
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2023

Automated Question Title Reformulation by Mining
Modification Logs From Stack Overflow

Ke Liu , Xiang Chen , Member, IEEE, Chunyang Chen , Xiaofei Xie , and Zhanqi Cui

Abstract—In Stack Overflow, developers may not clarify and
summarize the critical problems in the question titles due to a
lack of domain knowledge or poor writing skills. Previous studies
mainly focused on automatically generating the question titles by
analyzing the posts’ problem descriptions and code snippets. In
this study, we aim to improve title quality from the perspective of
question title reformulation and propose a novel approach QETRA
motivated by the findings of our formative study. Specifically, by
mining modification logs from Stack Overflow, we first extract
title reformulation pairs containing the original title and the
reformulated title. Then we resort to multi-task learning by
formalizing title reformulation for each programming language as
separate but related tasks. Later we adopt a pre-trained model T5
to automatically learn the title reformulation patterns. Automated
evaluation and human study both show the competitiveness
of QETRA after compared with six state-of-the-art baselines.
Moreover, our ablation study results also confirm that our studied
question title reformulation task is more practical than the direct
question title generation task for generating high-quality titles.
Finally, we develop a browser plugin based on QETRA to facilitate
the developers to perform title reformulation. Our study provides
a new perspective for studying the quality of post titles and can
further generate high-quality titles.

Index Terms—Stack Overflow mining, question post quality
assurance, question title reformulation, modification logs, deep
learning.

I. INTRODUCTION

STACK Overflow is widely used for developers to seek solu-
tions for programming-related problems. While the number

of question posts in Stack Overflow has been growing rapidly,
researchers [1], [2] found that the quality of a significant num-
ber of questions is not satisfactory. These low-quality question
posts cannot attract timely attention from other developers in

This work was supported in part by the National Natural Science
Foundation of China under Grants 61702041 and 61202006 and Jiangsu
Provincial Frontier Leading Technology Fundamental Research Project under
Grant BK20202001. Recommended for acceptance by T. Menzies. (Ke Liu
and Xiang Chen are co-first authors.) (Corresponding author: Xiang Chen.)

Ke Liu and Xiang Chen are with the School of Information Science
and Technology, Nantong University, Nantong 226019, China (e-mail: au-
rora.ke.liu@outlook.com; xchencs@ntu.edu.cn).

Chunyang Chen is with the Faculty of Information Technology,
Monash University, Clayton, VIC 3800, Australia (e-mail: chunyang.chen
@monash.edu).

Xiaofei Xie is with the School of Computing and Information
Systems, Singapore Management University, Singapore 188065 (e-mail:
xfxie@ntu.edu.sg).

Zhanqi Cui is with the Computer School, Beijing Information Science and
Technology University, Beijing 100101, China (e-mail: czq@bistu.edu.cn).

Digital Object Identifier 10.1109/TSE.2023.3292399

Stack Overflow. Moreover, they can hinder the generation and
sharing of programming knowledge [3], [4]. One of the essen-
tial reasons for the low quality of question posts is that devel-
opers cannot clarify and summarize the critical problems in the
question titles [5], [6], [7] due to the lack of domain knowledge
or good writing skills. This can also have a negative impact
on some tasks related to Stack Overflow (such as post retrieval
[8], [9], chatbot development [10], API method recommenda-
tion [11], [12]). Therefore, the automatic question title genera-
tion has become a valuable research problem in mining Stack
Overflow.

In previous studies, researchers mainly focused on generating
the question titles by analyzing the posts’ contents (such as
problem descriptions and code snippets). For example, Gao
et al. [4] were the first to automatically generate titles by an-
alyzing the code snippets in the post body. They proposed a
data-driven sequence-to-sequence approach Code2Que, which
used an attention mechanism to better select content from the
code snippet, a copy mechanism to solve the out-of-vocabulary
problem, and a coverage mechanism to eliminate the word rep-
etition problem. Then, we [13] further leveraged both the code
snippets and the problem descriptions. We modeled this task
as a multi-task learning problem and proposed a Transformer-
based approach SOTitle.

One of the main reasons for the popularity of Stack Overflow
is its ability to maintain high-quality posts on its platform. The
community has implemented a set of mechanisms to ensure
that the content posted on the platform is accurate, useful,
and relevant. For example, after a question post is posted,
the owner of the question post and other users can edit the
content of the question post1. Previous studies [14], [15] have
also shown that editing question posts can help to improve the
quality of question posts. Therefore, we can improve the title
quality by learning title reformulation patterns by gathering
the title modification information of developers in modification
logs provided by Stack Overflow. Then given an unsatisfactory
original question title, we can use the learned title reformulation
knowledge to recommend reformulated titles with higher qual-
ity for the post editors. Notice previous studies [4], [13] mainly
generate the title from scratch, while our investigated question
title reformulation aims to polish the original crafted title by
mining modification log. Therefore, our study can provide a
new perspective to improve post title quality.

In our study, we first perform a formative study to investi-
gate how developers reformulate the question titles by mining

1https://stackoverflow.com/help/editing

https://orcid.org/0000-0002-5224-1485
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-5537-9236
mailto:aurora.ke.liu@outlook.com
mailto:xchencs@ntu.edu.cn
mailto:chunyang.chen@monash.edu
mailto:chunyang.chen@monash.edu
mailto:xfxie@ntu.edu.sg
mailto:czq@bistu.edu.cn
https://stackoverflow.com/help/editing

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

Fig. 1. The process of modifying the title of a question post in Stack
Overflow.

modification logs. Based on the modification logs between July
2008 and March 2022, we extract 152,259 title reformulation
pairs from 122,528 title reformulation threads. Fig. 1 shows a
title reformulation thread. In this thread, the original title has
been reformulated two times (The modified part is highlighted
with shadows) and the post body is shown in the bottom half
of this figure. After analyzing these title reformulation pairs,
we find that question title reformulation has certain common
patterns (detailed analysis is in Section III-C). For example, the
developers may correct spelling errors, such as revising “Un-
destanding” to “Understanding.” The developers may simplify
and refine the title into the most common expression ways, such
as revising “C# how do I write in the code this char—‘\”’
to “C# how do I write the escape char—‘\’ to code.” The
developers may add constraints (e.g., programming languages
or platforms) in the title, such as revising “how to convert
a json to a php object?” to “how to convert a json to a
php object in symfony2?.” The developers may delete specific
information in error messages or code snippets, such as re-
vising “MongoDb throws java.lang.IllegalArgumentException:
Invalid BSON field name” to “MongoDb upsert exception
invalid BSON field.”

Since the question title reformulation task is tedious for
developers, we propose a novel approach QETRA (QuEstion
Title ReformulAtion) based on deep learning to automatically
reformulate the original question title. Specifically, by mining
modification logs from Stack Overflow, we first extract title
reformulation pairs containing the original title and the refor-
mulated title from the identified title reformulation threads.
Then, based on the findings in our informative study (such
as a large number of software-specific concepts exist in ques-
tion posts for different programming languages, but the other
contents in the post titles for different programming languages
have a certain similarity), we formalize the question title re-
formulation for different programming languages as separate
but related tasks and resort to multi-task learning [16], which
can allow related tasks to improve each other’s performance

by using shared and complementary information. Finally, we
adopt a pre-trained model T5 [17] to automatically learn the
title reformulation patterns from the extracted title reformula-
tion pairs. For the application phase, given the original title
and the content of the question post body, the trained model
can recommend candidate reformulated titles. We evaluate the
quality of the reformulated titles of our approach with large-
scale archival manual reformulation results in terms of both
automatic evaluation and human study evaluation, respectively.
Automatic evaluation results show that QETRA can generate
higher-quality reformulated titles than six state-of-the-art base-
lines. Taking Python programming language as an example,
in terms of metrics EM@1 and GLEU, our approach achieves
228.69% and 51.59% improvement compared with the baseline
CodeBERT [18] and achieves 150.63% and 13.11% improve-
ment compared with the baseline LanguageTool. The human
study results also show that the quality of the reformulated
titles by QETRA is higher than the baselines CodeBERT and
LanguageTool. Finally, we find considering the original title
and the post body information can achieve better performance
than only considering the post body information in our ablation
studies. Our empirical results show that reformulating on the
basis of the original titles can better guarantee the quality of
the titles.

The contributions of our study can be summarized as follows.
• We are the first to study the problem of automated ques-

tion title reformulation by mining modification logs from
Stack Overflow. Our study can provide a new direction for
improving question title quality.

• We construct a high-quality large-scale dataset by mining
modification logs of high-quality problem posts for six
popular programming languages in Stack Overflow. This
dataset includes 152,259 title reformulation pairs from
122,528 title reformulation threads.

• We perform a formative study to investigate how devel-
opers reformulate the question titles. Inspired by the find-
ings of our formative study, we propose a novel approach
QETRA based on deep learning to automatically reformu-
late the original question title, which is designed based on
the pre-trained model T5 and multi-task learning.

• We evaluate the quality of the reformulated titles of
QETRA by comparing state-of-the-art baselines based on
automatic evaluation and human study evaluation. More-
over, to facilitate the formulation of the original title for
developers, we develop a browser plugin based on QETRA.

• To facilitate other researchers to follow and advance our
study, we have released the scripts, the dataset, and our
developed plugin on our project homepage.2

The remaining part of this paper is organized as follows:
Section II describes our process of collecting title reformulation
pairs from modification logs. Section III illustrates the findings
of our formative study. Section IV shows the details of our pro-
posed approach QETRA. Section V introduces the experimental
setup of our study. Section VI presents the empirical results for
each research question. Section VII discusses the generalization

2https://github.com/KeLiu97/QETRA

https://github.com/KeLiu97/QETRA

TABLE I
ALL THE RECORDS FOR THE TITLE REFORMULATION (SHOWN IN FIG. 1) IN THE DATA DUMP POSTHISTORY

Id PostId PostHistoryTypeId CreationDate UserId Text

16757 2658 1 2008-08-05T18:29:14.283 406 Version Control. Getting started...
19367804 2658 4 2011-12-22T22:13:08.093 845306 Getting started with Version Control

264747877 2658 4 2022-02-23T12:27:23.230 5452687 Getting started with Version Control System

TABLE II
LENGTH STATISTICS OF THE ORIGINAL TITLE, REFORMULATED TITLE, AND POST BODY FOR DIFFERENT PROGRAMMING LANGUAGES

Language
Original Title Length Reformulated Title Length Question Body Length

Average Mode Median <16 Average Mode Median <16 Average Mode Median <512

Java 8.48 7 8 95.64% 9.11 8 9 95.10% 135.75 49 92 97.34%
Python 8.63 7 8 95.87% 9.13 8 9 95.75% 131.27 50 92 97.89%

C# 8.70 7 8 95.00% 9.03 8 9 94.57% 137.40 41 98 97.50%
JavaScript 8.50 7 8 96.14% 9.07 8 9 95.75% 125.54 45 89 97.98%

PHP 8.31 7 8 96.54% 8.90 8 9 95.87% 127.05 52 87 97.89%
HTML 8.71 7 8 95.39% 9.26 8 9 95.18% 122.65 37 88 98.25%

and limitations of QETRA. Section VIII shows the novelty of
our study by comparing related studies. Section IX concludes
our study and shows potential future directions.

II. DATA COLLECTION

We gathered modification logs from two large-scale data
dumps from Stack Overflow3. Stack Overflow releases data
dumps of all its publicly available content roughly every three
months via archive.org4 and the database schema documenta-
tion for these public data dumps can be found in the webpage5.
The first data dump is Posts, which includes all question
posts from July 2008 to March 2022. The second data dump
is PostHistory, which includes the title reformulation history
of all question posts from July 2008 to March 2022. In the
data dump PostHistory, the modification of the post will be
distributed to different records depending on the modified parts.
For example, we show all the records for the title reformulation
thread (shown in Fig. 1) in Table I. In this table, each historical
record contains multiple attributes. Here we only show the
meaning of some relevant attributes. Specifically, The attribute
“PostId” represents the related post ID. The attribute “Post-
HistoryTypeId” represents the modification type according to
the modification part (e.g., 1 denotes “Initial Title,” 4 denotes
“Edit Title”). The attribute “CreationDate” represents the time
when the modification occurred. The attribute “UserId” repre-
sents the user ID associated with the modification. The attribute
“Text” represents the corresponding text. In this example, we
can find the developer performed two successive title reformu-
lations in the second row and the third row.

