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Abstract: Automatic segmentation of medical images plays an important role in the diagnosis of diseases. On 

single-modal data, convolutional neural networks have demonstrated satisfactory performance. However, multi-

modal data encompasses a greater amount of information rather than single-modal data. Multi-modal data can be 

effectively used to improve the segmentation accuracy of regions of interest by analyzing both spatial and 

temporal information. In this study, we propose a dual-path segmentation model for multi-modal medical images, 

named TranSiam. Taking into account that there is a significant diversity between the different modalities, 

TranSiam employs two parallel CNNs to extract the features which are specific to each of the modalities. In our 

method, two parallel CNNs extract detailed and local information in the low-level layer, and the Transformer 

layer extracts global information in the high-level layer. Finally, we fuse the features of different modalities via 

a locality-aware aggregation block (LAA block) to establish the association between different modal features. 

The LAA block is used to locate the region of interest and suppress the influence of invalid regions on multi-

modal feature fusion. TranSiam uses LAA blocks at each layer of the encoder in order to fully fuse multi-modal 

information at different scales. Extensive experiments on several multi-modal datasets have shown that TranSiam 

achieves satisfying results. 
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1. Introduction 

Analysis of medical images plays an 

important role in the diagnosis of diseases. However, 

manual segmentation of medical images depends on 

the experience of the physician. Due to the 

advancement of computer technology, it is now 

possible for computers to automatically segment 

medical images. Medical images can be segmented 

accurately to detect diseased areas, human organs, 

and infected areas, improving the efficiency of 

diagnosis, such as brain tumor segmentation (Ma, Li 

et al., 2021, Yang et al., 2022), Vestibular 

Schwannoma segmentation, retinal vessel 

segmentation (Ding et al., 2021, Li et al., 2022), etc. 

As a result, medical image segmentation has a wide 

range of potential applications. 

With the development of medical imaging 

technology, multi-modal medical images have 

become more prevalent in recent years. It is widely 

known that multi-modal data contains more 

information than single-modal data. The issue of 

effectively fusing information is a hot topic in data 

analysis. The fusion of multi-modal information is 

typically performed at three levels: input-level, 

feature-level, and decision-level. Fig. 1 illustrates 

the differences between these three fusion methods. 

In feature-level fusion methods (Dolz, 

Desrosiers et al., 2018, Sun et al., 2021), modalities 

are usually concatenated or added element-by-

element. Dolz, Gopinath et al. (2018) and Wang, 

Zhang et al. (2020) fused these features by dense 

Concatenation. Despite the simplicity and 

effectiveness of this fusion method, it does not fully 

explore the potential correlation between different 

modal features. As shown in Fig. 2, we decompose 

the fusion process into Concatenation and Element-

wise Addition. An Element-wise Addition performs 

addition operations directly on the features of 

different modalities. Despite the semantic gap 

between the features of different modalities, this 

fusion method suffers from the same problem as 

input-level fusion. Unlike Element-wise Addition, 

concatenation involves mapping of features, since it 

uses convolution to further extract features after  
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Fig. 1. Multi-modal data can be merged using three fusing methods. From top to bottom: decision-level fusion, input-level fusion, and feature-level fusion.

concatenating them. As shown in Fig. 2, convolution maps each inde-
pendent channel feature to another feature space in order to further
reduce the semantic gap, and then adds them element-by-element.
Due to the independence of channel features, the concatenation fusion
method allows for the fusion of multi-modal information as well by
combining them element-by-element. Due to the lack of the mechanism
to examine the correlation between different modal features before
combining them, both fusion methods are unable to fully exploit the
multi-modal information. To further explore the potential correlation
between multi-modal information, we propose a LAA block based on
self-attention (Vaswani et al., 2017). As Fig. 2, the LAA block has the
capability of establishing not only local correlation between various
modalities but also locating the region of interest and suppressing
invalid regions from influencing the fusion process by incorporating the
local attention mechanism before combining the different modalities.

In this study, the key contributions are as follows:
∙ We propose a local awareness fusion module, LAA block, which

addresses the weaknesses of commonly used fusion techniques. By em-
ploying a local attention mechanism, the block aggregates local infor-
mation across multi-modal data sets, exploits the association between
them, and locates the region of interest.

∙ We present a segmentation model for multi-modal medical images
that can effectively fuse multi-modal information, called TranSiam. It
is capable of extracting multi-modal features and fusing them together
with powerful feature extraction tools.

