
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2023

Widget detection-based testing for industrial mobile games Widget detection-based testing for industrial mobile games

Xiongfei WU

Jiaming YE

Ke CHEN

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Ruochen HUANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WU, Xiongfei; YE, Jiaming; CHEN, Ke; XIE, Xiaofei; HUANG, Ruochen; MA, Lei; and ZHAO, Jianjun. Widget
detection-based testing for industrial mobile games. (2023). Proceedings of the 45th International
Conference on Software Engineering: Software Engineering in Practice, Melbourne, Australia, May 14-20.
173-184.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8229

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8229&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Xiongfei WU, Jiaming YE, Ke CHEN, Xiaofei XIE, Ruochen HUANG, Lei MA, and Jianjun ZHAO

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8229

https://ink.library.smu.edu.sg/sis_research/8229

Widget Detection-based Testing for Industrial
Mobile Games

Xiongfei Wu1, Jiaming Ye1, Ke Chen2, Xiaofei Xie3, Yujing Hu2*

Ruochen Huang4, Lei Ma4,5* and Jianjun Zhao1*

1Kyushu University, Japan 2Fuxi AI Lab of NetEase, China
3Singapore Management University, Singapore

4University of Alberta, Canada 5The University of Tokyo, Japan

Abstract—The fast advances in mobile hardware and
widespread smartphone usage have fueled the growth of global
mobile gaming in the past decade. As a result, the need for quality
assurance of mobile gaming has become increasingly pressing.
While general-purpose testing methods have been developed for
mobile applications, they become struggling when being applied
to mobile games due to the unique characteristics of mobile
games, such as dynamic loading and stunning visual effects.
There comes a growing industrial demand for automated testing
techniques with high compatibility (compatible with various
resolutions, and platforms) and non-intrusive characteristics
(without packaging external modules into the source code, e.g.,
POCO). To fulfill these demands, in this paper, we introduce
our experience in adopting the widget detection-based testing
technique WDTEST, for mobile games at NetEase Games. To
this end, we have constructed by far the largest graphical
user interface (GUI) dataset for mobile games and conducted
comprehensive evaluations on the performance of state-of-the-
art widget detection techniques in the context of mobile gaming.

We leverage widget detection techniques to develop WDTEST,
which performs automated testing using only screenshots as
input. Our evaluation shows that WDTEST outperforms the
widely used tool Monkey in achieving three times more coverage
of unique UI in gaming scenarios. Our further experiments
demonstrate that WDTEST can be applied to general mobile
applications without additional fine-tuning. Furthermore, we
conducted a thorough survey at NetEase Games to gain a
comprehensive understanding of widget detection-based testing
techniques and identify challenges in industrial mobile game
testing. The results show that testers are overall satisfied with
the compatibility testing aspect of widget detection-based testing,
but not much with functionality testing. This survey also high-
lights several unique characteristics of mobile games, providing
valuable insights for future research directions.

Index Terms—Mobile game testing, GUI testing, GUI detection,
software quality assurance.

I. INTRODUCTION

Mobile games have experienced significant gains in pop-

ularity due to the advance of mobile devices over the past

decade. According to the industry reports [1], the global

mobile games market would surpass 112 billion dollars in

2022. In a bid to attract users, modern mobile game in-

dustries are often incorporating visually stunning effects and

intricate interactions into their products. Meanwhile, quality

assurance for industrial mobile games has proven its unrivaled

importance. For example, inside NetEase Games, one of the

*Corresponding Authors

leading companies in the global game market, a display issue

concerning the character’s clothes in a role-playing game

(RPG) can lead to a significant decrease in the top-up system

of users.

Given the significance of quality assurance, mobile applica-

tions often undergo systematic testing before being shipped to

users. Although there exists research on testing mobile applica-

tions, ranging from simple while useful method Monkey [2], to

more sophisticated methods like fuzzing [3], model-based GUI

testing [4], and machine learning-based methods [5, 6], these

methods struggle to fully meet the requirements for automated

mobile game testing in industrial contexts. The demanding

nature of task accomplishment and high user interaction in

mobile games makes it challenging for these methods to

achieve high code/scenario coverage. As a result, current

industrial practices for mobile game testing still mainly rely

on intensive manual testing and semi-automated testing (e.g.,

through drafting testing scripts), which are both expensive and

limited in scale.

With the advance of testing techniques, visual testing tools

that harness the power of computer vision (CV) techniques

to identify and recognize UI elements from screenshots have

demonstrated their efficacy in both industrial [7] and academic

contexts [8, 9]. However, it is still unclear whether widget

detection-based testing methods can be applicable to mobile

games, and to what extent the potential of these testing

methods can be in promoting mobile game testing.

Therefore, in this paper, we introduce our experience of

developing and deploying our widget detection-based testing

framework, WDTEST, in NetEase Games. NetEase Games is

the online game division of NetEase Inc, and is responsible

for the development and operation of some of the most widely

played mobile and PC games in markets. Currently, NetEase

Games operates more than one hundred games and continues

to be ranked in the top five global mobile game publishers.

In 2021, the annual gross profit of NetEase Games reached

7.371 billion dollars, with monthly active users (MAU) base

that expanded to 80.3 million.

As shown in Figure 1, WDTEST follows the previous prac-

tice [7] and primarily consists of two components: the widget

detection component that utilizes existing object detection

techniques to extract widget information from the underlying

screenshot, and the action planning component, responsible

173

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

2832-7659/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEIP58684.2023.00021

20
23

 IE
EE

/A
C

M
 4

5t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(I

C
SE

-S
EI

P)
 |

97
9-

8-
35

03
-0

03
7-

6/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-S

EI
P5

86
84

.2
02

3.
00

02
1

for selecting a specific widget among the detected widgets

and choosing an appropriate action to take.
To establish a solid basis to study industrial mobile game

testing, we first construct a large collection of GUI dataset of

mobile games, consisting of 33 mobile games from 12 differ-

ent mobile game publishers and covering 11 different types

of mobile games. Since the existing studies only evaluate the

accuracy of widget detection on a limited dataset (consisting

of nine mobile games) [10], or the results are obtained on a

dataset of general applications [6, 7]. Our experimental results

indicate that models trained on our new game GUI dataset have

significant performance improvement and can be generalized

to a wider scope of applications without fine-tuning. As for the

action planning component, we adopt a randomized strategy.

