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Document-level relation extraction (RE) extends the identification of entity/mentions’ relation from the

single sentence to the long document. It is more realistic and poses new challenges to relation representation

and reasoning skills. In this article, we propose a novel model, SRLR, using Separate RelationRepresentation

and Logical Reasoning considering the indirect relation representation and complex reasoning of evidence

sentence problems. Specifically, we first expand the judgment of relational facts from the entity-level to

the mention-level, highlighting fine-grained information to capture the relation representation for the

entity pair. Second, we propose a logical reasoning module to identify evidence sentences and conduct

relational reasoning. Extensive experiments on two publicly available benchmark datasets demonstrate the

effectiveness of our proposed SRLR as compared to 19 baseline models. Further ablation study also verifies

the effects of the key components.
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1 INTRODUCTION

Document-level Relation Extraction (RE) is the task of identifying relations among entities
within a document. Compared with sentence-level RE [14, 28, 29, 63], it is more realistic that
entity/mentions may appear in different sentences, and it also serves as an essential step
in real-world applications, such as question answering [7] and large-scale knowledge graph
construction [25, 33, 57].
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Although sentence-level RE has been successful, document-level RE has to face a new challenge:
multi-mention multi-label. To solve this problem, there are two main existing works: Building
graphs that capture complex connections among mentions and entities, and reasoning skills that
bridge the gap in the relation information extracted by themselves. Recent researchers’ attention
is to use the Graph Neural Network (GNN) to construct a mention graph and capture complex
interactions among mentions across sentences from the document [60]. Ru et al. [34] proposes a
probabilistic model to learn logical rules and capture dependencies between entities and output re-
lations. To heuristically select evidence sentences, Huang et al. [16] employs local path enhanced
RE, and Xu et al. [49] models the reasoning skills between two entities. Zeng et al. [59] sepa-
rates intra-sentence and inter-sentence reasoning, and Li et al. [21] utilizes a locally and globally
mention-based reasoning to predict relation. Besides, adaptive threshold technique has been pro-
posed for multi-label classification [65]. However, building on top of them, we further highlight
the following two challenges based on our observations:
Indirect relation representation. In the document-level RE, the relations are usually embed-

ded in mention pairs. There are two reasons: (1) In the process of labeling data, it is often subcon-
sciously assumed that if the mention pair has a relation, the entity pair will be marked as having
such a relation. (2) Different mention pairs of the entity pair may refer to varying relations due
to their various context, which in turn leads to diverse relations of entity pair. Therefore, there
is a difference between entity pairs and mention pairs when it comes to relation representation,
i.e., mention pairs are direct relation representation while entity pairs are indirect relation rep-
resentation. As shown in Figure 1, entity pair, West Virginia and United States, has three
relations (i.e., country, located in the administrative territorial entity, and country
of citizen). West Virginia has two mentions, which are at 0th and 2th sentences. Entity pairs
(West Virginia and United States) are labeled as relations because these relations exist in the
mention pair consisting of West Virginia of the 0th sentence and United States of the 0th
sentence, while West Virginia in the 2th sentence does not play any role. Therefore, is there
any way to efficiently bridge the gap from the indirect entity pairs to the direct mention

pairs for relation representation?

Massive Interaction Support. Probing and inferring evidence sentences are crucial to identi-
fying the correct relation. There is some overlap and interaction among the evidence sentences,
which can be used to infer and support the relations of different entity pairs. As shown in Figure 1,
the entity pairs, (Washington Place, United States), and (Hampshire Country, United
States), have the same relation (Country) and evidence sentences, and they can connect and in-
fer relation information. Each entity pair can extract unique relational features from the evidence
sentences, and these features with the same relations have a certain connection. However, the
0th sentence can support three relational facts for eight entity pairs. More noise inference will
be elicited if the evidence sentences information about eight entity pairs interacts simultaneously.
Therefore, can we extract useful information from evidence sentences and reduce unnec-

essary interactions to improve the performance of RE?

To address the issues, we propose a novel Separate Relation Representation and Logical
Reasoning for document-level RE, namely SRLR. The basic idea is to separate the entity pair to the
mention-level that can capture more fine-grained relation representation and elicit logical reason-
ing based on evidence sentences that can employ potential reasoning information to enhance the
performance of RE. To address the first challenge for indirect relation representation, we hierarchi-
cally integrate the information of the relational facts to comprehensively understand and capture
relation semantics. To address the second challenge of massive interaction support, we further
highlight the evidence sentences and infer relation information based on the evidence sentence.
Conditioned on the constraints, only relations with overlapped entities and entity types shall be
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Fig. 1. An example of document-level RE is excerpted from the DocRED dataset. Different entity pairs con-

taining the same entitymay indicate the same relation, but the same evidence sentencemay support different

relations. The sentence 0 supports three relations of eight entity pairs.

visible to each other to mitigate unnecessary interactions. We conduct extensive experiments on
two widely-used benchmarks, including DocRED [53] and CDR [20]. The results show that SRLR
has achieved better performance.
The contributions of this article can be summarized as follows:

—We propose the Separate Relation Representation to capture the multi-level relation repre-
sentation, which can solve the indirect representation for the entity pairs.

—We develop the Logical reasoning that can utilize the valid evidence sentences and logical
inference to enhance the performance of document-level RE.

—We conduct extensive experiments on two publicly available datasets. Compared with base-
line models, the results show a superior performance of our method, and further ablation
study demonstrates the effectiveness of the key components.

The rest of this article is organized as follows. Section 2 describes the related work about
sentence-level RE and document-level RE. In Section 3, we briefly describe the preliminaries and
framework of our model. In Sections 4 and 5, the Separate Relation Representation and Logical rea-
soning model is proposed and presented its inference process. In Section 6, we report the results
of the experiment and conduct the various ablation studies. Finally, the conclusion of this work is
made in Section 7.

