
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

CROWDFA: A Privacy-Preserving Mobile
Crowdsensing Paradigm via Federated Analytics

Bowen Zhao , Member, IEEE, Xiaoguo Li , Ximeng Liu , Senior Member, IEEE,
Qingqi Pei , Senior Member, IEEE, Yingjiu Li , Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract— Mobile crowdsensing (MCS) systems typically
struggle to address the challenge of data aggregation, incentive
design, and privacy protection, simultaneously. However, existing
solutions usually focus on one or, at most, two of these issues.
To this end, this paper presents CROWDFA, a novel paradigm
for privacy-preserving MCS through federated analytics (FA),
which aims to achieve a well-rounded solution encompassing
data aggregation, incentive design, and privacy protection.
Specifically, inspired by FA, CROWDFA initiates an MCS
computing paradigm that enables data aggregation and incentive
design. Participants can perform aggregation operations on their
local data, facilitated by CROWDFA, which supports various
common data aggregation operations and bidding incentives.
To address privacy concerns, CROWDFA relies solely on an
efficient cryptographic primitive known as additive secret sharing
to simultaneously achieve privacy-preserving data aggregation
and privacy-preserving incentive. To instantiate CROWDFA, this
paper presents a privacy-preserving data aggregation scheme
(PRADA) based on CROWDFA, capable of supporting a range
of data aggregation operations. Additionally, a CROWDFA-based
privacy-preserving incentive mechanism (PRAED) is designed to
ensure truthful and fair incentives for each participant, while
maximizing their individual rewards. Theoretical analysis and
experimental evaluations demonstrate that CROWDFA protects
participants’ data and bid privacy while effectively aggregating
sensing data. Notably, CROWDFA outperforms state-of-the-art
approaches by achieving up to 22 times faster computation time.

Index Terms— Crowdsensing, privacy protection, data aggre-
gation, reward distribution, federated analytics.
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I. INTRODUCTION

MOBILE crowdsensing (MCS) systems [1], [2] outsource
sensing tasks to participants instead of deploying

dedicated sensors, and then aggregate participants’ collected
sensing data. MCS systems enjoy low deployment costs and
enhanced flexibility, and take full advantage of the potential
of crowds. These systems have found widespread applications
in various fields such as healthcare, environment protection,
indoor localization, refined urban management, event sensing,
and more [3], [4], [5].

Incentive design, data aggregation, and privacy protec-
tion are critical requirements for MCS systems. First,
incentive design motivates whether participants take part
in crowdsensing or not [6], [7]. Firstly, incentive design
plays a crucial role in motivating participants to take part
in crowdsensing activities [6], [7]. As participants collect
sensing data and contribute to data aggregation, they consume
valuable resources such as computation and communication.
It is essential to provide incentives that compensate for
participants’ resource consumption [8]. Secondly, the primary
purpose of MCS systems is to derive meaningful conclusions
from the collected sensing data. Therefore, common data
aggregation (e.g., sum, mean, and variance) becomes necessary
for generating reasoning results based on participants’ sensing
data [5], [9]. Lastly, privacy concerns act as obstacles that
impede participants’ willingness to engage in MCS [10], [11],
[12], [13]. Even if participants are offered incentives, they
may decline to participate due to apprehensions about their
privacy being compromised, such as the exposure of sensitive
information like location, bidding activities, and healthcare
status.

No existing solutions have simultaneously addressed the
issues of incentive design, data aggregation, and privacy
protection. Common incentive mechanisms include auc-
tion/bidding [14], [15] and posting awards [16], [17]. Typical
privacy-preserving incentive mechanisms are either encrypted-
based, or differential privacy (DP)-based [18], [19], [20],
[21]. Encryption-based privacy-preserving incentive mecha-
nisms [20], [21] rely on a trusted sensing platform (SP), while
DP-based privacy-preserving incentive mechanisms [18], [19]
assume an honest-but-curious SP. However, existing incentive
mechanisms, regardless of whether encryption-based or DP-
based, fail to enable common data aggregation operations
including sum, mean, and variance.

On the other hand, data aggregation and privacy concerns
are addressed in privacy-preserving data aggregation, where
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SP is considered as honest-but-curious. Such solutions
typically enable privacy-preserving data aggregation [15],
[22], [23], [24], [25], [26]; however, it remains challenging
to select a winner in bidding when bids are encrypted in
these solutions. Previous solutions [15], [26] support privacy-
preserving data aggregation for crowdsensing; however, the
data aggregation operations are restricted to sum only, and they
fail to protect bid privacy [27]. No previous solutions for MCS
meet all requirements on incentive design, data aggregation,
and privacy protection simultaneously due to various technical
challenges.

The first challenge is to design a unified framework or
paradigm that achieves privacy-preserving data aggregation
and privacy-preserving incentive design, simultaneously.
Combining a privacy-preserving incentive mechanism and
a privacy-preserving data aggregation solution in an MCS
system may result in both high system complexity and an
increased risk of privacy leakage. The second challenge is to
enable accurate and efficient privacy-preserving data aggrega-
tion. DP-based data aggregation introduces noise to aggregated
results, which can lead to erroneous aggregation [28] and
restrict aggregation operations. Homomorphic encryption-
based data aggregation schemes suffer from high computation
costs and increased communication traffic overheads due to
expensive homomorphic operations and expanded ciphertext
sizes [23]. The third challenge is to achieve truthful-
ness and fairness in privacy-preserving incentive design.
Truthfulness, which prevents participants from submitting
deviated bids to improve rewards without knowledge of
others’ bids [14], and fairness, where each participant’s
reward is positively related to their contributions [17], are
critical objectives for an incentive mechanism. DP-based
incentive mechanisms only guarantee degraded truthfulness
rather than full truthfulness [18], [19], while encryption-based
incentive mechanisms are weak in achieving truthfulness [20],
[21]. Moreover, auction-based incentive mechanisms usually
disregard fairness.

To tackle the aforementioned challenges, this paper
introduces a novel approach called CRWODFA,1 a privacy-
preserving mobile crowdsensing paradigm through federated
analytics (FA). FA, a collaborative computing framework,
enables the extraction of insights from raw data distributed
across multiple decentralized devices [29]. By integrating
FA into MCS, CROWDFA empowers participants to perform
operations on their local data and submit only the aggregated
results, minimizing communication traffic and reducing the
burden of data aggregation on SP. To ensure the confidentiality
of raw sensing data, aggregated results, and bids, CROWDFA
exclusively employs an efficient cryptographic primitive
known as additive secret sharing. This primitive supports
computations over encrypted data without introducing any
noise. In summary, our contributions are three main aspects.
• We propose CROWDFA, a novel MCS paradigm based

on FA. To the best of our knowledge, CROWDFA is the

1CROWDFA comes from privacy-preserving Crowdsensing paradigm via
Federated Anlaytics.

TABLE I
COMPARISONS BETWEEN CROWDFAAND RELATED WORK

first work seamlessly integrating FA and MCS, achiev-
ing privacy-preserving data aggregation, and privacy-
preserving incentive design.

• We present PRADA, a CROWDFA-based privacy-
preserving data aggregation scheme that facilitates a
range of privacy-preserving data aggregation operations,
such as sum, mean, and variance. PRADA enables
participants to perform local aggregation operations while
safeguarding the privacy of their raw sensing data. Addi-
tionally, PRADA supports aggregation operations like p-
order moment, skewness, and kurtosis. Compared to prior
solutions, PRADA significantly reduces computing time,
requiring up to 22 times less computation time.

• We design PRAED, a CROWDFA-based privacy-
preserving incentive mechanism that aims to protect the
privacy of each participant’s bids. PRAED not only
ensures truthfulness and fairness but also maximizes each
participant’s rewards.

The rest of this paper is organized as follows. In Section II,
we describe the related work. In Section III, we formulate
CROWDFA with its system model and threat mode. Section IV
and Section V elaborate on the design of PRADA and PRAED,
respectively. Results of theoretical analysis and experimental
evaluation are given in Section VI. Finally, we conclude this
paper in Section VII.