The results of the evaluation conducted on three external

mobile games, namely Apex Legends Mobile, D10, and GI4,

indicate that WDTEST is capable of covering three times the

number of unique UIs compared to the widely used testing tool

Monkey [2] using a full randomized action planning strategy.
Unlike general-purpose mobile apps, mobile games possess

unique characteristics, as their UIs are often more com-

plicated [11] and have unique behaviors such as dynamic

loading. While the evaluation results have demonstrated the

effectiveness of widget detection-based testing, its practicality

in industrial settings remains not very clear. To obtain a rela-

tively more complete picture of widget detection-based testing

and identify challenges in industrial mobile game testing,

we conduct a survey with a carefully designed questionnaire

in NetEase Games Testing Center. Eventually, 42 mobile

game testers answered our questionnaire. The results show

that WDTEST can alleviate the burden on manual testers for

testing the usability and stability of mobile games. However,

57% of the testers are not still satisfied with WDTEST for

functional testing, since the current action planning strategy

is randomized clicking and lacks semantic comprehension

of the underlying buttons being clicked. Furthermore, we

examine the differences between general mobile applications

and mobile games, highlighting three unique characteristics of

the latter.
In summary, this paper makes the following key contribu-

tions:

• We initiate an early step towards widget detection-based

testing for mobile games and identify challenges in adopting

GUI widget detection-based testing methods in practice.

• We construct a much larger and more precise GUI dataset

for mobile games, based on which we perform an empirical

study to better understand the difference between general-

purpose mobile apps and mobile games. Our dataset is made

publicly available at [12] to enable further in-depth research

in this direction.

• We introduce our experience and lessons learned from

developing and deploying the first widget detection-based

testing framework WDTEST in NetEase Games.

• We conduct a survey in NetEase Games to investigate

how testing practitioners view the GUI widget detection-

based testing methods. Based on the results, we discuss and

pinpoint some practical directions towards building more

effective automated testing techniques for mobile games.

The rest of this paper is organized as follows. Section II

provides background knowledge about object detection models

and their evaluation metrics. Section III presents the perfor-

mance of widget detection models in the context of mobile

games. Section IV evaluates WDTEST in industrial settings.

Section V describes the opinions of practitioners towards wid-

get detection-based testing and the differences between mobile

apps and mobile games. Section VI discusses our findings

and several implications. Section VII reviews internal and

external threats. After discussing related work in Section VIII,

Section IX concludes this paper.

II. BACKGROUND AND GAME GUI COLLECTION

In this section, we first briefly introduce several represen-

tative techniques for GUI widget detection. Then, we discuss

metrics for widget detection and image complexity, followed

by the process in which we construct GUI dataset of mobile

games.

A. Techniques for GUI Widget Detection

1) Generic object detection techniques: Object detection

is to identify where objects are located in a given image

(object localization) and which category each object belongs to

(object classification) [13]. Old-fashioned (traditional) object

detection techniques such as Scale-Invariant Feature Trans-

form (SIFT) [14], rely on handcrafted features and shallow

trainable classifiers to identify objects. Their performance

easily stagnates in handling complex and varied object shapes.

Deep learning-based techniques adopt neural networks (e.g.,

convolutional neural networks) to learn features from images

and classify the located objects. With the fast progress over the

past few years, deep learning-based techniques have achieved

state-of-the-art performance on a wide range of object detec-

tion benchmarks [15].

2) Selection of detection techniques: Inspired by previous

studies [6, 7, 10], to be more comprehensive, we choose to

adopt both deep learning-based object detection techniques as

well as old-fashioned techniques. After investigation, seven

object detection techniques are chosen to evaluate their per-

formance on the game dataset. The selected techniques include

five deep learning-based methods, one method that developed

upon old-fashioned techniques, and one method that combines

both old-fashioned and deep learning-based techniques. We

give a high-level summary of these methods as follows.

Faster R-CNN: Faster R-CNN is a two-stage anchor-based

object detection algorithm [16]. Faster R-CNN employs a

novel idea of the region proposal network (RPN), which is

a fully-convolutional network sliding on the last feature map

of the feature extraction network and predicts whether there is

an object or not along with the corresponding bounding box

of those objects. Then, the proposals generated by RPNs are

fed into two fully connected layers to perform object class

classification and the bounding box regression.

174

Fig. 1. Overview of the WDTEST framework.

YOLO Family: Compared with the Faster R-CNN model,

YOLO is a one-stage anchor-box-based object detection tech-

nique. It treats object detection tasks as a regression problem

and extracts features from input images as a unified archi-

tecture. Different from the manually defined anchor box of

Faster R-CNN, the one-stage model uses the k-means method

to cluster the groundtruth bounding boxes, and takes the

box scale and aspect ratio of the k-centroids as the anchor

boxes. For each grid of the feature map, it regresses the box

coordinates and classifies the object in the bounding box. We

adopt YOLOv3 [17] and YOLOv5 [18] in our experiment.

CenterNet Family: CenterNet is a one-stage anchor-free

object detection technique [19]. Faster R-CNN and YOLO

rely on a set of predefined anchor boxes, whose performance

may be affected by the ratio aspect of anchor boxes. Instead

of generating bounding boxes using anchor boxes, CenterNet

directly predicts the position of the top-left and bottom-right

corners as well as the center of the object, after which it

assembles them to output the bounding box. CenterNet2 can

be treated as a two-stage version of CenterNet, with its first

stage estimating object probabilities and the second stage

conditionally classifying objects [20].

Xianyu: Xianyu is a tool developed by Alibaba to reverse-

engineer GUIs [6]. Xianyu first binarizes the image and slices

the image in both horizontal and vertical directions. Then, it

utilizes edge detection to detect the edges and obtains contours

in the binarized image, followed by the flood fill algorithm

to merge qualified neighbor points. In this paper, we use the

element detection part of Xianyu.

UIED: UIED is a combined GUI detection approach, which

blends multiple techniques to seek a balance with their com-

bination [21] in practice. Specifically, UIED adopts optical

character recognition (OCR) to detect text elements (i.e., GUI

elements are filled with text information) and leverages deep

learning-based models to detect non-text GUI elements. Based

on this, UIED collects the results from both OCR and the GUI

detection model and aggregates the predictions of bounding

boxes to improve overall detection precision.

B. Metrics for GUI Widget Detection and Image Complexity

Widget detection metrics. Intersection over Union (IoU)

is an important and common evaluation metric to approximate

the performance of object detection techniques [22]. An IoU

threshold indicates the requirement of the precision of pre-

diction. The selection of the IoU threshold can largely affect

the performance of deep learning models. In consideration of

the effect on downstream applications (e.g., widget detection

guided GUI testing), a moderately strict criterion to evaluate

the performance of models should be adopted. In previous

works, for real-world object detection tasks, the IoU threshold

is often assigned with a loose value (i.e., 0.3 or 0.6) [9, 23],

which means a prediction is considered correct when half

of the prediction bounding box area is overlapped with the

ground-truth bounding box area. However, in GUI widget

detection, a more strict threshold is required based on the

following two reasons: 1) The widgets are placed compactly in

a GUI. The loose threshold may lead to incorrect estimations

of model performance. 2) The detection results serve for

downstream applications (e.g. widget detection guided GUI

testing).