Due to many posts in Stack Overflow, we resort to popular
tag statistical information provided by Stack Overflow6. After
removing tags related to the system and framework (such as
Android, and jquery), we finally select the top-six popular

3https://archive.org/download/stackexchange, accessed in March 2022.
4https://archive.org/details/stackexchange
5https://meta.stackexchange.com/questions/2677/database-schema-

documentation-for-the-public-data-dump-and-sede
6https://stackoverflow.com/tags, accessed in March 2022.

programming languages. Specifically, we first use 〈java〉,
〈c#〉, 〈python〉, 〈javascript〉, 〈php〉, and 〈html〉 tags to se-
lect corresponding posts from the data dump Post. Then, to
guarantee the quality of our selected posts, we considered two
heuristic selection rules based on the suggestions provided by
previous studies [19], [20], [21], [22].

• Rule 1: The score of the selected question post is not
smaller than 5.

• Rule 2: The selected question post should have the ac-
cepted answer.

We extracted related modification records for these selected
posts according to “PostId” from the data dump PostHistory.
Then we arranged related modification records chronologically
for each post in a thread. In particular, supposing a thread t1,
t2, · · · , tn (Here t1 denotes the original title, t2 to tn denotes
the reformulated titles ordered in a chronological way), we can
generate n-1 title reformulation pairs: <t1, tn>, <t2, tn>, · · · ,
<tn−1, tn>, since we assume the quality of the title tn is high-
est. Moreover, we only consider the post body’s latest content
in this thread. After the above operations, we finally identified
122,528 title reformulation threads. From these threads, we
extracted 152,259 title reformulation pairs. We show the length
statistics of the original titles, the reformulated titles, and the
contents of the post bodies in Table II. These statistics include
average, mode, median, and the percentage of pairs less than the
specified length. In this table, we can find that the contents of the
Java and C# post bodies are longer than the other programming
languages. On average, Java and C# post bodies contain 135.75
and 137.40 tokens respectively, while the post bodies of the
other four programming languages contain around 125 tokens.
Moreover, we find the original titles and the reformulated titles
of all the programming languages almost contain the same
number of tokens.

III. TITLE REFORMULATION PATTERN ANALYSIS

In this section, we conduct a formative study to understand
the title reformulation patterns.

https://archive.org/download/stackexchange
https://archive.org/details/stackexchange
https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
https://stackoverflow.com/tags

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

TABLE III
THE TOP-10 MOST FREQUENT n-GRAMS IN THE TITLES OF THE JAVA POSTS AND THE PYTHON POSTS

Rank
1-gram 2-gram 3-gram 4-gram

Java Python Java Python Java Python Java Python

1 java python how to how to how do i how do i is it possible to object has no attribute
2 using using in java in python how can i how can i what is the difference is it possible to
3 spring pandas can i in a what is the what is the is the difference between is there a way
4 class list how do how do how to get how to get is there a way there a way to
5 android django in a can i is there a is there a there a way to what is the difference
6 method file what is do i how to use how to use how to get the is the difference between
7 file get do i how can is it possible a list of how to create a how to get the
8 use string how can of a the difference between has no attribute what is the best how to create a
9 string function is the way to it possible to object has no how do i get importerror no module named
10 get dataframe to use a list how to create no module named how to check if how to check if

A. Who Edited Posts?

Stack Overflow allows users to edit three kinds of post
information: post tags, the post title, and the post body. As
of March 2022, there have been a total of 40,966,170 edited
records of question posts. Among them, 3,373,872 (8.24%)
are post title edits, 32,915,821 (80.35%) are post body ed-
its, and 4,676,477 (11.41%) are post tag edits. Among all
3,373,872 post title edits, 1,097,760 (32.54%) are self-edits
by the post owners, and 2,276,112 (67.46%) are edited by
other experts. This statistical information shows that our pro-
posed question title reformulation approach can be beneficial
for both the post owners and other experts for title quality
improvement.

B. What Are the Characteristics of Question Titles?

Question title content analysis. We analyzed question post
titles to investigate the content of questions on Stack Overflow
for our considered six programming languages. To achieve this
goal, we first gathered all the words in the titles and per-
formed standard text processing operations (such as punctuation
removal, lowercase conversion, and stop word removal). After
that, we identified the most common n-grams in these titles.
Table III lists the top 10 most common 1-grams, 2-grams,
3-grams, and 4-grams in the titles of the Java posts and the
Python posts (results of other programming languages can be
found on our project homepage). In this table, we can find
that programming languages (such as “Python” and “Java”),
frameworks (such as “Spring” and “Django”), platforms (such
as “Android”), data types (such as “String”), data structures
(such as “Class” and “List”), and keywords (such as “Method”
and “Function”) are the terms that appear most frequently in
the title. Moreover, we also find that question words (such as
“how to”) appear most in the titles, which appear in almost
every 3-gram and 4-gram. Except for the question words, the
most frequent terms are constraint words (such as “in python”
and “in java.”), which can limit the question in a specific
programming language.

Based on the title content analysis, we can find that a large
number of terms related to the architecture (such as “Spring,”
“Django,” and “Android”) are specific to programming lan-
guage. However, except for these software-specific concepts,
the high-frequency terms in the titles for different programming

Fig. 2. The distribution of title length for different programming languages
by using box plot.

languages also have a certain overlap. Therefore, it is reasonable
to treat the question title reformulation for these six program-
ming languages as separate but related tasks.

Question title length analysis. In the previous study,
Baltadzhieva et al. [23] found that if the length of the question
post titles is too long, these titles will have a negative effect
on the quality of the question posts. While if the length of
the question post titles is too short, these titles will not con-
tain enough useful information. To investigate the title length
range of our gathered posts, we compute the title length by
using white space as a separator (i.e., word count). Notice we
treat words satisfying CamelCase or underscore_case as a word
since these words are identifiers in the code snippets and are
often used as variable names, class names, or method names in
the title.

We show the title length distribution via box plot in Fig. 2.
In this figure, we can find the mean of the title length for
different programming languages is around 8, which shows
that developers do intentionally limit the length of titles to
make the questions easier to answer. Moreover, there is a high
consistency degree in the title length across six programming
languages. However, we also find some outliers have larger
lengths, with values between 18 and 36. These outlier posts
may not satisfy the guidelines of writing perfect question

TABLE IV
CATEGORIES OF TITLE REFORMULATION PATTERNS AND THEIR SUB-CATEGORIES, CORRESPONDING EXAMPLES, AND THE PROPORTION

Category Sub-category Example Proportion

Add

Software or platform Original Title: how to convert a json to a php object?
3.48%Reformulated Title: how to convert a json to a php object in symfony2?

Detailed requirement
Original Title: Can I pass arguments to the GWT compiler?

12.56%Reformulated Title: Can I pass arguments (deferred binding properties) to the GWT
compiler?

Category Proportion 16.04%

Modify

Spelling and syntax check
Original Title: Java: How to get the scrolling method OS X Lion?

32.21%Reformulated Title: Java: How to get the scrolling method in OS X Lion?

Simplify and refine
Original Title: C# how do I write in the code this char — ‘\’

23.38%Reformulated Title: C# how do I write the escape char — ‘\’ to code

Large-scale modification
Original Title: Don’t work JSplitPane between JButton and Jtable

10.45%Reformulated Title: Can’t change size of block in BorderLayout

Category Proportion 66.04%

Delete

Detailed or unnecessary words
Original Title: What are the current options for making a simple static website
multilingual? 12.81%

Reformulated Title: What are the options for making a simple static website multilin-
gual?

Specific information in error message
Original Title: MongoDb throws java.lang.IllegalArgumentException: Invalid BSON
field name

0.25%

Reformulated Title: MongoDb upsert exception invalid BSON field

Symbols or web links
Original Title: JavaScript Loops: for ... in vs for

3.48%Reformulated Title: JavaScript Loops: for in vs for

Category Proportion 16.54%

Others 1.37%

titles7 and can affect the timely reply of these posts
[21]. Finally, We analyzed the posts with too short titles.
After analyzing some randomly selected posts, we find
most of these titles contain error logs or questionable
API names (such as “java.lang.UnsatisfiedLinkError,”
“Boolean.hashCode()”).

C. Why Are Question Titles Reformulated?

The developers may reformulate the question title for many
reasons (such as misspelled words). In this subsection, we
conduct a small-scale human study to investigate the title for-
mulation reasons for different programming languages. In this
human study, we hire two master students. Then we randomly
select 300 reformulation pairs (50 reformulation pairs for each
programming language). Later, for each selected reformulation
pair, two students will categorize the reason for this pair. If two
students disagree, they discussed it with each other until they
reach a consensus.

Table IV shows our manual categorization results and cor-
responding examples. For these examples, we emphasize the
reformulation part in the underlined manner. In this table, we
can find that modifying the title is the most common title
reformulation pattern, which accounts for 66.04% of all pairs,
then comes adding more information to the title (16.04%), and
deleting information from the title (16.54%). Notice we put
other pairs that are difficult to classify into the Others category
(1.37%). Specifically, in the Add category, we further divide
it into two sub-categories: (1) adding constraint information,
such as programming languages or platforms, and (2) adding

7https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/

detailed requirements for the question. In the Modify category,
we further divide it into three subcategories: (1) spelling and
syntax checking, (2) simplifying and refining the title into the
most commonly-used expression, and (3) large-scale title mod-
ification, which can better reflect the core content of the post.
Compared with this sub-category, the modification scale of the
first two sub-categories is much smaller. In the Delete category,
we further divide it into three sub-categories: (1) deleting un-
necessary words or words with little information, (2) deleting
specific information in error messages or code snippets (such as
file path, URL, function names, etc.), (3) deleting punctuation
or mistyped symbols.

Based on the above categorization result, we can observe dif-
ferent types of question title reformulation patterns (such as the
Add category, the Delete category, and the Modify category).
Considering the diversity of title reformulation patterns, it is not
practical to use a rule-based approach to solve this problem.
Therefore, we propose a general post title reformulation ap-
proach based on deep learning, which can learn the knowledge
required for title reformulation from our gathered large-scale
dataset.

D. What is the Scale of Question Title Reformulation?

We use the character-level LCS (Longest Common Subse-
quence) [24] between the original title and the reformulated
title to measure the similarity of this pair. The similarity can
be computed as follows.

similarity(original, reformulated) =
2×Nmatch

Ntotal
(1)

https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

Fig. 3. The similarity score distribution of our gathered title reformulation pairs.

where Nmatch denotes the number of characters in the LCS
and Ntotal denotes the sum of the original and reformulated
characters. The similarity score is between 0 and 1. The
higher the similarity score, the smaller the reformulation scale
between the original title original and the reformulated title
reformulated.

As shown in Fig. 3, among 152,259 title reformulation pairs,
42.82% of the pairs are of high similarity (i.e., the similarity
score is larger than 0.6), 32.98% of the pairs are almost similar
(i.e., the similarity score is between 0.4 and 0.6), and 24.19%
of the pairs are of low similarity (i.e., the similarity score is
not larger than 0.3). In this figure, we can find most of the title
reformulation pairs are small-scale.

Our investigation results show that the scale of title reformu-
lation is not uniform.

E. Implications of Our Informative Study

Since the previous studies [4], [13] on direct question post
title generation were only able to assist question post owners
in writing high-quality titles before posting question posts, it
did not consider how to assist question post owners and other
developers in reformulating titles when the posted posts already
have the original titles. Therefore, we further propose a new
task to complement the previous studies, i.e., to assist question
post owners and other experts in reformulating the title after
the question post is posted, which aims to further improve the
quality of the question post title. Considering the diversity of
title reformulation patterns, it is not practical to use a rule-based
approach to solve this problem. According to previous research
[25], the approach based on deep learning can automatically
learn diverse patterns from large-scale data. Therefore, we can
propose a general title reformulation approach based on deep
learning. Moreover, given the large number of software-specific
concepts in question posts for different languages, reformu-
lating the question titles for different programming languages

cannot be simply regarded as a single task. However, except
for these software-specific concepts, the other contents in the
post titles for different programming languages have a certain
similarity. Therefore, we can formalize the question title refor-
mulation for each programming language as separate but related
tasks, which can allow related tasks to improve each other’s
performance by using shared and complementary information
via multi-task learning.

In summary, we think it is necessary and feasible to propose
an automated post title reformulation approach based on deep
learning and multi-task learning. Our study could benefit both
developers and the Stack Overflow community. For example,
the developers can use our proposed approach to refine their
original post titles and then improve the quality of the post,
which can help to get a timely reply from related developers.