2. Related work

With the development of medical image segmentation techniques,
many classical convolutional neural networks (CNNs) models had been
proposed, including Unet (Ronneberger, Fischer, & Brox, 2015), CENet
(Gu et al., 2019), Nested Unet (Zhou, Rahman Siddiquee, Tajbakhsh,
& Liang, 2018), etc. Typically, CNN models employed a convolutional
layer, a pooling layer, and a filtering layer to filter redundant in-
formation (Ma, Tang and Guo, 2021). It was important to note that
convolution possesses the characteristics of local and shared weights,

where the local-aware characteristic allowed these CNN models to
extract detailed information efficiently at the low-level layer, however
they could not establish long-distance pixel associations. The shared
weight characteristic allowed the models to have less computation and
parameters. Furthermore, CNN exhibited translational invariance and
rotational equivariance. It was possible to summarize these character-
istics as the CNN inductive bias. As a result of these inductive biases,
CNNs were able to achieve excellent results on small datasets, including
medical images.

Since Dosovitskiy et al. (2020) demonstrated the ability of Trans-
former to solve image classification tasks, Transformer has begun to
be applied to image segmentation tasks. Using the self-attention mech-
anism, it establishes associations between global information and the
MLP layer to extract features. Thus, Transformer is capable of ex-
tracting global information, which compensates for CNN’s deficiencies.
Transformer is not sensitive to detailed information and is computa-
tionally expensive when used at the low-level layer. Accordingly, Liu
et al. (2021) proposed the Swin transformer as a method to calcu-
late self-attention based on local windows. Swin transformer achieves
state-of-the-art performance in a wide range of image tasks and re-
duces the computation requirements of Transformer significantly. Sub-
sequently, Hassani, Walton, Li, Li, and Shi (2022) proposed a more
flexible local window-based Transformer known as NAT transformer,
which further reduced the computation time. However, they lack the
inductive bias of CNNs and require a large amount of training data.
Medical image data is difficult to obtain, and detailed information
is crucial to the quality of medical care, so applying it to medical
image segmentation is challenging. Therefore, we combine CNN and
Transformer to extract detailed and local features in the low-level layer
and global features in the high-level layer. In addition to reducing the
computational cost, this method retains detailed information and can
extract global information.

For multi-modal medical image fusion, previous works usually fused
multi-modal data at input-level, decision-level and feature-level. Myro-
nenko (2018) treated multi-modal images as different image channels.
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Fig. 2. The fusion process of Element-wise Addition, Concatenation, and LAA block. Here, 4 × 𝐻 × 𝑊 means the channel, height and width of the feature maps respectively;
4 × 3 × 3 Conv represents the number and size of the convolution respectively. Here is an example of a LAA block fusion in which modal features 1 and 2 are fused.

Similarly, Jiang, Ding, Liu, and Tao (2019) also concatenated multi-
modal images simply as different channels. Wang, Zhang et al. (2020)
extracted features of different modalities by multiple models, and then
densely concatenated the multi-modal features for fusing the multi-
modal information. Similarly, there are also Dolz, Desrosiers et al.
(2018) and Dolz, Gopinath et al. (2018). Based on the excellent per-
formance of the transformer in the field of image processing and
analysis, Hatamizadeh, Yang, Roth, and Xu (2021) and Zhang et al.
(2022) combine CNN with the transformer to improve the segmenta-
tion results of multi-modal brain tumor. Different modal data usually
contain complementary information, and effective fusion of these infor-
mation can greatly improve the segmentation effect. However, previous
work paid little attention to the fusion of multi-modal medical im-
ages. Therefore, we explore a novel fusion mechanism based on the
commonly used feature-level fusion methods.

3. Methods

In this study, we propose TranSiam, an improved feature-level
fusion model for multi-modal medical image fusion. TranSiam is a
dual-path network that extracts features from various modalities in-
dependently. Additionally, we combine CNN and Transformer as a
backbone in order to not only maintain detailed information, but also
retrieve global information. We also design a LAA block as a means
of efficiently fusing the features of different modalities. As part of the
LAA block, we explore the possible correlation between multi-modal
features, as well as locate the region of interest by using attention
mechanisms.

3.1. TranSiam

TranSiam is composed of two sub-networks, sub-network 1 and
sub-network 2, both of which are identical, as shown in Fig. 3. In
the low-level layer of the sub-network, convolution is used to extract
detailed information, and pooling is used to expand receptive fields and
remove redundant information. It is important to note that excessive
use of pooling layers can also result in the loss of detailed information.
Therefore, we reduce the number of pooling layers. Nevertheless, this

leads to a very large feature map resolution in the high-level layer,
which means that convolution is not able to provide the global in-
formation that is required in the application of the feature map. As
a result, in the high-level layer, we use Transformer to extract global
information. In addition, skip connections are used to compensate for
the information loss caused by the pooling layer. Feature extraction
from two different modalities is accomplished by utilizing two sub-
networks. In TranSiam, the multi-modal features of each layer are
merged using two LAA blocks. Sub-network 1’s features are mapped
to another feature space as query vectors, while sub-network 2’s fea-
tures are mapped as key and value vectors. It is possible to mine the
potential correlation between these vectors through the LAA block, and
finally obtain the merged features based on the correlation between
the vectors. In this way, the top LAA block is used to fuse the features
of sub-network 2 to sub-network 1. Conversely, the bottom LAA block
is used to fuse the features of sub-network 1 to sub-network 2. Using
this bi-directional fusion method, the information between multi-modal
data can be fully utilized and interference can be avoided between
them during the fusion process. In addition, LAA blocks are used in
each layer of TranSiam to achieve multi-scale fusion, which can greatly
enhance the fusion effect. Finally, the predicted results may be obtained
by combining the outputs of the two sub-networks.

