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Inferring door locations from a teammate’s trajectory in stealth
human-robot team operations

Jean Oh, Luis Navarro-Serment, Arne Suppé, Anthony Stentz and Martial Hebert!

Abstract— Robot perception is generally viewed as the in-
terpretation of data from various types of sensors such as
cameras. In this paper, we study indirect perception where a
robot can perceive new information by making inferences from
non-visual observations of human teammates. As a proof-of-
concept study, we specifically focus on a door detection problem
in a stealth mission setting where a team operation must not
be exposed to the visibility of the team’s opponents. We use
a special type of the Noisy-OR model known as BN20O model
of Bayesian inference network to represent the inter-visibility
and to infer the locations of the doors, i.c., potential locations
of the opponents. Experimental results on both synthetic data
and real person tracking data achieve an F'-measure of over
.9 on average, suggesting further investigation on the use of
non-visual perception in human-robot team operations.

I. INTRODUCTION

The possibility of developing a robotic system that can
co-operate with human teammates has been met with ever-
increasing interest. One of the key challenges in working
towards this goal lies in robot perception—a robot’s ability
to 1) recognize objects in an environment and 2) understand
the semantic relationships between the team’s task and those
objects. For example, consider the following scenario where
a team consisting of a robot and a human must “screen the
back door of the building.” This seemingly simple mission
statement imposes several technical challenges in the percep-
tion and interpretation of contextual information, e.g., a robot
needs to be able to recognize regions and detect objects in
its environment, and to be able to understand the language
to match the symbols in the command—such as doors and
buildings—with actual objects in the robot’s environment [15],
[2].

Robot perception is generally viewed as the interpretation
of data from various types of sensors. For example, camera-
based scene understanding approaches, such as hierarchi-
cal semantic labeling [11], can achieve good performance
classifying regions into semantic categories such as sky,
trees, road, and buildings. Vision-based approaches for object
detection such as Deformable Part Models (DPM) [5] and
Convolutional Neural Network (CNN) [9], [6] have per-
formed well on benchmark data sets identifying individual
objects.

In the screen-the-back-door example, however, the objects
that are relevant to mission contexts can be outside the
robot’s current field of view, e.g., a robot won’t be able to see
a back door until it physically faces the back of the building.
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Therefore, in addition to traditional perception approaches,
our research also investigates how to use inputs that are
generally not considered for the perception task. In the work
presented in [15], for instance, a robot can hypothesize the
parts of an environment that are beyond the robot’s sensor
range by utilizing language clues coming from its human
teammate. In this paper, we investigate an approach that
exploits a human teammate’s actions—such as trajectories
and movement speeds—to understand the environment. This
approach is based on a few specific assumptions: First, we
assume that humans try to make optimal decisions according
to team objectives. Second, we assume that, through the use
of proprioceptive sensors (e.g., wearable devices), human
trajectories and motions can be accurately measured from
farther distances than with visual sensors, and from outside
the robot’s field of view.

An earlier work on the idea of using human teammates in
robot perception was briefly introduced in [16]. The temporal
update method used, however, was too domain-specific to
represent general dependence relationships among variables,
thus lacking flexibility of generalization. In this paper, we
describe a principled approach for handling uncertainty in
more generalized problem domains. Specifically, we repre-
sent the causal relationship between perception and action as
a Bayesian inference network (Bayes Net).

As a proof-of-concept study, we focus on the door detec-
tion problem in a hostile environment, e.g., in the cover-
the-back-door scenario. In this context, a “door” can be
interpreted as a possible egress for armed insurgents hiding
inside the building. We develop a Bayes Net to represent
the dependence relationship between human movements and
inter-visibility to and from the doors. Specifically, we use a
special type of the Noisy-OR model known as BN20O [8] to
deal with the scalability of conditional probability tables of
a Bayes Net.

We test our approach using both software simulation and
actual person tracking using a laser line scanner. We show
that the Bayesian approach significantly improves perfor-
mance, achieving over .8 precision and .9 recall on synthetic
problems. More importantly, our Bayes net representation
is a general framework that can be applied to other types
of inference-based perception problems beyond the door
detection problem shown in this paper.