IV. AUTOMATIC TITLE REFORMULATION APPROACH

The framework of our approach is shown in Fig. 4. In this
figure, we can find QETRA contains three phases: corpus con-
struction phase, model construction phase, and model applica-
tion phase. Specifically, (1) in the corpus construction phase, we
extracted the title edit records and the body of question posts
from the data dump PostHistory and the data dump Post
of Stack Overflow respectively. In our constructed dataset, we
mainly focus on title edit records related to six popular pro-
gramming languages. More details of the dataset construction
process can be found in Section II. (2) In the model construction
phase, we first concatenate the original title and the question
body to model the multi-modal input. Then, we separate these
two modalities by using the SentencePiece method [26] to solve
the OOV (out of vocabulary) problem. Later, we model question
post title reformulation for different programming languages as
independent but related tasks. Then we use multi-task learning
[16] to solve these tasks. Finally, we construct our model by
fine-tuning a pre-trained Transformer model T5 [17]. (3) In the

Fig. 4. Framework of our proposed approach QETRA.

model application phase, for a question post title that needs
reformulation, we input its original title, related programming
language, and the body of the question post to the trained model.
Then the trained model can provide a set of candidate refor-
mulated titles for selection through the beam search algorithm.
In the rest of this section, we show the technical details of the
model construction phase.

A. Encoder-Decoder Model Based on Transformer

Our encoder-decoder Model is based on T5 [17], which is
similar to Transformer [27], but the difference is to remove
the layer norm bias, place the layer normalization outside the
residual path, and use a different position embedding scheme.
When receiving an input sequence, we map the input sequence
of tokens X = (x1, x2, · · · , xm) to an embedding sequence,
which is then sent into the encoder. All of the encoders have
the same structure and are made up of two subcomponents (i.e.,
a self-attention layer and a small feed-forward network). The
calculation of self-attention [28] is based on queries (Q), keys
(K), and values (V). Specifically. The dot product of the queries
and keys is first computed. Then each is divided by

√
dk and the

softmax function is used to get the weight of the corresponding
value.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2)

The feed-forward neural network (FFN) is made up of two
linear transformations with the Relu activation, which can pro-
vide a nonlinear transformation.

FFN(x) = max (0, xW1 + b1)W2 + b2 (3)

Layer normalization [29] is performed on the inputs of each
child component. The layer normalization is a simplified ver-
sion where the activations are only rescaled and no additive bias
is applied. Following layer normalization, a residual skip con-
nection [30] adds each child component’s inputs to its output.
Dropout [31] is applied within the feed-forward network, on the
skip connection, on the attention weights, and at the input and
output of the entire stack.

The decoder has a similar structure as the encoder. The
distinction is that after each self-attentive layer, it employs a
standard attention mechanism to focus on the encoder output.
The decoder’s self-attention mechanism also employs a form of
autoregressive or causal self-attention, which allows the model
to only focus on previous outputs. To construct the output
probabilities over the vocabulary, the output of the last decoder
block is fed into a dense layer with a softmax output.

B. Multi-Task Learning

We represent the multi-modal input in our study by con-
catenating the original title with the body of the question
post. Specifically, we concatenate the original title sequence
XoriginalT itle and the post body sequence Xbody via a special
identifier (<body>) to distinguish XoriginalT itle and Xbody .
We also investigate a multi-task learning scenario in which a
shared model is trained on multiple tasks at the same time.
Multi-task learning has been proven to increase model general-
ization capabilities in NL pre-training by reusing the majority of
model weights for many tasks [16], [32], which can effectively
reduce computational costs. As shown in Fig. 4, we prefixed
the input X for each programming language with task-specific
prefixes (e.g., the prefix “JS:” indicates the programming

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

Fig. 5. The screenshot of our developed plugin based on QETRA.

language JavaScript) to allow the model to discriminate dif-
ferent tasks since we regard post title reformulation for the
different programming languages as independent but related
tasks. The input format is designed as follows.

X= prefix ⊕XoriginalTitle ⊕< body >⊕Xbody (4)

C. SentencePiece

Since our study needs to deal with the OOV problem for
different programming languages at the same time, we use the
SentencePiece method [26] to process the inputs X . Sentence-
Piece is a language-independent subword tokenizer and deto-
kenizer for neural machine translation and other neural-based
text processing tasks. Previous subword segmentation tech-
niques presume that input is pre-tokenized into word sequences,
whereas SentencePiece can train subword models straight from
raw sentences, which makes it possible to work with a variety
of programming languages and multi-modal inputs.

D. Beam Search

In QETRA, we use a heuristic search strategy (i.e., beam
search) to find titles that have the least cost. Beam Search is
improved on the greedy search by returning a list of the most
likely output sequences. It scans through each step’s title tokens
one by one and chooses the k tokens with the lowest cost at
each time step, where k denotes the beam width. After prun-
ing any remaining branches, it continues to choose potential
tokens for the subsequent tokens until it encounters the end-
of-sequence sign. Finally, QETRA can return k candidate titles
for each question post. We rank the generated candidate titles
according to their average probabilities during the beam search
procedure.

E. Tool Support

To make our proposed approach more practical, we devel-
oped a browser plugin based on QETRA and integrated it into

the Chrome browser. The screenshot of our developed tool
is shown in Fig. 5. The usage process can be illustrated as
follows. When a user edits a question title, this browser plugin
will automatically analyze the original title and the question
body and recommend the top-5 reformulated titles to the users
for selection. Our plugin can be downloaded on our project
homepage.

V. EXPERIMENTAL SETUP

A. Research Questions

In our empirical studies, we want to answer the following
four research questions (RQs).

RQ1: Can our proposed approach QETRA generate
higher-quality reformulated titles than the state-of-the-art
baselines by automatic evaluation?

Motivation: In this RQ, we want to demonstrate the com-
petitiveness of our proposed approach QETRA by comparing
state-of-the-art baselines in an automatic way. First, we should
select baselines from similar research problems since we are
the first to study this problem to the best of our knowledge.
Second, we should choose automatic evaluation metrics to com-
pare the quality of the reformulated titles generated by different
approaches from multiple perspectives.

RQ2: What is the effect of using the bi-modal informa-
tion for QETRA?

Motivation: In this RQ, we want to analyze whether using
the bi-modal information (i.e., original question title and ques-
tion post body) can help to improve the performance of our
proposed approach QETRA. Further, we can also analyze which
modal information can provide more help for QETRA.

RQ3: What is the effect of using multi-task learning in
QETRA?

Motivation: Using multi-task learning can help to augment
the training data, which can enable QETRA to learn more
useful information. However, using multi-task learning may
also introduce noises and make it harder to train the mod-
els [16]. Therefore, we design this RQ to investigate whether
using multi-task learning can improve the performance of
QETRA.

RQ4: Can our proposed approach QETRA generate
higher-quality reformulated titles than the state-of-the-art
baselines by human study?

Motivation: Since evaluation metrics used in the automatic
evaluation are measured based on the overlap between the
ground truth titles and the generated titles, this cannot effec-
tively reflect the semantic differences between different titles.
Therefore, we conduct a human study to evaluate the effective-
ness of our proposed approach in this RQ.

B. Dataset

As discussed in Section II, we identified 122,528 title re-
formulation threads after mining modification logs from Stack
Overflow. From these threads, we extracted a total of 152,259
title reformulation pairs.

For the question post body, we perform a set of data prepro-
cessing as follows. If the post body contains the code snippet,

TABLE V
STATISTICAL INFORMATION OF OUR GATHERED DATASET FOR SIX

PROGRAMMING LANGUAGES

Language
Training Validation Testing

Pair Thread Pair Thread Pair Thread

Java 24,821 20,081 3,112 2,510 3,073 2,511
Python 24,602 19,601 3,050 2,450 3,011 2,451

C# 26,732 21,929 3,334 2,741 3,311 2,742
JavaScript 24,264 19,220 3,045 2,403 3,004 2,403

HTML 10,592 8,392 1,299 1,049 1,320 1,050
PHP 10,960 8,796 1,347 1,099 1,382 1,100

Total 121,971 98,019 15,187 12,252 15,101 12,257

we extract the code snippet by utilizing code tags (such as
<code>, <pre>). Then we concatenate the extracted code
snippet after the problem description by the tag <code>. Later
we remove the tags and garbled parts in the problem description.
Moreover, we notice the links in the problem description can
cause the title length to be too long. Therefore, we also remove
the links in the problem description.

As discussed in Section IV, the input of QETRA considers
both title and corresponding post body. If we split the dataset
in terms of pair granularity, the title reformulation pairs in the
same thread may exist in different split parts. Since these pairs
share the same post body, this split strategy may cause a data
leakage problem. Therefore, we split the dataset in terms of
thread granularity. Specifically, we split the dataset into the
training set, the validation set, and the testing set in a ratio
of 80%, 10%, and 10%. Finally, we randomly select 121,971
title reformulation pairs from 98,019 threads as the training
set, select 15,187 pairs from 12,252 threads as the validation
set for hyper-parameter optimization, and the remaining 15,101
pairs from 12,257 threads as the testing set to evaluate the
performance of our proposed approach QETRA. The detailed
statistical information for different programming languages can
be found in Table V.

C. Baselines

As discussed in Section III, many title reformulations were
performed due to grammatical errors. Therefore, we first con-
sider a widely used grammatical error correction (GEC) tool as
the first baseline.

LanguageTool. LanguageTool8 is an open-source proofread-
ing tool that supports over 20 languages. The style and grammar
checker in this tool is rule-based and has been under develop-
ment for more than 10 years.

To the best of our knowledge, we are the first to study auto-
mated question title reformulation by mining reformulation logs
from Stack Overflow. In our study, we regard the question title
reformulation task as a neural translation problem (i.e., trans-
lating the original title into the reformulated title). Therefore,
we further consider five baselines from the field of source code
understanding, which also models the corresponding tasks as
neural translation problems. For a fair comparison, these base-
lines also consider the same inputs as our proposed approach.

8https://languagetool.org/

NMT. Jiang et al. [33] employed NMT (Neural ma-
chine translation) technology to automatically “translate” code
changes into commit messages. We select NMT as a baseline
since it can achieve promising results in generating commit
messages for code changes.

BiLSTM-CC. This is an LSTM-based deep learning method
to automatically generate titles for question posts from code
snippets in Stack Overflow [4]. BiLSTM-CC is based on
sequence-to-sequence architecture and enhanced with an at-
tention mechanism to perform better content selection, a copy
mechanism to handle the OOV problem within the input as well
a coverage mechanism to avoid meaningless repetitions.

Transformer. Transformer [27] is an attention-only deep
learning model that uses positional encoding to better encode
location information, which allows the network to capture long-
term information and dependencies between sequential tokens
through the self-attention mechanism. Recently, Transformer
has been widely used in source code understanding tasks (such
as source code summarization [34], [35], [36], pseudo-code
generation [37], shellcode generation and summarization [38]).

BART. BART [39] is a denoising autoencoder for pretraining
sequence-to-sequence models, which is trained by corrupting
text with an arbitrary noising function and learning a model to
reconstruct the original text. It uses a standard Transformer-
based neural machine translation architecture which can be
regarded as generalizing BERT due to the bidirectional encoder
and GPT with the left-to-right decoder. When fine-tuned for
neural machine translation, BART is very effective. BART is
also used in source code understanding tasks (such as pull
request title generation [40]).

CodeBERT. CodeBERT [18] is a Transformer-based
bimodal pre-trained model for the programming language
(PL) and the natural language (NL), trained with a hybrid
objective function that incorporates the pre-training task
of replaced token detection, which is to detect plausible
alternatives sampled from generators. CodeBERT can learn
general-purpose representations that support downstream
NL-PL applications (such as code documentation generation
[41], [42]), and achieve promising performance. Although
CodeBERT does not use HTML and C# programming language
corpus for pre-training, we still select it as our baseline due to
its high generalization ability.

For the baselines that do not share their code scripts, we
implement these baselines according to their original descrip-
tions. The results of our re-implementations are very close to the
results reported in the original studies. Specifically, we use the
open-source framework OpenNMT9 to implement the baselines
NMT, Transformer, and BiLSTM-CC. We use the open-source
framework SimpleTransformer10 to implement the baseline
BART. For the remaining baselines, we utilize the codes shared
by the original studies. To ensure a fair comparison between
QETRA and the baselines, we employed the same data split
strategy and optimized the hyper-parameters in these baselines.

9https://opennmt.net/
10https://simpletransformers.ai/

https://languagetool.org/
https://opennmt.net/
https://simpletransformers.ai/

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

D. Evaluation Metrics

To compare the quality of the reformulated titles, we consider
the following three different types of evaluation metrics from
different perspectives.

Since we treat post title reformulation as a neural machine
translation task, we first measure the quality of the reformulated
titles based on three overlap-based metrics.

BLEU. BLEU (Bilingual Evaluation Understudy) metric [43]
is commonly used to assess the quality of machine transla-
tion. It calculates the similarity between a reformulated title
and a ground-truth title using a reformulated n-gram precision
pn. Intuitively, BLEU first computes the reformulated n-gram
precision. Then, it uses n-grams up to length N and positive
weights wn. Finally, it adds the geometric average of pn to one
and is multiplied by an exponential shortness penalty factor.
In our study, we set n to 4 to ensure the appropriate n-gram
overlap.