TranSiam is not limited to the fusion of two modal data. It can be
extended to tasks with more modal data. Based on the segmentation
task, we can classify the multi-modal data into two categories: task-
dominant and task-relevant. A task-dominated modal data set is one
that can dominate the task of segmentation, while a task-related data
set is one that will affect the task of segmentation, and both types of
data are used as inputs into two sub-networks. Using this approach,
TranSiam can be applied to medical image segmentation tasks with a
broader range of modalities. Take MRI data as an example, the imaging
methods of different modalities are different. T2 signal and FLAIR
signal are related to water content, and the intensity of T2 signal and
FLAIR signal in edematous areas is stronger than that of surrounding
normal tissues and is often highlighted. Unlike T2 and Flair sequences,
T1 and T1ce sequences are not sensitive to edema, and it is difficult
to distinguish edematous regions from normal tissue by T1 and T1ce
sequences. Therefore, they can be used as task-relevant data to provide
additional information for segmenting lesion areas containing edema,
while flair and t2 are used as task-dominant data
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Fig. 3. An overview of TranSiam’s structure. It consists of two sub-networks that extract different modal features separately. The LAA blocks are used in two layers to fuse
multi-modal features bi-directionally.

Fig. 4. An overview of the LAA block structure. The fusion window size is 5 × 5. From left to right: the fusion process of sub-network 2 features fused to sub-network 1 features,
the process of sliding the fusion window.
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3.2. Local attention fusion block

At the feature-level, existing multi-modal fusion methods gener-
ally lack the mechanism to establish the correlation between different
modalities, so that these methods cannot fully fuse multi-modal infor-
mation. Therefore, we propose the LAA block, which maps different
modal features into multiple feature spaces and exploits the potential
correlation between multi-modal features from different perspectives
using the self-attention mechanism. Meanwhile, the LAA block empha-
sizes regions of interest and suppresses invalid regions from influencing
fusion.

Fig. 4 shows the internal structure of the LAA block and its fusion
window sliding process. Suppose that the feature map size of sub-
network 1 and sub-network 2 is 𝐵×𝐶 ×𝐻 ×𝑊 , where 𝐵 represents the
number of samples in a batch, 𝐶 represents the number of channels,
and 𝐻 and 𝑊 represent the height and width of the feature map,
respectively. First, the LAA block uses a 3 × 3 convolution as the
mapping layer to map the feature map of sub-network 1 to the new
feature space as a query (𝑞) vector. Similarly, the feature map of sub-
network 2 is represented as a key (𝑘) vector and a value (𝑣) vector. In
this case, the dimensions of the 𝑞, 𝑘, and 𝑣 vectors are 𝐵×𝑁 ×𝐻𝑊 ×𝐶,
where 𝑁 refers to the number of feature spaces. The LAA block maps
the original features to multiple new feature spaces, and calculates the
inner product of 𝑞 vectors and 𝑘 vectors by Eq. (1) in different feature
spaces. In this way, the correlation between the feature map of sub-
network 2 and sub-network 1 can be established in several different
feature spaces, so as to obtain various association matrices. As a result
of establishing an association between two modalities using multiple
feature spaces, we are able to fully explore the potential correlation
between them from different perspectives.

𝑠 = 𝑞 ∗ 𝑘𝑇 (1)

where 𝑞 and 𝑘 represent query vectors and key vectors, respectively.
Unlike the standard mechanism of self-attention, this 𝑞 vector only
queries the features of the 𝑘 vector in the local window centered on
it.

In this case, the association matrix (𝑠) has dimensions of 𝐵 ×
𝑁 × 𝐻𝑊 × 𝐻𝑊 . Using the Softmax layer, the association matrix is
transformed into an attention matrix, and the element-multiplication
operation is performed on the 𝑣 vector to obtain the weighted features.
By implementing this attention mechanism, the sub-network 2 feature
map can be highlighted for high correlations with the sub-network 1
feature map, thus suppressing the influence of invalid regions on the
fusion process. Finally, the LAA block performs Element-wise Addition
operations with the features of sub-network 1 to obtain the final fusion
feature. Eq. (2) illustrates the fusion process in detail.