II. RELATED WORK

The majority of prior work on object recognition and
scene understanding relies on visual perception. Vision-based
techniques extract semantic information from natural images



using various visual features that represent those images.
Although recent work addresses recognizing nonparametric
objects and scenes [22], much of vision-based prior work
focuses on recognizing class-specific objects in specific task
contexts, e.g., face recognition [23], door detection for indoor
robot navigation [12], [10], [1], [21], or recognizing door
handles for manipulation [20].

Since our approach is to discover the rationale behind
human teammate’s actions (e.g., to recognize visual cues that
have caused a human teammate to move faster or slower
at certain locations), it is related to the notion of inverse
reinforcement learning [14] (or imitation learning) where a
hidden reward function is learned from observed optimal
behavior. Generally, rewards are defined as a funcion of state
features that are observable. The main task is to learn the
set of feature weights in a way that the observed behavior
is optimally represented. By contrast, we aim to infer unob-
servable information about an environment by utilizing team
objectives that are shared amongst team members.

Bayesian inference techniques have been used in computer
vision, e.g., to infer object categories by incorporating prior
knowledge about a scene with new observations of visual
features [4]. A generative model is also used for monitoring
and analyzing human behavior in a visual surveillance task
[18], assuming that there exists a model that represents
causal relationships between visual features and behavior
categories. Similarly with the notion of inverse reinforcement
learning, this approach also aims to learn a model that can
explain and predict people’s behaviors. Various techniques
developed for inverse reinforcement learning and behavior
prediction can be applied for perception through inference,
but few works have addressed the perception issue to date.

III. PROBLEM DEFINITION

We use the following scenario to illustrate the target
problem.

Example 1 (Cover the back door.): Consider a team con-
sisting of a robot and a human performing a military op-
eration in a hostile environment. According to intelligence,
armed insurgents are hiding in the vicinity of an urban street.
The team is deployed to cover the buildings in the surround-
ing area, focusing on doors from which the insurgents may
try to egress. This is a stealth operation, i.e., the team makes
an effort to remain undetected.

Definition 1 (visibility): A position1 (destination) is said
to be “exposed” to another position (source) if a line of
sight can be established from the source to the destination as
illustrated in Figure 1. Here, the visibility from a source is
bounded with a range, i.e., a source fails to achieve visibility
outside its range. If a destination’s line of sight to a source
is obstructed, it is said to be “shadowed” from that source.

Definition 2 (riskiness): The riskiness of a position is a
measure of its vulnerability to exposure, and is proportional
to the number of sources to which it is exposed.

'A position is defined in terms of 3D-coordinates (x,y, 2).
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Fig. 1: An example of a source with a finite range

We assume that a human perceives the environment and
subsequently chooses actions based on that information. For
example, in the cover the back door scenario, a human will
move at a faster speed when passing those positions that are
exposed to doors than those that are shadowed. Here, both
sources and destinations are defined at a constant height (i.e.,
a human height). Based on this assumption, we formulate
the door detection problem as an inference task as follows:
Using the dependence relationship between the locations of
doors and the riskiness of a position, the task is to infer the
locations of doors by analyzing human movements observed
over time.

IV. PERCEPTION THROUGH INFERENCE

This section describes the technical details of our ap-
proach.

A Bayesian Inference Network (i.e., Bayes net) is a graph-
ical model that succinctly represents causal relationships
among variables [19]. When the values of some variables—
referred to as evidence nodes—in the network are observed,
the values of unobserved nodes can be inferred from those
evidence nodes by updating conditional probabilities—i.e., the
probability of a variable having a certain value given the
evidence.

We use a Bayes net to represent inter-visibility among
positions as follows. First, we discretize the map of an area
into cells such that a node is created per cell. We define
two types of nodes: source and destination. Both source and
destination nodes have binary values: the value of a source
node indicates whether the cell represented by that node
belongs to a door or not, whereas the value of a destination
node specifies whether the corresponding cell is exposed to
any sources. The default type of a node is a destination.

Next, we add a set of candidate doors as source nodes.
We leverage building detection and prediction techniques
developed in our earlier work [15] and identify candidate
doors on the building facades. To detect, for instance, we
use the technique based on hierarchical inference machines
[11] to classify buildings and walls. When tested on a data
set containing 500 outdoor images taken at a test facility
in central Pennsylvania, the precision and recall rates for
detecting buildings were 0.937 and 0.934, respectively [16].
Given that buildings and walls can be reliably detected or
predicted, we localize the search for candidate doors to those
cells on the buildings and walls. A source node is associated
with the probability that the cell represented by that node is
a door. In this paper, we use a constant prior probability for
all candidate source nodes.