2 RELATEDWORK

2.1 Sentence-level RE

Sentence-level RE [8, 27] is to identify relational facts between entities from intra-sentence, which
is divided into supervised RE [3], semi-supervised RE [2, 4, 13, 31], unsupervised RE [5, 51], and
distant supervised RE [22, 32, 38, 42]. Currently, the researchers pay more attention on supervised
RE and distant supervised RE.
Supervised RE relies on a large number of high-quality datasets with labels to predict the

relations. Christopoulou et al. [9] makes up to l−length walks between entity pair to distin-
guish different relation paths between two entities. To introduce and alleviate the confusion of
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dependency information, Miwa and Bansal [29] proposes to incorporate the pruned external
syntactic information into the lowest common ancestor subtree, and Yan et al. [50] proposes
to employ the shortest dependency path to predict relations. However, these strategies are too
hard and lose some important contexts or elicit more noise. Zhang et al. [63] adopted graph

convolutional network (GCN) to learn the dependency features and utilize the tradeoff pruning
strategy to capture the important information. Guo et al. [14] utilize the multi-head attention to
build the soft graph to learn the semantic information. Besides, there are other models with graph
that use dynamic pruning [56], sub-graph [58], and attention graph [6] to encode dependency
features. However, the limitation of supervised RE is that requires a large amount of high-quality
manually labeled data, which exceeds consuming-time and expensive.
Distant supervised RE [28, 62] is an efficient method to automatically construct a large number

of relation extraction datasets in a short period of time, but the datasets contain a lot of noisy
information. The study of distant supervised RE focuses on how to resolve noisy information in
the datasets. Some researchers use the multi-instance multi-label learning to alleviate the noisy
information in the datasets, and the term “multi-instance learning” is proposed to predict the drug
activity [12]. In the multi-instance learning, the sentence containing the same entity pair can be
considered as a bag, and using the label of the bag replaces the label of entity pair [12]. Ji et al. [18]
also adopts a sentence-level attention strategy to learn the importance of sentences and assign the
different weights to sentences by entity descriptions. Ye and Ling [55] adopts the intra-level and
inter-level attentions to deal with the noise at sentence-level and bag-level, respectively. However,
these methods of RE are sentence-level RE, but in practice entity pairs exist in the document and
the model needs to consider the more complex scenarios.

2.2 Document-level RE

Recentlyworks on document-level RE [10] often relies on explicit co-reference annotations or a sin-
gle entity in the document [39, 52]. For example, Jia et al. [19] combines representations learned
over various text spans throughout the document and across the sub-relation hierarchy. Verga
et al. [46] proposes a Transformer-based model for document-level RE with multi-instance learn-
ing, merging multiple mention pairs. Yao et al. [53] proposes a new dataset (DocRED) about the
document-level RE dataset and some baselines. This dataset is not limited to any specific domain,
making it suitable to train and evaluate general-purpose document-level RE systems.
Based on DocRED, researchers exploit how to construct effective graph models to capture

information between entities and mentions and how to effectively use reasoning to more accu-
rately identify the relations between the entity pair. Nan et al. [30] proposes Latent Structure
Refinement model (LSR) that enhances the relational reasoning across sentences. Relational
reasoning can elicit the potential document-level graphs and utilize the refinement strategy to
incrementally aggregate relevant information. Wang et al. [47] proposes a novel model to encode
the document, which can integrate capture the contextual relation representation and entity
representation from the local and global information. Zhou et al. [65] proposes adaptive thresh-
olding and localized context pooling to learn an adaptive threshold for multi-label classification
and transfer attention from pre-trained language models to locate relevant context. Zeng et al.
[60] constructs two graphs: heterogeneous mention-level graph (hMG) and entity-level

graph (EG), which can model complex interaction among different mentions and infer relations
between entities, respectively. Makino et al. [26] treats the relation as a relation graph that can
predict them by using complex graph information. The graph consists of entities and relations,
where entities are nodes and relations are edges. Zhang et al. [61] exploits a novel method by
decomposing document-level RE into identifying the local relations and reasoning to enhance
the resolution, which can combine the explicit discourse model and self-supervision for each
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Fig. 2. Architecture of the proposed model. In the infer relation, the green square in the graph is the target

relation. The light green squares are the candidate relations that can infer the target relation. The dashed

boxes indicate the search range of the candidate relations based on the entity type.

sub-problem. Tran et al. [43] proposes to clearly compute the representations for the nodes
to improve the graph-based edge-oriented model for document-level RE, which can deal with
the shortages of more focusing on the edge representations and ignoring the node representa-
tions. Jia et al. [19] combines representations learned over various text spans throughout the
document and across the sub-relation hierarchy to solve the limitation of short text spans in
n-ary RE.
However, these works focus more on mention graphs, entity graphs, or semantic graphs, ignor-

ing the representation of relational facts and reasoning of evidence sentences in the document-
level RE. In this article, the significant difference between our model and previous models is that
we separate the relational facts to themention-level to capture more accurate and rich relational in-
formation. And using the evidence sentences to build a valid graph, which can reason the relations
for the entity pairs.

3 PRELIMINARIES AND FRAMEWORK

3.1 Preliminaries

Given a sequence of document D = [w1,w2, . . . ,wn] and entities [e1, e2, . . . , eN ], where n is the
length of document, andwi is the token in the document, the goal of the document-level RE task is
to identify the relation (r ) between the entity pair (es , eo ), namely P (r |ei , ej ), which may be in the
same sentence or scattered across the document. Any two entities in the document can form an
entity pair, and the entity (e) has some mentions, e = [m1,m2, . . . ,mk ], where k is the number of
mentions in the entity.ms andmo are from the es and eo respectively, andms andmo can form the
mention pair. And the entity pairs have some sentences to support the relation, which are called
the evidence sentences.

3.2 Framework

The goal of SRLR is to capture the multi-level relation representation via learning the relational
facts of mention pairs and learn the valid information of supportive evidence sentence via logical
reasoning to enhance the performance of document-level RE. As shown in Figure 2, our framework
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Table 1. Notations in Our Model

Name Description

n Document Length

wi Token

H Hidden Matrix

hi Hidden Vector of ith token

A Token-level Attention Heads

mi ith mention of entity

m
′

Entity that denotes Multiple mentions

M1 Relation representation of Mention-to-Mention

M2 Relation representation of Entity-to-Mention

M3 Relation representation of Entity-to-Entity

S Sentences about Candidate evidence sentences

c Contextual Relation Matrix

ce Inference Contextual Relation Matrix

has two steps: Separate Relation Representation and Logical Reasoning. The notations and
symbols frequently used in this article are displayed in Table 1.
Separate Relation Representation (SR) aims at aggregating the multi-level relation represen-

tation based on mentions, which mainly contains three components: (1) Mention-to-Mention

that is the combination of any two mentions in the entity pair. (2) Entity-to-Mention which is
the combination of an entity and all mentions in another entity. (3) Entity-to-Entity that is the
combination of two entities. The multi-level relational information can capture the fine-grained
and rich relational facts to improve the relation representation.
Logical Reasoning (LR) aims at efficiently utilizing complicated evidence sentences and entity

pairs to infer the relation. LR has two steps of Evidence Extraction (EE) Module and Infer Rela-
tion (IR) Module: (1) EE can identify the candidate evidence sentences and capture the sentence
supporting relation information. (2) IR utilizes the entities and entity types to build the reason
graph, then selects the candidate relations to infer the target relation.