II. RELATED WORK

A. Privacy-Preserving Data Aggregation

Li et al. [24] put forward to privacy-preserving data
aggregation in mobile sensing and designed a sum aggregation
protocol based on additive homomorphic encryption. To tackle
the privacy concerns of data aggregation in sensing systems,
Zhang et al. [31] presented a novel peer-to-peer framework
to enable privacy-preserving data aggregation, including
sum, average, variance, etc. Zhuo et al. [23] proposed
a cloud-assisted three-party architecture and adopted BGV
homomorphic encryption to support privacy-preserving sum,
average, and variance computations. Vakilinia et al. [22]
proposed a solution that allows an untrusted server to
aggregate the sums of participants’ sensing data in a
privacy-preserving manner based on linear transformation and



homomorphic encryption. Wu et al. [32] introduced a fog-
assisted architecture and two-trapdoor Pailliery cryptosystem
to enable privacy-preserving aggregations, such as sum, mean,
and variance. Yan et al. [25] utilized additive secret sharing
to protect the privacy of sensing data and support sum, mean,
and variance operations on sensing data. To the best of our
knowledge, almost all existing schemes require participants to
encrypt or obfuscate sensing data item by item and transmit
encrypted or obfuscated sensing data to one or multiple
servers for performing aggregation operations. Consequently,
these schemes fail to take advantage of participants’
computation capability over raw sensing data to speed up the
aggregation.

B. Privacy-Preserving Incentive Mechanism

To protect bid privacy, Sun and Ma [20] proposed a solution
that utilizes homomorphic encryption to enable participants
to encrypt their bids. This approach allows auctions to be
conducted over encrypted bids. Similarly, Wang et al. [21]
also presented a solution aimed at safeguarding bid privacy
and auctions through the use of encrypted bids. In contrast
to previous encryption methods, Jin et al. [18] employed
differential privacy to ensure bid privacy while enabling
approximate truthfulness in incentive design. Subsequently,
Wang et al. [19] developed an honest-but-curious sensing
platform, where they designed a privacy-preserving and
approximately truthful incentive mechanism using differential
privacy. Zhang et al. [30] also proposed a privacy-preserving
and truthful incentive mechanism based on differential privacy.
However, the majority of prior research on privacy-preserving
incentive mechanisms primarily focuses on protecting bid
privacy, and largely neglects the purpose of data aggregation
for crowdsensing. The question remains as to how to achieve
privacy-preserving data aggregations effectively using such
incentive mechanisms.

As shown in Table I, CROWDFA achieves a balanced
solution among data aggregation, incentive design, and
privacy protection, setting it apart from existing solutions.
Additionally, CROWDFA empowers participants to perform
aggregation operations directly on their locally raw sensing
data, resulting in accelerated data aggregation and reduced
overhead. Moreover, CROWDFA ensures aggregation results
and bids remain unaffected by any noise.

III. PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, scCrowdFA comprises a sensing
platform (SP) and multiple participants.
• SP: SP recruits multiple participants and collaborates

with them to produce aggregation results. Additionally,
SP implements an incentive mechanism that relies on
participants’ bids to allocate rewards to each participant.

• Participant: Each participant collects sensing data and
performs aggregation operations with locally raw sensing
data. In particular, each participant adopts a privacy-
preserving mechanism (e.g., additive secret sharing) to
protect data privacy, such as sensing data and bids.

Fig. 1. System model of CrowdFA.

Also, CROWDFA allows SP to dynamically selects some
participants as leader assisting in data aggregation.

Noted. Certain participants being regarded as leaders
is a common assumption made in privacy-preserving data
aggregation [33], [34], [35] and MCS [36], [37], [38]. In these
scenarios, the leading participant plays a crucial role by
assisting a central server (e.g., SP) in aggregating other
participants’ data.

B. Problem Statement

CROWDFA is essentially a secure multi-party computation
problem [39]. Multiple participants and SP take as input their
own data and jointly output results, where each participant’s
input is private data. Formally, CROWDFA f (x1, · · · , xn, η)

is defined as follows.

f (x1, · · · , xn, η) ≜ G
(
Lη(x1),Lη(x2), · · · ,Lη(xn)

)
, (1)

where η represents the input of SP, xi denotes the participant
i’s input, Lη(·) is a local operation performed by each
participant, and G(·) is a global operation based on the outputs
of all participants. In fact, the key point of CROWDFA solving
an MCS task lies in the design of both the local operation and
the global operation. This paper considers the following two
types of MCS tasks: data aggregation and incentive design.

1) Data Aggregation: In terms of MCS systems, data
aggregation plays a critical role in drawing conclusions from
participants’ sensing data [22], [30]. Thus, data aggregation is
regarded as a fundamental task in MCS systems. Without loss
of generality, let 0(d) represent an aggregation function that
takes a dataset d as input. In the context of data aggregation,
both local and global operations aim to execute the 0 function.
During this process, SP does not provide any input (namely
η = ⊥), while each participant contributes his dataset di (also
denoted as xi in Eq. (1)). Specifically, 1) each participant i
employs 0 (also referred to as Lη in Eq. (1)) to generate a local
aggregation result, denoted as 0(di ); and 2) then a privacy-
preserving interactive protocol is performed between SP and
participants, utilizing the 0 function that takes as input all
participants’ local aggregation results. Formally, a CROWDFA-
based data aggregation f (d1, · · · , dn) is formulated as follows

f (d1, · · · , dn) ≜ 0 (0(d1), 0(d2), · · · , 0(dn)) . (2)



In this case, the challenge is how to design a privacy-
preserving and efficient interactive protocol.

2) Incentive Design: Incentive design plays another fun-
damental role in MCS systems. In terms of MCS systems,
incentive mechanisms offer an elegant and practical method
to promote the collection of sensing data [18], [26].
In general, the incentive mechanism requires each participant
to submit a bid bi , while SP prepares a reward budget
B. Consequently, designing a privacy-preserving incentive
mechanism for MCS systems essentially becomes a secure
multi-party computation problem. Each participant and SP
input their private bids and the budget, respectively, resulting
in each participant receiving a reward. Although privacy-
preserving incentive design is significantly different from
privacy-preserving data aggregation, we also formulate it
based on the CROWDFA framework. To be specific, a
CROWDFA-based incentive mechanism f (b1, · · · , bn, B) is
formulated as follows

f (b1, · · · , bn, B) ≜ G
(
LB,σ (b1),LB,σ (b2), · · · ,LB,σ (bn)

)
,

(3)

where LB,σ represents a local operation that calculates the
reward ui for each participant. The function G maps these
rewards to an output vector, denoted as G(u1, u2, · · · , un) =
[u1, u2, · · · , un]. Formally, LB,σ can be denoted by

LB,σ (b) ≜ σ(i) · v + b · u, (4)

where (u, v) represents a reward base, while σ(i) is a sign
function related to each participant i (i ∈ {1, · · · , n}). In this
case, the challenge lies in designing a privacy-preserving and
efficient interactive protocol that can generate parameters
(including u, v, and σ(i)) within the scope of LB,σ . Given
these parameters, each participant easily calculates her reward
as ui = LB,σ (bi ).

Note that we use d to represent a sensing dataset, while d
is used to denote the size of d . Furthermore, b indicates a bid.
Each participant is numbered by an integer i (1 ≤ i ≤ n),
where n represents the total number of participants.

C. Threat Model

In our system, both SP and any participant (including
the leading participants) are regarded as semi-honest (a.k.a
honest-but-curious). This means that SP and each participant
honestly perform protocols but intend to learn others’ data.
Consequently, there are two types of adversaries: SP and the
participant. SP attempts to obtain the participant’s raw sensing
data and bids, while each participant attempts to acquire SP’s
aggregation results or other participants’ bids. It is assumed
no collusion between SP and any participant (including the
leading participants). This assumption is commonly made
in a multiparty computation paradigm [39], [40] and MCS
systems [18], [19], [23], [24], [41]. The reasoning behind this
assumption is that either SP or the leading participant lacks
motivation to collude with each other. The main objectives of
CROWDFA are two-fold: 1) prevent SP from learning any raw
sensing data and bids, and 2) prevent any participant (including

the leading participants) from learning any aggregation results
and other participants’ raw sensing data and bids.

To capture the threat model mentioned above, we formally
define a security model for CROWDFA. Let us commence with
the following notations. { fi }

n
i=1 and f represent probabilistic

functionalities. π denotes a CROWDFA protocol utilized for
computing f (d1, · · · , dn, η). During the execution of π on
f (d1, · · · , dn, η), Vπ

i and Vπ
SP refers the participant i’s view

and SP’s view, respectively. Additionally, the output of the
i-th participant is denoted by outputπi (d1, · · · , dn, η), while
the output of SP is denoted by outputπSP(d1, · · · , dn).
We denote the joint output of all involved parties as

outputπ (d1, · · · , dn, η) ≜ {outputπSP;outputπ1 , · · · , outputπn }.

Let y = f (d1, · · · , dn, η). We will now define the formal
security for CROWDFA as follows.