𝑓 =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠)

√

𝑑𝑘
𝑣 + 𝑥 (2)

where 𝑑𝑘 represents the dimension of the 𝑘 vector and 𝑥 represents the
feature map of sub-network 1. By including this local window-based
self-attention mechanism in the fusion module, we can establish associ-
ations between multi-modal features while eliminating the interference
of invalid information. In addition, the LAA block is flexible. By resizing
the local window, it can be flexibly applied to different datasets. It is
possible to adopt large windows for large targets, and small windows
for small targets, which has a good application potential.

3.3. Discussion

To explore the differences between the LAA block and common fu-
sion methods in feature-layer, such as Concatenation and Element-wise
Addition. We split the fusion process of Concatenation and Element-
wise Addition, as shown in Fig. 2. Suppose the number of channels
of the original feature map is 4, and the size of the feature map
is 𝐻 × 𝑊 . By the Element-wise Addition fusion method, the fusion

Table 1
Summary of the dataset including BraTS 2018, BraTS 2019, BraTS 2020 and Vestibular
Schwannoma.

Dataset Training set Validation set Image size

BraTS 2018 285 66 240 × 240 × 155
BraTS 2019 335 125 240 × 240 × 155
BraTS 2020 369 125 240 × 240 × 155
Vestibular Schwannoma 242 48 512 × 512 × 120

features with size 4 × 𝐻 × 𝑊 can be obtained. Compared with the
Element-wise Addition, the Concatenation method contains a map-
ping operation. It maps the features of each channel to an additional
feature space, and then combines these channel features by Element-
wise Addition to generate a fusion feature map with size 1 × 𝐻 × 𝑊 .
Repeating this process four times can obtain fusion features with size
4 × 𝐻 × 𝑊 . Essentially, the Concatenation method maps the features
of different modalities into four different feature spaces, and then fuses
these modal features in each feature space by Element-wise Addition.
Therefore, the Concatenation method is more comprehensive in fusing
features than the Element-wise Addition method. Despite the fact that
these two methods can obtain fusion features, the features of different
modalities must be independent. They fail to explore the potential
association between multi-modal features. Therefore, we propose the
LAA block. As shown in Fig. 2, the LAA block establishes the association
between multi-modal features through a local attention mechanism
before Element-wise Addition, and enhances the information exchange
between modalities. The detailed structure of the LAA block is shown
in Fig. 4. It can be seen that the LAA block uses multi-head local
self-attention, which means that the LAA block also maps the modal
features to multiple feature spaces and then explores the local correla-
tion between the multi-modal features in each feature space. Therefore,
the LAA block also has the advantages of the Concatenation method. In
addition, the LAA block can locate regions of interest and suppress the
influence of invalid regions.

3.4. Loss function

We employ a joint loss to enhance our network’s training efficiency
and segmentation accuracy. The joint loss consists of cross-entropy loss
and Dice loss (Milletari, Navab, & Ahmadi, 2016). The Dice loss focuses
on the prediction results of the foreground area and reduces the effect
of class imbalance. However, Dice loss is difficult to converge when the
foreground area is small. Therefore, we combine the cross-entropy loss
𝐿𝐶𝐸 with the Dice loss 𝐿𝑑𝑖𝑐𝑒 to alleviate the difficulty. The joint loss
can be formulated as follows:

𝐿𝑗𝑜𝑖𝑛𝑡 = 𝛼1𝐿𝐶𝐸 + 𝛼2𝐿𝑑𝑖𝑐𝑒 (3)

𝐿𝑑𝑖𝑐𝑒 =
2|𝑦 ∩ �̂�|
|𝑦| + |�̂�|

(4)

𝐿𝐶𝐸 = −
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
(𝑦𝑛𝑘𝑙𝑛�̂�𝑛𝑘 + (1 − 𝑦𝑛𝑘)𝑙𝑛(1 − �̂�𝑛𝑘)) (5)

where the target matrix is an 𝑁 × 𝐾 matrix. 𝑦 is the ground truth. �̂�
refers to the prediction. 𝑎𝑙𝑝ℎ𝑎1 and 𝑎𝑙𝑝ℎ𝑎2 are the loss weights of the
multi-class cross-entropy loss and Dice loss. 𝑎𝑙𝑝ℎ𝑎1 and 𝑎𝑙𝑝ℎ𝑎2 are set
to 0.3 and 0.7, respectively.

4. Experiments and results

4.1. Dataset

We evaluate the performance of TranSiam on the BraTS 2018, BraTS
2019 dataset, BraTS 2020 dataset and Vestibular Schwannoma dataset
(see Table 1). Using the BraTS 2020 dataset as an example, the BraTS
2020 dataset is divided into two parts: training set and validation
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Table 2
Ablation experiment of LAA block on BraTS 2020 dataset, w/o means without, w/
means with.