Image complexity. The complexity of an image can indicate

various aspects of the image content and is an important factor

for testing various image processing methods. Among various

measures of image complexity, spatial information (SI) has

demonstrated its strong correlation with compression-based

image complexity and is widely adopted as the basis for

estimating image complexity [24]. Given sh and sv to denote

grey-scale images filtered with horizontal and vertical Sobel

kernels, respectively, the SIr =
√
s2h + s2v is the magnitude of

spatial information at every pixel. According to [24], SImean

can be an ideal predictor for estimating image complexity.

SImean can be calculated as SImean = 1
P

∑
SIr, where P

represents the number of pixels in the image.

C. Action Execution Components

Inside WDTEST framework, to execute a selected action

(see Figure 1), we utilize an open-sourced project named

175

Airtest1. Airtest is a cross-platform UI automation frame-

work for games and applications, which is based on image

identification and supports Windows, Android, and iOS, etc.

In WDTEST, we mainly use the input simulation function

of Airtest to capture screenshots and perform click (touch)

actions. Detailed usage information could be found on the

official website of Airtest. We also provide some examples

on our website [12] to ease the usage by practitioners.

D. Collection of Game GUIs

To the best of our knowledge, up to the present, there

is only one available dataset of game GUI benchmark [10].

However, this dataset only contains 2,993 GUIs with 38,776

widgets which may be insufficient for training modern object

detection models. Furthermore, the diversity of game types

in this dataset is also somehow limited. To achieve a solid

evaluation of the performance of the chosen object detection

models, we spent lots of effort in constructing a new mobile

game GUI dataset, which currently consists of 33 mobile

games and covers 11 types of popular mobile game types.

The process of constructing a widget detection image dataset

mainly follows three key steps.

First, we need to define the target widget detection cate-

gories. To do this, we adopt the categories used in existing

works [10, 25]. Then, we adapt them into widget detection

categories for mobile games. As a result, 12 categories are

summarized.

The second step is collecting a set of candidate images to

represent the proposed categories. We select 33 mobile games

published by 12 different mobile game companies which cover

11 game types to enrich the diversity of our dataset. While

most of the widget types can be easily recognized from their

name, except for Background Return. Background Return is a

widget on which if there is no explicit button displayed on the

screen, the user can only return to the previous UI by clicking

the dimmed background. As shown in Figure 2, users can only

return to the previous UI by clicking the area outside the red

box. Detailed explanations and examples for every widget type

could be found on our supplementary website [12]. Then, we

successfully recruit 12 volunteers in NetEase Games Testing
Center to play these mobile games with their screen being

recorded. The volunteers are required to explore as many

scenes of the mobile game as possible, and each mobile game

is played for at least 10 minutes. The screen recordings are

converted into images, which are then de-duplicated using a

third-party tool. After removing the duplicated images, a total

of 14,442 GUIs are collected.

The third step is annotating the collected screenshots in

step 2. Although Ye et.al. [10] have proposed an automated

approach to extract GUI widgets in mobile games. The auto-

mated approach proposed by Ye et.al. struggles in effectively

detecting nested GUI widgets. Thus, we recruit eight develop-

ers along with the first four authors of this paper to manually

annotate the images. From the 33 selected games, we obtain

1Airtest: https://github.com/AirtestProject/Airtest

Fig. 2. Example of a background return widget.

14,442 GUIs and 227,221 widgets in total. The distribution

of each category is summarized in Table I. The annotations

are cross-checked by the aforementioned developers and co-

authors to reduce the risks of introducing bias and manual

mistakes.

TABLE I
DISTRIBUTION OF WIDGETS.

Widget type # widgets

Background Return 448
Button 182,608

Checkmark 1,253
Dropdown (Spinner) 7,750

Horizontal ScrollView 3,563
InputField (Editable Text) 852

LiveStream 15
Locked Button 17,336

ScrollView 10,511
Scrollbar 1,443

Slider 234
Toggle Button 1,208

Total 227,221

III. EVALUATION OF GUI WIDGET DETECTION FOR

INDUSTRIAL MOBILE GAMES

In this section, we discuss the detailed evaluation results of

seven representative GUI widget detection techniques. All the

experiments were conducted on a workstation with two E5-

8160, four RTX 3090, and 384 GB RAM, running on Ubuntu

20.04.

A. Experimental Setup

1) Dataset: We use the collected gaming dataset as the

dataset for training all the deep learning-based widget detec-

tion models. Since the screenshots have different resolutions,

we resize all the images to a fixed resolution of 2,560*1,440.

We split the 14,442 images into train/validation/test datasets

with the ratio of 8:1:1. Following previous work [6], the UIs of

a single mobile game will not be split into different datasets.

2) Model training and configurations: For Faster R-CNN,

YOLO family, and CenterNet family, we use their implemen-

tation on GitHub [26, 27, 28, 29, 30] and re-train these

models on our collected game dataset. All the deep learning

models are trained for 45,000 iterations to ensure that the

176

models have been sufficiently trained. For Xianyu and UIED,

we adopt their implementation from previous work [6]. Note

that the latest version of UIED has replaced the original OCR

technique EAST with Google OCR for easier deployment and

better performance. Therefore, we use the UIED with Google

OCR and configure its parameter according to the author’s

recommended settings for mobile applications in order to

obtain its best performance.2

B. Metrics

Similar to previous works [6, 7, 10], we adopt Precision,

Recall and F1-score to evaluate the performance of the se-

lected techniques. Specifically, for each predicted bounding

box b on a given screenshot s, we calculate its IoU with

ground-truth bounding boxes and find the one that has the

largest IoU with b and this IoU needs to be greater than a

predefined threshold. If we can successfully find a ground-

truth bounding box for b, we call this b as True Positive (TP).

Otherwise, this b is a False Positive (FP). False Negative (FN)

is a ground-truth bounding box that can not be matched with

any predicted bounding box. The Precision is calculated as

TP/(TP +FP), Recall as TP/(TP +FN) and F1-score as

2× Precision×Recall/(Precision+Recall).

C. Analysis on Experimental Results

1) Performance of GUI Widget Detection.: The perfor-

mance of the selected techniques is summarized in Table III.

Comparison between deep learning-based techniques.
From the results, we can see that Faster R-CNN achieves the

highest identification accuracy among all the deep learning-

based techniques with IoU at 0.5. CenterNet2 follows Faster

R-CNN to be the second best on identification accuracy. Two-

stage techniques (Faster R-CNN and CenterNet2) achieve bet-

ter effectiveness than one-stage techniques due to their explicit

stage of proposing bounding boxes. One thing worth noting is

that the two most recent proposed techniques, CenterNet2 and

YOLOv5 (both proposed in 2021) fail to outperform Faster R-

CNN (proposed in 2015) on identification accuracy. Between

the two-stage models, Faster R-CNN outperforms CenterNet2

at lower IoU thresholds, but is outperformed at higher IoU

thresholds (IoU>0.9). The reason may be that CenterNet2 is

an anchor-free model, which enables it to suffer less from the

size and shape of the UI elements. However, the flexibility will

harm its performance when IoU threshold is low since the UI

elements of mobile games are often put closely together. This

issue has also been spotted in previous study [6].