ROUGE-L. ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) [44] is a measure based on Recall. It is used
to calculate the length of the longest common subsequence
between the reformulated title and the ground-truth title.

CIDEr. CIDER (consensus-based image description evalua-
tion) [45] mainly measures the quality of image title generation.
It takes into account the frequency of occurrence of n-grams
in ground-truth titles by calculating the TF-IDF value for each
n-gram.

As analyzed in Section III, many post titles are reformu-
lated to fix grammatical errors. Therefore, we also consider
two evaluation metrics commonly used in grammatical error
correction.

Exact Match. Exact Match (EM) assesses the probability of
a perfect match between the reformulated title and the ground-
truth title. Only when the two titles are identical, this metric
can identify it as a positive case. QETRA can recommend mul-
tiple reformulations for an original title since it leverages beam
search during decoding. Consequently, for different beam sizes,
we may compute EM@1, EM@5, and EM@10, where EM@n
denotes that one case would be regarded positive if one of the n
reformulation results generated by beam search fits the ground
truth.

GLEU. GLEU (General Language Evaluation Understand-
ing) [46] is a BLEU-customized metric. Because just a portion
of the original title will be reformulated in the GEC task,
which differs from the machine translation task, this motivates
a slight tweak to BLEU that computes n-gram accuracy over
the ground-truth title but gives greater weight to n-grams that
have been successfully changed from the original title.

Finally, our approach employs the beam search algorithm,
which can return multiple recommended reformulated titles.
Therefore, we also evaluate the performance of our approach by
calculating the rank of the correct reformulated title in the list
of recommended reformulated titles. Notice this performance
metric can evaluate the practicability of QETRA in retrieving
posts in Stack Overflow.

MRR. MRR (Mean Reciprocal Rank) [47] is a general rec-
ommendation algorithm evaluation metric. For the automated

TABLE VI
HYPER-PARAMETERS AND THEIR VALUES USED BY OUR

PROPOSED APPROACH QETRA

Hyper-parameter Name Hyper-parameter Value

encoder_layers 12
decoder_layers 12

max_input_length 512
max_output_length 48

hidden_size 768
dropout 0.1

beam search size 5

question title reformulation task, in the reformulated title list,
the first reformulated title matching score is 1, the second
matching score is 0.5, and the n-th matching score is 1/n. If
there is no matching title, the score is 0. Otherwise, the final
score is the average of the sum of all scores.

For these metrics, the scores of BLEU, ROUGE-L, Exact
Match, GLEU, and MRR are in the range of [0,1] and reported
in percentages. CIDER is in the range of [0,10] and reported in
real values. The higher the value of these metrics, the better the
performance of the corresponding approach.

E. Implementation Details and Running Platform

We implement our proposed approach based on the Py-
Torch framework11. we use Transformers12 to implement our
proposed approach QETRA. The hyper-parameters and their
values can be found in Table VI. The optimal values of
these hyper-parameters are set according to our best prac-
tices in the empirical study. To further alleviate the overfit-
ting problem, we employ the early stop strategy [48]. Fi-
nally, since the training steps for different tasks to achieve
the best performance is different in multi-task learning, we
choose the training steps with the best performance for different
tasks.

We run all the experiments on a computer with an Intel(R)
Xeon(R) Silver 4210 CPU and a GeForce RTX3090 GPU with
24 GB memory. The running OS platform is Windows OS.

VI. RESULT ANALYSIS

A. Result Analysis for RQ1

RQ1: Can our proposed approach QETRA generate
higher-quality reformulated titles than the state-of-the-art
baselines by automatic evaluation?

Table VII shows the performance of QETRA and baselines in
terms of all the evaluation metrics for different programming
languages. In this table, we highlight the best performance in
boldface for each metric. Notice that since LanguageTool can
only return one result, we cannot calculate performance values
in terms of metrics EM@5, EM@10, and MRR. Moreover, we
can find that for HTML, the score of the baseline NMT is 0 in
terms of the metrics EM@1 and EM@5. This means there are
no titles in the reformulated titles generated by NMT that can
exactly match the ground truth.

11https://pytorch.org/
12https://github.com/huggingface/transformers

https://pytorch.org/
https://github.com/huggingface/transformers

TABLE VII
COMPARISON RESULTS BETWEEN OUR PROPOSED APPROACH AND STATE-OF-THE-ART BASELINES

Language Approach BLEU_4(%) ROUGE_L(%) CIDEr EM@1(%) EM@5(%) EM@10(%) GLEU(%) MRR(%)

Python

NMT 17.81 17.98 1.43 0.13 0.53 0.80 20.40 0.40
Transformer 20.04 20.06 1.74 0.40 1.23 1.76 22.87 0.73
BiLSTM-CC 42.06 36.37 3.81 3.29 6.41 7.90 41.37 5.08

BART 41.30 35.16 3.71 0.03 0.30 0.43 39.83 16.86
CodeBERT 30.98 51.43 2.90 4.05 7.21 9.27 32.67 6.71

LanguageTool 45.39 61.07 4.07 5.31 − − 43.78 −
QETRA 50.25 65.01 4.72 13.32 25.91 30.06 49.52 24.51

C#

NMT 21.66 20.06 1.69 0.42 0.91 1.18 22.84 0.63
Transformer 21.51 21.42 1.84 0.82 1.51 1.84 23.78 1.28
BiLSTM-CC 47.51 38.79 4.21 6.89 10.48 12.08 45.72 9.40

BART 45.55 39.76 4.05 5.04 10.42 12.90 43.00 14.14
CodeBERT 37.03 56.95 3.46 6.95 12.23 14.47 38.52 12.89

LanguageTool 49.76 63.76 4.31 6.04 − − 46.29 −
QETRA 54.22 68.05 5.04 18.51 31.38 34.76 52.89 30.97

Java

NMT 18.08 18.33 1.41 0.26 0.55 0.62 20.40 0.40
Transformer 16.15 17.92 1.36 0.29 0.65 0.78 19.15 0.59
BiLSTM-CC 41.95 36.25 3.72 2.80 5.82 6.83 40.66 4.53

BART 40.32 35.30 3.57 0.00 0.33 0.78 38.27 16.48
CodeBERT 30.51 51.96 2.89 4.59 5.99 8.07 32.80 6.63

LanguageTool 45.57 61.40 4.09 6.67 − − 44.17 −
QETRA 49.54 64.84 4.65 14.71 25.58 29.55 48.99 24.97

JavaScript

NMT 18.61 18.97 1.52 0.63 1.26 1.46 20.48 0.92
Transformer 20.31 20.65 1.78 1.00 1.83 2.23 22.94 1.37
BiLSTM-CC 43.99 37.17 3.86 4.26 7.59 9.09 42.01 6.37

BART 42.35 35.71 3.71 0.07 2.23 4.13 39.44 17.29
CodeBERT 30.55 51.53 2.89 4.96 7.22 9.22 32.74 6.24

LanguageTool 47.15 61.83 4.17 8.46 − − 44.83 −
QETRA 50.88 65.20 4.72 15.31 26.00 30.13 49.69 25.99

HTML

NMT 8.35 13.34 0.72 0.00 0.00 0.08 12.15 0.00
Transformer 17.28 19.23 1.62 0.91 1.36 1.89 20.90 4.85
BiLSTM-CC 37.87 33.68 3.33 2.42 3.86 4.70 36.45 3.44

BART 40.14 35.11 3.58 0.00 0.38 0.76 38.40 16.94
CodeBERT 19.34 40.80 1.81 1.59 2.73 3.79 22.47 2.30

LanguageTool 44.62 60.88 4.02 7.50 − − 43.21 −
QETRA 49.01 63.89 4.54 14.62 25.83 28.26 48.01 22.87

PHP

NMT 7.05 12.01 0.66 0.07 0.07 0.07 11.88 0.07
Transformer 18.08 19.53 1.64 0.43 1.01 1.23 21.48 1.09
BiLSTM-CC 40.03 35.87 3.60 2.89 5.50 6.01 39.18 4.27

BART 40.32 36.51 3.58 0.14 1.37 2.24 38.29 15.49
CodeBERT 19.12 41.42 1.82 1.59 2.39 3.04 22.54 2.94

LanguageTool 46.69 61.90 4.13 7.74 − − 44.56 −
QETRA 50.32 65.36 4.68 14.83 26.77 29.31 49.50 25.06

Based on these comparison results, we can find QETRA
outperforms all of our considered state-of-the-art baselines in
terms of all metrics. From these tables, we can achieve the
findings as follows.

Our approach achieves the best performance for all pro-
gramming languages in terms of all the evaluation metrics. For
these deep learning-based baselines, the baselines BiLSTM-
CC, BART, and CodeBERT can achieve better performance
than other baselines (i.e., NMT, Transformer). Taking the
Python programming language as an example, compared to
CodeBERT, QETRA can improve the performance by 62.22%,
26.39%, 62.81%, 228.69%, 259.45%, 224.37%, 51.59% and
264.94% for BLEU_4, ROUGE_L, CIDEr, EM@1, EM@5,
EM@10, GLEU, and MRR respectively; Although T5, BART,
and CodeBERT are all large-scale pre-trained models, our
approach can achieve better performance than BART and
CodeBERT. Motivated by the previous validity analysis of

pre-trained models on software engineering tasks [49], we sum-
marize the potential reasons into two aspects. Firstly, in the
corpus selection for pre-training, T5 and BART are pre-trained
on general language corpora that contain various types of natu-
ral language texts (such as Wikipedia, news articles, academic
papers, blog posts, and web pages). In contrast, the corpora
used for CodeBERT’s pre-training are obtained from Code-
SearchNet datasets. These corpora were collected from open-
source projects in GitHub and focused more on the structure and
syntax of program code. As our title reformulating task requires
processing both code and natural language and natural language
texts play a more important role than the code (discussed in Sec-
tion VI-B), T5 and BART can perform better than CodeBERT in
most cases. Secondly, in the selection of pre-training tasks, T5’s
pre-training tasks include supervised generative tasks (such as
machine translation and text summarization), which are highly
matched with the question title reformulating task than BART.

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

Fig. 6. The titles reformulated by QETRA and baselines for a question post related to the Python programming language.

Therefore, QETRA based on T5 can achieve better performance
than BART.

For programming languages (i.e., Java, Python, JavaScript,
and C#) with sufficient training data, the baseline BiLSTM-CC
performs better than the baseline BART. However, for program-
ming languages (i.e., HTML and PHP) with limited training
data, BART performs better than BiLSTM-CC. The possible
reason is that BiLSTM-CC can learn useful information when
the training data is sufficient, while Bart is suitable for the
limited training data by fine-tuning the pre-trained model. The
baseline LanguageTool can achieve the best performance in
terms of almost all metrics since our previous formative study
showed that 32.21% of the title reformulations are related to
spelling and syntax error modification (in Section III), Lan-
guageTool can achieve high performance in terms of Rouge-L
and GLEU metrics as it is a mature grammatical error correction
tool. However, we find LanguageTool cannot achieve satisfac-
tory performance in terms of the metric EM@n since this base-
line cannot effectively identify software-specific concepts and
identifiers of programming languages. For example, when the
original title was “How do i change JPanel inside a JFrame on
the fly?,” LanguageTool reformulated it to “How do I change
Panel inside a Frame on the fly?.” Although LanguageTool
correctly modified “i” to “I,” it incorrectly modified the correct
software-specific concepts “JPanel” and “JFrame” to “Panel”
and “Frame.” Moreover, our proposed approach QETRA is
specifically optimized for the question title reformulation task
by mining modification logs from Stack Overflow, which is not
practical to use a rule-based approach to solve this problem
(Discussed in Section III). Therefore, QETRA can better cap-
ture the thought process and habits of developers of modifying
titles, and thus generate titles that better match developers’
expectations.

By following the previous studies [50], [51], we also perform
Wilcoxon signed-rank tests [52] at the confidence level of 95%
to check whether the performance differences between QETRA
and baselines are significant. Specifically, for each approach, we

consider the evaluation score for each reformulated title in the
testing set in terms of a specific performance measure. Then we
perform the Wilcoxon signed-rank test for each pair of QETRA
and the baseline by considering these scores. All the p-values
are smaller than 0.05, which means our proposed approach
QETRA can significantly improve over the baselines. Later, we
use Cliff’s delta (δ) [53], which is a non-parametric effect size
measure, to quantify the amount of difference between the two
approaches. We consider the values of the delta that are less
than 0.147, between 0.147 and 0.33, between 0.33 and 0.474
and above 0.474 as “Negligible (N),” “Small (S),” “Medium
(M),” and “Large (L)” performance difference, respectively by
following the suggestion [53]. The results show that QETRA can
outperform the next best baseline (i.e., LanguageTool) with a
large improvement with respect to Cliff’s delta. For example,
in terms of BLEU_4, the value of Cliff’s delta is at least 0.80
for different programming languages.