4 SEPARATE RELATION REPRESENTATION

This section introduces SR and how to aggregate inside information to capture multi-level infor-
mation of the document. First, we adopt the encoder module to model the document and obtain
the hidden information, H and A, the document, and attention features. Then, we employ the SR
module to capture the significant relation information.

4.1 Encoder Module

In this section, we utilize the BERT [11] to extract crucial information, which can be used to identify
the relations. To make use of sub-word information, we tokenize the document by byte pair en-

coding (BPE) [36], D = [w1,w2, . . . ,wn], wherewi is the ith token in the document. To solve the
excessively long document (Over 512 tokens), we follows the previous work [37] to take the first
512 tokens and the last 512 tokens as the document’s information into the BERT model separately,
then concatenate these two parts together as the information of the whole document information.
And we also mark the positions of mentions by inserting a special symbol “*” at the start and
end [37, 64]. For example, the entity is “New York”. When the special symbol “*” is added, the
entity becomes “* New York *”. In special, we briefly represent the process of encoding by BERT,
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which can be computed as follows:

H ,A = BERT([w1,w2, . . . ,wn]), (1)

where H = [h1,h2, . . . ,hn] is considered as the hidden matrix of tokens. A is the average of the
attention heads in the last transformer layer.
For mention embedding, we follow the method used in [53]. And for sentence embedding, we

have experimented with mean, max, and add to compute it. And we found that these different
representation methods had little effect on the experiment results, but max-pooling was the best.
Thus, we employed max to compute the sentence embedding.mj is the jth mention in the entity
from the cth token to the dth token, and si is the ith sentence in the document from the ath token
to the bth token, which can be represented as{

mj =
1

d−c+1
∑d

j=chj
si = Max([ha , . . . ,hb ])

. (2)

4.2 Hierarchical Aggregation Module

The purpose of the hierarchical aggregation (HA) module is to explore the rich and effective
representation of relational facts for the entity pair. The conventional sentence-level RE using the
entity pairs to represent the relational facts does not work well for document-level RE. There are
two reasons: (1) In traditional sentence-level RE, entity pairs and mention pairs are usu-

ally the same, and the entity pairs can represent the relations well. But there are multiple
mentions in the document-level RE, and it is difficult to directly determine which mentions can
represent the relations. (2) People subconsciously label relational facts based on mentions

in the document. This subconscious labeling behavior leads to indirect relation representation
for the relational fact based on the entity pair, which also can be called a gap between entity pairs
to mention pairs. Because if mentions contain some relations with each other, then entity pairs can
represent these relations. The relation representation of the entity pair is represented by mention
pairs. Therefore, using entity pairs to represent relational facts is too rough and indirect.
To bridge the gap between entity pairs and mention pairs, the hierarchical aggregation module

traverses the possible representations of the relational fact based on mentions, which are Mention-
to-Mention, Entity-to-Mention, and Entity-to-Entity.1 Mention denotes the one mention, and En-
tity denotes the information of multiple mentions in the entity. We highlight the core idea of HA
— Iterate through all possible relational representation features in the entity pair. There-
fore, these three forms can capture the multi-level useful representation of the relational fact for
the entity pair (es , eo ), which are defined as follows:

—Mention-to-Mention. Any Mention in es , eo is combined two by two to form mul-
tiple mention pairs to represent the relational fact. Suppose that the relational fact
exists in Mention-to-Mention pairs, and their representation is one-to-one. For example,
given two entity (e1 = [m1,m2,m3] and e2 = [m4,m5,m6]) that contain 3 mentions
respectively, the mention-to-mention has 9 mention pairs, which can express as follows:
(m1,m4), (m1,m5), . . . , (m2,m6), (m3,m6).

— Entity-to-Mention. Entity and Mention are from es , eo , respectively. Suppose that the
relational fact exists in Entity-to-Mention pairs, and it is multiple mentions and single
mention to represent the relational fact. For example, given two entity (e1 = [m1,m2,m3]
and e2 = [m4,m5,m6]) that contain 3 mentions respectively, the entity-to-mention has 6
pairs, which can express as follows: (e1,m4),(e1,m5),(e1,m6),(m1, e2),(m2, e2), (m3, e2).

1The relation are orientational, and different order of the entity pair indicates different relations.
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— Entity-to-Entity. Entity and Entity are from es , eo , respectively. Suppose that relational
fact exists in Entity-to-Entity pairs, and it is multiple mentions and multiple mentions to
represent the relational fact. For example, given two entity (e1 and e2), the entity-to-entity
has 1 pair, which can express as follows: (e1, e2).

4.2.1 Mention-to-Mention. Given an entity pair (es , eo ) that contains t mention pairs, we em-
ploy the model to automatically assign the different weights (α1) to mention pairs. The represen-
tation of relational fact,M1, can be computed as follows:

⎧⎪⎪⎨
⎪⎪
⎩

M1 = α1M̂1

α1
i j =

exp (W 1M̂1
i )∑t

j=1 exp (W
1M̂1

j )

, (3)

where M̂1 is the set of relation representations ofmention pairs in theMention-to-Mention.W 1 is
the trainable parameters. The relation information of ith mention pair can be computed as follows:

⎧⎪⎪⎨
⎪⎪
⎩

M̂1
i = tanh(z1sWbz

1
o )

z1s = tanh(W1ms +Wcc
1)

z1o = tanh(W2mo +Wcc
1)
, (4)

whereWb ∈ Rd×d ,W1 ∈ Rd×d ,W2 ∈ Rd×d , andWc ∈ Rd×d are trainable parameters. Thems andmo

are mentions in the es and eo , respectively, andms andmo are the ith mention pair in the Mention-
to-Mention. c is the contextual relation matrix by context pooling [65], which can enhance the
embedding of the entity pair with additional contextual information without using external knowl-
edge (e.g., syntactic, discourse, or coreference). We use the token-level attention heads,A, from the
last transformer layer (See Equation (1)). The contextual relation matrix, c , is computed as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

A(s,o) = AsAo

q (s,o) =
∑L

i=1A
(s,o)
i

β = Mean(q (s,o) )
c1 = HT β

, (5)

where β is attention weight for tokens in the document. Mean is the average operation. H is the
document embedding. L is the number of heads in the transformer. As and Ao is the attention
matrices for mention pairs.