Comparison between old-fashioned techniques. For old-

fashioned techniques, UIED outperforms Xianyu, since UIED

is empowered by deep learning-based OCR techniques and

the idea of detecting non-text and text elements separately.

Xianyu struggles to detect highly sophisticated GUI elements

in mobile games.

Comparison between deep learning-based and old-
fashioned techniques.While UIED has achieved the most

2Parameter for mobile applications: https://github.com/MulongXie/UIED/
blob/4557d00ad462445d00952c74458c5455d0f7e13c/run single.py\#L47

TABLE II
RESULTS OF WIDGET DETECTION (IOU@0.75) AND RUNNING EFFICIENCY

ON GENERAL APPLICATION.

Techniques F1-score Avg. Time

CenterNet 0.351 1.14s
CenterNet2 0.410 1.21s
YOLOv3 0.192 0.95s
YOLOv5 0.235 0.89s
Faster R-CNN 0.481 1.33s
UIED 0.513 2.8s
Xianyu 0.105 0.83s

competitive effectiveness in most scenarios in previous stud-

ies [6, 7], it does not keep ahead of its competitors in industrial

mobile games. The rationale is twofold: 1) the different roles

of text GUI elements in general applications (e.g., Taobao,

Amazon) and mobile games. In a general application, text-

elements are commonly designed to be clickable. However,

the text-elements in mobile games are often displayed to

introduce the background information of a gaming scene and

are not clickable, which will lead UIED to produce FPs and

undermine its performance. As shown in Figure 3, although

UIED correctly detected two widgets on the right-bottom

corner, it also generates lots of FPs. 2) the traditional computer

vision techniques used by UIED struggle to detect highly

sophisticated GUI widgets in mobile games. Although UIED

outperforms deep learning-based techniques on general appli-

cations [7], its poor performance in mobile games makes it

unsuitable to be the backbone GUI widget detection technique

for automated visual testing for industrial mobile games.

D. Generalization on General-Purpose Applications

To test the generalizability of the selected widget detection

techniques, we evaluate the performance of the trained models

on general-purpose applications. We select two general appli-

cations, one is NetEase Cloud Music, which is a leading online

music platform developed by NetEase, with 181.7 million

monthly active users. The other is Weipinhui, which is an

online shopping application. Both of these two applications are

not included in our game GUI dataset. We take 100 screenshots

from these two applications and label buttons in the screenshot

by following the same procedure in Section II-D. Then, we

evaluate the performance of the widget detection techniques

on this dataset built upon general applications. The results are

shown in Table II. We observe that although deep learning-

based models suffer from performance drop on general ap-

plications, the performance drop is comparatively less than

previous studies [10], indicating the effectiveness of our col-

lected game dataset. Faster R-CNN and CenterNet2 can still

maintain a competitive performance on general applications

compared to UIED since their processing time on a single

image is much shorter than UIED. Empowered by combining

both deep learning and traditional computer vision techniques,

UIED outperforms all the other widget detection techniques on

general-purpose applications.

177

Fig. 3. Example of detection results of UIED on game GUI. The left figure is the ground-truth. And the right figure shows the results generated by UIED.

TABLE III
PERFORMANCE OF THE SELECTED TECHNIQUES.

Model
Performance Prec. Recall F1-score

CenterNet (IoU@0.5) 0.304 0.464 0.367
CenterNet (IoU@0.75) 0.293 0.453 0.356
CenterNet (IoU@0.95) 0.218 0.405 0.283
CenterNet2 (IoU@0.5) 0.51 0.44 0.472
CenterNet2 (IoU@0.75) 0.45 0.42 0.434
CenterNet2 (IoU@0.95) 0.39 0.37 0.38
YOLOv3 (IoU@0.5) 0.623 0.29 0.396
YOLOv3 (IoU@0.75) 0.594 0.206 0.306
YOLOv3 (IoU@0.95) 0.103 0.08 0.09
YOLOv5 (IoU@0.5) 0.64 0.441 0.522
YOLOv5 (IoU@0.75) 0.55 0.391 0.457
YOLOv5 (IoU@0.95) 0.195 0.103 0.135
Faster R-CNN (IoU@0.5) 0.81 0.58 0.68
Faster R-CNN (IoU@0.75) 0.57 0.40 0.47
Faster R-CNN (IoU@0.95) 0.118 0.084 0.098
UIED (IoU@0.5) 0.334 0.351 0.347
UIED (IoU@0.75) 0.293 0.26 0.276
UIED (IoU@0.95) 0.28 0.21 0.24
Xianyu (IoU@0.5) 0.239 0.091 0.132
Xianyu (IoU@0.75) 0.167 0.12 0.14
Xianyu (IoU@0.95) 0.103 0.007 0.013

IV. EVALUATION OF GUI WIDGET DETECTION-BASED

TESTING METHOD.

A. Action Planning Strategy

Since the testing framework is supposed to be non-intrusive,

we assume that the testing framework only uses screenshots

as the source of information and thus can not rely on any

precise information. As a result, we follow the setup in [7]

and adopt the randomized exploration strategy as the test-

action planning strategy. More specifically, at each round, the

framework randomly selects one UI widget from the detected

UI widgets and clicks on it.

As a consequence, we decide to set testing parameters as

follows: before each round, with probability α = 0.005, we

restart the game; otherwise, the platform randomly chooses a

detected widget and clicks on it.

B. Evaluation of GUI Widget Detection-based Testing

We select a famous mobile game named Apex Legends
Mobile [31], an RPG game named GI4, and an action game

named D10 to evaluate the effectiveness of the testing method.

GI4 and D10 are currently under development inside NetEase

Games and all these three mobile games are not included in

our collected gaming dataset.

Baseline Techniques. We compare the effectiveness of

our testing method with the aforementioned widget detec-

tion techniques. We denote the testing method instantiated

with CenterNet, CenterNet2, Faster R-CNN, UIED, YOLOv5,

YOLOv3, Xianyu as C-Test C2-Test, F-Test, U-Test, Y3-
Test,Y3-Test, X-Test. Besides, we also recruit a testing de-

veloper to perform random clicking, denoted as H-Test, and

compare these techniques with Monkey, a widely used tool

for testing. For Monkey, we adopt its default settings as the

previous works [7] and set the throttle to 200ms.

Environmental Settings. Since mobile games do not have

a specific definition for scenarios used in previous work [7],

we use unique UIs covered in unit time (one hour) to evaluate

the effectiveness of widget detection-based testing. Specifi-

cally, after each round, we take a screenshot and compare

its hash distance with historical screenshots using perceptual

hashing [32]. If the hash distance is smaller than 0.5, we

consider this screenshot to be a unique UI. To reduce the

threats that are caused by randomness, we run each test three

times. We run the mobile game on a Samsung S20 FE running

on Android 12 with Android Debug Bridge (ADB) enabled.