Fig. 6 shows an example question post for Python. The left
part of this figure shows the original title and its question body.
The right part of this figure shows the ground truth and the
reformulated titles generated by QETRA and baselines. In this
example, we can find that the titles reformulated by NMT and
Transformer are not relevant to the question post. The title
reformulated by BiLSTM-CC is not a correct sentence. The
titles reformulated by LanguageTool and BART are unmodified.
The title reformulated by CodeBERT has low readability and
cannot convey the core content of the question body. In contrast,
the title reformulated by QETRA can not only express the core
content of the question post concisely and accurately but also
has high readability.

Answer to RQ1: QETRA can achieve better perfor-
mance than six state-of-the-art baselines (i.e., a baseline
based on grammatical error correction and five base-
lines based on deep learning) in automatic evaluation
based on three different types of evaluation metrics.

TABLE VIII
THE PERFORMANCE OF QETRA WITH DIFFERENT COMBINATIONS OF INPUT MODALITIES

Language Approach BlEU_4(%) ROUGE_L(%) CIDEr EM@1(%) EM@5(%) EM@10(%) GLEU(%) MRR(%)

Python

QETRAtitle 49.40 64.40 4.58 10.03 22.98 26.40 48.37 21.20
QETRAbody 5.02 19.32 0.50 0.17 0.37 0.50 7.85 0.23
QETRA 50.25 65.01 4.72 13.32 25.91 30.06 49.52 24.51

C#

QETRAtitle 53.35 67.35 4.87 14.89 27.09 30.59 51.54 26.04
QETRAbody 4.76 18.09 0.45 0.30 0.66 1.03 7.37 0.60
QETRA 54.22 68.05 5.04 18.51 31.38 34.76 52.89 30.97

Java

QETRAtitle 48.94 64.15 4.50 11.58 23.43 26.68 47.92 21.93
QETRAbody 4.81 18.61 0.48 0.49 0.81 1.07 7.50 0.68
QETRA 49.01 63.89 4.54 14.62 25.83 28.26 48.01 24.97

JavaScript

QETRAtitle 50.04 64.15 4.54 11.05 23.77 27.30 48.02 21.04
QETRAbody 5.12 18.78 0.53 0.37 0.93 1.00 7.81 0.60
QETRA 49.54 64.84 4.65 14.71 25.58 29.55 48.99 25.99

HTML

QETRAtitle 46.63 62.61 4.29 9.70 21.14 24.77 45.78 18.81
QETRAbody 4.98 19.21 0.51 0.08 0.53 0.91 7.85 0.48
QETRA 50.32 65.36 4.68 14.83 26.77 29.31 49.50 22.87

PHP

QETRAtitle 49.20 64.00 4.48 12.08 23.44 25.98 47.74 22.67
QETRAbody 4.43 18.45 0.50 0.43 0.58 0.80 7.48 0.68
QETRA 50.88 65.20 4.72 15.31 26.00 30.13 49.69 25.06

B. Result Analysis for RQ2

RQ2: What is the effect of using the bi-modal informa-
tion for QETRA?

In this RQ, we aim to investigate the contribution of different
input modalities to the performance of QETRA. Here we use
different subscripts to distinguish different control approaches
and the meaning of these subscripts is illustrated as follows.

• title. The corresponding control approach only uses the
original title as the input.

• body. The corresponding control approach only uses the
question post body as the input.

Table VIII shows the performance of QETRA with different
combinations of input modalities. Take the programming
language Python as an example, compared to training models
with only question post bodies, QETRA can improve the
performance by 7920% and 530.78% in terms of EM@1
and GLEU respectively. Compared to training models with
only original titles, QETRA can improve the performance by
32.78% and 2.38% in terms of EM@1 and GLEU respectively.
Based on the above results, we can find the information
from the original title and the question body have a specific
complementary. That means using both input modalities can
help to achieve the best performance for QETRA. Moreover, for
these two kinds of input modalities, we find that the original
title can make more contributions than the question body. This
also shows that reformulating on the basis of the original title
can better guarantee the quality of the title.

Answer to RQ2: Original title can provide more valu-
able information than the question body for the ques-
tion title reformulation task. Moreover, considering two
modalities together can help to achieve the best perfor-
mance of QETRA.

C. Result Analysis for RQ3

RQ3: What is the effect of using multi-task learning in
QETRA?

To investigate the effect of considering multi-task learning
in QETRA, in this RQ, we separately perform model training
for different programming languages and use QETRAsep to
denote this control approach. For each programming language,
we compare QETRAsep with QETRA on the same testing set
related to this programming language. The comparison results
are shown in Table IX. In this table, we can find that the perfor-
mance of the models based on multi-task learning can outper-
form that of the models trained for each programming language
separately in most cases. For example, in terms of EM@1,
compared to QETRAsep on Python, C#, Java, JavaScript,
HTML and PHP, QETRA can improve the performance by
19.70%, 6.42%, 13.18%, 11.30%, 43.97% and 34.79%,
respectively. We notice for some programming languages with
sufficient training data (such as Java and JavaScript), training
the model separately may lead to slightly worse results in some
performance measures. The potential reason is that the large
size of the training data may enable the model to better capture
the specific features and structures of these languages. However,
we find using multi-task learning can bring more performance
improvements for low-resource programming languages (i.e.,
HTML and PHP). The reason is that only using the training
data of the low-resource programming language can only learn
a few pieces of information while using multi-task learning can
help to learn more useful information from other programming
languages with sufficient training data. We will conduct more
experiments to verify further the generalization of QETRA for
other programming languages in Section VII. In summary,
considering multi-task learning in QETRA can guarantee the
generalization of our approach by learning multiple tasks
simultaneously.

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

TABLE IX
COMPARISON OF QETRA WITH QETRAseq FOR SIX PROGRAMMING LANGUAGES

Language Approach BlEU_4(%) ROUGE_L(%) CIDEr EM@1(%) EM@5(%) EM@10(%) GLEU(%) MRR(%)

Python
QETRAsep 47.89 63.84 4.51 11.13 21.49 25.71 47.59 22.75
QETRA 50.25 65.01 4.72 13.32 25.91 30.06 49.52 25.12

C#
QETRAsep 53.55 67.71 4.97 17.40 29.69 33.68 52.27 29.74
QETRA 54.22 68.05 5.04 18.51 31.38 34.76 52.89 31.42

Java
QETRAsep 48.87 64.24 4.54 12.92 24.86 29.19 48.10 24.90
QETRA 49.01 63.89 4.54 14.62 25.83 28.26 48.01 25.41

JavaScript
QETRAsep 50.52 64.38 4.60 13.22 25.27 29.16 48.56 23.58
QETRA 49.54 64.84 4.65 14.71 25.58 29.55 48.99 26.25

HTML
QETRAsep 46.90 62.45 4.29 10.30 21.97 25.38 45.72 20.03
QETRA 50.32 65.36 4.68 14.83 26.77 29.31 49.50 22.82

PHP
QETRAsep 48.35 63.89 4.49 11.36 23.44 27.06 47.52 23.87
QETRA 50.88 65.20 4.72 15.31 26.00 30.13 49.69 25.73

Fig. 7. A questionnaire for a sample in our human study.

Answer to RQ3: Applying multi-task learning can
help to improve the performance of QETRA, especially
for questions related to low-resource programming
languages.

D. Result Analysis for RQ4

RQ4: Can our proposed approach QETRA generate
higher-quality reformulated titles than the state-of-the-art
baselines by human study?

Automatic evaluation metrics can evaluate the quality of the
reformulated titles based on the overlap degree with the ground-
truth titles. However, automatic evaluation cannot reflect the
semantic similarity between the reformulated titles and the
ground-truth titles in a realistic way. Since BiLSTM-CC and
LanguageTool can achieve the best performance in our consid-
ered two types of baselines respectively by automatic evalua-
tion, we perform a human study to further evaluate the quality
of the titles reformulated by BiLSTM-CC, LanguageTool, and
QETRA.

In our human study, based on the characteristics of the title
reformulation task, we first investigated whether the quality of
the reformulated titles was improved over the original titles,
and then we follow the methodology considered by the previous
studies [54]. As shown in Fig. 7, we measure the quality of the
reformulated titles in terms of three aspects:

• Similarity. This aspect measures the similarity between
reformulated titles and ground-truth titles.

• Naturalness. This aspect measures the grammaticality and
fluency of the reformulated titles.

• Informativeness. This aspect measures the amount of
content carried over from the input body of the post
to the reformulated titles, ignoring the fluency of the
text.

We recruited six master students, who had more than five
years of project development and were familiar with the usage
of Stack Overflow. Then we randomly selected 20 samples for
each programming language (i.e., 120 samples in total) in the
testing set. For each sample, we gathered the ground truth and
three reformulated titles generated by BiLSTM-CC, Language-
Tool, and QETRA respectively. Later we divided 120 samples
into three groups. Each group has 40 samples and is evaluated

Fig. 8. Comparison of the reformulated titles with the original titles.

TABLE X
THE AVERAGE SCORE VALUE AND STANDARD DEVIATION (SHOWN IN

PARENTHESES) OF OUR HUMAN STUDY RESULTS

Approach Similarity Naturalness Informativeness

BiLSTM-CC 2.596 (0.991) 2.783 (0.963) 2.586 (1.002)
LanguageTool 2.792 (0.961) 3.038 (0.743) 2.762 (0.918)

QETRA 3.175 (0.72) 3.375 (0.592) 3.242 (0.713)

by two master students in terms of the above-mentioned three
aspects. The value range of the score is between 0 and 4. The
higher the value, the higher the quality of the reformulated
title. Since a reformulated title will be evaluated twice for two
students, we gather the average score value. A questionnaire
for a sample can be found in Fig. 7. In this questionnaire, the
reformulated titles are randomly ordered to ensure that master
students do not know which approach the reformulated title is
generated by. Moreover, the master students are free to use the
Internet to look for related concepts that they are unfamiliar
with. Finally, to guarantee the quality of our human study, we
require master students to evaluate only 20 samples in half
a day.

The results of our human study are shown in Fig. 8
and Table X. Fig. 8 illustrates a quality comparison be-
tween the reformulated titles and the original titles by
the three methods, where ”Improved” indicates that the
reformulated title was rated by reviewers as having bet-
ter quality than the original one, while ”Unimproved” in-
dicates the opposite. We observe that QETRA achieved a
higher proportion of ”Improved” compared to BiLSTM-
CC and LanguageTool. To check whether this difference
is statistically significant, we performed Fisher’s exact test
[55] and found the difference is statistically significant
(p-value < 0.05). Moreover, Table X shows the average score
value and standard deviation of all the samples when consid-
ering the similarity, naturalness, and informativeness of the
generated reformulated titles. In this table, we can find QETRA
outperforms BiLSTM-CC and LanguageTool in three perspec-
tives, which can further verify the effectiveness of QETRA.
Finally, we use Fleiss Kappa [56] to measure the agreement
among these six students. The overall Kappa value based on
the comparison results is 0.725, which indicates substantial
agreement among these students.

TABLE XI
STATISTICAL INFORMATION OF OUR GATHERED DATASET FOR THE

PROGRAMMING LANGUAGES GO AND RUBY

Language
Training Validation Testing

Pair Thread Pair Thread Pair Thread

Go 1,878 1,511 231 189 246 190
Ruby 3,980 3,312 494 414 501 415

Total 5,858 4,823 725 603 747 605

Answer to RQ4: Our human study shows that QETRA
can generate higher quality titles than the baselines
BiLSTM-CC and LanguageTool in terms of similarity,
naturalness, and informativeness.

VII. DISCUSSION

A. How Effective is QETRA for the Questions Related to
Other Programming Languages

In this subsection, we want to evaluate the generalization
of QETRA on posts related to other programming languages
(i.e., Ruby and Go). To answer this RQ, we first gather the
datasets by following the dataset gathering method introduced
in Section II. The detailed statistical information for these two
programming languages can be found in Table XI. In particular,
for Go, we identified 1,890 title reformulation threads. From
these threads, we extracted 2,355 title reformulation pairs. For
Ruby, we identified 1,161 title reformulation threats. From these
threads, we extracted 4,975 title reformulation pairs.

In this experiment, for QETRA, we directly used the trained
model based on our previously considered six programming
languages. For baselines, we trained the models based on the
dataset related to Go or Ruby respectively. The comparison
results can be found in Table XII. When considering Ruby,
QETRA can achieve 10.38 and 46.82 in terms of EM@1 and
GLEU. When considering Go, QETRA can achieve 18.70 and
52.73 in terms of EM@1 and GLEU. Taking the Go pro-
gramming language as an example, QETRA can improve the
performance by 8.24%, 318.18%, and 10.18% for BlEU_4,
EM@1, and GLEU metrics respectively after comparing to
LanguageTool, which can achieve the best performance in all
the baselines. These results verify the generalization of the
effectiveness of QETRA for posts related to other new program-
ming languages.