4.2.2 Entity-to-Mention. Given an entity pair (es , eo ), and suppose that multiple mentions of
es and certain mention in the eo can express the relation, which contains t entity-to-mention.
Therefore, we first compute the information of multiple mentions, Entity. Specially, we use graph
attention networks (GAT) [45] to capture the interaction of mentions in the es , and the graph
of GAT is a fully connected graph, which connects the target mention node with each mention
nodes in the same entity. Then, we use the mentions in the eo as queries to collect the information
of multiple mentions from the es , which can be computed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

m
′
s = λês

λi =
exp (miq )∑k
i=1 exp (miq )

ês = [m1,m2, . . .]
ês = GAT(es )

, (6)

wherem
′
s is the Entity representation. k is the number of mentions in the es .mi is the mention

from the ês , and q is the mention in the eo . Then, we compute the relation representation of ith
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Entity-to-Mention, which can be computed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

M̂2
i = tanh(z2sWbz

2
o )

z2s = tanh(W1m
′
s +Wcc

2)
z2o = tanh(W2mo +Wcc

2)

, (7)

where Equations (4) and (7) share the same parameters. And we also use the Equation (5) to com-
pute the contextual relation matrix (c2), but for the attention of Entity (As ), we average the atten-
tion for all mentions of the same entity (es ) to obtain entity attentions.
Finally, the representation of relational fact about entity-to-mention, M2, can be computed as

follows:

⎧⎪⎪⎨
⎪⎪
⎩

M2 = α2M̂2

α2
i j =

exp (W 2M̂2
i )∑t

j=1 exp (W
2M̂2

j )

, (8)

whereW 2 is the trainable parameters.

4.2.3 Entity-to-Entity. Entity-to-Entity that contains many mentions can be considered as
multi-to-multi format. For the entity with mentions, we use the GAT [45] and logsumexp pooling
to get the entity embedding, ê = log

∑
exp (GAT(e )). Then, predicting the relational fact, which

can be computed as follows:

⎧⎪⎪⎨
⎪⎪
⎩

M3 = tanh(z3sWbz
3
o )

z3s = tanh(W1ês +Wcc
3)

z3o = tanh(W2êo +Wcc
3)
, (9)

where c3 is the contextual relation matrix. Equations (9) and (4) share the same parameters.
For the attention of As and Ao about Entity-to-Entity, we average the attention for all men-
tions of the same entity (es , or eo ) to obtain entity attentions, then c3 can be computed by
Equation (5).

5 LOGICAL REASONING

LRmodule aims at capturing the potential and critical information of evidence sentences as the rea-
soning information and infer the relations, which contains two modules, i.e., Evidence Extraction
Module and Infer Relation Module.

5.1 Evidence Extraction Module

Evidence extraction module aims at capturing the candidate evidence sentences, then enhance
the representation of the relational information of entity pairs, which has two steps: the first step
is to select candidate evidence sentences. And suppose that sentences where mentions are located
are candidate evidence sentences, which have the high probability to help the model identify the
relation. Statistically, the candidate evidence sentences cover 90% of the true evidence sentences
in Table 7. Inevitably, there are more numbers candidate evidence sentences than true evidence
sentences. Second key step of evidence extraction is to reduce the noisy candidate evidence
sentences. For example, the candidate evidence sentences for entity pair (West Virginia, United
States) are sentence 0th and 2th, which contain noisy sentence 2 in Figure 1.
Given an entity pair (es , eo ), its candidate evidence sentences are S = {si }Ci=1, where C is the

number of sentence, and si can be computed by Equation (2). Then, we consider hierarchical ag-
gregation information (M1 andM2) as the query to reduce the noisy features of candidate evidence
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sentences, which can be computed as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Ŝ = γ S

γi =
exp (siM

r )∑C
j=1 exp (sjM

r )

Mr =W r [M1,M2]

, (10)

whereW r ∈ R2d×d is the trainable parameters. Therefore, we can obtain the evidence sentences

representation Ŝ about the entity pair.

5.2 Infer Relation Module

IR Module explores to employ valid and important evidence sentences from non-target entity
pairs to enhance the relational representation of the target entity pair. The core idea is that the
evidence sentences of different entity pairs contain different densities of relational in-

formation, and the amount of high-density information is used to enhance the amount

of low-density information. The Since many entity pairs have the same relation and similar
evidence sentences, the relation can share some relation information, which can be inferred by
evidence sentences. Therefore, to capture and learn the high-quality information of evidence sen-
tences, we should solve two problems:

—Which evidence sentences of entity pairs (except target entity pair) can enhance the relation
representation of target entity pair?

— How to fuse the information of multiple evidence sentences and improve the performance
of the model?

For the first problem, we select candidate evidence sentences based on the following two as-
sumptions: (1) The evidence sentence relation information about the target entity pair

contains the same head entity or tail entity. Because entity pairs have the strict positional
order. Assuming that an entity pair (es , eo ) can represent a relation r , it is certain that the entity
pair (eo , es ) cannot represent the relation r . (2) The candidate entity pairs have the same en-

tity types. As shown in Figure 1, there are three entity pairs with the same relation (country
of citizenship), which are (Annie Washington, United States), (William, United States),
and (William Washington, United States). They have the same entity (United States) and
entity types (Person and Location). Meanwhile, although these eight entity pairs have the same
entity (United States), the entity types further filter the noisy evidence sentences of entity pairs
to get the relatively accurate evidence sentences, such as (Emancipation Proclamation, United
States) and (Hampshire County, United States).

For the second problem, we first build a reason graph, G (G is the 0/1 matrix), based on above
assumptions for each entity pair, which can infer target relation information, as shown in Figure 3.
Second, we consider the entity-to-entity matrix (See relation matrix in Figure 3) as a pixel, inspired
by [17]. Finally, we use multi-head attention [44] to infer the relation matrix,2 ce , which can be
computed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

ce = AX

X = Ŝ + c
Q = XWq ,K = XWk ,V = XWv

A = so f tmax (QKT√
dk
G )

, (11)

where ce is the relation matrix.Wq ,Wk , andWv are the trainable parameters. dk is the dimension
of X . c is the contextual relation matrix (See Equation (5)).

2In this part, we use two layers of multi-head attention to compute the relation matrix.
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Fig. 3. Infer Relation Module based entities and entity types. The green square in the reason graph is the

target relation. The light green squares are the candidate relations that can infer the target relation. The

green dashed boxes indicate the search range of the candidate relations based on the entity type.