Definition 1 (Security for CROWDFA): We say that π

securely computing f if there exist probabilistic polynomial
time (P.P.T.) simulators S and Si such that for any dataset
(d1, · · · , dn, η), the following conditions

{S (y) , y}
c
≡ {Vπ

SP, outputπ (d1, · · · , dn, η)} (5)

and

{Si (di , fi (di )) , y}
c
≡ {Vπ

i , outputπ (d1, · · · , dn, η)} (6)
hold. Here,

c
≡ represents computationally indistinguishable.

Intuitively, Eq. (5) captures the limitation of a semi-honest SP
in learning any participant’s data, while Eq. (6) implies any
semi-honest participant cannot learn other participant’s data.

However, the security model defined in Definition 1 only
considers one party being corrupted in CROWDFA. To account
for more powerful attacks, we introduce another security
model, namely t-collusion resistance, for CROWDFA. In this
model, we accommodate multiple participants colluding with
each other.

Definition 2 (t-Collusion Resistance for CROWDFA): We
say that π is t-collusion if there exists a P.P.T. simulator SI
such that for any dataset (d1, · · · , dn, η), I ⊂ {1, · · · , n} and
|I | ≤ t , the following condition holds:

{SI ({di }i∈I , { fi (di )}i∈I ) , f (d1, · · · , dn, η)}

c
≡ {{Vπ

i }i∈I , outputπ (d1, · · · , dn, η)}. (7)

Intuitively, Eq. (7) implies that collusion among t
participants cannot yield additional advantages for cor-
rupting other participants’ data. This paper introduces
PRADA, which can withstand collusion attacks involving up
to n − 1 participants.

IV. PRADA DESIGN

In this section, we first provide a brief description of
additive secret sharing. After that, we elaborate on PRADA,2

which is a privacy-preserving data aggregation scheme based
on CROWDFA. PRADA offers support for common privacy-
preserving data aggregation operations, including sum, mean,
and variance.

2PRADA: PRivAcy-preserving Data Aggregation.



A. Additive Secret Sharing

An additive secret sharing scheme consists of a sharing
function S and a recovering function R. S takes as input
an origin secret x and outputs two secret shares. S(x) is
formulated as

S(x)→ ([x]1, [x]2), (8)

where [·] j denotes one secret share ( j = 1 or 2). R takes
as input two secret shares and outputs the origin secret.
R([x]1, [x]2) is formulated as

R([x]1, [x]2)→ x . (9)

In practice, given the origin secret x , S(x) usually sets
[x]2 = r and [x]1 = x−r mod N , where r is randomly
chosen from ZN = {0, 1, · · · , N−1}, and N is usually a larger
integer, such as N = 2λ. Given two secret shares [x]1 and
[x]2, R recovers the origin secret by computing [x]1 + [x]2
mod N .

Considering practical MCS applications, sensing data may
be floating-point numbers. One common approach is to convert
floating-point numbers to integers [32], [41]. This paper
converts the floating-point number into an integer by using the
formula ⌈x⌋ ← x · 2ℓ, where 2ℓ is chosen to be sufficiently
large to ensure that x · 2ℓ is an integer, and 2ℓ

≪ N .
Particularly, this paper sets ℓ = 32 and assumes the bit length
of decimal places in a floating point number is less than
32 bits. For simplicity, we will henceforth uses x instead of
⌈x⌋ when x refers to a floating-point number.

B. Formulation of PRADA

Technically, PRADA instantiates both G and Lη in Eq.
(1) as 0-function and 0-representable function supporting
data aggregation operations. 0-function and 0-representable
function are defined as follows. 0-function is over d ⊂ D,
where d and D are the function’s input and range, respectively.

Definition 3 (0-Function): A aggregation function is called
0-function if for any d1, d2 ⊂ D, we have that

0(d1, d2) = 0(0(d1), 0(d2)) (10)

holds, in which d1, d2 denotes the concatenation between
d1 and d2.

Let d1 = {3, 1, 7} and d2 = {3, 5} be two pieces of raw
sensing data from two parties, and the concatenation between
d1 and d2 means that (d1, d2) = {3, 1, 7, 3, 5}. Then we
explain 0-function with a few simple examples.

Sum is a 0-function. Sum is defined as 0(d) ≜
∑d

j=1 x j ,
where d denotes the count of d = {x1, · · · , xd}. In the
above example, 0(d1) = 11, 0(d2) = 8, and 0(d1, d2) =

0(0(d1), 0(d2)) = 19. Therefore, Sum is a 0-function for
any d1, d2 ⊂ Z.

Product is a 0-function. Product is defined as 0(d) ≜
5d

j=1x j , where d denotes the count of d = {x1, · · · , xd}.
In the above example, 0(d1) = 21, 0(d2) = 15, and
0(d1, d2) = 0(0(d1), 0(d2)) = 315. Therefore, Product is
a 0-function for any d1, d2 ⊂ Z.

Sum on a transformation function φ(·) is a 0-function.
In this ca-se, the aggregation function is defined as 0(d) ≜

Fig. 2. Workflow of PARADA.

∑d
j=1 φ(x j ), where d = {x1, · · · , xd}. If φ(x) = x2, then

we have 0(d) ≜
∑d

j=1(x j )
2. In the above example, we have

0(d1) = 59, 0(d2) = 34, 0(d1, d2) = 0(0(d1), 0(d2)) = 93.
Also, when φ(·) is defined as a count function, i.e., φ(d) = d,
we have Count is a 0-function. Arguably, φ(x) can be any
function about the only variable x .

Mean is not a 0-function. In this case, the aggregation
function is defined as 0(d) ≜

∑d
j=1

x j
d , where d =

{x1, · · · , xd}. In the above example, 0(d1) = 11/3, 0(d2) = 4,
and 0(d1, d2) ̸= 0(0(d1), 0(d2)). One intuitive explanation is
x j
d involves two variables.

It is also easy to verify that Maximum are also 0 functions.
In the above example, max(max(3, 1, 7), max(3, 5)) = 7) and
min(min(3, 1, 7), min(3, 5)) = 1. To capture more practical
aggregation functions (e.g. mean, and variance), we introduce
a family for 0 f unction, called 0-representable function.

Definition 4 (0-Representable Function): A aggregation
function 2 is called 0-representable function if there exists a
finite set {01, 02, · · · , 0m} such that
• for any i ∈ {1, 2, · · · , m}, 0i is a 0-function;
• 2 is an arithmetic combination from these 0-functions.
From Definition 4, it is evident that the mean can be

formulated using two 0-functions: the 0-function of sum and
the 0-function of count. On the other hand, the variance
can be formulated as three 0-funcitons: the 0-function of
sum, the 0-function of count, and the 0-function of sum on
φ(x) = x2. Additionally, various other aggregation operations
such as standard deviation, p-order moment, skewness, and
kurtosis can be achieved through 0 functions. One of the key
innovations of this paper is the integration of multiple types
of data aggregation operations within a unified computing
paradigm.

Fig. 2 shows a workflow for PRADA, which comprises four
steps: initialization, federated computation, transmission, and
aggregation. Assume that SP recruits n participants to collect
sensing data. Each participant is indexed by i , where i ∈ [1..n].
For simplicity, the rest of this paper uses [1..n] to represent
the set {1, 2, · · · , n}. The detailed workflow of PRADA is
presented as follows.
• Initialization: SP initializes PRADA. In this process,

SP recruits n participants and randomly selects one
participant (e.g., the participant k) as a leader from n
participants. To begin, SP initializes the parameter N



(e.g., N = 262) for additive secret sharing, along with
a 0-function. Afterward, SP broadcasts 0(·) and N to all
participants.

• Federated computation: Each participant collects raw
sensing data and locally performs the 0-function on their
own raw sensing data. Specifically, each participant i
computes 0(di ) (i ∈ [1..n]). di represents the participant
i’s local sensing dataset.

• Transmission: Except for the participant k, each
participant i (i ∈ [1..n] \ k) secretly shares (or say
encrypts) their local aggregation result 0(di ). Formally,
the participant i invokes S(·) to secretly share 0i (di ), i.e.,

S(0(di ))→ ([0(di )]1, [0(di )]2), (11)

and transmits [0(di )]1 and [0(di )]2 to SP and the
participant k (i.e., the leading participant), respectively.
After receiving other participants’ shares, the participant
k computes

[0(dk)]2 ←

n∑
i=1,i ̸=k

[0(di )]2 mod N ,

[0(dk)]1 ← 0k(dk)+ [0(dk)]2 mod N .