The captured screenshot will be transferred and processed on

a server with E5-8160 CPU and one Nvidia A6000 GPU. We

use Airtest introduced in Section II-C to capture the screenshot

and perform the click action.

C. Experimental Results

Table IV summarizes the average unique UIs covered by

the testing framework instantiated with different techniques in

one hour along with the corresponding execution rounds on

three selected games. The results show that the achieved F-

test outperforms all the techniques except H-test, and covers

three times more UIs than Monkey. All the widget detection-

based testing techniques have shown to be more effective

than Monkey, indicating the ability to recognize widgets can

significantly improve the effectiveness of automated testing for

mobile games, which is consistent to [7, 9].

178

Fig. 4. Example of a loading screen.

TABLE IV
UNIQUE UI COVERAGE AND EXECUTION ROUNDS.

Baseline Avg. #Unique UI Avg. Execution Rounds

C-Test 217 2,181
C2-Test 235 1,901
F-Test 308 1,310

Y5-Test 159 2,695
Y3-Test 132 2,403
U-Test 163 1,107
X-Test 121 2,809

Monkey 99 17,909

H-Test 811 �

Among all the widget detection-based techniques, tech-

niques with similar accuracy exhibit generally consistent

performance. However, F-Test is significantly more effective

than other techniques due to its high identification accuracy,

which is different from the findings in previous work [7]. In

the previous research, the authors claim that although Faster

R-CNN has higher UI-element identification accuracy, the

execution time of Faster R-CNN leads to relatively lower

scenario coverage. However, the processing time of a specific

technique is not as important in mobile game testing as in

general applications. Since industrial mobile games are much

more sophisticated than general applications, mobile games

may often require dynamic loading resources which can take

more than ten seconds. During the loading period, all the

actions are invalid. Figure 4 is an example of a loading screen.

The dynamic loading characteristic of mobile games makes

the identification accuracy more important than the processing

speed of a single round of execution.

Finally, all the automated testing techniques are not com-

parable to H-Test, exhibiting the potential for future research.

V. SURVEY

Unlike traditional mobile applications, mobile games have

unique characteristics, as their UIs are more complicated

and have unique behaviors like dynamic loading. While the

evaluation results of the widget detection-based testing method

have proven its effectiveness, whether this testing method

is practical in the industrial environment is still unclear. To

obtain a more complete picture of the widget detection-based

testing method and identify challenges in industrial mobile

game testing, we have conducted a survey at NetEase Testing
Center.

A. Participant Recruitment

In order to obtain a balanced and wide view of the problems

occurring in adopting widget detection-based testing methods,

we involved two groups of developers: script-based testers and

manual testers. In the former group, the developers’ main

duty is to write testing scripts that test the runtime status

and functionality of mobile games. The second group mainly

includes developers who test the usability and functionality of

mobile games through manual clicking.

We recruited participants at NetEase Testing Center and

NetEase Mobile Testing Lab, all the participants are required

to have used the widget detection-base testing method for at

least one month. As a result, we successfully received 45

positive responses from 21 script-based testers and 24 manual

testers. To balance the ratio between these two groups, we

removed three participants from manual testers whose working

experience is less than half a year.

Overall, we recruited 42 participants to conduct the survey,

equally divided into script-based testers and manual testers.

Among the recruited participants, the testing experiences range

from 1.5 years to 10 years with a median value of 3.4.

B. Questionnaire

To reveal the opinion of testing developers towards wid-

get detection-based testing methods, we design a detailed

questionnaire for participants. As shown in Table V, Q1-Q3

are common questions while Q4-Q6 are designed to reveal

the effectiveness of widget detection-based testing methods

in practice and challenges encountered during the adoption

of widget detection-based testing methods. Q7 is designed

to investigate the difference between testing general mobile

applications and mobile games.

The results of the questionnaire show that 73% (21 from the

manual-tester group, nine from the script-tester group) claim

that the widget detection-based testing method can save at least

eight hours per week for them. However, we observe that a

great portion (57%) of the script-tester group complains that

the widget detection-based testing method can not perform

the tasks they want. Their daily work is to draft testing

the script that performs a series of actions in the game and

observe whether the actions can lead to a designed result (e.g.,

obtain an item, clear the current stage), which can test the

functionalities of mobile games. Since the widget detection-

testing method can not click on a designated button, making

it unable to assist the functional testing.

Furthermore, the result of the questionnaire reveals a prob-

lem with the widget detection-based method in practice. Seven

developers from the manual tester group report that the new

testing method may easily get stuck into a scenario during

long-term testing. Due to the complex logic of mobile games,

there exist scenarios that need to click a specific button or

perform a certain series of actions to get out of a scenario.

Since the current widget detection-based testing method can

179

only perform random clicking, it may easily get into a scenario

and get stuck in it, preventing it from exploring deeper

scenarios.

Additionally, 82% of the developers regard compatibility

and easy-to-use as the advantage of the widget detection-

based testing method. Since 77% of the developers need to

test with more than 6 devices for a project, the robustness

of the widget detection-based testing method on resolution

alleviates them from migrating scripts between devices with

different resolutions.

As for the demanding requirements of an ideal testing

method, the most demanding characteristic is compatibility

(93% of the developers mentioned). Developers complain

about suffering from drafting different testing scripts for

different devices and manual testers also need to test new-

added functions across different devices. Although there exists

OneToMany [33] technique which can partially alleviate the

load, the developers are far from satisfied. The second most

mentioned characteristic is automated testing script generation.

Due to the unique characteristics of mobile games, testing

scripts are essential to conducting functional testing. There

exists an urgent demand for automated script generation tech-

niques. Furthermore, an ideal testing framework should be

easy to deploy and the visualization can enable novices to

perform testing procedures. There are few mentions of high

scenario coverage and the ability to generate more readable

reports.

Based on our survey results, we have discovered that

utilizing widget detection-based testing methods can re-

duce the burden on manual testers when evaluating the

usability and stability of mobile games. However, both

sets of developers are dissatisfied with the performance

of widget detection-based testing when it comes to func-

tional testing. The reason being that the widget detection-

based testing approach is unable to understand the signif-

icance of scenarios and buttons, making it inadequate for

executing specific functional testing tasks.

C. Difference between General Applications and Mobile
Games

Based on the results of the questionnaire, we have summa-

rized the following unique characteristics of mobile games.

Higher image complexity of UI. Previous works [10] have

found that the widget density and widget diversity of mobile

games is significantly higher than in general applications. In

this study, we further investigate this issue, and find that the

image complexity of the UI of mobile games is also higher

than general applications. To get a quantitative measurement

for this problem, we adopt spatial information which is widely

used to estimate the complexity of an image. We calculate

the average SImean on our dataset and RICO dataset. The

results show that the average SImean on game dataset (30.41)

is 18.5% higher than RICO dataset (25.67), which can partially

explain the significant performance drop of the traditional

computer vision-based widget detection techniques on game

dataset.