After creating the nodes, we add a set of edges to represent
the causal relationships among nodes. For each source, using
the line of sight inter-visibility calculation [7], we compute
a set of destinations that are exposed to that source. These
destinations are linked to the source as children through a
directed edge from a parent to a child. Finally, a conditional
probability table (CPT) is constructed for each node, repre-
senting the probability of a node having a certain value for
every possible combination of parents’ values.

In the case of destination nodes, the size of a node’s condi-
tional probability table grows exponentially in the number of
parent nodes. Let m denote the average number of a node’s
parents in a network. When the set of candidates includes
a large number of false positives, the Bayes net approach
becomes infeasible. We can, however, utilize the domain
specific knowledge such that the probability of a destination
being exposed is conditioned only on the number of sources
as opposed to all possible combinations of source values.
This fact gives rise to a compact CPT representation that
reduces its size from 2™ to m + 1.

This idea can be generalized to apply to a class of
problems where the conditional probability of a child node
can be defined as a function of the number of parents, known
as the Noisy-OR model.

A. The Noisy-OR Belief Networks

In Bayesian networks, the number of entries in the con-
ditional probability table is exponential in the number of
parent nodes. The Noisy-OR Belief network was developed
to overcome this scalability issue by exploiting the domain-
specific causal structure of the nodes in the network [19]. The
Noisy-OR generalizes the logical-OR, incorporating failure
probabilities. The Noisy-OR model can be applied when
the following condition is met: only those parents that have
positive values (as opposed to negated value) have disjunctive
influence on their children, modulo small errors. Then, the
conditional probability of a child node d with n parent nodes,
denoted by si,...,s,, can be represented by a Noisy-OR
model as follows:

p(d|817 ooy Sky TISk+15 -0y _\Sn) =
k n
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where p(—d|s) and p(d|—s) represent noise in the model,
e.g., both probabilities are 0 in the logical-OR. Thus, the
size of CPT is reduced to the number of parents.

A class of Noisy-OR networks consisting of only two
levels is known as BN20O. The BN20O model has been used to
build Quick Medical Reference (QMR) medical knowledge
base [3]. In the QMR example, parent nodes represent a
set of possible causes (or diseases) whereas the child nodes
specify observable symptoms. BN2O intuitively captures the
causal dependence that a (child) symptom can be caused by
one or more (parent) diseases.

B. Inter-visibility as BN2O

Figure 2 illustrates an example of BN2O representing
inter-visibility. In this example, the destination node d; is
exposed if at least one of its parent nodes, s; and so, is
positive.

Fig. 2: Example: inter-visibility as a BN2O network where
s and d denotes source and destination nodes, respectively.

In order to relax the assumption that a human teammate
will always act optimally, two types of errors are included in
the model. First, we use the source error probability, denoted
by e, such that a positive source would still miss a destination
with probability e. This corresponds to the noise probability
p(—d|s) in Equation 1. Second, we also include leak prob-
ability, denoted by A, to specify the error rate representing
the likelihood that a human may act as if exposed when
in fact she is not; leak probability corresponds to p(d|—s)
in Equation 1. More generally, leak probability represents
the probability of an event caused by something outside
the model. Then, we rewrite the conditional probability of
destination being exposed given its parents as the following:

P(d|S1s ony Sy Skg 1y ooy m8p) = 1L — F (1= A)"7F (2)

A prior model containing these two types of errors can be
learned through tranining with the same teammate over time.
For simplicity, we assume that we have learned the model
by using constants for both types of errors.

Here, the source nodes are not directly observable but
the values of destinations can be observed through a hu-
man teammate. For instance, the stealthiness of a human
teammate on a cell, such as pose or velocity information,
can indicate whether that cell is exposed or shadowed. In
our experiment, we use velocity such that if a human’s
velocity on a cell falls below a certain threshold then negative
evidence (i.e., shadowed) is reported on that cell, and vice
versa.

Since multiple—and possibly conflicting—observations can
be made from the same cell, we update the observed value
assuming that the observed samples follow a Bernoulli
distribution—i.e., a human moves fast with probability 6 or
move slowly with probability (1 — #). We compute the ex-
pected value for each node from a sequence of observations
made from the cell as follows. Let p and n denote positive
and negative observations, respectively. Then the expected

value of a node’s observations is computed as: pfﬁrz [24].