(12)

Next, the participant k transmits [0(dk)]1 to SP.
• Aggregation: SP computes the final aggregation result

by aggregating all participants’ secret shares of local
aggregation results, i.e.,

0(d1, · · · , dn)← 0([0(d1)]1, · · · , [0(dn)]1). (13)

As shown in Fig. 2, we observe that each participant
generates a local aggregation result (see Federated com-
putation), while SP only aggregates all participants’ local
results (see Aggregation). Therefore, PRADA significantly
reduces the communication and computing overhead for both
the participant and SP. Compared to existing schemes [25],
[26], [32] that require SP to directly aggregate all participants’
data instead of their local aggregation results, PRADA
outperforms them in terms of communication and computation
costs. Notably, PRADA adopts additive secret sharing to to
compute 0(0(d1), · · · , 0(dn)), enabling a privacy-preserving
and efficient interactive protocol among participants and SP.

C. Implementation of PRADA

This section provides three privacy-preserving data aggre-
gation protocols of PRADA, using sum, mean, and variance as
examples. Note that other aggregation operations of PRADA
can be implemented by following the design of privacy-
preserving sum aggregation (SumAgg), privacy-preserving
mean aggregation (MenAgg), and privacy-preserving variance
aggregation (VarAgg).

Assume that the participant i (i ∈ [1..n]) collects a sensing
dataset di = {xi,1, · · · , xi,di }, where di represents the size
of di , and xi, j denotes the j-th raw sensing data item of
the participant i . Without loss of generality, the participant
k is selected as the leader.

$
←− signifies a random selection

operation. SumAgg, MenAgg, and VarAgg are detailed as
follows.

Algorithm 1 SumAgg(d1, · · · , dn)→
∑n

i=1
∑di

j=1 xi, j

Input: n participants have {d1, · · · , dn}.
Output: SP obtains

∑n
i=1

∑di
j=1 xi, j .

Procedure:
Initialization (@SP):
• Recruit n participants and randomly select the

participant k as a leader;
• Initialize 0(·) as the sum aggregation operation and N ;
• Broadcast 0(·) and N to all participants.

Federated computation & Secret sharing (@Participant):
• The participant i (i ∈ [1..n] \ k) computes

0(di )←

di∑
j=1

xi, j ,

[0(di )]2
$
←− ZN ,

[0(di )]1 ← 0(di )− [0(di )]2 mod N ,

and then transmits [0(di )]1 and [0(di )]2 to SP and the
leader, respectively;
• The leader firstly computes 0(dk)←

∑dk
j=1 xk, j , and

then performs Eq. (12) and transmits [0(dk)]1 to SP.
Aggregation (@SP):
• Compute

∑n
i=0[0(di )]1 mod N to output the

aggregation result.

1) SumAgg: Given {d1, · · · , dn}, SumAgg outputs∑n
i=1

∑di
j=1 xi, j . As the sum function is a 0-function,

SumAgg follows the workflow of PRADA. Technically,
SumAgg is formulated as 0(di ) ≜

∑di
j=1 xi, j , and then

SumAgg(d1, · · · , dn) is denoted by

SumAgg(d1, · · · , dn) ≡

n∑
i=0

[0(di )]1 mod N . (14)

As depicted in Fig. 1, SumAgg compromises four steps,
where the second and the third steps are performed by
participants. SP is responsible for initializing the system
and aggregating all participants’ locally encrypted results in
the first step and the fourth step, respectively. Note that if
SumAgg takes {d1, · · · ,dn} as input, SumAgg(d1, · · · ,d)

outputs
∑n

i=1 di . The key idea of SumAgg is that each
participant performs aggregation operations on locally raw
sensing data, while SP aggregates local aggregation results
via a privacy-preserving manner.

2) MenAgg: Given {d1, · · ·, dn}, MenAgg outputs µ =∑n
i=1

∑di
j=1 xi, j∑n

j=1 d j
. Technically, MenAgg can be formulated as

0(D) ≜ 01(D)
02(D)

, where D = {d1, · · · , dn}. 01(D) and
02(D) are a sum 0-function and a count 0-function,
respectively. Thus, the mean function is a 0-representable
function. MenAgg is easily derived from PRADA. Formally,
MenAgg(d1, · · · , dn) is denoted by

MenAgg(d1, · · · , dn) ≜
SumAgg(d1, · · · , dn)

SumAgg(d1, · · · ,dn)
. (15)

If SP obtains the sums of all participants’ raw sensing data
(i.e.,

∑n
i=1

∑di
j=1 xi, j ) and the total amount of raw sensing



data (
∑n

j=1 d j ), he can compute the mean of all participants’
raw sensing data µ.

As depicted in Algorithm 2, MenAgg calls SumAgg
twice to obtain 01(d1, · · · , dn) and 02(d1, · · · ,dn), i.e.,∑n

i=1
∑di

j=1 xi, j and
∑n

i=1 di , respectively. Next, SP outputs

µ by computing
∑n

i=1
∑di

j=1 xi, j∑n
i=1 di

.

Algorithm 2 MenAgg(d1, · · · , dn)→ µ

Input: n participants have {d1, · · · , dn}.

Output: SP obtains µ =

∑n
i=1

∑di
j=1 xi, j∑n

j=1 d j
.

Procedure:
Sum aggregation (@SP & @Participants):
• SP defines 01 as a sum function and 02 as a count

function;
• SP and participants jointly perform
SumAgg(d1, · · · , dn) and SumAgg(d1, · · · ,dn) to
obtain

∑n
i=1

∑di
j=1 xi, j and

∑n
i=1 di , respectively.

Aggregation (@SP):

• Compute
∑n

i=1
∑di

j=1 xi, j∑n
i=1 di

and output the aggregation
result.

From Algorithm 2, we see that if an aggregation operation
(e.g., mean) is a 0-respresentable function, it can be
implemented by calling 0-function multiple times. Following
the same idea, we also construct VarAgg. In fact, the
advantage of CROWDFA is to achieve multiple types of data
aggregation operations by the same framework.

3) VarAgg: Given {d1, · · · , dn}, VarAgg outputs σ 2,

where σ 2
=

∑n
i=1

∑di
j=1(xi, j−µ)2∑n
j=1 d j

. According to the Definition of

variance
∑m

i=1(xi−µ)2

m , VarAgg can be formulated as 0(D) ≜
03(D)
02(D)

−
01(D)2

02(D)2 , where D = {d1, · · · , dn}. 01(D) and 02(D)

are a sum 0-function and a count 0-function, respectively.
03 is denoted by 03(d) =

∑d
j=1 φ(x j ), where φ(x j ) =

(x j )
2. Thus, the variance function is a 0-representable

function. VarAgg is easily derived from PRADA. Formally,
VarAgg(d1, · · · ,

dn) is denoted by

VarAgg(d1, · · · , dn)

≜
SumAgg(φ(d1), · · · , φ(dn))

SumAgg(d1, · · · ,dn)

−
(SumAgg(d1, · · · , dn))2

(SumAgg(d1, · · · ,dn))2 . (16)

If SP obtains
∑n

i=1
∑di

j=1(xi, j )
2,

∑n
j=1 d j , and∑n

i=1
∑di

j=1 xi, j , he can compute the variance of all
participants’ raw sensing data σ 2.

As depicted in Algorithm 3, VarAgg calls SumAgg thrice
to obtain 01(d1, · · · , dn), 02(d1, · · · ,dn), and
03(φ(d1), · · · , φ(dn)), i.e.,

∑n
i=1

∑di
j=1 xi, j ,

∑n
i=1 di ,

and
∑n

i=1
∑di

j=1(xi, j )
2. Next, SP outputs σ 2 by computing∑n

i=1
∑di

j=1(xi, j )
2∑n

i=1 di
−

(
∑n

i=1
∑di

j=1 xi, j )
2

(
∑n

i=1 di )2 .

Algorithm 3 VarAgg(d1, · · · , dn)→ σ 2

Input: n participants have {d1, · · · , dn}.

Output: SP obtains σ 2
=

∑n
i=1

∑di
j=1(xi, j−µ)2∑n
j=1 d j

.
Procedure:
Sum aggregation (@SP & @Participants):
• SP defines 02 as a sum function under a

transformation function φ(x) = x2, 01 as a sum function,
and 02 as a count function, respectively;
• SP and participants jointly perform 01(d1, · · · , d2),

02(d1, · · · ,dn), and 03(φ(d1), · · · , φ(dn)) to obtain∑n
i=1

∑di
j=1 xi, j ,

∑n
i=1 di , and

∑n
i=1

∑di
j=1(xi, j )

2,
respectively.
Aggregation (@SP):

• Compute
∑n

i=1
∑di

j=1(xi, j )
2∑n

i=1 di
−

(
∑n

i=1
∑di

j=1 xi, j )
2

(
∑n

i=1 di )2 and output
the aggregation result.