Sophisticated interaction logic. The interaction between the

user and mobile games is more complicated than in general

applications. The rationale is as follows: 1) the inner state

of a mobile game is much more complicated than general

applications. For example, playing or testing mobile games

can be treated as a sequential decision process [11], while

the general applications do not require such complicated

interaction. 2) The interaction between users and the scenario

in mobile games is more complicated. Due to the sophisticated

interactions required by the mobile game, it is difficult for an

automated testing method to achieve high scenario coverage

in mobile games.

Dynamic loading. Also known as dynamic resource loading.

With mobile games becoming increasingly complex, resources

often need to be loaded dynamically while the game is loading

or being played. Furthermore, the loading time consumed by

dynamic loading is nondeterministic, which makes it difficult

to implement automated testing methods.

TABLE V
QUESTIONNAIRE QUESTIONS.

ID Question

Q1 Years of testing experience
Q2 Job responsibility
Q3 Average number of devices for one project
Q4 How much time can be saved per week after using widget

detection-based testing method
Q5 Problem encountered during using widget detection-based

testing method
Q6 Advantages and disadvantages of widget detection-based test-

ing compared to your current workflow
Q7 Difference between testing general mobile applications and

mobile games
Q8 Ideal tools

VI. DISCUSSION

In this section, we discuss our findings and describe several

implications.

A. Industrial Deployment

Up to the present, WDTEST has been continuously tested in

the “Quick and Intelligent Compatibility Testing” pipeline at

NetEase Games Testing Center. More than 18 mobile games

are required to be tested using WDTEST before release. We

also received positive responses from the testing department.

For instance, WDTEST has found 19 crashes since its deploy-

ment, with 16 of which have been confirmed as bugs and fixed.

We plan to provide WDTEST as a commercial visual GUI

testing service on the Fuxi Platform of NetEase, a renowned

research institute that serves over 200 clients.

B. Issues with Vision-based Techniques on Mobile Games

Although widget detection-based testing has demonstrated

its effectiveness and the advantage of being non-intrusive and

180

easy-to-deploy. However, we observed some issues during the

development and deployment of WDTEST. For deep learning-

based object detection techniques, the main issue is that a

widget detection model may fail to detect widgets when the

widgets are closely put together (e.g, card deck, store), causing

the model to produce FNs and undermines the performance

of the whole framework. As for traditional widget detection

techniques, although these techniques are generally fast and

may even demonstrate the best average effectiveness in certain

scenarios [34], these techniques may not be suitable for

industrial mobile games. Our experience and experimental

results have shown that the image complexity of industrial

mobile games makes traditional computer vision techniques

struggle to effectively detect widgets. At the very early stage of

developing WDTEST, we tried to use GUI testing techniques

based on traditional computer vision techniques such as image-

matching based approaches [35, 36], since we can easily

acquire original UI design of widgets from the UI team.

However, after several rounds of experiments, the overall

accuracy is lower than 3.2%. As shown in Figure 5, the image

matching technique fails to match the correct position of the

return button on the left top corner but finds a matched image

with 0.98 confidence on an old-fashioned Chinese building

inside the screenshot. We inspected some examples and figured

out that the low accuracy of image-matching approaches can

be explained as follows: 1) the provided widgets from the

UI design team are the original image without background

information, but the screenshot will have a background in

practice. 2) The image-matching methods mainly utilize tra-

ditional computer vision techniques such as edge detection.

These traditional computer vision techniques are ineffective

when tackling mobile game UIs which are filled with fabulous

visual effects.

C. Potential for Adopting Reinforcement Learning in Visual
GUI Testing

Currently, the action planning strategy of WDTEST is a

randomized strategy, which is simple but effective. Recently,

reinforcement learning has proven its effectiveness in testing

games [4, 11]. Since the key challenge in game testing is that

game testing requires playing games as a sequential decision

process, there exists the potential for adopting reinforcement

learning in visual GUI testing for mobile games and improving

the testing performance. For example, we could store the

historical data of the previous test runs and use these data to

construct a probabilistic model M. Since M can only provide

one-step guidance information, one can utilize reinforcement

learning techniques to expand one-step information to multi-

step guidance information and guide the visual GUI testing.

D. Needs for Automated Test Generation Support on Func-
tional Testing for Mobile Games

From the previous discussion in Section V, we have noticed

that developers are not satisfied with the performance of

WDTEST on functional testing. Currently, functional testing

for mobile games in NetEase Games is conducted by manually

Fig. 5. Example of a failed image-matching.

writing scripts, which is labor-intensive. Given the importance

of functional testing for quality assurance, it is critical and

urgent to have more efficient techniques that can provide

automated test generation support in order to make mobile

games more robust. Based on the results of the questionnaire

in Section V, the most demanding testing tool is automated

testing script generation.

VII. THREATS TO VALIDITY

In this section, we will discuss the threats to the validity of

our work.

Selection of data source and object detection models. In

this paper, we adopt 33 mobile games to construct our GUI

dataset. The selection of games could be biased. To counteract

this bias, we cover 11 diverse types of mobile games published

by 12 different mobile game companies. Furthermore, the

selection of object detection models could also be biased. To

minimize this bias, we adopt all the object detection models

used in the previous similar studies [6, 7], plus two most

recently proposed models (CenterNet2, YOLOv5).

Subjectiveness of the labeling process. This study involves

manual labeling and inspection during the construction of the

GUI dataset, which may introduce bias and present threats to

the validity of our dataset. To reduce this threat, we stick to

the internal quality control process of NetEase to counteract

this issue. However, minor issues could still be introduced.

To alleviate this, we try our best and employ eight developers

along with multiple authors of this paper to crosscheck the

labels three times.

Randomness in the testing process. Another threat could

be the randomness in the evaluation process of WDTEST,

to counteract this threat, we repeat each testing configuration

three times.

VIII. RELATED WORK

In this section, we discuss the following lines of closely

related research.

Deep learning-based object detection models. With the

adoption of deep learning techniques, object detection models

181

have greatly evolved and have been applied to many cutting-

edge areas [37]. Based on the difference in workflow, cur-

rent objection detection techniques can be divided into two

categories, one is the two-stage detector, such as Faster R-

CNN [16], CenterNet2 [20]. The other is the one-stage detector

such as YOLO [17, 18]. However, the aforementioned models

are usually designed for detecting real-world objects and can

not be directly applied to GUI widget detection tasks. Deka

et al. [25] first build a dataset, RICO, including 72K UI

screenshots, as well as 10K user interaction traces from 9,772

Android apps, which can be used to help design mobile app

UIs and train widget detection models. Liu et al. [38] propose

a method that utilizes convolutional neural networks to detect

UI components in mobile apps and then mine design and

interaction data. However, both RICO and the method proposed

by Liu et al. are for general applications and do not generalize

well on mobile games.

