 92.0

MorphMLP-S D.J. Zhang et al. (2022) 46.9M 16×3×1 201 67.1 90.9

MorphMLP-B D.J. Zhang et al. (2022) 67.6M 16×3×1 294 67.6 91.3

MorphMLP-B D.J. Zhang et al. (2022) 68.5M 32×3×1 591 70.1 92.8

PosMLP-Video-S

IN-1K

13.5M 16×3×1 122 68.1 91.3

PosMLP-Video-B 19.0M 16×3×1 177 70.1 92.5

PosMLP-Video-L 35.4M 16×3×1 338 70.3 92.3

Diving48. It contains unambiguous dive

sequences. Dives entail several stages and necessitate

long-range temporal modeling. Table 12 provides

a performance comparison with other compet-

ing methods. The results show that our proposed

PosMLP-Video-L model with 16 frames attains the

highest Top-1 accuracy of 88.9% among the com-

peting methods, which include both video CNNs

and Transformers. Particularly, the proposed model

outperforms the CNN-based TFCNet’s accuracy of

88.3% by 0.6% and the Transformer-based ORViT

TimeSformer’s accuracy of 88.0% by 0.9%.

EGTEA Gaze+. This dataset consists of videos

showing cooking activities that involve intricate

spatio-temporal hand-object and object-object interac-

tions. Table 13 presents a comparison of the results

obtained from different methods. Our PosMLP-Video-

L achieves the highest Top-1 accuracy of 72.5%. This

remarkable result significantly surpasses the previ-

ous methods by a considerable margin (6.0%-9.9%),

which provides compelling evidence for the superior

ability of our model in spatio-temporal modeling.

4.5 Visualization

Figure 7 displays the pairwise token relation matrix

learned by PoSGU and PoTGU of PosMLP-Video-S

on the SSV2 dataset. We select the first and last layers

of PosMLP-Video-S and showcase the learned spa-

tial and temporal token-to-token relations of the two

channel groups. Firstly, it can be found that differ-

ent layers and groups learn various relationship types,
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Table 11 Comparison of performance on Kinetics-400 dataset.

Method Pretrain Params Fr.×Cr.×Cl. GFLOPs Top-1 Top-5

CNNs

TSM Lin et al. (2019) IN-1K 24.3M 16×1×10 660 74.7 91.4

NL-I3D X. Wang et al. (2018) IN-1K 35.3M 32×1×10 2820 74.9 91.6

TEINet Z. Liu et al. (2020) IN-1K 30.8M 16×3×10 1980 76.2 92.5

SmallBig-R101 X. Li et al. (2020) IN-1K — 32×3×4 5016 77.4 93.3

TDN-R101 L. Wang et al. (2021) IN-1K — 16×3×10 3960 78.5 93.9

CT-NET-R101 K. Li et al. (2021) IN-1K — 16×3×4 1746 78.8 93.7

GC-TDN-R50 Hao et al. (2022) IN-1K 27.4M 16×3×10 2202 78.8 93.8

SlowFast101+NL Feichtenhofer et al. (2019) — 59.9M 80×3×10 7020 79.8 93.9

X3D-XXL Feichtenhofer (2020) — 20.3M –×3×10 5820 80.4 94.6

Transformers

TokShift H. Zhang et al. (2021) IN-21K 85.9M 16×3×10 8085 78.2 93.8

SACS-H H. Zhang, Cheng, Hao, and Ngo (2022) IN-21K 40M 32×3×5 5190 79.7 94.1

Mformer-L Patrick et al. (2021) IN-21K — 32×3×10 35553 80.2 94.8

ViViT-L/16×2 Arnab et al. (2021) IN-21K 310.8M 16×3×4 17357 80.6 94.7

MViT-B,16×4 Fan et al. (2021) — 36.6M 16×1×5 353 78.4 93.5

MViT-B,32×3 Fan et al. (2021) — 36.6M 32×1×5 850 80.2 94.4

Swin-S Z. Liu et al. (2022) IN-1K 49.8M 32×3×4 1992 80.6 94.5

Swin-B Z. Liu et al. (2022) IN-1K 88.1M 32×3×4 3384 80.6 94.6

TimeSformer-L Bertasius et al. (2021) IN-21K 121.4M 96×3×1 7140 80.7 94.7

X-ViT Bulat et al. (2021) IN-21K 92.0M 16×3×2 1700 80.7 94.7

DVT J. Wang and Torresani (2022) IN-1K 73.9M 16×1×5 640 80.8 95.0

MViTv2-S,16×4 Y. Li et al. (2022) — 34.5M 16×1×4 320 81.0 94.6

RViT-XL,32×3×1 Yang et al. (2022) IN-21K 107.7M 32×3×3 2010 80.3 94.4

RViT-XL,64×3×1 Yang et al. (2022) IN-21K 107.7M 64×3×3 11900 81.5 95.0

MTV-B Yan et al. (2022) IN-21K 310M 32×3×4 4790 81.8 95.0

MLPs

MorphMLP-S D.J. Zhang et al. (2022)