In the proposed VarAgg, we transform
∑n

i=1
∑di

j=1(xi, j−µ)2∑n
j=1 d j

into
∑n

i=1
∑di

j=1(xi, j )
2∑n

i=1 di
−

(
∑n

i=1
∑di

j=1 xi, j )
2

(
∑n

i=1 di )2 . It is easy to verify that

∑n
i=1

∑di
j=1(xi, j − µ)2∑n

j=1 d j
=

∑n
i=1

∑di
j=1(xi, j )

2∑n
i=1 di

−
(
∑n

i=1
∑di

j=1 xi, j )
2

(
∑n

i=1 di )2 . (17)

On the other hand, as the product function is also a 0-
function, VarAgg can also be denoted by

VarAgg(d1, · · · , dn) ≜
MulAgg(φ′(d1), · · · , φ

′(dn))

SumAgg(d1, · · · ,dn)
,

(18)

where MulAgg means a product 0-function, and φ′(di ) =

5
di
j=0(xi, j − µ)2. Following the above idea, PRADA can

support other privacy-preserving data aggregation operations,
such as p-order moment, skewness, and kurtosis. Technically,
the p-order moment is defined as vp =

∑i=n
i=1(xi−µ)p

N , where
µ represents the mean. Skewness is defined as s = v3

σ 3 ,
while kurtosis is defined as κ = v4

σ 4 , where σ indicates
the standard deviation. It is easy for PRADA to compute∑i=n

i=1(xi − µ)p by using binomial theorem. PRADA easily
calculates

∑i=n
i=1(xi − µ)p using the binomial theorem.

Moreover, since PRADA can obtain σ , it can compute the p-
order moment, skewness, and kurtosis efficiently. Additionally,
if 0(·) is defined as a maximum-value function or a minimum-
value function, CROWDFA can output the minimum or the
maximum of all participants’ raw sensing data. Without loss of
generality, 0(d) is defined as min{x1, · · · , xd}, and 0 is also
defined as min operation. Thus, we have 0(d1, · · · , dn) ≜
min{0(d1), · · · , 0(dn)}. In the next section, we instantiate
LB,σ in Eq. (4) as a reward distribution function.



V. PRAED DESIGN

Mobile crowdsensing platforms, such as Gigwalk,3

TaskRabbit,4 Waze,5 McSense [42], and CrowdOS [26], adopt
incentive mechanisms to engage and reward participants.
Monetary incentives for mobile crowdsensing are typically
implemented by allowing each participant to bid, and rewards
are distributed based on their respective bids [6], [15],
[26]. there are at least two issues with this approach.
Firstly, participants are likely to dishonestly bid, which
compromises the truthfulness of the incentive mechanism.
Secondly, a participant’s bid does not necessarily reflect
their actual contribution, thereby undermining the fairness
of the incentive mechanism. Truthfulness and fairness are
indeed two essential requirements for an effective incentive
mechanism [6]. To tackle these issues, a practical design
called HyInc has been proposed in the work [41] to ensure
both truthfulness and fairness in the incentive mechanism.
Unfortunately, HyInc fails to protect bid privacy [27].

To the aforementioned issues, this section elaborates on
PRAED,6 a privacy-preserving incentive design based on
CROWDFA. While drawing inspiration from HyInc, PRAED
distinguishes HyInc by offering two significant improvements
and at least two noteworthy novelties. Regarding the
improvements, firstly, PRAED ensures the protection of bid
privacy. Secondly, it maximizes the reward for each participant
while adhering to a given reward budget. In terms of
novelties, PRAED introduces a shared paradigm/framework
that unifies both privacy-preserving incentive design and
privacy-preserving data aggregation. Additionally, PRAED
maintains its truthfulness and fairness even while safeguarding
bid privacy. Bids are typically associated with participants’
private information, such as their location. The disclosure
of bids can result in a breach of location privacy [18],
[43], [44], [45]. Protecting the privacy of participants’ bids
is crucial as revealing them could potentially incur threats
to participants’ location [45]. Participants’ bids may contain
sensitive information such as location [43].

A. Formulation of PRAED

Technically, PRAED instantiates LB,σ in Eq. (4) as a reward
distributed function. Specifically, PRAED formulates LB,σ (bi )

as

LB,σ (bi ) =

{
σ(i)+ u · bi , for bi ≤ min j ̸=i b j ,

u · bi , others.
(19)

s. t. σ (i) = α(min
j ̸=i

b j − bi ) for bi ≤ min j ̸=i b j ,

u =
β∑n

j=1 b j
,

n∑
i=1

LB,σ (bi ) = B, (20)

3https://www.gigwalk.com/
4https://www.taskrabbit.com/
5https://www.waze.com/
6PRAED: PRivAcy-preserving incEntive Design.

where bi represents the participant i’s bid, and min j ̸=i b j
denotes the minimum value among {b1, · · · , bn} \ bi . α and
β serve as two control parameters. In PRAED, the winner
selection process is formulated as σ(i). To calculate (u, v)
and perform σ(i), PRAED employs additive secret sharing
to design an interactive protocol among participants and SP,
ensuring both privacy and efficiency. Following the design
of HyInc [41], each participant’s sensing data quantity is
regarded as considered their cost and contribution in PRAED.
Particularly, when the participant i sets bi = di , she is
considered as honest bidding.

Eq. (19) demonstrates that if each participant transmits their
bids to SP directly, bids are leaked, thereby compromising the
privacy of participants’ bid privacy [18], [27]. To address this
issue, PRAED mandates that each participant only submits
one secret share of their bids to SP. Consequently, PRAED
faces three key challenges: 1) How can min j ̸=i b j − bi of Eq.
(20) be computed without any knowledge of the participant’s
bids; 2) How can the participant with the minimum bid be
identified without revealing any participant’s bid; and 3) How
How can maximum rewards for each participant be achieved
while ensuring truthfulness and fairness.

B. Implementation of PRAED

Observation. Given {x1, · · · , xn} (xi ∈ Z2ℓ), if xk is
the minimum among {x1, · · · , xn}, xk−y mod N is also the
minimum among {x1−y mod N , · · · , xn−y mod N }, where
2ℓ < N and max{x1, · · · , xn} < y < N . Furthermore,
given {x1−y mod N , · · · , xn−y mod N }, it is easy to
output mini ̸=k x j − xk by sorting {x1−y mod N , · · · , xn−y
mod N }.

Following the design of PRADA and the above observation,
if PRAED also designates one participant (e.g., the participant
k) as a leader responsible for computing (u, v) and σ(i) in
Eq. (20), it becomes a challenging to prevent the leader from
selecting himself as the winner, i.e., the leader sets i = k.
To overcome this issue, PRAED employs a two-stage approach
in the winner selection operation and selects two distinct
leaders. In the first stage, the first leader selects two potential
winners except for himself. Then, in the second stage, the
second leader (excluding the potential winners) identifies the
final winner among two potential winners and the first leader.

As shown in Algorithm 4, PRAED consists of three steps.
In the first step, each participant offers secret bidding protected
by additive secret sharing. In the second step, PRAED selects
the winner who bids the lowest price without leaking any
participant’s bid. Specifically, SP and two leaders jointly
compute min j ̸=i b j−bi for bi ≤ min j ̸=i b j and locate i . In the
last step, PRAED determines each participant’s reward based
on Eq. (19). Specifically, each participant cooperates with SP
to compute her reward. Note that PRAED assumes all bidding
is less than 2ℓ and 2ℓ < N , where N is the parameter of
additive secret sharing, and ℓ can be 32. The participants k
and k′ are the first leader and the second leader, respectively.