B. Whether Using CodeT5 Can Improve the Performance of
QETRA?

In this subsection, we consider CodeT5 [57] as the back-
bone model for our proposed approach QETRA and investigate
whether this setting can improve the performance of QETRA.
The comparison results can be found in Table XIII. In this
table, we can find using T5 [17] can achieve better performance
than using CodeT5 for QETRA. As discussed in Section VI-B,

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

TABLE XII
COMPARISON RESULTS BETWEEN QETRA AND BASELINES FOR POSTS RELATED TO OTHER NEW PROGRAMMING LANGUAGES (I.E., RUBY AND GO)

Language Approach BLEU_4(%) ROUGE_L(%) CIDEr EM@1(%) EM@5(%) EM@10(%) GLEU(%) MRR(%)

Ruby

NMT 6.43 24.68 0.48 0.00 0.00 0.00 10.16 0.00
Transformer 4.42 17.25 0.30 0.00 0.00 0.00 6.84 0.00
BiLSTM-CC 32.68 50.20 2.92 1.40 2.99 3.99 32.12 2.60

BART 39.50 53.49 3.56 0.00 0.00 0.40 37.51 15.69
CodeBERT 7.36 23.38 0.61 0.00 0.00 0.00 10.24 0.00

LanguageTool 46.05 60.52 4.06 4.59 − − 43.24 −
QETRA 48.38 62.92 4.45 10.38 22.55 27.15 46.82 21.70

Go

NMT 2.16 19.26 0.28 0.00 0.00 0.00 7.08 0.00
Transformer 4.03 19.44 0.34 0.00 0.00 0.00 7.78 0.00
BiLSTM-CC 42.73 59.00 3.97 4.88 9.35 10.57 41.71 7.41

BART 47.42 62.47 4.38 0.00 1.63 4.07 46.20 24.98
CodeBERT 1.86 14.84 0.21 0.00 0.00 0.00 5.46 0.00

LanguageTool 50.45 66.84 4.61 4.47 − − 47.86 −
QETRA 54.60 67.55 5.12 18.70 35.77 42.28 52.73 28.60

TABLE XIII
COMPARISON RESULTS BETWEEN OUR PROPOSED APPROACH AND CODET5

Approach BLEU_4(%) ROUGE_L(%) EM@1(%) GLEU(%)

CodeT5 48.03 61.99 6.91 45.44
QETRA 52.29 66.42 16.74 51.14

the original title can provide more valuable information than
the question body for the question title reformulation task.
Moreover, in our previous study on Stack Overflow question
title generation [13], the problem description can play a more
important role in question title generation than the code snippet.
Therefore whether we can learn high-quality semantic informa-
tion from the text is more important to improve the performance
of QETRA. Since T5 [17] is a general pre-trained model for
various natural language processing tasks, while CodeT5 [57] is
a specific pre-trained model for source code understanding and
generation tasks, this is a possible reason for the effectiveness
of using T5 in QETRA.

C. Statistically Significant Analysis with Different Dataset
Splits

To investigate whether QETRA can statistically significantly
outperform baselines with different dataset splits, we randomly
split the dataset with different random seeds. Due to the high
computational cost in model training with deep learning, we
only split the dataset ten times. In this subsection, we consider
four competitive baselines (i.e., BiLSTM-CC, BART, Code-
Bert, and LanguageTool). The final comparison results are
shown in Table XIV. In this table, we show the average value for
these ten independent running results. Based on these results,
we can still find that QETRA can improve the performance
by 36.82%, 22.77%, 42.07%, 344.25%, and 36.49% in terms
of BLEU_4, ROUGE_L, CIDEr, EM@1, and GLEU when
compared to these baselines on average. Moreover, we perform
the Wilcoxon signed-rank tests [52] at the confidence level of
95% to check whether the performance differences between
QETRA and these baselines are significant. Final results show
that QETRA statistically significantly outperforms these three
baselines (i.e., p-value < 0.05). Finally, we further use Cliff’s

TABLE XIV
COMPARISON RESULTS WITH DIFFERENT DATASET SPLITS

Approach BLEU_4(%) ROUGE_L(%) CIDEr EM@1(%) GLEU(%)

BiLSTM-CC 43.72 58.81 3.88 3.74 42.30
BART 35.34 47.20 3.16 0.75 33.61

CodeBERT 27.27 48.27 2.50 3.31 29.08
LanguageTool 46.55 62.11 4.17 7.27 44.88

QETRA 52.29 66.42 4.87 16.74 51.14

TABLE XV
TRAINING AND INFERENCE TIME FOR DIFFERENT APPROACHES

Approach
Training Time

(Hours)
Inference Time

(Milliseconds/Post)

NMT 4.20 21.23
Transformer 3.81 15.19
Code2Que 5.12 28.12

BART 18.91 30.34
CodeBERT 20.23 36.27

LanguageTool − 32.25
QETRA 18.20 34.24

delta [53] to quantify the amount of performance difference
between different approaches. The results show that QETRA can
outperform the next best baseline (i.e., LanguageTool) with a
large improvement with respect to Cliff’s delta. For example,
in terms of BLEU_4, the value of Cliff’s delta is at least 0.80
for different programming languages.

D. Time Efficiency

Table XV shows the time costs of model training and av-
erage inference for each question title reformulation. Notice
LanguageTool is rule-based and does not need model training.
Since other approaches are all deep learning-based, therefore,
the model training cost is high (ranging from 18.20 hours to
20.23 hours). However, once models have been trained, it only
takes a few milliseconds to generate the reformulated question
title for the original title.

E. Challenging Types of Question Title Reformulation for
QETRA

After automatic evaluation and human study, we can find
QETRA can achieve the best performance However, we also

notice that QETRA may generate the reformulated titles, which
have low similarity with the ground-truth titles, in some cases.
Due to the huge cost of manually analyzing all the failed cases,
we use a simple random sample approach without replacement.
Specifically, we randomly sampled 100 cases of this type and
analyzed these cases in a manual way, which can help to identify
the challenging types of question title reformulation for QETRA.

The first challenge type is the title reformulation due to
different expression styles (such as from question sentence to
declarative sentence, or from declarative sentence to question
sentence.). For example, given the original title “How do you
select between two dates with Django,” QETRA generates the
reformulated title as “How do you select between two dates
with Django?.” However, the ground truth is “Select between
two dates with Django.” Similarly, given the original title “an
expression for an infinite generator?,” QETRA generates the
reformulated title as “An expression for an infinite generator?.”
However, the ground truth is “Is there an expression for an
infinite iterator?.” Although the generated title and the ground
truth have the same semantics, the different expression styles
can result in a low score in terms of automatic evaluation
metrics. A possible solution is to propose effective methods to
unify expression styles for question titles.

The second challenge type is that the reformulated title and
the ground truth have the same semantics but are expressed
in different ways. For example, given the original title “why
builtins both module and dict”, QETRA generates the refor-
mulated title as “Why is builtins both module and dict?.”
However, the ground truth is “why builtins is both module
and dict.” Similarly, given the original title “Python—why com-
pile?” QETRA generates the reformulated title as “Why would
you compile a Python script?.” However, the ground truth is
“Why compile Python code?” This kind of type can result in
a low score in terms of previous automatic evaluation metrics
and is also a challenging problem for evaluating source code
summarization approaches [58]. A possible solution is to design
semantic-based evaluation metrics, which can better evaluate
the semantic similarity between the reformulated title and the
ground truth.

The third challenge type is when the original title contains
a tag (such as programming language) for search engine op-
timization purposes, the reformulated title and ground truth
may be improved in different ways. For example, given the
original title “Python: Searching/reading binary data”, QETRA
generates the reformulated title as “Searching/reading binary
data.” However, the ground truth is “Searching/reading binary
data in Python.” Similarly, given the original title “How to
convert escaped characters in Python?”QETRA generates the
reformulated title as “How to convert escaped characters
in Python?.” However, the ground truth is “How to convert
escaped characters?” The question title writing guidelines13

provided by Stack Overflow state that when the original title
contains a tag, the tag can be removed directly or placed at the
end of the sentence in regular English. Although the generated
title and the ground truth are both officially recommended,

13https://stackoverflow.com/help/how-to-ask

differences in improvement can result in a low score in terms of
automatic evaluation metrics. A possible solution is to enhance
the used evaluation metrics to handle this special case.

F. Threats to Validity

In this section, we mainly analyze the potential threats to the
validity of our empirical study.

Threats to Internal Validity. The first internal threat is the
potential faults in our approach’s implementation. To alleviate
this threat, we carefully examined our implementation and used
third-party mature libraries (such as PyTorch and transformers).
The second internal threat is the implementation correctness of
our considered baselines. To alleviate this threat, if the base-
lines shared the scripts, we directly used their shared scripts.
Otherwise, we implemented these baselines according to their
original descriptions.

Threats to External Validity. The main external threat is
the datasets gathered by our study. To alleviate this threat, we
gathered modification logs from recent data dumps from Stack
Overflow. Then we select posts and related modification records
from the six most popular programming languages (i.e., Java,
Python, C#, JavaScript, PHP, HTML). Finally, we also verify
the generalization of our proposed approach to two other low-
resource programming languages (i.e., Ruby and Go).

Threats to Conclusion Validity. The first conclusion threat
is the data leakage problem that existed in the dataset split
process. To alleviate this threat, we split the dataset in terms
of thread granularity. If we split the dataset in terms of pair
granularity, the title reformulation pairs in the same thread may
exist in different split parts. Since these pairs share the same
post body, this split strategy may cause a data leakage problem.
The second conclusion threat is that we assume the quality
of the title tn is highest in Section II. Users usually tend to
reformulate their question post titles repeatedly to make them
more accurate, concise, and clear. Therefore, it is common for
the last version of a question title written by a user to be the
best [14], [15]. However, we admit that there are exceptions,
such as when a user may accidentally make the title worse, or
when a title is already good from the start and does not need
reformulation. In these cases, the last version of the title may
not necessarily be the best. In the future, we can design more
heuristic rules or manually analyze these titles to identify these
exceptions to alleviate this threat.

Threats to Construct Validity. The main construct threat is
related to evaluation metrics used in our automated evaluation.
Since we treat the question title reformulation as a neural ma-
chine translation problem, we first consider evaluation metrics
based on term overlap (such as BLEU, ROUGE-L, CIDEr),
which were also used in previous studies on similar tasks on
source code understanding [59], [4], [60], [13], [61]. Moreover,
we also consider two evaluation metrics (such as Exact Match
and GLEU) used in grammatical error correction by considering
the characteristics of our studied problem. Finally, we consider
information retrieval-based metrics (such as MRR), which can
evaluate the practicability of QETRA in Stack Overflow post
retrieval. Except for automatic evaluation, we also conducted a

https://stackoverflow.com/help/how-to-ask

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

human study to further verify the effectiveness of our proposed
approach, which is suggested in previous studies on similar
software engineering tasks (such as source code summarization
[33], [54]).

VIII. RELATED WORK

In this section, we first summarize related studies on post
title quality assurance for Stack Overflow. Then we summarize
related studies on query reformulation for software engineering.
Finally, we emphasize the novelty of our study.

A. Post Title Quality Assurance for Stack Overflow

Stack Overflow is a popular questions and answers website
for software developers. Quality assurance of content is crucial
to maintaining a good user experience. Ponzanelli et al. [1]
identified low-quality posts by analyzing both the content of the
post and community-related aspects. Yao et al. [62] studies the
relationship between the voting scores of questions and answers
in Stack Overflow. Calefato et al. [22] provided guidelines for
writing high-quality questions on Stack Overflow that develop-
ers can follow to increase the chance of getting technical help.
Chen et al. [15] proposed an approach based on the convolu-
tional neural network to learn mid-level editing patterns from
historical post edits for predicting the need of editing a post.
Wang et al. [14] investigated whether revision-related badges
have a negative impact on the quality of revisions. Zhang et
al. [63] investigated how the knowledge in answers becomes
obsolete and then identified the characteristics of these obso-
lete answers. Liu et al. [64] investigated the broken links on
Stack Overflow. Zhu et al. [65] conducted empirical studies on
question discussions on Stack Overflow.

To our best knowledge, Gao et al. [4] were the first to pro-
pose a data-driven approach to generate question titles for a
code snippet. This approach used an attention mechanism to
perform content selection, a copy mechanism to handle the
OOV problem, and a coverage mechanism to alleviate the word
repetition problem. Liu et al. [13] proposed an approach SOTitle
by leveraging the code snippets and the problem description.
Then they formalized post title generation for each program-
ming language as separate but related tasks and utilize multitask
learning. Zhang et al. [66] also used the code snippets and the
problem description. Their approach used CodeBERT to encode
the question body into hidden representations, a decoder based
on Transformer to generate post titles, and a copy attention layer
to further refine the output distribution of the generated titles.