IN-1K

47.0M 16×1×4 268 78.7 93.8

MorphMLP-B D.J. Zhang et al. (2022) 67.8M 16×1×4 392 79.5 94.4

MorphMLP-B D.J. Zhang et al. (2022) 68.5M 32×1×4 788 80.8 94.9

MLP-3D-S Qiu et al. (2022) 68.5M 64×3×4 1224 80.2 93.8

MLP-3D-M Qiu et al. (2022) 80.5M 64×3×4 2040 81.0 94.9

MLP-3D-L Qiu et al. (2022) 135.6M 64×3×4 3696 81.4 95.2

PosMLP-Video-S

IN-1K

13.6M 16×1×4 162 78.5 93.9

PosMLP-Video-B 19.1M 16×1×4 236 80.3 94.6

PosMLP-Video-L 35.4M 16×1×4 450 81.2 94.7

PosMLP-Video-L 35.4M 16×3×4 1350 81.6 94.9

PosMLP-Video-L 35.5M 24×1×4 679 81.7 95.2

PosMLP-Video-L 35.5M 24×3×4 2037 82.1 95.3

indicating that the channel grouping mechanism suc-

cessfully enriches the relative position relationship

types. Secondly, by comparing the relation pattern dif-

ferences between the first and last layers, we observe

that high relation scores mainly exist in local spatial

and temporal neighborhoods in the first layer, while

they spread all over the region in the last layer. This

can be attributed to the fact that there is no cross-token

interaction in the first layer, whereas both spatial and

temporal tokens have been fully fused in the last layer.

In Figure 8, we present the heatmaps obtained

from visualizing the class activation maps of dif-

ferent video PosMLP blocks using the Grad-CAM

Selvaraju et al. (2017) technique. We select action

categories with varying moving directions, such as

“Moving something closer to something”, “Pushing

something from right to left”, and “Turning some-

thing upside down”, which involve short-term and

long-term temporal interactions between objects. Our

observations from the figure reveal that the paralleled

PoTGU+PoSGU focuses more on the crucial areas

13



Table 12 Comparison of performance on Diving48 dataset.

Method Fr.×Cr.×Cl. Top-1

CNNs

SlowFast-R101,16x8 Feichtenhofer et al. (2019) from Bertasius et al. (2021) (64+16)×3×1 77.6

TQN C. Zhang, Gupta, and Zisserman (2021) all frames 81.8

GC-TDN Hao et al. (2022) 16×1×1 87.6

TFCNet S. Zhang (2022) 32×3×1 88.3

Transformers

TimeSformer-L Bertasius et al. (2021) 96×3×1 81.0

VIMPAC Tan, Lei, Wolf, and Bansal (2021) –×3×10 85.5

ORViT TimeSformer Herzig et al. (2022) 32×3×1 88.0

MLPs

PosMLP-Video-L 16×1×1 88.9

Table 13 Comparison of performance on EGTEA Gaze+ dataset.

Method Fr.×Cr.×Cl. Top-1

CNNs

SAP X. Wang, Wu, Zhu, and Yang (2020) 64×1×1 64.1

GST-R50 Luo and Yuille (2019) 8×1×1 64.4

GC-TSM Hao et al. (2022) 8×1×1 66.5

Transformers

ViT (Video) Dosovitskiy et al. (2020) from H. Zhang et al. (2021) 8×1×1 62.6

TokShift (HR) H. Zhang et al. (2021) 8×1×1 65.8

LAPS (H) H. Zhang et al. (2021) 32×1×1 66.1

MLPs

PosMLP-Video-L 16×1×1 72.5

P
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The first layer of Stage 1, two groups The last layer of Stage 4, two groups

Fig. 7 Visualization of the pairwise token relation matrix learned

by PoSGU and PoTGU of PosMLP-Video-S on SSV2 dataset.

of video frames when compared to both the single

pos blocks (PoTGU/PoSGU/PoSTGU) and the similar

combined SGU+TGU (gMLP).

5 Conclusion

We have presented a novel MLP-like architecture,

PosMLP-Video, for efficient and effective video

recognition. Our approach leverages the relative

position encoding as a key component, leading to

improved pairwise token relations modeling. We

introduced a family of positional spatial and tem-

poral gating units (PoTGU, PoSGU, and PoSTGU)

that are both more parameters- and FLOPs-efficient

than self-attention and token-mixing layers. These

units are integrated into spatio-temporal factorized

network blocks to promote spatial and temporal mod-

eling. Experimental results on video recognition tasks

demonstrate that PosMLP-Video outperforms other

competing video models. Furthermore, we show that

PosMLP-Video is highly sensitive to temporal order,

as we observed significant performance drops with

randomly shuffled frames. Overall, our results high-

light the efficacy of the proposed PosMLP-Video and

its potential for advancing the field of video recogni-

tion.
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