GUI Testing. Mobile games are graphically-rich applica-

tions with attractive visual effects of GUI that bridge the

gap between games and players. To ensure the end-user

experience of graphically-rich applications such as mobile

games, previous works have proposed methods to help GUI

testing [7, 9, 39, 40, 41, 42]. Specifically, Liu et al. [42]

propose a deep learning-based technique named OWLEYE

that can model visual information from the GUI screenshot

thus enabling it to detect GUI display issues and locate the

corresponding detailed region of the issue. Chen et al. [39]

propose GLIB, a code-based data augmentation technique to

detect GUI glitches in mobile applications. Thomas et al. [9]

first propose a method that can identify GUI widgets in screen-

shots using machine learning techniques and then use this

information to guide random testing of mobile applications,

which can significantly improve the branch coverage in 18 of

20 applications. Ran et al. [7] first develop an industrial visual

testing framework named VTEST, which only takes device

screenshots and performs automated test generation. However,

both OWLEYE and GLIB are designed to detect GUI display

issues. While VTEST is developed for industrial mobile ap-

plications and can deal with non-standard UI elements, it still

does not generalize well on industrial mobile games. Since

industrial mobile games often use a game engine to render

GUIs instead of traditional GUI widgets, and the interaction

logic of mobile games is much more complicated than general-

purpose applications [11].

Game testing. Games become increasingly popular and

complex due to users’ ever-growing demands for entertain-

ment. As a result, testing games has exhibited its unparalleled

importance to ensure user experience. However, as pointed

out by [43], even the most popular games on the market are

not sufficiently tested. Aleem et al. [44] summarize the main

reason for this unbalanced development to be the absence

of automated testing techniques for games. As for mobile

games, the existing research is still preliminary. Lovreto et

al. [45] first report their experience of testing 18 mobile

games using exploratory testing by manually drafting testing

scripts to test the functionality of mobile games and point

out limitations of existing testing methods. Khalid et al. [46]

conduct a study by mining user reviews from 99 free mobile

games and find that most negative reviews come from a limited

subset of devices. Zheng et al. [11] first propose a composite

testing technique, WUJI, by combining reinforcement learning

and multi-objective optimization algorithms, which is the first

automated testing for real-world games and outperforms the

state-of-the-practice. Li et al. [47] propose GBGALLERY,

which is the first public bug database for game testing. Ye

et al. [10] first conduct an empirical study to investigate the

performance and effectiveness of widget detection techniques

on industrial mobile games and release the first GUI dataset

for mobile games, inspiring us with the potential of apply-

ing widget detection techniques on testing mobile games.

However, the size of the dataset published by Ye et al. is

relatively small (nine mobile games) and they do not perform

widget detection-based testing on mobile games. WUJI can

hardly be applied to mobile games in practice due to the

non-trivial amount of version updates of mobile games. The

exploratory testing through writing testing scripts used in [45]

is labor-intensive and is not fully automated. To the best of

our knowledge, WDTEST is the first systematic and automated

testing framework for industrial mobile games.

IX. CONCLUSION

In this paper, we report our experience and practice (at

NetEase Games) of the development and deployment of the

widget detection-based testing framework, WDTEST, for in-

dustrial mobile games. We performed a systematic study to

evaluate the performance of existing widget detection tech-

niques. To achieve this, we first built by far the largest GUI

dataset for industrial mobile games consisting of 33 mobile

games of 11 types. Then, we evaluate the performance of

seven GUI detection techniques on our game GUI dataset.

Based on the evaluation results, we implemented our widget

detection-based testing framework called WDTEST, outper-

forming the widely used random testing tool Monkey with

three times more covered unique UIs. To obtain a complete

picture of widget detection-based testing in industrial settings,

we conduct a survey in NetEase Games. The results show

that widget detection-based testing can alleviate the burden of

testing developers on compatibility testing and stability testing

but is not fully satisfying for functional testing. In the end,

we discuss our implications for developers and researchers in

order to identify the challenges and opportunities in developing

automated testing techniques for industrial mobile games.

ACKNOWLEDGMENT

This work was supported by JST, the establishment of

university fellowships towards the creation of science tech-

nology innovation, Grant Number JPMJFS2132. This work

was also supported in part by JSPS KAKENHI Grant No.

JP19H04086 and No.JP20H04168, JST-Mirai Program Grant

No.JPMJMI20B8, as well as Canada CIFAR AI Chairs Pro-

gram, the Natural Sciences and Engineering Research Coun-

182

cil of Canada (NSERC No.RGPIN-2021-02549, No.RGPAS-

2021-00034, No.DGECR-2021-00019).

REFERENCES

[1] “Mobile gaming global market report

2022,” https://www.globenewswire.com/

news-release/2022/09/12/2513796/0/en/

Mobile-Gaming-Global-Market-Report-2022.html,

accessed October, 2022.

[2] “Ui/application exerciser monkey,” https://developer.

android.com/studio/test/monkey, accessed October, 2022.

[3] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu,

K. Wang, and Z. Su, “Fully automated functional fuzzing

of android apps for detecting non-crashing logic bugs,”

Proc. ACM Program. Lang., vol. 5, no. OOPSLA, oct

2021.

[4] Z. Lv, C. Peng, Z. Zhang, T. Su, K. Liu, and P. Yang,

“Fastbot2: Reusable automated model-based GUI testing

for android enhanced by reinforcement learning,” in Pro-
ceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2022), 2022.

[5] Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang,

“Owl Eyes: Spotting ui display issues via visual under-

standing,” in Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,

ser. ASE ’20. New York, NY, USA: Association for

Computing Machinery, 2020, p. 398–409.

[6] J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu,

and G. Li, “Object detection for graphical user interface:

Old fashioned or deep learning or a combination?” in

Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE

2020. New York, NY, USA: Association for Computing

Machinery, 2020, p. 1202–1214.

[7] D. Ran, Z. Li, C. Liu, W. Wang, W. Meng, X. Wu, H. Jin,

J. Cui, X. Tang, and T. Xie, “Automated visual testing for

mobile apps in an industrial setting,” in 2022 IEEE/ACM
44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). Los

Alamitos, CA, USA: IEEE Computer Society, may 2022,

pp. 55–64.

[8] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using

GUI screenshots for search and automation,” in Pro-
ceedings of the 22nd Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’09. New

York, NY, USA: Association for Computing Machinery,

2009, p. 183–192.

[9] T. D. White, G. Fraser, and G. J. Brown, “Improving

random gui testing with image-based widget detection,”

in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA

2019. New York, NY, USA: Association for Computing

Machinery, 2019, p. 307–317.

[10] J. Ye, K. Chen, X. Xie, L. Ma, R. Huang, Y. Chen,

Y. Xue, and J. Zhao, “An empirical study of GUI widget

detection for industrial mobile games,” in Proceedings of
the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2021. New

York, NY, USA: Association for Computing Machinery,

2021, p. 1427–1437.

[11] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu,

R. Shen, Y. Chen, and C. Fan, “Wuji: Automatic online

combat game testing using evolutionary deep reinforce-

ment learning,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2019, pp. 772–784.