According to Algorithm 4, the values of α and β in Eq. (20)
are quantized as B∑n

i=1 bi+1
and B·

∑n
i=1 bi∑n

i=1 bi+1
, respectively. Note



Algorithm 4 Privacy-Preserving Incentive Design
Input: n participants have {b1, · · · , bn}, and SP has a reward
budget B.
Output: Each participant i obtains a reward ui (i ∈ [1..]).
Procedure:
Secret bidding (@Participants):
• Each participant takes bi (i ∈ [1..n]) as bidding, and secretly

shares bi into [bi ]1 and [bi ]2 by calling S(bi ). Next, each
participant sends [bi ]1 to SP.
Winner selection (@SP & @Participants):

• SP randomly selects k
$
←− [1..n] and r

$
←− {2ℓ

+ 1, · · · , N }.
Next, SP computes {[bi ]1−r mod N } for i ∈ [1..n] \k and
transmits them to the participant k;
• The participant i sends [bi ]2 to the participant k, where

i ∈ [1..n]\k. After that, the participant k computes
{[bi ]1−r + [bi ]2 mod N } for i ∈ [1..n]\k, and then sorts them
and transmits the index p, q of the smallest two items to SP,
where p, q ∈ [1..n]\k;

• SP randomly selects k′
$
←− [1..n] \ {p, q, k} and

r ′
$
←− {2ℓ

+ 1, · · · , N }, and then computes {[b j ]1 − r ′ mod N }
for j ∈ {p, q, k} and transmits them to the participant k′;
• Participants p, q and k send [bp]2, [bq ]2, and [bk ]2 to the

participant k′, respectively. Next, the participant k′ computes
{[b j ]1 − r ′ + [b j ]2 mod N , } for j ∈{p, q, k}, and then outputs
the index p′, q ′ of the smallest two items (p′, q ′ ∈ {p, q, k}).
After that, the participant k′ calculates

1← ([bp′ ]1 − r ′ + [bp′ ]2)− ([bq ′ ]1 −r ′+ [bq ′ ]2) mod N

and sends 1 and q ′ to SP. Without loss of generality, let
[bp′ ]1−r ′+[bp′ ]2 mod N ≥[bq ′ ]1−r ′+[bq ′ ]2 mod N . Lastly,
SP sets the participant q ′ as the winner.
Rewarding (@SP & @Participants):
• SP computes v← B·1∑n

i=1 bi+1
and u ← B∑n

i=1 bi+1
and

broadcasts them to all participants;
• The participant i (i ∈ [1..n] \ q ′) computes ui ← u · bi ,

while the participant q ′ computes uq ′ ← v + u · bq ′ .

that PRAED calls SumAgg(b1, · · · , bn) to calculate
∑n

i=1 bi
without revealing any participant’s bid. Furthermore, it can
be easily verified that

∑
i=0 u · bi + v = B, indicating that

all participants earn the entire reward budget allocated by SP.
Since each participant’s dominant strategy is to honestly bid
(see Section VI), which means each participant maximizes
their rewards by setting bi = di (i ∈ [1..n]). Therefore,
PRADED effectively maximizes each participant’s reward.

VI. ANALYSIS AND EVALUATION

A. Theoretical Analyses

In this section, we demonstrate the proposed SumAgg,
MenAgg, and VarAgg do not leak any participant’s raw
sensing data to SP and aggregation results to any participant.
We also present evidence confirming that PRAED does not
reveal any participant’s bid to SP. Furthermore, we give
proof sketches that establish the the truthfulness and fairness
attributes of PRAED.

Theorem 1: For any 0-function, PRADA prevents 1) SP
from learning participants’ raw sensing data and 2) any
participant from learning other participants’ raw sensing data.

Proof: We prove Theorem 1 from two-aspect: 1) consider
SP is corrupted, and 2) consider one participant is corrupted.
We prove them by following two lemmas.

Lemma 1: If SP is corrupted, there exists a simulator S that
takes as input received messages by SP to generate a view that
is computationally indistinguishable from the one of SP.

Proof: In PRADA, SP receives multiple shares
[0(di )]1 from each participant and then outputs the final
aggregation result outputπS P =

∑n
i=1 0(di ). Besides, other

participants in PRADA receive no aggregation result, namely
outputπi = ⊥. Therefore, we have that outputπ (d1, · · · , dn)

c
≡

{outputπSP}, which is denoted by y for simplicity. In other
words, SP’s view in the real execution of PRADA is as follows.

VS P = {[0(d1)]1, [0(d2)]1, · · · , [0(dn)]1},

We assume the participant k = n is selected as the leader.
We construct a simulator S that only takes y as input and
works as follows.

1) S selects n − 1 random numbers (say s1, s2, · · · , sn−1)
from ZN ;

2) S outputs {s1, s2, · · · , sn−1, y −
∑

si }.
Note that in the real execution of PRADA, for any i ̸= n,
[0(di )]1 is obtained from additive secret sharing and set by
[0(di )]1 = 0(di )− ri mod N , where ri is a random number
in ZN . In case i = n, [0(di )]1 (according to Eq. (12)) is
calculated by [0(dn)]1 = 0(dn)+

∑
i ̸=n ri mod N . Thus we

conclude that for any dataset (d1, d2, · · · , dn), it is not hard
to verify the two distributions

{s1, s2, · · · , sn−1, y −
∑

si , y}

and

{0(d1)− r1, · · · , 0(dn−1)− rn−1, 0(dn)+
∑
i ̸=n

ri ,
∑

0(di )}

are computationally indistinguishable, which completes the
proof.

Lemma 2: If participant i is corrupted, there exists a
simulator Si that takes as input received messages by the
participant i to generate a view that is computationally
indistinguishable from participant i’s view.

Proof: In PRADA, any non-leader participants do not
receive any messages from other participantss. Consequently,
the view of a non-leader participant is empty, denoted as
Vπ

i = ⊥. Thus, for any non-leader participant i , the simulator
Si simply outputs ⊥, indicating no no information. In other
words, a non-leader participant is corrupted, they gain no
knowledge about the raw sensing data of other participants.
However, we remains to demonstrate that a corrupted leader
participant cannot access other participants’ raw sensing data.
Without loss of generality, we assume the participant k is
selected as the leader. As depicted in PRADA, the view of
the participant k is as follows.

VLeader ={[0(d1)]2,· · ·, [0(dk−1)]2, [0(dk+1)]2,· · ·, [0(dn)]2}.

We construct a simulator Sk that only takes as inputs
[0(di )]2 (i ∈ [1..n] \ k) and works as follows. Sk selects n −
1 random numbers (say s1, · · · , sk−1, sk+1, · · · , sn) from ZN



and outputs the set directly. For any dataset (d1, d2, · · · , dn),
it is not hard to verify the following two distributions

{s1, · · · , sk−1, sk+1, · · · , sn}

and

{[0(d1)]2, · · · , [0(dk−1)]2, [0(dk+1)]2, · · · , [0(dn)]2}

are computationally indistinguishable, which completes the
proof.
Since Lemma 1 and Lemma 2 hold, Theorem 1 holds.

Theorem 2: For any 0-function, PRADA achieves (n − 1)-
collusion resistance.

Proof: Suppose A is a P.P.T. adversary that corrupts at
most t participants in PRADA. Without loss of generality,
let I ⊂ [1..n] be a set that A corrupts. We define I =
{i1, i2, · · · , im}, where m ≤ n−1. Obviously, A’s view in real
execution is the joint of all corrupted participants. Specifically,
A’s view is {Vπ

i1
,Vπ

i2
, · · · ,Vπ

im
}.

Without loss of generality, we still assume the participant
k is selected as the leader. Since any non-leader participant,
we have that Vπ

i = ⊥. Therefore, we have the following two
cases.

Vπ
A =

{
⊥, k ̸∈ I ,
VLeader , k ∈ I

We construct a simulator SI that only takes the
{di , 0(di )}i∈I as inputs and works as follows. If k ̸∈ I ,
it outputs ⊥ directly; otherwise, it invokes Sk (presented in
Lemma 2) as a copy and returns the output of Sk . It is not
hard to verify A’s view in our simulation is computationally
indistinguishable from its view in real execution. Therefore,
Eq. (7) holds, which completes the proof.

Corollary 1: In SumAgg, SP fails to learn any participant’s
raw sensing data, while any participant fails to learn the sums
of all participants’ raw sensing data.

Proof: Since the sum is a 0-function, this corollary is
derived directly from Theorem 1.

Corollary 2: In MenAgg, SP fails to learn any participant’s
raw sensing data, while any participant fails to learn the mean
of all participants’ raw sensing data.

Proof: The mean is a 0-representable function
based on the sum 0-function, and MenAgg(d1, · · · , dn) ≜
SumAgg(d1,··· ,dn)
SumAgg(d1,··· ,dn)

. In other words, MenAgg only performs
SumAgg twice. Thus, as long as Corollary 1 holds, the
corollary also holds.

Corollary 3: In VarAgg, SP fails to learn any participant’s
raw sensing data, while any participant fails to learn the
variance of all participants’ raw sensing data.

Proof: This proof is similar to COROLLARY 2, and we
omit the detailed proof because of limited pages.

Theorem 3: PRAED prevents 1) SP from learning par-
ticipants’ bids and 2) any participant from learning other
participants’ bids.