C. Likelihood-Weighted Sampling

We use a sampling-based inference method. Because the
values of destination nodes depend on sources, we take the



likelihood weighted forward sampling approach [8]. We first
sample the values of the source nodes according to their
probabilities, and then the values of destinations are selected
based on the source values chosen. Here, instead of selecting
a binary value as in the case of a source, we only keep
the conditional probability for the destination nodes. The
conditional probability is computed by using Equation 2. A
resulting sample @ is a vector whose i*" element, denoted
by ali], holds the probability of the i*" node being positive,
where source nodes will have deterministic binary values.

The weight wgz of a sample @ is computed as a product
of all weight values in the sample, specifying the likelihood
of the sampled event. When the value of an evidence node
is observed its node index is sorted into positive or negative
evidence sets F and —F, respectively. Given evidence sets
E, —F, the weight of sample is computed as follows:

ecE —e€—E

Finally, the posterior probability of source s is computed
by summing up the weights of those samples that have
positive value for that source, normalized by the total sum
of all weights as follows:

D e dls)—1 Wa
p(s|E,~E) = ——="—"——— o]
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V. EXPERIMENTS

This section describes how the robot collects observations
from a human teammate, followed by experimental results.
Here, we used a laser line scanner to track human teammates;
in future work, we also plan to incorporate wearable sensors
to track human teammates.

A. Person detection and tracking

We conducted a series of experiments where a person was
tracked using a Hokuyo UTM-30LX 2D laser line scanner.
This sensor produces a vector of 1,080 range measurements
from consecutive bearings at 0.25° intervals, called a scan
line. A sample scan line is illustrated in Fig. 3-(a). Each scan
line undergoes the processes of segmentation, tracking, and
human detection. We use the detection and tracking algo-
rithm described in [13].2 The segmentation process groups
the points in the scan line that are likely to belong to the same
object (Fig. 3-(b)). It is assumed that two neighboring points
belong to the same object if their separation is less than 0.8m.
Each object is represented by the center of the bounding box
enclosing the points that belong to it. Then, each object is
tested for association with objects from previous scans by
checking whether its bounding box overlaps with those of
objects from past scans (Fig. 3-(c)). If there is a match, the
motion of the center feature is used by a Kalman filter to
estimate the object’s position and velocity. These estimates

2A lengthy description of the detection and tracking algorithm is outside
of the scope of this paper. A comprehensive presentation of these steps is
found in [13].

are added to the history of the matching object, which is
identified by a unique Object ID. If a match cannot be
found, a new object history is created. Finally, each object
is evaluated by computing its Strength of Detection (SOD),
which is a measure of how confident the algorithm is that
the object is actually a human. The SOD is a function of the
object’s size, the distance it has traveled, and the variation in
its size and velocity. Details of the computation of the SOD
are presented in [13].

For our experiments, we placed a set of obstacles whose
average height was about 1.5m above the ground. We placed
a sensor on a tripod at a fixed location 1m above the ground.
This was done to generate a map of the testing area. Then,
we increased the height of the sensor to 1.7m. This allowed
us to track people in the area without occlusions from the
obstacles.

Fig. 3: A sensor placed at (0,0) produces a scan line (a).
The segmentation step groups points into potential objects,
as indicated by the sets of points with similar markers (b).
The objects are represented by the center of their bounding
boxes (c), whose motion is used for tracking (d).

The system keeps track of both static and moving objects.
We filter out irrelevant observations according to the fol-
lowing criteria: first, objects whose SOD is smaller than a
threshold 6,4 are rejected. Next, because the object ID of
the same target can change (e.g., when the tracking algorithm
loses the target due to occlusion, and then assigns it a new
object ID when the same object reappears), the tracking
histories of the objects that passed the previous test are
analyzed to determine if their histories should be merged.
Therefore, the sequences of tracking data that start and end
in close spatial and temporal proximity (within a distance
threshold 04, and time threshold 6;) to each other are joined
together. All the thresholds were determined experimentally.
For each object, every data point in its tracking history



(a) Case 1: ground truth

(c) Case 2: ground truth (d) Case 2: prediction
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(e) Case 3: ground truth (f) Case 3: prediction

Fig. 4: Three scenarios: detecting doors by observing a hu-
man teammate. Static objects are shown in bounding boxes in
black; human trajectory, in yellow and light blue; perceived
doors, in a heatmap where red representing high confidence.
(This paper is best viewed in color.) (¢ = 0.1, A = 0.1)

is translated into an observation for the inference network.
Here, if the human’s moving velocity is higher than 0.5m/s
then the cell is considered exposed; it is shadowed otherwise.