B. Query Reformulation for Software Engineering

Query reformulation plays an important role in many soft-
ware engineering tasks (such as concept location, code search,
and bug localization) [67].

In the concept location task, developers localized the source
code to find the location to start the change. Gay et al. [68] per-
formed query reformulation based on explicit relevance feed-
back. They expanded the initial query by marking the search
results of the initial query as relevant or irrelevant. Hill et al.

[69] proposed a contextual search approach, which can quickly
identify alternative words for query reformulation. Yang and
Tan [70] discovered semantically related words by leveraging
the context of words in comments and code in code bases.
Sisman and Kak [71] proposed the framework, which can en-
rich a developer’s query with specific additional terms. These
specific additional terms were drawn from the highest-ranked
artifacts retrieved by the initial query. Howard et al. [72] mined
semantically similar words in the software context. Haiduc
et al. [73] proposed an automated approach Refoqus based on
machine learning. This approach trained a reformulation strat-
egy recommendation model based on a sample of queries and
relevant results. Rahman and Roy [74] proposed STRICT by
identifying suitable search terms. They utilized two information
retrieval techniques (i.e., TextRank and POSRank) to determine
the term’s importance based on both its co-occurrences and
syntactic relationships with other important terms.

Existing code search methods require developers to pro-
vide high-quality queries to find relevant code snippets. Query
reformulation is an effective method to solve this problem.
Wang et al. [75] took the developers’ opinions on the results
from the code search engine as feedback. Then they used this
feedback to reorder the code search results. Lu et al. [76]
identified each term in the original query and extended this
query with synonyms generated from WordNet [77]. Nie et al.
[78] proposed the approach QECK to generate the expansion
queries, which can identify software-specific expansion words
by mining Stack Overflow. Rahman et al. [79], [80] exploited
keyword-API associations from the crowdsourced knowledge
of Stack Overflow. Rahman and Roy [81] proposed a novel
technique that automatically identifies relevant API classes for
a programming task written as a natural language query, and
then reformulates the query using these API classes. Cao et al.
[82] performed automated query reformulation based on query
logs from Stack Overflow. Gao et al. [83] proposed a fully data-
driven approach Que2Code to recommend the best code snippet
in Stack Overflow by generating paraphrase questions for the
input query.

Information retrieval (IR)-based bug localization relies on
formulating an initial query based on the full text of a bug
report. Chaparro et al. [84], [85] proposed and evaluated a set
of query reformulation strategies by considering the selection
of existing information in bug descriptions, and the removal
of irrelevant parts from the original query. Rahman and Roy
[86] proposed a novel technique BLIZZARD. This technique
determined whether there exist excessive program entities in a
bug report (i.e., query), and then applied appropriate query re-
formulations for bug localization. Florez et al. [87] investigated
the benefits of different query reduction and query expansion
strategies for bug localization and designed the approach QREX
based on the most effective strategy.

C. Novelty of Our Study

Previous studies [4], [13], [66] mainly focused on automati-
cally generating the question titles by analyzing the contents
in the post bodies (such as problem descriptions and code

snippets). Different from previous studies, we consider a new
scenario for improving question title quality. In this scenario,
we can use our proposed approach QETRA to polish the original
title by mining modification logs, which can better guarantee
the quality of the Stack Overflow community. Moreover, our
proposed approach QETRA is applicable not only to post own-
ers but also to other experts (such as community moderators).
Due to the characteristics of this new scenario, our proposed
approach further considers the original question title when com-
pared to the previously proposed approaches [4], [13], [66].
Therefore, the quality of generated titles may be improved and
our experimental results also confirm this conjecture. Finally,
our study and the previous studies [4], [13], [66] are not com-
petitive work, but rather complementary. For example, we can
use the previous studies (such as SOTitle [13]) to generate a
draft title and then use QETRA to further polish the draft title.

IX. CONCLUSION

Writing a high-quality title that clarifies and summarizes the
critical problems in the post is a challenging task for devel-
opers, especially for novices who lack domain knowledge or
poor writing skills. To the best of our knowledge, we are the
first to study the question title reformulation problem in this
study. We first conducted an informative study to investigate
the title reformulation patterns by mining modification logs
provided by Stack Overflow. Motivated by the findings in our
informative study, we propose a novel approach QETRA based
on the pre-trained model T5 and multi-task learning and develop
a plug-in to facilitate the use of developers. Based on our gath-
ered datasets, we evaluate the effectiveness of QETRA by both
automatic evaluation and human study. Finally, we also verify
the generalization of QETRA for posts related to other new
programming languages and the challenging types of question
title reformulation for QETRA.

To further improve the performance of QETRA, we first want
to consider more information from the posts (such as tags,
and discussions). We second want to identify and remove the
noises during the dataset gathering process as studied in neural
code search [88]. We third want to consider more programming
languages when training our models.

REFERENCES

[1] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton,
“Improving low quality stack overflow post detection,” in Proc. IEEE
Int. Conf. Softw. Maintenance Evol., Piscataway, NJ, USA: IEEE Press,
2014, pp. 541–544.

[2] F. Calefato, F. Lanubile, M. C. Marasciulo, and N. Novielli, “Mining
successful answers in stack overflow,” in Proc. IEEE/ACM 12th Work.
Conf. Mining Softw. Repositories, Piscataway, NJ, USA: IEEE Press,
2015, pp. 430–433.

[3] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Discover-
ing value from community activity on focused question answering sites:
A case study of stack overflow,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2012, pp. 850–858.

[4] Z. Gao, X. Xia, J. Grundy, D. Lo, and Y.-F. Li, “Generating question
titles for stack overflow from mined code snippets,” ACM Trans. Softw.
Eng. Methodol., vol. 29, no. 4, pp. 1–37, 2020.

[5] J. Trienes and K. Balog, “Identifying unclear questions in community
question answering websites,” in Proc. 41st Eur. Conf. Inf. Retrieval
(ECIR). Cologne, Germany: Springer, 2019, pp. 276–289.

[6] S. Mondal, C. K. Saifullah, A. Bhattacharjee, M. M. Rahman, and C. K.
Roy, “Early detection and guidelines to improve unanswered questions
on stack overflow,” in Proc. 14th Innov. Softw. Eng. Conf. (formerly
India Soft. Eng. Conf.), 2021, pp. 1–11.

[7] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing stack
overflow questions by topic, type, and code,” in Proc. 10th Work. Conf.
Mining Softw. Repositories (MSR), Piscataway, NJ, USA: IEEE Press,
2013, pp. 53–56.

[8] R. Rubei, C. Di Sipio, P. T. Nguyen, J. Di Rocco, and D. Di Ruscio,
“PostFinder: Mining stack overflow posts to support software develop-
ers,” Inf. Softw. Technol., vol. 127, Nov. 2020, Art. no. 106367.

[9] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language vector
space for domain-specific cross-lingual question retrieval,” in Proc. 31st
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Piscataway, NJ,
USA: IEEE Press, 2016, pp. 744–755.

[10] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab,
“Challenges in chatbot development: A study of stack overflow posts,”
in Proc. 17th Int. Conf. Mining Softw. Repositories, 2020, pp. 174–185.

[11] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “API method
recommendation without worrying about the task-API knowledge gap,”
in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Piscataway,
NJ, USA: IEEE Press, 2018, pp. 293–304.

[12] M. Wei, N. S. Harzevili, Y. Huang, J. Wang, and S. Wang, “CLEAR:
Contrastive learning for API recommendation,” in Proc. IEEE/ACM 44th
Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ, USA: IEEE Press, 2022,
pp. 376–387.

[13] K. Liu, G. Yang, X. Chen, and C. Yu, “SOTitle: A transformer-based
post title generation approach for stack overflow,” in Proc. 29th IEEE
Int. Conf. Softw. Anal., Evol. Reengineering (SANER), 2022, pp. 577–
588.

[14] S. Wang, T.-H. Chen, and A. E. Hassan, “How do users revise answers
on technical Q&A websites? A case study on stack overflow,” IEEE
Trans. Softw. Eng., vol. 46, no. 9, pp. 1024–1038, Sep. 2020.

[15] C. Chen, X. Chen, J. Sun, Z. Xing, and G. Li, “Data-driven proactive
policy assurance of post quality in community Q&A sites,” Proc. ACM
Human-Comput. Interact., vol. 2, no. CSCW, pp. 1–22, 2018.

[16] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, Dec. 2022.

[17] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 1, pp. 5485–
5551, 2020.

[18] Z. Feng et al., “CodeBERT: A pre-trained model for programming
and natural languages,” in Proc. Findings Assoc. Comput. Linguistics
(EMNLP), 2020, pp. 1536–1547.

[19] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by
web developers,” in Proc. 11th Work. Conf. Mining Softw. Repositories,
2014, pp. 112–121.

[20] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proc. 27th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 510–520.

[21] A. Y. Chua and S. Banerjee, “Answers or no answers: Studying question
answerability in Stack Overflow,” J. Inf. Sci., vol. 41, no. 5, pp. 720–731,
2015.

[22] F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical help?
Evidence-based guidelines for writing questions on Stack Overflow,” Inf.
Softw. Technol., vol. 94, pp. 186–207, Feb. 2018.

[23] A. Baltadzhieva and G. Chrupała, “Predicting the quality of questions on
stackoverflow,” in Proc. Int. Conf. Recent Adv. Natural Lang. Process.,
2015, pp. 32–40.

[24] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” in Proc. 7th Int. Symp. String Process. Inf.
Retrieval (SPIRE), Piscataway, NJ, USA: IEEE Press, 2000, pp. 39–48.

[25] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” IEEE Comput. Intell.
Mag., vol. 13, no. 3, pp. 55–75, Aug. 2018.

[26] T. Kudo and J. Richardson, “SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text process-
ing,” in Proc. Conf. Empirical Methods Natural Lang. Process., Syst.
Demonstrations, 2018, pp. 66–71.

[27] A. Vaswani et al., “Attention is all you need,” in Proc. 30th Adv. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[28] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks
for machine reading,” in Proc. Conf. Empirical Methods Natural Lang.
Process., Austin, TX, USA: Association for Computational Linguistics,
2016, pp. 551–561.

LIU et al.: AUTOMATED QUESTION TITLE REFORMULATION BY MINING MODIFICATION LOGS FROM STACK OVERFLOW

[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2016, pp. 770–778.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[32] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural networks
for natural language understanding,” in Proc. 57th Annu. Meeting Assoc.
Comput. Linguistics, 2019, pp. 4487–4496.

[33] S. Jiang, A. Armaly, and C. Mcmillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Proc.
32nd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Piscataway,
NJ, USA: IEEE Press, 2017, pp. 135–146.

[34] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” in Proc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 4998–5007.

[35] Z. Yang et al., “A multi-modal transformer-based code summarization
approach for smart contracts,” in Proc. IEEE/ACM 29th Int. Conf.
Program Comprehension (ICPC), Piscataway, NJ, USA: IEEE Press,
2021, pp. 1–12.

[36] G. Yang et al., “ComFormer: Code comment generation via transformer
and fusion method-based hybrid code representation,” in Proc. 8th Int.
Conf. Dependable Syst. Their Appl. (DSA), Piscataway, NJ, USA: IEEE
Press, 2021, pp. 30–41.

[37] G. Yang, Y. Zhou, X. Chen, and C. Yu, “Fine-grained pseudo-code
generation method via code feature extraction and transformer,” in Proc.
28th Asia-Pacific Softw. Eng. Conf. (APSEC), Piscataway, NJ, USA:
IEEE Press, 2021, pp. 213–222.

[38] G. Yang, X. Chen, Y. Zhou, and C. Yu, “DualSC: Automatic generation
and summarization of shellcode via transformer and dual learning,” in
Proc. 29th IEEE Int. Conf. Softw. Anal., Evol. Reengineering (SANER),
2022, pp. 361–372.

[39] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension,” in
Proc. 58th Annu. Meeting Assoc. Comput. Linguistics, 2020, pp. 7871–
7880.

[40] T. Zhang, I. C. Irsan, F. Thung, D. Han, D. Lo, and L. Jiang, “Au-
tomatic pull request title generation,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Piscataway, NJ, USA: IEEE Press, 2022,
pp. 71–81.

[41] G. Yang, K. Liu, X. Chen, Y. Zhou, C. Yu, and H. Lin, “CCGIR:
Information retrieval-based code comment generation method for smart
contracts,” Knowl.-Based Syst., vol. 237, Feb. 2022, Art. no. 107858.