Method Dice score
(%) ↑

Sensitivity
(%) ↑

Specificity
(%) ↑

Hausdorff
Dist. (mm) ↓

TranSiam w/o LAA 85.43 81.05 99.93 5.37
TranSiam w/ LAA 89.46 88.38 99.91 5.02

set. The training set contains 369 3D MRI images and the validation
set contains 125 3D MRI images. The validation set does not provide
labels, and we need to upload the results of the inference to the online
evaluation system for obtaining evaluation results. The size of all MRI
images is 240 × 240 × 155. The training and validation sets both
include glioblastoma (GBM/HGG) and lower grade glioma (LGG). In
this paper, we segment the whole tumor area. In addition, the BraTS
dataset contains data from four modalities: T1ce, T1, Flair, and T2.
We divided them into two categories: task-dominant and task-relevant.
Task-dominant contains Flair and T2, because they are more sensitive
to the whole tumor area. T1ce and T1 are seen as task-relevant. Finally,
these two types of data are used as the input of two sub-networks
respectively.

Vestibular Schwannoma dataset contains a labeled dataset of MRI
images collected on 242 consecutive patients with Vestibular Schwan-
noma (VS) undergoing Gamma Knife stereotactic radiosurgery (GK
SRS). The structural images included contrast-enhanced T1-weighted
(ceT1) images and high-resolution T2-weighted (hrT2) images. The size
of all MRI images is 512 × 512 × 120. The ceT1 and hrT2 are unaligned,
but the dataset provides the transformation matrix. They are used as
inputs to our model after alignment. The training and test set contain
242 samples and 48 samples, respectively.

4.2. Evaluation metrics

We employ four conventional metrics to quantitatively evaluate
the segmentation performance of TranSiam. They are Dice similarity
coefficient (%), Specificity (%), Sensitivity (%) and Hausdorff distance
(HD95) (mm) respectively. Dice similarity coefficient calculates the
volume overlap between the prediction mask and the ground truth.
Sensitivity and specificity are statistical measures of the performance
of binary classification tests. Hausdorff distance calculates the distance
between the prediction mask and the ground truth in metric space.

4.3. Experiment details

Our experiments are mainly trained on an NVIDIA V100. All models
are trained for 100 epochs. The SGD is used as our optimizer. The initial
learning rate is set to 0.03, the weight decay is 0.0001 and the mo-
mentum is 0.9. We use conventional strategies for image augmentation
including random flip, random rotate, random scale and random crop.
The probability of each strategy being used is 0.5. In the test phase,
we use the weights of the last 5 epochs to make predictions on the test
set separately. We take the average of 5 results as the final result to
enhance the generalization ability of our model.

4.4. Ablation study

In this section, we design ablation experiments to evaluate the
performance of each component of TranSiam. As shown in Table 2,
we remove or add the LAA block to TranSiam. The Dice of TranSiam
without LAA block reaches 85.43%, which is much lower than that
of TranSiam with LAA block at 89.46%. In addition, the Sensitivity of
TranSiam with LAA block reaches 88.38%, which is 7.33% higher than
that of TranSiam without LAA block. This means that the LAA block
is used to fuse multi-modal features is important and can significantly
improve the segmentation accuracy of the model.

Table 3
Ablation experiment of LAA block number on BraTS 2020 dataset.

Pair number Dice score
(%) ↑

Sensitivity
(%) ↑

Specificity
(%) ↑

Hausdorff
Dist. (mm) ↓

1 88.68 88.17 99.91 6.02
2 89.10 88.00 99.91 5.94
3 89.32 88.20 99.92 5.30
4 89.46 88.38 99.91 5.02

Table 4
Comparison of different sizes of fusion window size on BraTS 2020 dataset.

Window size Dice score
(%) ↑

Sensitivity
(%) ↑

Specificity
(%) ↑

Hausdorff
Dist. (mm) ↓

3 89.25 88.24 99.92 5.11
5 89.38 88.35 99.91 5.12
7 89.34 88.43 99.90 5.00
9 89.27 88.21 99.90 4.87
11 89.46 88.38 99.91 5.02
13 89.39 88.62 99.91 5.86
15 89.26 88.13 99.92 5.47
17 89.42 88.18 99.92 4.73

In addition, we design ablation experiments for the number of LAA
block, which is shown in Table 3. Since our LAA block is based on the
attention mechanism of local window, the LAA block builds only the
local correlation between multi-modal features at the low-level layer.
As the network deepens, the window size of the LAA block remains
constant, so using the LAA block at each layer of the network enables
the fusion of multi-scale features. Since LAA blocks are always used
in pairs, which are used to fuse different modal features separately.
So, we gradually add LAA block in pairs from the high-level layer to
the low-level layer of the model to verify the effectiveness of multi-
scale fusion. As shown in Table 3, with the increase of the number of
LAA block, the Dice of TranSiam gradually is increased from 88.68% to
89.46%, and the HD95 gradually is decreased from 6.02 mm to 5.02 mm.
Besides, the Sensitivity of TranSiam reaches the highest 88.38% when
the number of LAA block is 4. The results indicate that multi-scale
fusion is meaningful.