Proof: We prove Theorem 3 from two-aspect: 1) consider
SP is corrupted, and 2) consider one participant is corrupted.
We prove them by following two lemmas.

Lemma 3: If SP is corrupted, there exists a simulator S that
takes as input received messages by SP to generate a view that
is computationally indistinguishable from the one of SP.

Proof: In PRAED, SP’s communications consist of six
parts. Specifically,

1) Receiving bidding shares [bi ]1 from each participant i
for i ∈ [1..n];

2) Sending masked shares [bi ]1−r mod N to a randomly
selected participant k, for i ∈ [1..n]\k;

3) Receiving two candidates p, q from the participant k;
4) Sending masked shares [b j ]1 − r ′ mod N to another

randomly selected participant k′, for j ∈ {p, q, k};
5) Receiving a final candidate q ′ from the participant k′;

and
6) Outputting a reward base (u, v).

Note that the participant’s output is either u · bi or v + u · bi
(i ∈ [1..n]). Without loss of generality, we assume the 1-st
participant bids the smallest bidding. Then, we have

outputπ (b1, · · · , bn)
c
≡ {v + u · b1, u · b2, · · · , u · bn}.

and SP’s view in the real execution of PRAED is as follows.

VS P = {[b1]1, [b2]1, · · · , [bn]1, (p, q), q ′}.

where q ′ ∈ {p, q, k}. We first define a leakage function
L S P = {B, p, q, q ′, 1}, which implies a legal information
leakage. We construct a simulator S(L S P , u, v) that takes the
legal leakage L S P and SP’s output (u, v) as inputs and works
as follows.

1) S selects n random numbers r1, r2, · · · , rn from ZN and
then sends them to SP;

2) Receiving k and {[bi ]1−r mod N } for i ∈ [1..n]\k from
SP, S forwards (p, q) to SP;

3) Receiving k′ and {[bi ]1 − r ′ mod N } for i ∈ {p, q, k}
from SP, S forwards q ′ to SP;

4) S selects n random bidding b′1, b′2, · · · , b′n and then
outputs the final rewards {v + u · b′1, u · b′2, · · · , u · b′n}.

It is not hard to verify that SP’s view in real execution and S’s
view are computationally indistinguishable. Because [bi ]1 is
generated from additive secret sharing, which is also a random
number in A’s view.

Lemma 4: If participant i is corrupted, there exists a
simulator Si that takes as input received messages by the
participant i to generate a view that is computationally
indistinguishable from the participant i’s view.

Proof: In PRAED, for any participant i , if i ∈ {k, k′},
it receives no message from other participants; therefore, the
views of these participants are empty, namely Vπ

i = ⊥. For
participant i ̸∈ {k, k′}, we just let simulator Si output ⊥.
However, it remains to prove that the corrupted participant
k or k′ cannot obtain other participants’ bids. As depicted
in PRAED, the view Vπ

k of participant k is denoted by
{[bi ]1−r mod N }ni=1,i ̸=k and {[bi ]2}

n
i=1,i ̸=k , where the former

is the view from SP and the latter is from other participants.
We construct a simulator Sk that only takes bk as input and
works as follows. Sk selects 2(n−1) random numbers (say s1,
· · · , sk−1, sk+1, · · · , sn and r1, · · · , rk−1, rk+1, · · · , rn) from
ZN and outputs the set directly. Note that in the real execution
of PRAED, for any i ̸= k, [bi ]1 and [bi ]2 are obtained from



additive secret sharing; Therefore, the participant k’s view in
real execution and in simulation execution are computationally
indistinguishable.

As for simulator Sk′ for participant k′, we can build it
in a similar manner as Sk . Because the communication of
participant k and participant k′ is similar, and it is a more
simplified case. Therefore, we omit the construction of Sk′ .
Taken together, Lemma 4 holds.
Since Lemma 3 and Lemma 4 hold, Theorem 3 hold.

Theorem 4: PRAED is truthful, i.e., any participant cannot
improve his rewards by submitting a deviated bid without
knowing others’ bids.

Proof: If any participant maximizing rewards is to
bid honestly, i.e., bi = di , they fail to improve rewards
by submitting a deviated bid. We consider two cases: (1)
min j ̸=i b j ≥ di , and (2) min j ̸=i b j < di . Here, bi represents
the participant i’s bid (i ∈ [1..n]), and min j ̸=i b j is the
minimum among {b1, · · · , b j } \ bi . We first prove that the
participant i (i ∈ [1..n] \ k) can maximize their reward by
setting bi = di in both cases, where the k-th participant is the
first leader. For simplicity, we assume b← min j ̸=i b j .
• Case 1: b ≥ di . When bi ≤ b, the participant i is a

winner and gets a reward α(b − di )+ β ·
bi∑n

j=1 b j
. Also,

if bi > b, the participant i gets a reward β ·
bi∑n

j=1 b j
, where

α, β are two control parameters and α, β > 0. In this case,
as α(b − di ) + β ·

bi∑n
j=1 b j

≥ β ·
bi∑n

j=1 b j
always holds,

the participant i maximizes rewards by submitting a bid
bi ≤ di .

• Case 2: b < di . When bi ≤ b, the participant i is the
winner and gets a reward α(b − di )+ β ·

bi∑n
j=1 b j

. Also,

if bi > b, the participant i gets a reward β ·
bi∑n

j=1 b j
. In this

case, as α(b−di )+β ·
bi∑n

j=1 b j
< β ·

bi∑n
j=1 b j

always holds,
the participant i maximizes rewards by submitting a bid
bi ≥ di .

Thus, the participant i (i ∈ [1..n] \ k) maximizes his rewards
by honestly biding, i.e., bi = di .

Now, we consider the strategy of the first leader who is
aware that the participant p or q could potentially win. Without
loss of generality, we assume b = min{bp, bq}. From the
perspective of the first leader, there are two possible scenarios:
either bk ≥ dK or bk < dk . As proven above, it is evident
that the dominant strategy for the first leader is to set bk = dk .
Likewise, the dominant strategies for participants p and q are
to set bp = dp and bq = dq , respectively. On the other
hand, the second leader cannot modify their strategy once the
final winner is being determined. Consequently, their dominant
strategy would be to set bk′ = dk′ .

In summary, participants in PRAED fail to enhance their
rewards by submitting deviated bids without knowledge of
others’ bids. Consequently, PRAED can be considered as a
truthful mechanism.

Theorem 5: PRAED is fair, i.e., any participant’s reward is
positively related to her amount of sensing data.

Proof: Without loss of generality, assume bi > b j , where
i, j ∈ [1..n]. There are two cases: 1) the participant j is the
winner; 2) the participant j is not the winner.

Fig. 3. Experimental data and aggregation results.

• Case 1: The reward of the participant j is u j = v+u ·b j ,
and that of the participant i is ui = u · bi . As the
participant i and the participant j set bi = di and
b j = d j , respectively to obtain truthful rewards, ui ≥ u j
always holds when di > d j .

• Case 2: The reward of the participant j is u j = u · b j ,
and that of the participant i is ui = u · bi , where bi = di
and b j = d j . If di > d j , ui > u j always holds.

When considering all the factors, it becomes evident that the
reward of any participant is directly correlated to the quantity
of sensing data they contribute. Therefore, the fairness of
PRAED can be concluded.

B. Experimental Evaluations

In this section, we implement PRADA and PRAED in Java
to evaluate their feasibility and efficiency using a real-world
sensing dataset.7 We adopt the heart rate from the dataset as
the sensing data, denoted by an integer. Note that the proposed
solution supports floating-point numbers by converting them
into integers. The experimental settings are as follows: We
use a personal computer equipped with Intel(R) Core(TM) i7-
10700 CPU @ 2.90GHz and 32 GB RAM as the sensing
platform, simulating 16 participants. The value of N for
the additive secret sharing is set to N = 262. Additionally,
we allocate a reward budget B = $28.88. Furthermore, we we
compare our approach with the state-of-the-art PAGE [25]
and a naive solution (refereed to as “Naive” throughout this
paper). Both PAGE and Naive utilizes the additive secret
sharing for privacy-preserving data aggregation, while SP
in Naive aggregates participants’ raw sensing data directly.
All experimental results presented here are averaged over
200 independent experiments.

According to the real-world sensing dataset, we assume
that 16 participants take part in collecting sensing data. Each
participant contributes an amount of sensing data shown in
Fig. 3(a). In total, 16 participants contribute 1444 sensing data
from Fig. 3(a). The mean and variance of 1444 sensing data
are 74.0478 and 104.6314 depicted in Fig. 3(b), respectively.
It is evident that the sum of the 1444 sensing data points
amounts to 106925.