To infer the target relation through other crucial evidence sentences and entity pairs, the LR
is proposed and used in Equation (9) to modify the original relation matrix, c , to the new ma-
trix, ce . Notes that the logical reasoning is used to enhance the contextual relation matrix, which
is only used in the Entity-to-Entity. There are two reasons: (1) The contextual information of
Mention-to-Mention and Entity-to-Mention does not contain the complete information of the
evidence sentences. (2) The candidate evidence sentences consider all the information of the sen-
tences where mentions are located and conforms to the hypothesis of Entity-to-Entity. If the
logical reasoning is used in Mention-to-Mention and Entity-to-Mention, the information of
multiple mentions will be applied to them, not conforming to the assumption of single mention
information. As shown in Figure 1, theMention-to-Mention (West Virginia, United States)
are in the 2th and 3th sentences, and the candidate evidence sentences are 2th and 3th sentences,
ignoring the true evidence sentence 0th. All that the model learns is noisy information from these
evidence sentences. But the Entity-to-Entity can consider 0th, 2th, and 3th sentences.
Discussion of assumption. Since different entity pairs in the document can express the same

relation using different evidence sentences, and the power of the evidence sentences’ ability to
represent the relations also varies. We design these two hypotheses here to capture as many dif-
ferent evidence sentences of the same relation as possible, enhance the relational representation
of the target entity pairs, and improve the prediction ability of the model. Although these two
hypotheses do not completely satisfy the filtering of all evidence sentences, they are sufficient
for most cases. The core assumption of our design — introducing different evidence sentences of
the same relation into the entity representation can enhance the prediction of the model. In the
experiments, we also demonstrate that using the evidence sentences is indeed useful.

5.3 Classification Module

For the entity pair (ei , ej ), we concatenate the following representations in Section 4:M1,M3, and
M3, which can be expressed as followed:

Ii j = [M1,M2,M3]. (12)
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Table 2. Statistics of DocRED and CDR in Experiments

Statistic DocRED CDR

# Train 3,053 500
# Dev 1,000 500
# Test 1,000 500

#Relation Types 97 2
# Avg.# entities per Doc 19.5 7.6
# Avg.# sentences per Doc 8.0 9.7

Finally, we formulate the task as multi-label classification and predict relations between entities:

P (r |ei , ej ) = Sigmoid(Wb tanh(WaIi j + ba ) + bb ), (13)

where Wa ∈ R3d×d , ba , Wb , and bb are the trainable parameters. The model parameters are
estimated by Adaptive Thresholding [65], which learns an adaptive threshold for each entity pair
and alleviate the unbalanced relation distribution. Specially, [65] design a threshold TH , which
can dynamically separate the positive labels and negative labels. Positive labels would have higher
probabilities than TH , and negative labels would have lower probabilities than TH . The Adaptive
Thresholding loss is formulated as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

L = L1 + L2

L1 = −∑r ∈PT log(
exp (logitr )∑

r
′ ∈PT ∪{TH }exp (logitr ′ )

)

L2 = − log( exp (logitTH )∑
r
′ ∈NT ∪{TH } exp (logitr ′ )

)

, (14)

where PT and NT are the positive labels set and negative labels set, respectively In this article, we
employ dropout to prevent overfitting.

6 EXPERIMENT

In this section, we will first describe the datasets and experimental details, then report the experi-
mental results and analysis. We also conduct a case study.

6.1 Dataset and Metrics

To demonstrate the performance of our model, we conduct the experiments on the DocRED3 [53]
and CDR4 [20]. The detailed statistic of the datasets is shown in Table 2.
DocRED. DocRED the largest document-level dataset from theWikipedia, which annotates the

entities and relations. An initial dataset is first constructed using the distant supervised method.
Then, the distant supervised dataset is manually re-labeled to ensure the correctness of the dataset.
For dataset (re-labeled), DocRED contains 132, 375 entities, and 56, 354 relational facts annotated
on 5, 053Wikipedia document. There are more than 40.7% of relational facts in the DocRED, which
should employ multiple sentences to identify their relations. And the dataset contains 96 relations,
covering most categories, and the relational categories are distributed in various fields such as
science, art, people, and so on.
CDR. The Biocreative V Chemical Disease Relation benchmark (CDR) [20] is a document-

level RE dataset for the medical domain, which contains relations between chemicals and diseases,
and CDR stems from the Comparative Toxicogenomics Database (CTD). And CDR contains

3https://github.com/thunlp/DocRED
4http://www.biocreative.org/

https://github.com/thunlp/DocRED
http://www.biocreative.org/
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Table 3. Hyper-parameters of SRLR

Hyperparameter

Batch size 2
Epoch 30
Learning rate for BERT 3e-5
Learning rate for fine-tuning 1e-4
Dropout 0.2
Action Function Tanh
Embedding size 768

1, 500 documents with 4, 409 annotated chemicals, 5, 818 diseases, and 3, 116 chemical-disease
interactions.
Following the previous work [53, 60], we utilize the F1 and Ign F1 as the evaluation metrics

to measure the performance of RE models. Ign F1 is calculated excluding relational facts shared
by the Train and Dev/Test. We also use the intra-F1 and inter-F1 metrics to evaluate a model’s
performance on intra-sentence relations and inter-sentence relations on the Dev.

6.2 Parameter Settings

Our model is implemented based on Pytorch5 and Huggingface’s Transformers.6 We use uncased
BERT-base [11] as the encoder on DocRED, and SciBERT-base [1] on CDR. We optimize our model
with AdamW [24] using learning rate 3e − 5 for pre-trained and 1e − 4 for fine-tuning with a
linear warmup for the first 6% of steps. We conduct grid search to tune hyperparameters: the
size of relation representations is 768, which is selected from {64; 128; 256; 512; 768}. The batch
size for pre-training is set to 4 for fine-tuning. The dropout rate is set to 0.2. We train our model
with TITAN XP and perform early stopping based on the F1 score on the development set, with a
maximum of 30 epochs. All the special tokens are implemented with unused tokens in the BERT
vocabulary. We list the hyper-parameters on all datasets in Table 3.

6.3 Baseline

We compare SRLR with the following baselines.

— Sequence-based Models. Yao et al. [53] proposed four baseline models, which are CNN,
LSTM, Bi-LSTM, and Context-Aware, respectively. Besides, we also adapt other sequence-
based models to DocRED, which are HIN-GloVe [41] and LSR-GloVe [30].