4.5. Evaluation of fusion window size

In the LAA block, the different sizes of fusion windows have differ-
ent effects on the fusion efficiency. In this section, we try different sizes
of fusion windows to fuse multi-modal features. From Table 4, we can
see that a model with the fusion window of size 3 achieves a segmenta-
tion Dice of 89.25%. This suggests that the fusion between multi-modal
features does not require an excessively large receptive field for multi-
modal fusion tasks, and the correlation of local information between
them is stronger. As the size of the fusion window increases, Dice
reaches its highest at the window size of 11. In TranSiam, the default
size of fusion window is 11.

4.6. Comparison with other multi-modal methods

Recent works usually use Concatenation or Element-wise Addition
to fuse multi-modal features on the feature-level. However, they both
lack the mechanism to establish the association between multi-modal
features before fusing them. Therefore, we propose the LAA block,
which uses local self-attention to explore the local correlation between
multi-modal features before fusing them. In this section, we design
comparison experiments to verify the effectiveness of the improvement.
LAA block is a feature level fusion method, and considering that the
backbone of the model may have an impact on the performance of
fusion, we implement other feature-level fusion methods on TranSiam.
We reproduce classical medical image segmentation algorithms and
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Table 5
Comparison with other multi-modal methods on BraTS 2020 validation dataset.

Types Methods Dice score (%) ↑ Sensitivity (%) ↑ Specificity (%) ↑ Hausdorff Dist. (mm) ↓

Input-level fusion

Unet (Ronneberger et al., 2015) 88.63 86.91 99.92 5.49
CENet (Gu et al., 2019) 88.98 87.23 99.92 5.14
Probabilistic UNet (Kohl et al., 2018) 81.9 84.61 99.81 41.52
TransBTS w/o TTA (Wang, Chen et al., 2021) 89.00 – – 6.47
TransUnet (Chen et al., 2021) 88.97 87.62 99.92 5.44
SETR (Zheng et al., 2021) 85.85 84.98 99.89 14.37
Swin Transformer (Liu et al., 2021) 86.10 85.62 99.87 8.54
NAT (Hassani et al., 2022) 87.59 86.97 99.89 7.39
Swin Unet (Cao et al., 2023) 86.39 86.07 99.88 9.86
UNetFormer (Wang, Li et al., 2022) 87.83 85.87 99.92 6.15
Uctransnet (Wang, Cao, Wang and Zaiane, 2022) 88.85 87.71 99.91 5.38

Feature-level fusion

Concatenation 88.97 87.62 99.92 5.44
Element-wise Addition 88.44 87.81 99.90 6.81
MAML (Zhang et al., 2021) 88.99 87.77 99.91 6.27
Modality Pairing (Wang, Zhang et al., 2020) 88.90 87.68 99.90 6.81
TranSiam (Ours) 89.46 88.38 99.91 5.02

Note: ‘‘–’’ denotes not mentioned in the original paper.

Table 6
Comparison with other multi-modal methods on BraTS 2018 validation dataset.

Types Methods Dice score (%) ↑ Sensitivity (%) ↑ Specificity (%) ↑ Hausdorff Dist. (mm) ↓

Input-level fusion

Bit-plane UNet (Tuan, Tuan, & Bao, 2019) 81.87 77.34 99.53 9.42
voxel-Gan (Rezaei, Yang, & Meinel, 2019) 84 86 99 6.41
CGan (Rezaei et al., 2018) 81 75 99 7.30
Deep Hourglass (Benson, Pound, French, Jackson, & Pridmore, 2019) 82 – – 26.41
AGResU-Net (Zhang, Jiang, Dong, Hou, & Liu, 2020) 87.2 – – 5.62
AFPNet (Zhou, He and Jia, 2020) 84.94 – – –
DenseAFPNet (Zhou, He, Shi, Du and Chen, 2020) 86.42 – – –
3D Unet (Wang, Jiang, Zheng, Meng and Biswal, 2020) 86.38 – – 12
Weninger, Rippel, Koppers, and Merhof (2019) 88.9 88.7 99.5 6.97
Ma and Yang (2019) (Ordinary fusion) 85.1 – – 8.64

Feature-level fusion

Ma and Yang (2019) (Complementary fusion) 87.2 – – 6.12
Marcinkiewicz, Nalepa, Lorenzo, Dudzik, and Mrukwa (2019) 89.8 90.96 99.35 –
Concatenation 89.46 88.95 99.23 5.21
Element-wise Addition 89.51 88.84 99.49 4.6
MAML (Zhang et al., 2021) 89.04 88.45 99.44 4.97
Modality Pairing (Wang, Zhang et al., 2020) 89.57 88.66 99.5 5.08
TranSiam (Ours) 90.11 90.0 99.46 4.55

recent Transformer-based segmentation algorithms (Input-level), in-
cluding Unet, CENet, SETR, and Swin Transformer, NAT, Swin Unet,
UNetFormer, Uctransnet, etc, under the same experimental settings and
model parameters. We compare TranSiam with classical segmentation
methods on the BraTS 2019 dataset, BraTS 2020 dataset and the
Vestibular Schwannoma dataset. Tables 6, 7, 5 and 8 show the segmen-
tation results of TranSiam and other classical segmentation methods on
the BraTS 2018, BraTS 2019 dataset, BraTS 2020 dataset and Vestibular
Schwannoma dataset, respectively.