To demonstrate the feasibility of PRADA, we compare the
aggregation results between PRADA and Naive. Additionally,
we employ the Wilcoxon rank-sum test at a significance
level of 0.05 to perform statistical tests. The p-value of

7https://www.kaggle.com/datasets/saurav9786/heart-rate-prediction?



Fig. 4. Feasibility evaluations.

the Wilcoxon rank-sum test between two datasets indicates
significant differences when it is less than 0.05. Conversely,
if the p-value exceeds 0.05, there is no significant difference
between the two datasets according to the statistical tests.
The experimental results depicted in Figure 4(a) show that
PRADA outputs the same mean and variance as Naive.
Consequently, PRADA generates the same sum as Naive when
both algorithms aggregate an identical amount of sensing data.
Since [x]1 + [x]2 mod N = x for x ∈ ZN , we can deduce
that

∑n
i=1[xi ]1 +

∑n
i=1[xi ]2 mod N =

∑n
i=1 xi . In other

words, additive secret sharing consistently yields correct sum
aggregations, ensuring that PRADA maintains the same sum of
sensing data as Naive. Given that PRADA always aggregates
sums accurately, it consistently produces the same aggregation
results as Naive. As a result, PRADA introduces no noise into
the aggregation results.

In terms of statistical tests, we examine the p-value between
PRADA and Naive, as depicted in Fig. 4. Taking into
account the sum, mean, and variance, the calculated p-value
between PRADA and Naive is greater than 0.05. Consequently,
we conclude that there is no significant difference between
PRADA and Naive when aggregating participants’ raw sensing
data directly. Thus, PRADA demonstrates its feasibility as a
solution for aggregating sensing data based on the proposed
CROWDFA paradigm.

PRADA comprises three types of entities, namely par-
ticipant, leader, and sensing platform. Each type of entity
carries out distinct operations to generate aggregation results.
Additionally, different aggregation operations necessitate
specific operations from each entity. Consequently, we assess
the average running time of each entity for various
aggregation operations. The experimental results depicted in
Fig. 5 indicate that leaders consume more time compared
to other entities when generating results for different
aggregation operations. One possible explanation for this
disparity is that leaders perform a greater number of
modular arithmetic operations than other entities. Since
modular arithmetic requires more computational resources
than arithmetic operations, leaders take longer to complete
their tasks. On the other hand, exhibit the shortest running time
among the three types of entities across different aggregation
operations. In contrast to leaders, SP receives a set of values
denoted as {[0(d1)]1, · · · , [0(dn)]1} and computes the sum∑n

i=1[0(di )]1. Conversely, the leader receives a set denoted
as {[0(d1)]2, · · · , [0(dn)]2}\[0(dk)]2 and performs operations

Fig. 5. The running time of entities for different aggregation operations.

on them. As [0(di )]1 = 0(di ) − [0(di )]1 mod N (i ∈
[1..n] \ k), [0(di )]1 represents a random number in ZN , and
0(di ) ≪ [0(di )]1, the leader must engage in more modular
arithmetic compared to SP. Hence, the leader consumes
a greater amount of running time than SP. Furthermore,
in comparison to common participants, SP performs fewer
operations, resulting in lower running time requirements. The
running time consumption of both SP and the leader is
positively correlated with the number of participants. In fact,
as the number of participants increases, both SP and the
leader require more time. Notably, the aggregation operation
of variance consumes more running time than the other two
operations due to its higher computational demands.

On the whole, in our experimental settings, the privacy-
preserving aggregation protocols proposed within PRADA
demonstrate exceptional efficiency, requiring only a few
microseconds to output aggregation results. Thus, PRADA
stands out as a highly efficient and privacy-preserving data
aggregation scheme for MCS systems.

To further demonstrate the efficiency of the proposed
PRADA, we execute comparative experiments with Naive
and PAGE [25]. Considering fairness, instead of fully
homomorphic encryption adopted by PAGE, we utilized
Beaver triples [46] to enable secure multiplication for additive
secret sharing. Specifically, we evaluated the encryption
time between PAGE and PRADA for different aggregation
operations. The results in Fig. 6(a) show that PRADA
significantly reduces running time compared to PAGE,
achieving more than an order of magnitude savings for
sum and mean aggregations. Although PAGE transmits secret
shares to only two sensing platforms and does not require
participants to perform aggregation operations, it still needs
to share shares of each sensing data based on additive
secret sharing. In contrast, our novel approach, CROWDFA-
based PRADA, allows participants to perform aggregation
operations locally and submit local aggregation results only



Fig. 6. Comparisons of computation costs among PAGE, Naive, and PRADA.

TABLE II
COMPARISONS OF COMMUNICATION COST

AMONG PAGE, NAIVE, AND PRADA

to SP. Therefore, PRADA only requires secret sharing of the
local aggregation results rather than all sensing data. This
approach becomes particularly advantageous when participants
possess multiple sensing data, resulting in fewer secret sharing
operations and reduced computation costs. Furthermore,
although PRADA requires participants to perform additional
local operations for variance aggregation, note that the
computation cost of PAGE is also 3−4 times higher than that
of PRADA. Hence, we can conclude that PRADA significantly
reduces each participant’s encryption cost by enabling them to
perform aggregation operations locally.

Also, we carefully compare the running time among PAGE,
Naive, and PRADA for sum aggregation, mean aggregation,
and variance aggregation. As depicted in Fig. 6(b)-(d), despite
PAGE adopts the more efficient Beaver triples to implement
secure multiplication, its running time is still 5 − 22 times
that of PRADA. One possible explanation is that PRADA,
based on CROWDFA, distributes aggregation operations to
participants, thereby reducing the computation burden on SP.
Additionally, each participant conducts aggregation operations
directly on raw sensing data, resulting in higher efficiency.
Experimental results shown in Fig. 6 also demonstrate that
PRADA’s running time is comparable to Naive. There are

Fig. 7. Performance of the proposed PRAED.

two potential reasons for this. Firstly, all participants in
PRADA perform aggregation operations locally, mirroring
SP’s direct aggregation of participants’ sensing data. Secondly,
PRADA’s use of additive secret sharing proves highly efficient
in generating sums of secret shares.

In particular, we conduct an analysis of communication
costs among PAGE, Naive, and PRAED, which are then
presented in Table II. The table clearly illustrates that the
communication costs for entities in PRADA remain unaffected
by the participant’s amount of sensing data. However, in the
case of PAGE and Naive, these costs exhibit a positive cor-
relation with the participant’s amount of sensing data. When
participants are required to collect multiple sensing data for an
MCS task (e.g., a continue sensing task), PRAED outperforms
PAGE in terms of communication costs. Therefore, PRADA
represents an optimization of communication performance for
privacy-preserving data aggregation in MCS systems.

Finally, we evaluate the performance of the proposed
PRAED. When B = $28.88, the relationship between a
participant’s rewards and their amount of sensing data is shown
in Fig. 7(a). It is evident that participants with more sensing
data receive higher rewards, thus demonstrating the fairness
of the proposed PRAED. The experimental results depicted in
Fig. 7(a) further demonstrate the effective winner localization
capability of PRAED.

In terms of efficiency, HyInc [41] outperforms PRAED,
as shown in Fig. 7(b). However, HyInc fails to protect bid
privacy [18], [27], as it computes each participant’s reward
using their respective bids. In contrast, PRAED protects each
participant’s bid and computes rewards using secret shares.
Consequently, PRAED incurs higher computational costs for
distributing rewards to participants. Nevertheless, PRAED still
achieves a running time of several microseconds, affirming its
status as a privacy-preserving and efficient incentive design.

VII. CONCLUSION

In this paper, we proposed CROWDFA to address the
challenges of incentive design, data aggregation, and privacy
concerns simultaneously in mobile crowdsensing. CROWDFA
achieves privacy-preserving data aggregation and privacy-
preserving incentives based on additive secret sharing only
within a unified framework. We formulated CROWDFA as a
multiparty computing paradigm. In particular, we proposed a
c-based privacy-preserving data aggregation scheme (PRADA)
supporting three privacy-preserving aggregation protocols



(SumAgg, MenAgg, and VarAgg) within PRADA. Addition-
ally, we designed a privacy-preserving incentive mechanism
(PRAED) as another main building block of CROWDFA to
achieve truthful and fair incentives for mobile crowdsensing.
Experimental evaluations demonstrated the high efficiency
of CROWDFA. For future work, we will explore non-linear
privacy-preserving data aggregation protocols to extend the
applicability of CROWDFA.
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