—Graph-based Models. These models construct mention/entity graphs to capture the
long-distance dependence and improve the performance of document-level RE, including
GAT [45], BRAN [46], GCNN [35], EoG [10], and AGGCN [15].

— Transformer-based Models. These models utilize pre-trained language model to predict
relations. BERT-REbase , proposed by [48] on DocRED. BERT-Two-Step [48] is similar with
BERT-REbase , but it first predicts whether two entities have a relation and then identifies the
specific relation. HIN-BERTb, proposed by [41]. Hierarchical Inference Network (HIN)
captures the multi-level (entity level, sentence level, and document level) abundant informa-
tion to predict the relations. LSR-BERT, proposed by [30]. LSR constructs a document-level
graph for inference in an end-to-end fashionwithout relying on co-references or rules. Other
pre-trained models like RoBERTa [23], ATLOP [65], GAIN [60], KD-DocRED-BERT [40], and
CorefBERT [54] are also used as encoder [48] to document-level RE task.

5https://pytorch.org/
6https://github.com/huggingface/transformers

https://pytorch.org/
https://github.com/huggingface/transformers
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Table 4. Main Results on the

Test of CDR

Model (%) F1

CNN 52.60
BRAN 62.10
EoG 63.60
LSR 64.80

ATLOP-BERTBase 69.40

SRLR-BERTBase 71.10

Note that, our method (SRLR) is based on ATLOP [65] to solve the problems of Indirect relation
representation and Massive Interaction Support. Therefore, the most important baselines is
ATLOP.

6.4 Main Results

We show SRLR’s performance on the DocRED and CDR7 in Tables 4 and 5, in comparison with
other baselines. We can see that:

— SRLR consistently outperforms all baselines on both datasets. This is mainly because our
method can solve the issue of confusing relational facts and empower reasoning ability.

— In Table 5, all models perform better on Intra F1 than Inter F1. The reason is that the intra-
sentential entity pairs can easily capture the high-quality information of relations. And inter
F1 of SRLR is better than other baselines. This shows that our method can use high-quality
intra-sentential information to enhance the inter-sentential information, which employs the
dense relational information (intra-sentence) to infer the low-density relational information
(inter-sentence).

— In Table 5, among the models not using BERT, SRLR-GloVe consistently outperforms all
sequential-based and graph-based strong baselines by 0.76-2.64 F1 scores on the Test. Among
the models using BERT or BERT variants, SRLR-BERTBase yields a great improvement of
F1/Ign F1 on the Dev and Test by 1.13/0.91 and 0.58/0.43, in comparison with the strong
ATLOPBase , respectively. It suggests that SRLR is more effective in document-level RE tasks.
We can also show that ATLOPBase improves Intra F1/Inter F1 by 0.29 and 2.36 on the Dev.
These results demonstrate that separate relation representation (mention-to-mention, entity-
to-mention, and entity-to-entity) and logical reasoning can efficiently capture the useful
relational features and employ the reasoning to infer the target relation.

—We performed five training runs on both ATLOP and SRLR to obtain the mean and stan-
dard deviation of F1 in the multi-run setting. This is because ATLOP, which is an important
attempt on DocRED, produces different results in each run. Since our method is based on AT-
LOP, we face the same issue and therefore conduct multiple runs. Our experimental results
indicate that SRLR can achieve competitive performance.

— In Table 4, SRLR already outperforms all existingmethods. Comparedwith CNN, BRAN, EoG,
LSR, ATLOP, SRLRBase improves F1 by 18.10, 8.60, 7.10, 5.90, and 1.70 on the Test. The results
demonstrate that our method can learn crucial relation representations from the document.
More details about the information are extracted to enhance the performance of SRLR.

7Since the previous work on CDR only used F1 as the evaluation metric, we ignored the results of Intra F1, Inter F1, and

Ign F1. And some methods (e.g., GAIN, HIN) are difficult to reproduce and do not use this dataset, the experimental results

of these methods are missing.
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Table 5. Main Results on the Dev and Test of DocRED

Model (%)
Dev Test

Ign F1 Intra F1 F1 Inter F1 Ign F1 F1
Sequence-based Models
CNN 41.58 51.87 43.45 37.58 40.33 42.26
LSTM 48.44 - 50.68 - 47.71 50.07
Bi-LSTM 48.87 57.05 50.94 50.94 48.78 51.06
Context-Aware 48.94 - 51.09 - 48.40 50.70
HINGlove 51.06 60.83 52.95 48.35 51.15 53.30
Graph-based Models
GAT 45.17 58.14 51.44 43.94 47.36 49.51
GCNN 46.22 57.78 51.52 44.11 49.59 51.62
EoG 45.94 58.90 52.15 44.60 49.48 51.82
AGGCN 46.29 58.76 52.47 45.45 48.89 51.45
LSRGlove 48.82 60.83 55.17 48.35 52.15 54.18
GAIN-BERTGlove 53.05 61.67 55.29 48.77 52.66 55.08
SRLRGlove 53.74 61.98 55.91 49.52 53.66 55.84

Transformer-based Models
BERT-REBase - 61.61 54.16 47.15 - 53.20
RoBERTaBase 53.85 - 56.05 - 53.52 55.77
BERT-Two-StepBase - 61.80 54.42 47.28 - 53.92
HIN-BERTBase 54.29 - 56.31 - 53.70 55.60
CorefBERTBase 55.32 - 57.51 - 54.54 56.96
LSR-BERTBase 52.43 65.26 59.00 52.05 56.97 59.05
ATLOP-BERTBase† 59.11 67.26 61.01 53.20 59.31 61.30
GAIN-BERTBase 59.14 - 61.22 - 59.00 61.24
KD-DocRED-BERTBase† 60.08 67.91 62.03 55.01 59.72 61.71
SRLR-BERTBase 60.02 67.55 62.14 55.56 59.74 61.88

ATLOP-BERTLarдe† 61.32 68.05 63.18 56.10 61.39 63.40
GAIN-BERTLarдe 60.87 - 63.09 - 60.31 62.76
KD-DocRED-BERTLarдe† 62.09 68.21 64.04 56.84 62.49 64.09
SRLR-BERTLarдe 62.15 68.42 64.17 57.56 61.86 63.92

Multi-run setting
ATLOP-BERTBase† 59.02±0.41 67.16±0.15 60.82±0.37 52.91±0.51 - -
SRLR-BERTBase 59.93±0.32 67.35±0.23 61.87±0.58 55.26±0.27 - -

Results with † are computed based on re-trained models. Other results are reported in their original articles. The

second-best results are underlined.