Table 5 shows the performance of common methods on the BraTS
2020 dataset. In particular, Average (Decision-level) represents the
fusion method on the decision-level, where we calculate the average of
multiple outputs as the final result. Besides, Concatenation (Input-level)
represents the fusion method on the input-level, where we concatenate
multi-modal images as different image channels. It achieves Dice of
88.97%, which is significantly better than the Decision-level fusion
method. Modality Pairing (Feature-level) indicates densely concatenate
multi-modal features on the feature-level. It achieves Dice of 88.90%,
which is better than Element-wise Addition (Feature-level). This means
that the feature mapping process is important. TranSiam (Feature-level)
achieves the best Dice, Sensitivity and HD95. The Dice of TranSiam
can reach 89.46% on the BraTS 2020 dataset, which is higher than
the CNN-based and Transformer-based classical segmentation methods.
In addition, the Sensitivity and HD95 of TranSiam reach 88.38% and
5.02 mm respectively, which are better than other methods. This means
that the LAA block establish the association between multi-modal
features is meaningful.

To evaluate the performance and generalization of the TranSiam,
experiments are also conducted on the BraTS 2018 validation dataset
and the BraTS 2019 validation dataset. The performance is shown in
Tables 6 and 7. It can be seen that our TranSiam achieves satisfying
performance in several metrics compared to classical segmentation
methods. TranSiam achieves Dice score of 89.44%, sensitivity of 88.5%,
specificity of 99.42%, Hausdorff distance of 5.09 mm on the BraTS 2019
validation dataset and achieves Dice score of 90.11%, sensitivity of
90.0%, specificity of 99.46%, Hausdorff distance of 4.55 mm on the
BraTS 2018 validation dataset. Compared to Modality Pairing, Element-
wise Addition, Concatenation and MAML, TranSiam shows satisfying
performance. Furthermore, compared to classical medical image seg-
mentation models such as 3D Unet, V-Net, KiUnet and Attention Unet,
our method is also competitive.

On the Vestibular Schwannoma dataset, we also design comparison
experiments to verify the generalization of TranSiam, as shown in
Table 8. Since Vestibular Schwannoma is usually small in size, the
fusion window size of the LAA block is set to 5. For Vestibular Schwan-
noma segmentation, the Dice 91.67% of Modality Pairing (Feature-
level) is also higher than that of Element-wise Addition (Feature-level).
TranSiam achieves 92.62%, 77.17%, and 96.88% for Dice, Sensitivity,
and Precision, respectively, which are higher than other segmentation
methods. In summary, TranSiam can greatly improve the segmentation
effect by using LAA block to fuse multi-modal features. The results show
that it is important to utilize multi-modal features efficiently.
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Fig. 5. Visual analysis of fusion methods. From left to right: cet1, hrT2, label, LAA block, Element-wise Addition, and concatenation. Tumors are marked in green.

Table 7
Comparison with other multi-modal methods on BraTS 2019 validation dataset.

Types Methods Dice score (%) ↑ Sensitivity (%) ↑ Specificity (%) ↑ Hausdorff Dist. (mm) ↓

Input-level fusion

MD-Unet (Ge et al., 2021) 87.2 87.2 99.3 5.41
3D Unet (Ronneberger et al., 2015) 87.38 – – 9.43
V-Net (Milletari et al., 2016) 88.73 – – 6.25
2D KiUnet (Valanarasu, Sindagi, Hacihaliloglu, & Patel, 2022) 86.12 – – 12.79
3D KiUnet (Valanarasu et al., 2022) 87.6 – – 8.94
TransBTS w/o TTA (Wang, Chen et al., 2021) 88.89 – – 7.59
Swin Unet (Cao et al., 2023) 89.38 – – 7.5
Attention Unet (Oktay et al., 2018) 88.81 – – 7.75
Wang, Jiang et al. (2020) 89.40 – – 5.67
Li, Luo, and Wang (2020) 88.60 – – 6.23
Myronenko (2018) 89.40 – – 5.89

Feature-level fusion

Concatenation 89.20 87.82 99.51 4.77
Element-wise Addition 88.98 87.74 99.44 5.1
MAML (Zhang et al., 2021) 88.86 87.48 99.46 6.5
Modality Pairing (Wang, Zhang et al., 2020) 88.75 87.27 99.33 5.86
TranSiam (Ours) 89.44 88.50 99.42 5.09

Table 8
Comparison with other multi-modal methods on Vestibular Schwannoma dataset.