[42] C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “BashExplainer:
Retrieval-augmented bash code comment generation based on fine-tuned
CodeBERT,” in Proc. 38th Int. Conf. Softw. Maintenance Evol. (ICSME),
2022, pp. 82–93.

[43] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method
for automatic evaluation of machine translation,” in Proc. 40th Annu.
Meeting Assoc. Comput. Linguistics, 2002, pp. 311–318.

[44] C.-Y. Lin, “ROUGE: A package for automatic evaluation of sum-
maries,” in Proc. Workshop Text Summarization Branches Out, 2004,
pp. 74–81.

[45] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: Consensus-based
image description evaluation,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., 2015, pp. 4566–4575.

[46] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, “GLEU without
tuning,” 2016, arXiv:1605.02592.

[47] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to Informa-
tion Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[48] L. Prechelt, “Early stopping—But when?” in Neural Networks: Tricks
of the Trade. Berlin, Heidelberg: Springer, 1998, pp. 55–69.

[49] J. Von Der Mosel, A. Trautsch, and S. Herbold, “On the validity of
pre-trained transformers for natural language processing in the software
engineering domain,” IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 1487–
1507, Apr. 2023.

[50] X. Hu, Z. Gao, X. Xia, D. Lo, and X. Yang, “Automating user notice
generation for smart contract functions,” in Proc. 36th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press,
2021, pp. 5–17.

[51] G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and T. Chen, “Ex-
ploitGen: Template-augmented exploit code generation based on Code-
BERT,” J. Syst. Softw., vol. 197, Mar. 2023, Art. no. 111577.

[52] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in Statistics: Methodology and Distribution. New York, NY,
USA: Springer, 1992, pp. 196–202.

[53] N. Cliff, Ordinal Methods for Behavioral Data Analysis. New York, NY,
USA: Psychology Press, 2014.

[54] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exemplar-
based neural comment generation,” in Proc. 35th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press, 2020,
pp. 349–360.

[55] R. A. Fisher, “On the interpretation of χ2 from contingency tables, and
the calculation of P,” J. Roy. Statistical Soc., vol. 85, no. 1, pp. 87–94,
1922.

[56] J. L. Fleiss, “Measuring nominal scale agreement among many raters,”
Psychol. Bull., vol. 76, no. 5, pp. 378–382, 1971.

[57] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2021, pp. 8696–8708.

[58] S. Haque, Z. Eberhart, A. Bansal, and C. Mcmillan, “Semantic simi-
larity metrics for evaluating source code summarization,” in Proc. 30th
IEEE/ACM Int. Conf. Program Comprehension, 2022, pp. 36–47.

[59] Z. Li et al., “SeTransformer: A transformer-based code semantic parser
for code comment generation,” IEEE Trans. Rel., vol. 72, no. 1,
pp. 258–273, Mar. 2023.

[60] Z. Li et al., “SeCNN: A semantic CNN parser for code comment
generation,” J. Syst. Softw., vol. 181, Nov. 2021, Art. no. 111036.

[61] H. Lin et al., “Gen-FL: Quality prediction-based filter for automated
issue title generation,” J. Syst. Softw., vol. 195, Jan. 2023, Art. no.
111513.

[62] Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Detecting
high-quality posts in community question answering sites,” J. Inf. Sci.,
vol. 302, pp. 70–82, May 2015.

[63] H. Zhang, S. Wang, T.-H. Chen, Y. Zou, and A. E. Hassan, “An empirical
study of obsolete answers on stack overflow,” IEEE Trans. Softw. Eng.,
vol. 47, no. 4, pp. 850–862, Apr. 2021.

[64] J. Liu et al., “Broken external links on stack overflow,” IEEE Trans.
Softw. Eng., vol. 48, no. 9, pp. 3242–3267, Sep. 2022.

[65] W. Zhu, H. Zhang, A. E. Hassan, and M. W. Godfrey, “An empirical
study of question discussions on stack overflow,” Empirical Softw. Eng.,
vol. 27, no. 6, 2022, Art. no. 148.

[66] F. Zhang et al., “Improving Stack Overflow question title generation
with copying enhanced CodeBERT model and bi-modal information,”
Inf. Softw. Technol., vol. 148, Aug. 2022, Art. no. 106922.

[67] M. M. Rahman and C. K. Roy, “A systematic literature review
of automated query reformulations in source code search,” 2021,
arXiv:2108.09646.

[68] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of
relevance feedback in IR-based concept location,” in Proc. IEEE Int.
Conf. Softw. Maintenance, Piscataway, NJ, USA: IEEE Press, 2009,
pp. 351–360.

[69] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of NL-queries for software maintenance and reuse,”
in Proc. IEEE 31st Int. Conf. Softw. Eng., Piscataway, NJ, USA: IEEE
Press, 2009, pp. 232–242.

[70] J. Yang and L. Tan, “Inferring semantically related words from
software context,” in Proc. 9th IEEE Work. Conf. Mining Softw.
Repositories (MSR), Piscataway, NJ, USA: IEEE Press, 2012,
pp. 161–170.

[71] B. Sisman and A. C. Kak, “Assisting code search with automatic query
reformulation for bug localization,” in Proc. 10th Work. Conf. Mining
Softw. Repositories (MSR), Piscataway, NJ, USA: IEEE Press, 2013,
pp. 309–318.

[72] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker, “Au-
tomatically mining software-based, semantically-similar words from
comment-code mappings,” in Proc. 10th Work. Conf. Mining Softw.
Repositories (MSR), Piscataway, NJ, USA: IEEE Press, 2013,
pp. 377–386.

[73] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. D. Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in
software engineering,” in Proc. 35th Int. Conf. Softw. Eng. (ICSE),
Piscataway, NJ, USA: IEEE Press, 2013, pp. 842–851.

[74] M. M. Rahman and C. K. Roy, “Strict: Information retrieval based search
term identification for concept location,” in Proc. IEEE 24th Int. Conf.
Softw. Anal., Evol. Reengineering (SANER), Piscataway, NJ, USA: IEEE
Press, 2017, pp. 79–90.

[75] S. Wang, D. Lo, and L. Jiang, “Active code search: Incorporating user
feedback to improve code search relevance,” in Proc. 29th ACM/IEEE
Int. Conf. Automated Softw. Eng., 2014, pp. 677–682.

[76] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion via
WordNet for effective code search,” in Proc. IEEE 22nd Int. Conf. Softw.
Anal., Evol., Reengineering (SANER), Piscataway, NJ, USA: IEEE Press,
2015, pp. 545–549.

[77] G. A. Miller, “WordNet: A lexical database for English,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, 1995.

[78] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based
on crowd knowledge for code search,” IEEE Trans. Services Comput.,
vol. 9, no. 5, pp. 771–783, Sep./Oct. 2016.

[79] M. M. Rahman, C. K. Roy, and D. Lo, “RACK: Automatic API
recommendation using crowdsourced knowledge,” in Proc. IEEE 23rd
Int. Conf. Softw. Anal., Evol., Reengineering (SANER), Piscataway, NJ,
USA: IEEE Press, 2016, pp. 349–359.

[80] M. M. Rahman, C. K. Roy, and D. Lo, “Automatic query reformulation
for code search using crowdsourced knowledge,” Empirical Softw. Eng.,
vol. 24, no. 4, pp. 1869–1924, 2019.

[81] M. M. Rahman and C. Roy, “Effective reformulation of query for code
search using crowdsourced knowledge and extra-large data analytics,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Piscataway,
NJ, USA: IEEE Press, 2018, pp. 473–484.

[82] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated
query reformulation for efficient search based on query logs from stack
overflow,” in Proc. 2021 IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE),
Piscataway, NJ, USA: IEEE Press, 2021, pp. 1273–1285.

[83] Z. Gao, X. Xia, D. Lo, J. Grundy, X. Zhang, and Z. Xing, “I know
what you are searching for: Code snippet recommendation from stack
overflow posts,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 3,
pp. 1–42, 2023.

[84] O. Chaparro, J. M. Florez, and A. Marcus, “Using observed behavior
to reformulate queries during text retrieval-based bug localization,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Piscataway,
NJ, USA: IEEE Press, 2017, pp. 376–387.

[85] O. Chaparro, J. M. Florez, and A. Marcus, “Using bug descrip-
tions to reformulate queries during text-retrieval-based bug local-
ization,” Empirical Softw. Eng., vol. 24, no. 5, pp. 2947–3007,
2019.

[86] M. M. Rahman and C. K. Roy, “Improving IR-based bug localization
with context-aware query reformulation,” in Proc. 26th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2018,
pp. 621–632.

[87] J. M. Florez, O. Chaparro, C. Treude, and A. Marcus, “Combining
query reduction and expansion for text-retrieval-based bug localization,”
in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reengineering (SANER),
Piscataway, NJ, USA: IEEE Press, 2021, pp. 166–176.

[88] Z. Sun, L. Li, Y. Liu, X. Du, and L. Li, “On the importance of building
high-quality training datasets for neural code search,” in Proc. 44th Int.
Conf. Softw. Eng., 2022, pp. 1609–1620.

Ke Liu received the B.S. degree in computer sci-
ence from Nantong University, Nantong, in 2020.
She is currently pursuing the master’s degree with
the School of Information Science and Technology
at Nantong University. Her research interest is in
mining software repositories.

Xiang Chen (Member, IEEE) received the B.Sc.
degree from the School of Management, Xi’an Jiao-
tong University, China, in 2002. Then, he received
the M.Sc. and Ph.D. degrees in computer soft-
ware and theory from Nanjing University, China,
in 2008 and 2011, respectively. He is currently an
Associate Professor with the School of Information
Science and Technology, Nantong University, Nan-
tong, China. His research interests include software
engineering, particularly software testing and main-
tenance, software repository mining, and empirical

software engineering. He has authored or co-authored more than 90 papers in
refereed journals or conferences, such as IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, ACM Transactions on Software Engineering and Methodology,
Information and Software Technology, Journal of Systems and Software,
IEEE TRANSACTIONS ON RELIABILITY, International Conference on Software
Engineering, The ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, International
Conference Automated Software Engineering, International Conference on
Software Maintenance and Evolution, and IEEE International Conference on
Program Comprehension and International Conference on Software Analysis,
Evolution and Reengineering. He received ACM SIGSOFT Distinguished
Paper Awards in ICSE 2021. He is the Editorial Board Member of Information
and Software Technology. More information about him can be found at:
https://smartse.github.io/index.html.

Chunyang Chen is a Senior Lecturer (Asso-
ciate Professor) with the Faculty of Information
Technology, Monash University, Australia. His re-
search focuses on software engineering, deep learn-
ing, and human-computer interaction. He has pub-
lished over 50 papers in refereed journals or
conferences, including IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, ACM Transactions on Software En-
gineering and Methodology, Empirical Software Engineering, International
Conference on Software Engineering, The ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, IEEE/ACM International Conference Automated Software Engi-
neering, and ACM Conference on Human Factors in Computing Systems. He
received ACM SIGSOFT Distinguished Paper Awards in ICSE 2021, ICSE
2020, and ASE 2018, the BEST PAPER AWARD in SANER 2016, and the
BEST TOOL DEMO in ASE 2016. More information about him can be found
at: https://chunyang-chen.github.io/.

Xiaofei Xie received the B.E., M.E., and Ph.D.
degrees from Tianjin University. He is currently
an Assistant Professor with Singapore Manage-
ment University, Singapore. His research mainly
focuses on program analysis, traditional software
testing, and artificial intelligence quality assurance
analysis. He has published over 60 papers in
refereed journals or conferences, including IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, ACM Transactions on Software Engineering and
Methodology, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, Empirical Software Engineering, International Conference
on Software Engineering, The ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
IEEE/ACM International Conference Automated Software Engineering, Inter-
national Symposium on Software Testing and Analysis, International Confer-
ence on Machine Learning, International Conference on Computer Vision, and
International Conference on Learning Representations. He won three ACM
SIGSOFT Distinguished Paper Awards in ISSTA’22, ASE’19, and FSE’16.
More information about him can be found at: https://xiaofeixie.bitbucket.io/.

Zhanqi Cui received the B.E. degree in software
engineering and the Ph.D. degree in computer soft-
ware and theory in 2005 and 2011, respectively,
from Nanjing University, Nanjing. He was a vis-
iting Ph.D. student at the University of Virginia,
Virginia, from Sep. 2009 to Sep. 2010. He is an
Associate Professor at Beijing Information Science
and Technology University, Beijing. His research in-
terests include intelligent software engineering and
trustworthy artificial intelligence. More information
about him can be found at: https://zqcui.github.io/.

https://smartse.github.io/index.html
https://chunyang-chen.github.io/
https://xiaofeixie.bitbucket.io/
https://zqcui.github.io/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