6.5 Ablation Study

To further analyze SRLR, we also conduct the ablation analysis to illustrate the effectiveness of
different modules and mechanisms in SRLR. We show the results of the ablation study in Table 6.
SRLRBase had a more excellent performance on DocRED. This is because our model can capture
the multi-level relational information and infer useful information.
Separate Relation Representation.We examined the performance of the models in terms of

Hierarchical Aggregation. In Table 6, we find that:

— RE performance is sharply poor without Separate Relation Representation. Specifically,
the experimental results are reduced by 5.83/5.30 F1/Ign F1 and 5.09/5.26 F1/Ign F1 on the
Dev and Test setting in SRLRBase , respectively. There are two reasons: (1) Entities and men-
tions contain rich and useful information for identifying relations. (2) The same evidence
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Table 6. An Ablation Study for the SRLRbase Model on Dev

Model
Dev Test

Ign F1 F1 Intra F1 Inter F1 Ign F1 F1

Our Method 60.02 62.14 67.55 55.56 59.74 61.88

w/o Separate Relation Representation 54.72 56.31 61.22 50.04 54.48 56.79

w/o Mention-to-Mention 59.58 61.47 67.57 54.20 59.49 61.25
w/o Entity-to-Mention 59.11 61.36 67.14 53.17 59.25 61.29
w/o Entity-to-Entity 58.91 60.61 66.58 53.47 59.53 61.04

w/o Logical Reasoning 59.20 61.17 67.31 53.42 59.42 61.09

w/o Evidence Extraction 59.64 61.43 67.42 54.48 59.57 61.29
w/o Infer Relation 59.40 61.22 67.29 53.98 59.40 61.18

sentences can support different labels of entity pairs. Therefore, it is difficult to predict the
relation based on logical reasoning, ignoring separative relation representation.

—Without Mention-to-Mention, Entity-to-Mention, and Entity-to-Entity, the experi-
mental results all showed different degrees of decrease. These results demonstrate that the
representation of relational facts in the document is complex, and using a single representa-
tion (entity pairs) can lead to useful relational information being ignored, resulting in poor
experimental results. Therefore, there is a gap between the entity pairs and mention pairs,
and this gap should be bridged to improve the performance of document-level RE.

Logical Reasoning. To assess the effectiveness of SRLR in Noise Reduction, we measured the
performance in different components. In Table 6, we can see that:

—When the Logical Reasoning is removed, the results of the experiment are reduced by
0.97/0.82 F1/Ign F1 and 0.79/0.32 F1/Ign F1 on the Dev and Test setting in SRLRBase , respec-
tively. The major reason is that the candidate evidence sentences contain useful relational
information, and the reasoning can use multiple candidate evidence sentences of more rela-
tional facts to infer the correct relation, which is different from the information of Mention-

to-Mention, Entity-to-Mention, and Entity-to-Entity.
— The experimental effect is reduced by 0.71/0.38 F1/Ign F1 and 0.59/0.17 F1/Ign F1 on the Dev
and Test settings, respectively, without the Evidence Extraction module. The reason is
that the evidence sentences contain rich context and relational information that is different
from entities.

—When we further remove the Infer Relation module, the results are dropped to 0.92/0.62
F1/Ign F1 and 0.70/0.34 F1/Ign F1 on the Dev and Test settings. There are two reasons.
On the one hand, reasoning allows the model to capture candidate evidence sentences for
multiple related relational facts, extending the perceptual range and depth of the model. On
the other hand, some entity pairs contain the same relation and context information, even
evidence sentences. Using the relational information of these entity pairs to infer the target
entity pair can greatly improve the effectiveness of the experiment.

6.6 Effect of Evidence Sentences

To further analyze the effect of evidence sentences on the DocRED, the dataset is divided into three
components according to the coverage of the evidence sentences:Over, Equal, andUnder, which
can be detailed description as follows:

—Over means that the number of the candidate evidence sentences is over the true evidence
sentences, and the candidate evidence sentences contain all true evidence sentences.
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Table 7. Statistics of Relations in the Train and Dev of DocRED

Equal Over Under Total

Train
Count 19,341 15,366 1,946 38,180

Percent (%) 50.7 40.2 5.1 100

Dev
Count 6,354 4,864 606 12,323

Percent (%) 51.6 39.5 4.9 100

Fig. 4. Performance of SRLR, SRLR-ES, and ATLOP in F1with three categories on theDev. SRLR-ES is without

evidence sentences.

— Equal means that the number of the candidate evidence sentences is equal to the true evi-
dence sentences, and the candidate evidence sentences are exactly the same as true evidence
sentences.

—Under means that the number of the candidate evidence sentences is less than the true
evidence sentences, and the candidate evidence sentences don’t contain all true evidence
sentences.

The number and percentage of relations covered are listed in Table 7. We can clearly see that the
candidate evidence sentences cover over 90% of relational facts in the Dev and Test. The results
are shown in Figure 4. We can observe that:

— Our model has the best performance. The results demonstrate that evidence sentences are
very important for identifying relations, and our method can extract key information from
noisy candidate evidence sentences.

— For all our methods, the improvements over ATLOP is Over>Equal>Under, and the results
of Under is worst than Over and Equal. The reason is that the Under evidence sentences
are incomplete and contain more noisy sentences.

—When removing the evidence sentence, the experimental results demonstrate the validity of
our approach in two ways: (1) The experimental results of SRLR were better than those of
SRLR-ES, indicating that the evidence sentences play a positive role in inferring the entity
pair. (2) SRLR-ES achieved higher performance than ATLOP, showings the effectiveness of
multi-level information in identifying document-level relations. In addition, all experimental
results were higher because we removed all entity pairs about the “NA” class due to their
absence of evidence sentences.
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Fig. 5. Performance of SRLR, SRLR-LR, and ATLOP in F1 on the intra-sentence and inter-sentence of Dev.

SRLR-LR is without logical reasoning.

6.7 Effect of Cross-sentence

To demonstrate the ability of our approach in dealing with cross-sentence relational facts, we
divided the dataset into intra-sentence and inter-sentence for experiments in Figure 5 and obtained
the following:

— On the intra-sentence, we are able to observe that SRLR and SRLR-LR have the similar exper-
imental results. Because when the relational fact is intra-sentence, the entity pair is usually
located in the evidence sentence, and the evidence sentence is the sentence where the entity
pair is located. Therefore, the information of the entity pair contains the information of the
evidence sentence, and ignoring the evidence sentence and logical reasoning has little effect
on the experiment.