[12] “The public dataset and supplementary materials.”

https://sites.google.com/view/wdtest-for-mobile-games/,

accessed October, 2022.

[13] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object

detection with deep learning: A review,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 30,

no. 11, pp. 3212–3232, 2019.

[14] D. G. Lowe, “Distinctive Image Features from

Scale-Invariant Keypoints,” International Journal of
Computer Vision, vol. 60, no. 2, pp. 91–110, Nov.

2004. [Online]. Available: https://doi.org/10.1023/B:

VISI.0000029664.99615.94

[15] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapana-

halli, G. V. Hernandez, L. Krpalkova, D. Riordan, and

J. Walsh, “Deep Learning vs. Traditional Computer Vi-

sion,” in Advances in Computer Vision, K. Arai and

S. Kapoor, Eds. Cham: Springer International Publish-

ing, 2020, pp. 128–144.

[16] S. Ren, K. He, R. Girshick, and J. Sun,

“Faster r-cnn: Towards real-time object detection

with region proposal networks,” in Advances in
Neural Information Processing Systems, C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,

Eds., vol. 28. Curran Associates, Inc., 2015. [Online].

Available: https://proceedings.neurips.cc/paper/2015/file/

14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[17] J. Redmon and A. Farhadi, “Yolov3: An incremental

improvement,” arXiv, 2018.

[18] “Yolov5,” https://github.com/ultralytics/yolov5, accessed

October, 2022.

[19] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as

points,” CoRR, vol. abs/1904.07850, 2019.

[20] X. Zhou, V. Koltun, and P. Krähenbühl,

“Probabilistic two-stage detection,” in arXiv preprint
arXiv:2103.07461, 2021.

[21] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen, “Uied: A

hybrid tool for gui element detection,” in Proceedings of
the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New

York, NY, USA: Association for Computing Machinery,

2020, p. 1655–1659.

[22] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid,

and S. Savarese, “Generalized intersection over union:

183

A metric and a loss for bounding box regression,” in

Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 658–666.

[23] T. Yu, Z. Ren, Y. Li, E. Yan, N. Xu, and J. Yuan,

“Temporal structure mining for weakly supervised action

detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 5522–5531.

[24] H. Yu and S. Winkler, “Image complexity and spatial

information,” in 2013 Fifth International Workshop on
Quality of Multimedia Experience (QoMEX), 2013, pp.

12–17.

[25] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afer-

gan, Y. Li, J. Nichols, and R. Kumar, “Rico: A mobile

app dataset for building data-driven design applications,”

in Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology, ser. UIST

’17. New York, NY, USA: Association for Computing

Machinery, 2017, p. 845–854.

[26] “A faster pytorch implementation of faster r-cnn,” https:

//github.com/jwyang/faster-rcnn.pytorch, accessed Octo-

ber, 2022.

[27] “Yolov3,” https://github.com/ultralytics/yolov3, accessed

October, 2022.

[28] “Yolov5,” https://github.com/ultralytics/yolov5, accessed

October, 2022.

[29] “Objects as points,” https://github.com/xingyizhou/

CenterNet, accessed October, 2022.

[30] “Probabilistic two-stage detection,” https://github.com/

xingyizhou/CenterNet2, accessed October, 2022.

[31] “Apex legends mobile: Hyperbeat,” https://www.ea.com/

games/apex-legends/apex-legends-mobile?isLocalized=

true, accessed October, 2022.

[32] C. Zauner, “Implementation and benchmarking of

perceptual image hash functions,” 2010. [Online].

Available: http://phash.org/docs/pubs/thesis zauner.pdf

[33] “Solopi,” https://github.com/alipay/SoloPi/blob/master/

README eng.md, accessed October, 2022.

[34] H. Yu, Y. Lou, K. Sun, D. Ran, T. Xie, D. Hao, Y. Li,

G. Li, and Q. Wang, “Automated assertion generation

via information retrieval and its integration with deep

learning,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22.

New York, NY, USA: Association for Computing

Machinery, 2022, p. 163–174. [Online]. Available:

https://doi.org/10.1145/3510003.3510149

[35] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing

using computer vision,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,

2010, pp. 1535–1544.

[36] J. Tuovenen, M. Oussalah, and P. Kostakos, “MAuto: Au-

tomatic mobile game testing tool using image-matching

based approach,” The Computer Games Journal, vol. 8,

no. 3, pp. 215–239, 2019.

[37] H. M. Gan, S. Fernando, and M. Molina-Solana, “Scal-

able object detection pipeline for traffic cameras: Appli-

cation to tfl jamcams,” Expert Systems with Applications,

vol. 182, p. 115154, 2021.

[38] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech,

and R. Kumar, “Learning design semantics for mobile

apps,” in The 31st Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’18. New

York, NY, USA: ACM, 2018, pp. 569–579. [Online].

Available: http://doi.acm.org/10.1145/3242587.3242650

[39] K. Chen, Y. Li, Y. Chen, C. Fan, Z. Hu, and W. Yang,

“GLIB: Towards automated test oracle for graphically-

rich applications,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY,

USA: Association for Computing Machinery, 2021, p.

1093–1104.

[40] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon,

“Graphical user interface (gui) testing: Systematic map-

ping and repository,” Inf. Softw. Technol., vol. 55, no. 10,

p. 1679–1694, oct 2013.

[41] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam,

W. Yang, and T. Xie, “Automated test input generation

for android: Are we really there yet in an industrial

case?” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: As-

sociation for Computing Machinery, 2016, p. 987–992.

[42] Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang,

“Owl eyes: Spotting ui display issues via visual under-

standing,” in Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,

ser. ASE ’20. New York, NY, USA: Association for

Computing Machinery, 2020, p. 398–409.

[43] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the

urgent updates of popular games on the steam platform,”

Empirical Softw. Engg., vol. 22, no. 4, p. 2095–2126, aug

2017.

[44] S. Aleem, L. F. Capretz, and F. Ahmed, “Critical success

factors to improve the game development process from

a developer’s perspective,” Journal of Computer Science
and Technology, vol. 31, no. 5, pp. 925–950, 2016.

[45] G. Lovreto, A. T. Endo, P. Nardi, and V. H. S. Durelli,

“Automated tests for mobile games: An experience re-

port,” in 2018 17th Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames), 2018, pp.

48–488.

[46] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan,

“Prioritizing the devices to test your app on: A case study

of android game apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2014. New York, NY,

USA: Association for Computing Machinery, 2014, p.

610–620.

[47] Z. Li, Y. Wu, L. Ma, X. Xie, Y. Chen, and C. Fan,

“GBGallery: A benchmark and framework for game

testing,” Empirical Softw. Engg., vol. 27, no. 6, nov 2022.

184

	Widget detection-based testing for industrial mobile games
	Citation
	Author

	Widget Detection-based Testing for Industrial Mobile Games