Types Methods Dice score (%) ↑ Sensitivity (%) ↑ Precision (%) ↑

Input-level fusion

Unet (Ronneberger et al., 2015) 91.35 77.02 94.96
CENet (Gu et al., 2019) 90.44 75.97 94.52
TransUnet (Chen et al., 2021) 91.00 77.15 93.88
SETR (Zheng et al., 2021) 85.51 73.99 90.43
Swin Transformer (Liu et al., 2021) 81.50 71.86 86.43
NAT (Hassani et al., 2022) 83.10 71.27 89.87
Swin Unet (Cao et al., 2023) 77.25 76.15 81.06
UNetFormer (Wang, Li et al., 2022) 89.86 88.39 92.49
Uctransnet (Wang, Cao et al., 2022) 87.93 88.51 88.33

Feature-level fusion

Concatenation 90.29 72.49 98.55
Element-wise Addition 91.21 76.74 94.80
MAML (Zhang et al., 2021) 90.67 89.07 93.63
Modality Pairing (Wang, Zhang et al., 2020) 91.67 77.25 95.37
TranSiam (Ours) 92.62 77.17 96.88

4.7. Visual analysis

To readily compare the advantages of the LAA block compared
to other fusion methods, we visualize the prediction results on the
Vestibular Schwannoma dataset. Based on the TranSiam, we only re-
place the fusion method under the same experimental settings. We
compare the LAA block with commonly used fusion methods on the
feature-level, including Element-wise Addition and Concatenation. As
shown as the first row of Fig. 5, complete segmentation of the tumor

region is required to effectively combine ceT1 and hrT2, because these
two modalities reflect complementary tumor information. Compared
with Element-wise Addition and Concatenation, the LAA block can
utilize the multi-modal data more effectively. In addition, since the LAA
block is a local window-based fusion mechanism, it does not lose small
target information excessively. As shown in the second and third rows
of Fig. 5, the LAA block is sensitive to segment the small tumor region.

We also compare TranSiam with other classical segmentation mod-
els on the Vestibular Schwannoma dataset. Fig. 6 shows the visual
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Fig. 6. Visual analysis of segmentation methods. From left to right: cet1, hrT2, label, TranSiam, Unet, and Swin Transformer. Tumors are marked in green.

Fig. 7. An illustration of the activation map of the last convolutional layer. From left to right: T2, ground truth, our approach and Unet. The bright yellow area represents areas
with higher activation values (attention). Our method uses LAA blocks to learn complementary information between different modalities, providing richer visual representations
for segmentation tasks. The comparison between our method and Unet’s activation map shows that our method can make the model more focused on lesion region.
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results of Unet, Swin Transformer and TranSiam. It can be seen that
the TranSiam can segment more tumor regions. The visual comparison
of MRI brain tumour segmentation results shows that it is useful to fully
fuse multi-modal data for medical image segmentation.

To further investigate the multi-modal correlation feature repre-
sentation obtained by the LAA block, we visualized the feature maps
in Fig. 7 and compared them qualitatively with the classical Unet
model. It can be seen as a heat map where highlighted areas receive
more attention and other areas have smaller pixel values. Compared to
Unet, the feature maps produced by TranSiam have clearer contours
in the lesion area, which helps the model to achieve more accurate
segmentation results. The quantitative visual results show that the
proposed LAA block can be used to perform a joint analysis on the local
information of different modes, which can help the model to obtain a
richer visual feature representation.

5. Conclusion

In this paper, we propose a feature-level fusion model for multi-
modal medical image segmentation, called TranSiam. It has two paths,
which are used to extract features from different modalities and avoid
the interference of differences between them. For each path, it com-
bines Transformer and CNN as feature extractors to extract both de-
tailed and global information. At the feature-level, we design the LAA
block to explore the potential association between different modal fea-
tures. The LAA block compensates for the shortcomings of commonly
used multi-modal fusion methods at the feature-level. However, in or-
der to save computational resources, our approach is a 2D segmentation
method that does not explore the association of spatial contexts in
3D medical images. In addition, we do not use any post-processing,
resulting in the Specificity of our model is poor.

In the future, we will provide additional technological support to
enhance the security and service availability of the proposed work
in clinical environments. Inspired by the work of Conti, Militello,
Rundo, and Vitabile (2021), we will design self-organizing systems
with a nonfixed structure to improve service continuity, allowing them
to adaptively change their structure and organization in response to
internal and external environmental changes. In service-oriented net-
works (SONs), communication among nodes through stimulation or
suppression chains will give rise to emerging behaviors that defend
against external intrusions, attacks, and failures, further enhancing the
robustness of our approach in clinical operational scenarios. More-
over, we are exploring how to reduce computational resources while
fusing spatial contextual information of images and designing spe-
cialized post-processing to improve the effectiveness of our model
segmentation.
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