— Compared with ATLOP and SRLR-LR, they also has the similar performance. As Entity pairs
and mention pairs are usually the same on the intra-sentence, the experimental effects of
ATLOP and SRLR-LR are similar. Therefore, the effect of separate relation representation on
intra-sentence is small.

— On the inter-sentence, SRLR has achieved the best performance than SRLR-LR and ATLOP.
There are two reasons: (1) The inter-sentential relational information is complex and relies
on information from multiple evidence sentences to correctly identify the relations of rela-
tional facts. (2) Reasonable reasoning of evidence sentences can also improve the accuracy
of relation recognition to a great extent.

— The experimental results of SRLR-LR is better than ATLOP on the inter-sentence, even
though both SRLR-LR and ATLOP ignore the evidence sentences. Because SRLR-LR solves
the problem of indirect relation represenation, it also supports the validity of our approach
to sink the relational identification down to the mention-level.

6.8 Effect of Entity pair�Mention pair.

To analyze the effect of our method about indirect relational facts, we divided the dataset intoMen-

tion pair=Entity pair and Mention pair�Entity pair for experiments, which can be detailed
description as follows:
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Fig. 6. Performance of SRLR, SRLR-LR, and ATLOP in F1 on the different setting of Dev. SRLR-LR is without

logical reasoning.

—Mention pair=Entity pair. This denotes that mention pairs and entity pairs are exactly
the same. The each entity in the entity pair only has a mention.

—Mention pair�Entity pair. This denotes that all entity pairs exceptMention pair=Entity

pair, where at least one entity in the entity pair contains more than one mention.

We can find that in Figure 6:

— The experimental results of SRLR are better than SRLR-LR and ATLOP on the Mention

pair=Entity pair, and SRLR-LR and ATLOP have the similar performance. Because Men-

tion pair=Entity pair contains two cases, one where the entity pairs are intra-sentence and
the other where the entity pairs are inter-sentence. Ignoring the logical reasoning leads to
the drop of inter-sentential entity pairs. The inter-sentential entity pairs should focus more
on multiple sentences and logical reasoning to predict the relation.

— Compared with Intra-sentence (Figure 5), their results of Mention pair=Entity pair

(Figure 6) significantly drop. Because Mention pair=Entity pair contains Intra-sentence
to a large degree and also contains entity pairs across many sentences. The relational
information of cross-sentence needs to consider the multiple evidence sentences. But the
Intra-sentence only considers one evidence sentence, and the entity contains contextual
information, which is easy to learn.

— SRLR also has achieved the best performance than SRLR-LR and ATLOP on the Mention

pair�Entity pair. Entity pairs in the Mention pair�Entity pair are multi-mention and
cross-sentence. This demonstrates that our method can greatly improve the performance
of the model when identifying cross-sentence entity pairs in the document.

— Compared with ATLOP, the result of SRLR-LR is better on the Mention pair�Entity pair.
Because SRLR-LR utilizes separative relation representation to reduce the impact of indirect
relation representation. Moreover, the result of SRLR is better than SRLR-LR. Because SRLR
employs logical reasoning to capture the potential reasoning and enhance the performance
of document-level RE.
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Fig. 7. The case study of our proposed SRLR and baseline models. ✘ denotes that the predicted label is

wrong. The red words in the labels are not identified. The relations of P17, P131, and P150 are country,
located in the administrative territorial entity, and contains administrative territorial
entity, respectively.

Fig. 8. The weight of reasoning attention about the event pair (West Virginia, United States) by SRLR.

6.9 Case Study

A qualitative analysis of our model on the DocRED dataset is shown in Figures 7 and 8.
The Figure 7 shows five entity pairs and their labels. We can observe that: Both SRLR and BERT-

RE can identify the correct relations about (United States,Hampshire Country) and (Hampshire
Country, United States). The reason may be that they are all in the same sentence, and each
entity contains only one mention, more like a sentence-level RE. It is relatively easy to identify
correct relations. However, BERT-RE and SRLR-BERTbase do not recognize the relation between
United States and West Virginia. SRLR-BERTbase can obtain the correct relation of (West
Virginia and United States). This indicates that different orders of the entity pair will have
a serious influence, and this is a difficult point to research the document-level RE. Because West
Virginia has two mentions in different sentences, and it is difficult to extract useful information
across sentences. Overall, entities (West Virginia, United States) have different orders with
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three relations. BERT-RE did not predict the correct label when predicting multi-label the entity
pair. This demonstrates that our method can capture more exact information and identify the
right label in the multi-label problem. Meanwhile, (Romney, United States) and (West Virginia,
United States) have the same relation (P17) and entity type (Loc, Loc). BERT-RE fails to identify
the relation between Romney and United States, while SRLR-BERTbase infer it successful. This
indicates that our method can infer the target relation by other entity pairs, and logical reasoning
is necessary.
Figure 8 shows the weights of logical reasoning for (West Virginia, United States), we can

observe that: (1) Entity pairs with the same entity at the head or tail can effectively support the re-
lation of the target entity pair. For example, (Hampshire County, United States) and (Wappocomo
plantation, United States) have the same relation with (West Virginia, United States), and
they have higher weights than other entity pairs. (2) The entity types of entity pairs is able to ef-
fectively reduce unnecessary reasoning. For example, the entity type of (1863, United States) is
(Time, Loc), but (West Virginia, United States) is (Loc, Loc). Therefore, the reasoning weight
of (1863, United States) is 0. In this document, there are 34 candidate entity pairs to reason
the relation of (West Virginia, United States), but the number of entity pairs that can really
reason the relation is six entity pairs, which is only 17.6%. When using the entity type to constrain
the candidate entity pairs, the candidate entity pairs are 16, and the number of entity pairs that
can really reason the relation is five entity pairs, which is only 31.3% of the candidate entity pairs.
Although the restriction of entity type reduces the number of entity pairs that can actually reason
the target entity pair, it greatly increases the proportion of candidate entity pairs that can reason
correctly about the relation.

7 CONCLUSIONS

In this article, we exploit a novel Separate Relation Representation and Logical Reasoning Model,
which can capturemulti-level relation representation about thementions and infer the information
for the evidence containing the relational features. Experimental results show that our method
is effective and significantly better than competitive baselines. The extensive analysis confirms
that the evidence of multi-level information can enhance relation representation. And reducing
the noisy information and inferring the relations further boosts the performance. Besides, it is
an urgent issue to be solved that the same mentions, the same entities, and the same evidence
sentences have more than one relation.
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