In the following two sections, we present the results using
the following evaluation metrics.

Evaluation metrics. We use precision and recall to
measure performance. Let tp, tn, fp, and fn denote true
positive, true negative, false positive, and false negative,
respectively. Precision and recall are defined as: precision =
tpj_%; recall = tpipfn.

Instead of using a threshold to convert continuous output
to a binary value, e.g., a source is positive if its probability is
higher than a certain threshold, we measure the performance
using continuous values. For instance, the value of true
positives tp is the sum of probabilities as opposed to the

number of candidates whose probability values are higher
than a threshold. This method, when compared to binary
value counting, gives partial credit for correct predictions
with low confidence (lower than the threshold used in binary
value counting); at the same time, the score is penalized for
correct predictions with high confidence.

B. Results on tracking a person

This set of experiments was carried out in a 12m x 15m
indoor space. A map was created by detecting static objects
and walls using the laser line scanner. This map was used to
compute inter-visibility when constructing a Bayes net.

For the purpose of this experiment, a human subject was
instructed to navigate the area to monitor a door in a stealthy
manner. The location of a ground truth door was configured
differently for three cases, as shown in Figure 4. The left
column shows the ground truth doors in red; the riskiness
of a cell is expressed in shades (the darker, the riskier).
The intial set of candidate doors included discretized points
along the left wall as well as rotated L-shaped walls on the
right. Thus, the algorithm initially predicted that the entire
space was exposed to some sources. The right column shows
the doors detected by our approach in a heat map form
where red indicates strong positive. The human teammate’s
trajectory is also shown in the figure; yellow indicates that
the human was moving fast whereas light blue corresponds to
relatively slow movements. The actual locations of doors do
not match precisely due to coarse resolution of discretization,
but are fairly close, resulting in a riskiness map that closely
resembles the ground truth.

C. Results for tracking a software agent

The following set of experiments were performed on
synthetically generated scenarios similar to the real example
shown in Figure 4. Each problem contained walls on both left
and right sides and a set of random obstacles. The ground
truth doors were also placed according to a configuration
parameter specifying the percentage of a wall that constitutes
doors. We then placed a human software agent having the
ground truth information (where the doors are) to stealthily
navigate through the area. The robot agent was given only
information regarding where the walls were located. The
robot agent initially predicted the entire wall (discretized) as
candidate doors and assigned low confidence values. Using
the human agent’s positions and stealthiness modulo small
errors, the robot agent updated the posterior probability of
each source in the Bayes net.

Figure 5 shows that the robot improves its predictions
over time as it collects more observations from its human
teammate. The results were averaged over 100 arbitrarily
generated problems. The z-axis shows the percentage of
observed portion in an environment—i.e., as a ratio of the
number of observed nodes to that of total number of nodes;
the Y-axis shows the harmonic mean of precision p and recall
r known as F-measure, defined by ;’;’;. The performance
was compared to an earlier approach [16] that uses a tempo-
ral weighted-sum update method where newer observations
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Fig. 5: F-measure of door detection by tracking a software
teammate agent. (¢ = 0.05, A = 0.05)

are more heavily weighted than older ones. Although the
earlier approach fared well in terms of estimating riskiness,
actual door detection accuracy was generally low as shown
in Figure 5. Using our Bayesian method, the robot detected
doors with high accuracy, achieving over .88 precision and
over .96 recall rates, resulting in an F'-measure of over .9,
after observing fewer than 1% of nodes.

VI. CONCLUSION

In this paper, we investigated an alternative approach to
vision-based robot perception by applying a probabilistic
inference technique to interpret indirect cues. Specifically,
we used a 2-layer Noisy-OR Bayes net known as BN20O
to represent the dependence relationship between perceived
information and human actions. We evaluated our approach
in a door detection problem using both synthetic and real
tracking data. The results from a small set of real tracking
data were promising. On a larger set of synthetic problems
similar to the real scenarios, the performance was highly reli-
able, achieving an F'-measure over .9. The idea of inference-
based perception is general and can be applied to other
perception problems such as detecting other types of objects,
the types of terrain, or predicting unseen portions of an
environment.
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